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Program

Daily timetable
9:00 – 9:30 Recap of yesterday’s practicals
9:30 – 10:30 Lecture

10:30 – 11:00 Coffee break
11:00 – 13:00 Practical
13:00 – 14:00 Lunch
14:00 – 14:30 Recap of morning’s practical
14:30 – 15:30 Lecture
15:30 – 16:00 Tea break
16:00 – 18:00 Practical

Thursday 14 June
8:30 – 9:00 Registration
9:00 – 9:15 Welcome (MP)
9:15 – 10:30 R History and Ecology (MP)

10:30 – 11:00 Coffeee break
11:00 – 13:00 Practical: Practice with basic R

Simple reading and data input
13:00 – 14:00 Lunch
14:00 – 14:30 Recap of morning practical
14:30 – 15:30 Language, indexing, subset(), ifelse(), attach(), detach(),

search. Simple simulation. Simple graphics. (KF)
15:30 – 16:00 Tea break
16:00 – 18:00 Practical: Simple simulation

Tabulation
Introduction to graphs in R

18:00 – Welcome reception

Friday 15 June
9:00 – 9:30 Recap of yesterday’s practicals.
9:30 – 10:30 Poisson regression for follow-up studies — likelihood for a constant rate

Logistic regression for cc-studies (JP)
10:30 – 11:00 Coffeee break
11:00 – 13:00 Practical: Rates, rate ratio and rate difference with glm

Logistic regression with glm

13:00 – 14:00 Lunch
14:00 – 14:30 Recap of morning practical
14:30 – 15:45 Linear and generalized linear models (EL)

All you ever wanted to know about splines (MP)
15:45 – 16:15 Tea break
16:15 – 18:00 Practical: Simple estimation of effects

Estimation and reporting of linear and curved effects



2 SPE practicals

Saturday 16 June
9:00 – 9:30 Recap of yesterday’s practicals
9:30 – 10:30 More advanced graphics in R, including ggplot2 (MP)

10:30 – 11:00 Coffee break.
11:00 – 13:00 Practical: Graphical meccano

Monday 18 June
9:00 – 9:30 Recap of yesterday’s practicals
9:30 – 10:30 Survival analysis: Kaplan Meier & simple Cox-model. Simple competing

risks and relative survival. (JP)
10:30 – 11:00 Tea break
11:00 – 13:00 Practical: Survival and competing risks in oral

cancer. Relative survival.
13:00 – 14:00 Lunch
14:00 – 14:30 Recap of morning practical
14:30 – 15:30 Dates in R; follow up representation in Lexis objects, time-splitting,

multistate model and SMR. (BxC)
15:30 – 16:00 Coffee break.
16:00 – 18:00 Practical: Time-splitting and SMR (Danish diabetes patients)

Tuesday 19 June
9:00 – 9:30 Recap of yesterday’s practicals
9:30 – 10:30 Nested and matched cc-studies & Case-cohort studies (EL)

10:30 – 11:00 Coffee break.
11:00 – 13:00 Practical: CC study: Risk factors for Coronary heart disease
13:00 – 14:00 Lunch
14:00 – 14:30 Recap of morning practical
14:30 – 15:30 Causal inference. (KF)
15:30 – 16:00 Coffee break.
16:00 – 18:00 Practical: Simulation and causal inference

–
20:00 – Dinner – restaurant Le Passage

Wednesday 20 June
9:00 – 9:30 Recap of yesterday’s practicals
9:30 – 10:30 Multistate models, Poisson models for rates and simulation of Lexis

objects (BxC)
10:30 – 11:00 Coffee break.
11:00 – 12:15 Practical: Multistate-model: Renal complications
12:15 – 12:45 Recap of morning practical
12:54 – 13:00 Wrap-up and farewell.
13:00 – 14:00 Lunch

Further material will appear at this year’s course website:
http://bendixcarstensen.com/SPE/2018

http://bendixcarstensen.com/SPE/2018


Chapter 1

Exercises

Data sets

Datasets for the practicals in this course, as well as some useful R scripts, will be available on
the course homepage, in http://BendixCarstensen.com/SPE/data. This is where you will
also find the “housekeeping” scripts designed to save you typing.

To get all files in one go, download the zip file http://spe-r.github.io/data.zip.

Graphical User Interfaces to R

When running the exercises it is a good idea to use a text editor instead of typing your
commands directly at the R prompt. On Windows and macOS, R comes with a basic
graphical user interface including a built-in text editor. Many people like to use the RStudio
interface to R, which includes a very powerful syntax-highlighting editor.

Keyboard shortcuts

In the past we have found that some participants have had difficulty finding keys for symbols
that are commonly used in the R language. In particular, the tilde symbol ~ is used in all
modelling functions but not directly available on some keyboards. If this affects you then
please consult the Wikipedia page: http://en.wikipedia.org/wiki/Tilde#Keyboards for
advice on the combination of key presses you will need to get tilde.

Recaps

The R-scripts used during the course for the recaps will be available in
http://BendixCarstensen.com/SPE/recap.

Ask for help

The faculty are here to help you. Ask them for help.

1
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1.1 Practice with basic R

The main purpose of this session is to give participants who have not had much (or any)
experience with using R a chance to practice the basics and to ask questions. For others, it
should serve as a reminder of some of the basic features of the language.

R can be installed on all major platforms (i.e. Windows, macOS, Linux). We do not
assume in this exercise that you are using any particular platform. Many people like to use
the RStudio graphical user interface (GUI), which gives the same look and feel across all
platforms.

1.1.1 The working directory

A key concept in R is the working directory (or folder in the terminology of Windows). The
working directory is where R looks for data files that you may want to read in and where R
will write out any files you create. It is a good idea to keep separate working directories for
different projects. In this course we recommend that you keep a separate working directory
for each exercise.

If you are working on the command line in a terminal, then you can change to the correct
working directory and then launch R by typing “R”.

If you are using a GUI then you will typically need to change to the correct working
directory after starting R. In RStudio, you can change directory from the “Session” menu.
However it is much more useful to create a new project to keep your source files and data.
When you open a project in the RStudio GUI, your working directory is automatically
changed to the directory associated with the project.

You can quit R by typing

q()

at the R command prompt. You will be asked if you want to save your workspace. We
recommend that you answer “no” to this question. If you answer “yes” then R will write a file
named .RData into the working directory containing all the objects you created during your
session so that they will be available next time you start R. This may seem convenient but
you will soon find that your workspace becomes cluttered with old objects.

You can display the current working directory with the getwd() function and set it with
the setwd() function. The function dir() can be used to see what files you have in the
working directory.

1.1.2 Read-evaluate-print

The simplest use of R is interactively. R will read in the command you type, evaluate them,
then print out the answer. This is called the read-eval-print loop, or REPL for people who
don’t like words. In this exercise, we recommend that you work interactively. As the course
evolves you will find that you need to switch to script files. We come back to this issue at the
end of the exercise.

It is important to remember that R is case sensitive, so that A is different from a.
Commands in R are generally separated by a newline, although a semi-colon can also be used.
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1.1.3 Using R as a calculator

Try using R as a calculator by typing different arithmetic expressions on the command line.
Note that R allows you to recall previous commands using the vertical arrow key. You can
edit a recalled command and then resubmit it by pressing the return key. Keeping that in
mind, try the following:

12+16

(12+16)*5

sqrt((12+16)*5) # square root

round(sqrt((12+16)*5),2) # round to two decimal places

The hash symbol # denotes the start of a comment. Anything after the hash is ignored by R.
Round braces are used a lot in R. In the above expressions, they are used in two different

ways. Firstly, they can be used to establish the order of operations. In the example

> (12+16)*5

[1] 140

they ensure that 12 is added to 16 before the result is multiplied by 5. If you omit the braces
then you get a different answer

> 12+16*5

[1] 92

because multiplication has higher precedence than addition. The second use of round braces is
in a function call (e.g. sqrt, round). To call a function in R, type the name followed by the
arguments inside round braces. Some functions take multiple arguments, and in this case they
are separated by commas.

You can see that complicated expressions in R can have several levels of nested braces. To
keep track of these, it helps to use a syntax-highlighting editor. For example, in RStudio,
when you type an opening bracket “(”, RStudio will automatically add a closing bracket “)”,
and when the cursor moves past a closing bracket, RStudio will automatically highlight the
corresponding opening bracket (in grey). Features like this can make it much easier to write R
code free from syntax errors.

Instead of printing the result you can store it in an object, say

a <- round(sqrt((12+16)*5),2)

In this case R does not print anything to the screen. You can see the results of the
calculation, stored in the object a, by typing a and also use a for further calculations, e.g:

exp(a)

log(a) # natural logarithm

log10(a) # log to the base 10

The left arrow expression <-, pronounced “gets”, is called the assignment operator, and is
obtained by typing < followed by - (with no space in between). It is also possible to use the
equals sign = for assignment. Note that some R experts do not like this and recommend to use
only “gets” for assignment, reserving = for function arguments,

You can also use a right arrow, as in

round(sqrt((12+16)*5),2) -> a
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1.1.4 Vectors

All commands in R are functions which act on objects. One important kind of object is a
vector, which is an ordered collection of numbers, or character strings (e.g. “Charles Darwin”)
, or logical values (TRUE or FALSE). The components of a vector must be of the same type
(numeric, character, or logical). The combine function c(), together with the assignment
operator, is used to create vectors. Thus

> v <- c(4, 6, 1, 2.2)

creates a vector v with components 4, 6, 1, 2.2 and assigns the result to the vector v.
A key feature of the R language is that many operations are vectorized, meaning that you

can carry out the same operation on each element of a vector in a single operation. Try

> v
> 3+v
> 3*v

and you will see that R understands what to do in each case.
R extends ordinary arithmetic with the concept of a missing value represented by the

symbol NA (Not Available). Any operation on a missing value creates another missing value.
You can see this by repeating the same operations on a vector containing a missing value:

> v <- c(4, 6, NA)
> 3 + v
> 3 * v

The fact that every operation on a missing value produces a missing value can be a nuisance
when you want to create a summary statistic for a vector:

> mean(v)

[1] NA

While it is true that the mean of v is unknown because the value of the third element is
missing, we normally want the mean of the non-missing elements. Fortunately the mean

function has an optional argument called na.rm which can be used for this.

> mean(v, na.rm=TRUE)

[1] 5

Many functions in R have optional arguments that can be omitted, in which case they take
their default value (in this case na.rm=FALSE), or can be explicitly given in the function call
to override the default behaviour.

You can get a description of the structure of any object using the function str(). For
example, str(v) shows that v is numeric with 4 components. If you just want to know the
length of a vector then it is much easier to use the length function.

> length(v)
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1.1.5 Sequences

There are short-cut functions for creating vectors with a regular structure. For example, if
you want a vector containing the sequence of integers from 1 to 10, you can use

> 1:10

The seq() function allows the creation of more general sequences. For example, the vector
(15, 20, 25, ... ,85) can be created with

> seq(from=15, to=85, by=5)

The objects created by the “:” operator and the seq() function are ordinary vectors, and can
be combined with other vectors using the combine function:

> c(5, seq(from=20, to=85, by=5))

You can learn more about functions by typing ? followed by the function name. For
example ?seq gives information about the syntax and usage of the function seq().

1. Create a vector w with components 1, -1, 2, -2

2. Display this vector

3. Obtain a description of w using str()

4. Create the vector w+1, and display it.

5. Create the vector v with components (5, 10, 15, ... , 75) using seq().

6. Now add the components 0 and 1 to the beginning of v using c().

7. Find the length of this vector.

1.1.6 Displaying and changing parts of a vector (indexing)

Square brackets in R are used to extract parts of vectors. So x[1] gives the first element of
vector x. Since R is vectorized you can also supply a vector of integer index values inside the
square brackets. Any expression that creates an integer vector will work.

Try the following commands:

> x <- c(2, 7, 0, 9, 10, 23, 11, 4, 7, 8, 6, 0)
> x[4]
> x[3:5]
> x[c(1,5,8)]
> x[(1:6)*2]
> x[-1]

Negative subscripts mean “drop this element”. So x[-1] returns every element of x except the
first.

Trying to extract an element that is beyond the end of the vector is, surprisingly, not an
error. Instead, this returns a missing value

> N <- length(x)
> x[N + 1]

[1] NA
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There is a reason for this behaviour, which we will discuss in the recap.
R also allows logical subscripting. Try the following

> x > 10
> x[x > 10]

The first expression creates a logical vector of the same length as x, where each element has
the value TRUE or FALSE depending on whether or not the corresponding element of x is
greater than 10. If you supply a logical vector as an index, R selects only those elements for
which the conditions is TRUE.

You can combine two logical vectors with the operators & (“logical and”) and | (“logical
or”). For example, to select elements of x that are between 10 and 20 we combine two
one-sided logical conditions for x ≥ 10 and x ≤ 20:

> x[x >= 10 & x <= 20]

The remaining elements of x that are either less than 10 or greater than 20 are selected with

> x[x < 10 | x > 20]

Indexing can also be used to replace parts of a vector:

> x[1] <- 1000
> x

This replaces the first element of x. Logical subscripting is useful for replacing parts of a
vector that satisfy a certain condition. For example to replace all elements that take the value
0 with the value 1:

> x[x==0] <- 1
> x

If you want to replace parts of a vector then you need to make sure that the replacement
value is either a single value, as in the example above, or a vector equal in length to the
number of elements to be replaced. For example, to replace elements 2, 3, and 4 we need to
supply a vector of replacement values of length 3.

> x[2:4] <- c(0, 8, 1)
> x

It is important to remember this when you are using logical subscripting because the number
of elements to be replaced is not given explicitly in the R code, and it is easy to get confused
about how many values need to be replaced. If we want to add 3 to every element that is less
than 3 then we can break the operation down into 3 steps:

> y <- x[x < 3]
> y <- y + 3
> x[x < 3] <- y
> x

First we extract the values to be modified, then we modify them, then we write back the
modified values to the original positions. R experts will normally do this in a single
expression.

> x[x < 3] <- x[x < 3] + 3



IARC, 2018 1.1 Practice with basic R 7

Remember, if you are confused by a complicated expression you can usually break it down
into simpler steps.

If you want to create an entirely new vector based on some logical condition then use the
ifelse() function. This function takes three arguments: the first is a logical vector; the
second is the value taken by elements of the logical vector that are TRUE; and the third is the
value taken by elements that are FALSE.

In this example, we use the remainder operator %% to identify elements of x that have value
0 when divided by 2 (i.e. the even numbers) and then create a new character vector with the
labels “even” and “odd”:

> x %% 2
> ifelse(x %% 2 == 0,"even","odd")

Now try the following:

8. Display elements that are less than 10, but greater than 4

9. Modify the vector x, replacing by 10 all values that are greater than 10

10. Modify the vector x, multiplying by 2 all elements that are smaller than 5 (Remember
you can do this in steps).

1.1.7 Lists

Collections of components of different types are called lists, and are created with the list()

function. Thus

> m <- list(4, TRUE, "name of company")
> m

creates a list with 3 components: the first is numeric, the second is logical and the third is
character. A list element can be any object, including another list. This flexibility means that
functions that need to return a lot of complex information, such as statistical modelling
functions, often return a list.

As with vectors, single square brackets are used to take a subset of a list, but the result will
always be another list, even if you select only one element

> m[1:2] #A list containing first two elements of m
> m[3] #A list containing the third element of m

If you just want to extract a single element of a list then you must use double square braces:

> m[[3]] #Extract third element

Lists are more useful when their elements are named. You can name an element by using
the syntax name=value in the call to the list function:

> mylist <- list(name=c("Joe","Ann","Jack","Tom"),
+ age=c(34,50,27,42))
> mylist

This creates a new list with the elements “name”, a character vector of names, and “age” a
numeric vector of ages. The components of the list can be extracted with a dollar sign $

> mylist$name
> mylist$age
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1.1.8 Data frames

Data frames are a special structure used when we want to store several vectors of the same
length, and corresponding elements of each vector refer to the same record. For example, here
we create a simple data frame containing the names of some individuals along with their age
in years, their sex (coded 1 or 2) and their height in cm.

> mydata <- data.frame(name=c("Joe","Ann","Jack","Tom"),
+ age=c(34,50,27,42),sex=c(1,2,1,1),
+ height=c(185,170,175,182))

The construction of a data frame is just like a named list (except that we use the constructor
function data.frame instead of list). In fact data frames are lists so, for example, you can
extract vectors using the dollar sign or other extraction methods for lists:

> mydata$height
> mydata[[4]]

On the other hand, data frames are also two dimensional objects:

> mydata

name age sex height
1 Joe 34 1 185
2 Ann 50 2 170
3 Jack 27 1 175
4 Tom 42 1 182

When you print a data frame, each variable appears in a separate column. You can use square
brackets with two comma-separated arguments to take subsets of rows or columns.

> mydata[1,]
> mydata[,c("age", "height")]
> mydata[2,4]

We will look into indexing of data frames in more detail below.
Now let’s create another data frame with more individuals than the first one:

> yourdata <- data.frame(name=c("Ann","Peter","Sue","Jack","Tom","Joe","Jane"),
+ weight=c(67,81,56,90,72,79,69))

This new data frame contains the weights of the individuals. The two data sets can be joined
together with the merge function.

> newdata <- merge(mydata, yourdata)
> newdata

The merge function uses the variables common to both data frames – in this case the variable
“name” – to uniquely identify each row. By default, only rows that are in both data frames
are preserved, the rest are discarded. In the above example, the records for Peter, Sue, and
Jane, which are not in mydata are discarded. If you want to keep them, use the optional
argument all=TRUE.

> newdata <- merge(mydata, yourdata, all=TRUE)
> newdata

This keeps a row for all individuals but since Peter, Sue and Jane have no recorded age,
height, or sex these are missing values.
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1.1.9 Working with built-in data frames

We shall use the births data which concern 500 mothers who had singleton births (i.e. no
twins) in a large London hospital. The outcome of interest is the birth weight of the baby, also
dichotomised as normal or low birth weight. These data are available in the Epi package:

> library(Epi)
> data(births)
> objects()

The function objects() shows what is in your workspace. To find out a bit more about
births try

help(births)

11. The dataframe "diet" in the Epi package contains data from a follow-up study with
coronary heart disease as the end-point. Load these data with

> data(diet)

and print the contents of the data frame to the screen..

12. Check that you now have two objects, births, and diet in your workspace.

13. Get help on the object diet.

14. Remove the object diet with the command

> remove(diet)

Check that the object diet is no longer in your workspace.

1.1.10 Referencing parts of the data frame (indexing)

Typing births will list the entire data frame – not usually very helpful. You can use the head

function to see just the first few rows of a data frame

> head(births)

Now try

> births[1,"bweight"]

This will list the value taken by the first subject for the bweight variable. Alternatively

> births[1,2]

will list the value taken by the first subject for the second variable (which is bweight).
Similarly

> births[2,"bweight"]

will list the value taken by the second subject for bweight, and so on. To list the data for the
first 10 subject for the bweight variable, try

> births[1:10, "bweight"]
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and to list all the data for this variable, try

> births[, "bweight"]

To list the data for the first subject try

> births[1, ]

An empty index before the comma means “all rows” and an empty index after the comma
means “all columns”.

15. Display the data on the variable gestwks for row 7 in the births data frame.

16. Display all the data in row 7.

17. Display the first 10 rows for the variable gestwks.

The subset function is another way of getting subsets from a data frame.To select all
subjects with height less than 180 cm from the data frame mydata we use

> subset(mydata, height < 180)

The subset function is usually clearer than the equivalent code using []:

> mydata[mydata$height < 180, ]

Another advantage of subset is that it will drop observations with missing values. Compare
the following

> newdata[newdata$height < 180, ]
> subset(newdata, height < 180)

If height is missing then subset will drop that row. But [] will do something you might not
expect. It will include the rows with missing height, but will replace every element in those
rows with the missing value NA.

1.1.11 Summaries

A good way to start an analysis is to ask for a summary of the data by typing

> summary(births)

This prints some summary statistics (minimum, lower quartile, mean, median, upper quartile,
maximum). For variables with missing values, the number of NAs is also printed.

To see the names of the variables in the data frame try

> names(births)

Variables in a data frame can be referred to by name, but to do so it is necessary also to
specify the name of the data frame. Thus births$hyp refers to the variable hyp in the births

data frame, and typing births$hyp will print the data on this variable. To summarize the
variable hyp try

> summary(births$hyp)

Alternatively you can use

> with(births, summary(hyp))
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1.1.12 Generating new variables

New variables can be produced using assignment together with the usual mathematical
operations and functions. For example

> logbw <- log(births$bweight)

produces the variable logbw in your workspace, while

> births$logbw <- log(births$bweight)

produces the variable logbw in the births data frame.
You can also replace existing variables. For example bweight measures birth weight in

grams. To convert the units to kilograms we replace the original variable with a new one:

> births$bweight <- births$bweight/1000

1.1.13 Turning a variable into a factor

In R categorical variables are known as factors, and the different categories are called the
levels of the factor. Variables such as hyp and sex are originally coded using integer codes,
and by default R will interpret these codes as numeric values taken by the variables. Factors
will become very important later in the course when we study modelling functions, where
factors and numeric variables are treated very differently. For the moment, you can think of
factors as “value labels” that are more informative than numeric codes.

For R to recognize that the codes refer to categories it is necessary to convert the variables
to be factors, and to label the levels. To convert the variable hyp to be a factor, try

> births$hyp <- factor(births$hyp, labels=c("normal", "hyper"))

This takes the original numeric codes (0, 1) and replaces them with informative labels
“normal” and “hyper” for normal blood pressure and hypertension, respectively.

18. Convert the variable sex into a factor with labels "M" and "F" for values 1 and 2,
respectively

1.1.14 Frequency tables

When starting to look at any new data frame the first step is to check that the values of the
variables make sense and correspond to the codes defined in the coding schedule. For
categorical variables (factors) this can be done by looking at one-way frequency tables and
checking that only the specified codes (levels) occur. The most useful function for making
simple frequency tables is table. The distribution of the factor hyp can be viewed using

> with(births, table(hyp))

or by specifying the data frame as in

> table(births$hyp)

For simple expressions the choice is a matter of taste, but with is shorter for more
complicated expressions.
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19. Find the frequency distribution of sex.

20. If you give two or more arguments to the table function then it produces
cross-tabulations. Find the two-way frequency distribution of sex and hyp.

21. Create a logical variable called early according to whether gestwks is less than 30 or
not. Make a frequency table of early.

1.1.15 Grouping the values of a numeric variable

For a numeric variable like matage it is often useful to group the values and to create a new
factor which codes the groups. For example we might cut the values taken by matage into the
groups 20–29, 30–34, 35–39, 40–44, and then create a factor called agegrp with 4 levels
corresponding to the four groups. The best way of doing this is with the function cut. Try

> births$agegrp <- cut(births$matage, breaks=c(20,30,35,40,45), right=FALSE)
> with(births, table(agegrp))

By default the factor levels are labelled [20-25), [25-30), etc., where [20-25) refers to the
interval which includes the left hand end (20) but not the right hand end (25). This is the
reason for right=FALSE. When right=TRUE (which is the default) the intervals include the
right hand end but not the left hand.

Observations which are not inside the range specified by the breaks argument result in
missing values for the new factor. Hence it is important that the first element in breaks is
smaller than the smallest value in your data, and the last element is larger than the largest
value.

22. Summarize the numeric variable gestwks, which records the length of gestation for the
baby, and make a note of the range of values.

23. Create a new factor gest4 which cuts gestwks at 20, 35, 37, 39, and 45 weeks, including
the left hand end, but not the right hand. Make a table of the frequencies for the four
levels of gest4.

1.1.16 Saving and loading data

As noted in section 1.1.1, at the end of the session, R will offer to save your workspace and, if
you accept, it will create a file .RData in your working directory. In fact you can save any R
object to disc. For example, to save the data frame births try

> save(births, file="births.RData")

which will save the births data frame in the file births.RData. If you send this file to a
colleague then they can read the data back into R with

> load("births.RData")

The commands save() and load() can be used with any R objects, but they are particularly
useful when dealing with large data frames. The binary format created by the save()

functions is the same across all platforms and between R versions.
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1.1.17 The search path

When you load a package with the library() function, the functions in that package become
available for you to use via a mechanism called the search path. The command

> search()

shows the positions on the search path. The first position is “.GlobalEnv”. This is the global
environment, which is another name for your workspace. The second entry on the search path
is the Epi package, the third is a package of commands called methods, the fourth is a
package called stats, and so on. To see what is in the workspace try

> objects()

You should see the objects that you have created in this session. To see what is in the Epi
package, try

> objects(2)

You can also refer to a package by name, not position

> objects("package:Epi")

When you type the name of an object R looks for it in the order of the search path and will
return the first object with this name that it finds.

1.1.18 Attaching a data frame

The search path can also be modified by attaching a data frame. For example:

> attach(births)

This places a copy of the variables in the births data frame in position 2 of the search path.
You can verify this with

> search()
> objects(2)

which shows the objects in this position are the variables from the births data frame.
Attaching a data frame makes the variables in it directly accessible. For example, when you

type the command:

> hyp

you should get the variable hyp from the births data set without having to use the dollar
sign. The detach() function removes the data frame from the search path.

> detach()

when no arguments are given, the detach() function removes the second entry on the search
path (after the global environment).

This seems like an attractive feature, especially for people who are used to other statistical
software (e.g. SAS, Stata) in which the variables in the “current working dataset” are directly
accessible in this way. However, attaching data frames causes more problems than it solves
and should be avoided. In particular:
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� Since the attached data frame appears second in the search path, it comes after the
global environment. If you have an object hyp in the global environment then you will
get this, instead of the variable from the births data frame. This is called masking. R
will warn you about masking, but only once for each variable.

� Attaching a data frame creates a copy of all the variables in it. Subsequent changes to
the data frame (e.g. selecting rows or recoding variables) are not reflected in the
attached copy, which is a snapshot of the data frame when it was attached.

� If you forget to detach() the data frame when you are finished with it, then you may
create multiple attached copies on your search path, especially when using a script.

It is best to stick to using the dollar sign to select variables in a data frame, or to use the
with() function. Many R functions (but not all of them) have a data argument which can be
used to specify a data frame that should be searched before the search path.

1.1.19 Interactive use vs scripting

You can work with R simply by typing function calls at the command prompt and reading the
results as they are printed. This is OK for simple use but rapidly becomes cumbersome. If the
results of one calculation are used to feed into the next calculation, it can be difficult to go
back if you find you have made a mistake, or if you want to repeat the same commands with
different data.

When working with R it is best to use a text editor to prepare a batch file (or script) which
contains R commands and then to run them from the script. If you are using a GUI then you
can use the built-in script editor, or you can use your favourite text editor instead if you
prefer.

One major advantage of running all your R commands from a script is that you end up
with a record of exactly what you did which can be repeated at any time. This will also help
you redo the analysis in the (highly likely) event that your data changes before you have
finished all analyses.
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1.2 Reading data into R

1.2.1 Introduction

“If you want to have rabbit stew, first catch the rabbit” – Old saying, origin
unknown

R is a language and environment for data analysis. If you want to do something interesting
with it, you need data.

For teaching purposes, data sets are often embedded in R packages. The base R distribution
contains a whole package dedicated to data which includes around 100 data sets. This is
attached towards the end of the search path, and you can see its contents with

> objects("package:datasets")

A description of all of these objects is available using the help() function. For example

> help(Titanic)

gives an explanation of the Titanic data set, along with references giving the source of the
data.

The Epi package also contains some data sets. These are not available automatically when
you load the Epi package, but you can make a copy in your workspace using the data()

function. For example

> library(Epi)
> data(bdendo)

will create a data frame called bdendo in your workspace containing data from a case-control
study of endometrial cancer. Datasets in the Epi package also have help pages: type
help(bdendo) for further information.

To go back to the cooking analogy, these data sets are the equivalent of microwave ready
meals, carefully packaged and requiring minimal work by the consumer. Your own data will
never be able in this form and you must work harder to read it in to R.

This exercise introduces you to the basics of reading external data into R. It consists of
reading the same data from different formats. Although this may appear repetitive, it allows
you to see the many options available to you, and should allow you to recognize when things
go wrong.

getting the data: You will need to download the zip file data.zip from the
course web site https://spe-r.github.io/data.zip and unpack this in your
working directory. This will create a sub-directory data containing (among other
things) the files fem.dat, fem-dot.dat, fem.csv, and fem.dta (Reminder: use
setwd() to set your working directory).

1.2.2 Data sources

Sources of data can be classified into three groups:

1. Data in human readable form, which can be inspected with a text editor.

https://spe-r.github.io/data.zip
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2. Data in binary format, which can only be read by a program that understands that
format (SAS, SPSS, Stata, Excel, ...).

3. Online data from a database management system (DBMS)

This exercise will deal with the first two forms of data. Epidemiological data sets are rarely
large enough to justify being kept in a DBMS. If you want further details on this topic, you
can consult the “R Data Import/Export” manual that comes with R.

1.2.3 Data in text files

Human-readable data files are generally kept in a rectangular format, with individual records
in single rows and variables in columns. Such data can be read into a data frame in R.

Before reading in the data, you should inspect the file in a text editor and ask three
questions:

1. How are columns in the table separated?

2. How are missing values represented?

3. Are variable names included in the file?

The file fem.dat contains data on 118 female psychiatric patients. The data set contains
nine variables.

ID Patient identifier
AGE Age in years
IQ Intelligence Quotient (IQ) score
ANXIETY Anxiety (1=none, 2=mild, 3=moderate,4=severe)
DEPRESS Depression (1=none, 2=mild, 3=moderate or severe)
SLEEP Sleeping normally (1=yes, 2=no)
SEX Lost interest in sex (1=yes, 2=no)
LIFE Considered suicide (1=yes, 2=no)
WEIGHT Weight change (kg) in previous 6 months

Inspect the file fem.dat with a text editor to answer the questions above.
The most general function for reading in free-format data is read.table(). This function

reads a text file and returns a data frame. It tries to guess the correct format of each variable
in the data frame (integer, double precision, or text).

Read in the table with:

> fem <- read.table("./data/fem.dat", header=TRUE)

Note that you must assign the result of read.table() to an object. If this is not done, the
data frame will be printed to the screen and then lost.

You can see the names of the variables with

> names(fem)

The structure of the data frame can be seen with

> str(fem)
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You can also inspect the top few rows with

> head(fem)

Note that the IQ of subject 9 is -99, which is an illegal value: nobody can have a negative IQ.
In fact -99 has been used in this file to represent a missing value. In R the special value NA

(“Not Available”) is used to represent missing values. All R functions recognize NA values and
will handle them appropriately, although sometimes the appropriate response is to stop the
calculation with an error message.

You can recode the missing values with

> fem$IQ[fem$IQ == -99] <- NA

Of course it is much better to handle special missing value codes when reading in the data.
This can be done with the na.strings argument of the read.table() function. See below.

1.2.4 Things that can go wrong

Sooner or later when reading data into R, you will make a mistake. The frustrating part of
reading data into R is that most mistakes are not fatal: they simply cause the function to
return a data frame that is not what you wanted. There are three common mistakes, which
you should learn to recognize.

1.2.4.1 Forgetting the headers

The first row of the file fem.dat contains the variable names. The read.table() function
does not assume this by default so you have to specify this with the argument header=TRUE.
See what happens when you forget to include this option:

> fem2 <- read.table("data/fem.dat")
> str(fem2)
> head(fem2)

and compare the resulting data frame with fem. What are the names of the variables in the
data frame? What is the class of the variables?

Explanation: Remember that read.table() tries to guess the mode of the
variables in the text file. Without the header=TRUE option it reads the first row,
containing the variable names, as data, and guesses that all the variables are
character, not numeric. By default, all character variables are coerced to factors
by read.table. The result is a data frame consisting entirely of factors. (You can
prevent the conversion of character variables to factors with the argument
as.is=TRUE).

If the variable names are not specified in the file, then they are given default names V1,

V2, .... You will soon realise this mistake if you try to access a variable in the data frame
by, for example

> fem2$IQ

as the variable will not exist
There is one case where omitting the header=TRUE option is harmless (apart from the

situation where there is no header line, obviously). When the first row of the file contains one
less value than subsequent lines, read.table() infers that the first row contains the variable
names, and the first column of every subsequent row contains its row name.
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1.2.4.2 Using the wrong separator

By default, read.table assumes that data values are separated by any amount of white
space. Other possibilities can be specified using the sep argument. See what happens when
you assume the wrong separator, in this case a tab, which is specified using the escape
sequence "\t"

> fem3 <- read.table("data/fem.dat", sep="\t")
> str(fem3)

How many variables are there in the data set?

Explanation: If you mis-specify the separator, read.table() reads the whole
line as a single character variable. Once again, character variables are coerced to
factors, so you get a data frame with a single factor variable.

1.2.4.3 Mis-specifying the representation of missing values

The file fem-dot.dat contains a version of the FEM dataset in which all missing values are
represented with a dot. This is a common way of representing missing values, but is not
recognized by default by the read.table() function, which assumes that missing values are
represented by “NA”.

Inspect the file with a text editor, and then see what happens when you read the file in
incorrectly:

> fem4 <- read.table("data/fem-dot.dat", header=TRUE)
> str(fem4)

You should have enough clues by now to work out what went wrong.
You can read the data correctly using the na.strings argument

> fem4 <- read.table("data/fem-dot.dat", header=TRUE, na.strings=".")

1.2.5 Spreadsheet data

Spreadsheets have become a common way of exchanging data. All spreadsheet programs can
save a single sheet in comma-separated variable (CSV) format, which can then be read into R.
There are two functions in R for reading in CSV data: read.csv() and read.csv2().

Both of these are wrappers around the read.table() function, i.e. the read.table()

function is still doing the work of reading in the data but the read.csv() function provides
default argument values for reading in CSV file so all you need to do is specify the file name.

You can see what these default arguments are with the args() function.

> args(read.csv)
> args(read.csv2)

See if you can spot the difference between read.csv and read.csv2.

Explanation: The CSV format is not a single standard. The file format depends
on the locale of your computer – the settings that determine how numbers are
represented. In some countries, the decimal separator is a point “.” and the
variable separator in a CSV file is a comma “,”. In other countries, the decimal
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separator is a comma “,” and the variable separator is a semi-colon “;”. This is
reflected in the different default values for the arguments sep and dec. The
read.csv() function is used for the first format and the read.csv2() function is
used for the second format.

The file fem.csv contains the FEM dataset in CSV format. Inspect the file to work out
which format is used, and read it into R.

1.2.6 Reading data from the Internet

You can also read in data from a remote web site. The file argument of read.table() does
not need to be a local file on your computer; it can be a Uniform Resource Locator (URL),
i.e. a web address.

A copy of the file fem.dat is held at
https://www.bendixcarstensen.com/SPE/data/fem.dat. You can read it in with

> fem6 <- read.table("http://www.bendixcarstensen.com/SPE/data/fem.dat",
+ header=TRUE)
> str(fem6)

1.2.7 Reading from the clipboard

On Microsoft Windows, you can copy values directly from an open Excel spreadsheet using
the clipboard. Highlight the cells you want to copy in the spread sheet and select copy from
the pull-down edit menu. Then type read.table(file="clipboard") to read the data in.

There are two reasons why this is a bad idea

� It is not reproducible. In order to read the data in again you need to complete exactly
the same sequence of mouse moves and clicks, and there is no record of what you did
before.

� Copying from the clipboard loses precision. If you have a value 1.23456789 in your
spreadsheet, but have formatted the cell so it is displayed to two decimal places, then
the value read into R will be the truncated value 1.23.

1.2.8 Binary data

The foreign package allows you to read data in binary formats used by other statistical
packages. Since R is an open source project, it can only read binary formats that are
themselves “open”, in the sense that the standards for reading and writing data are
well-documented. For example, there is a function in the foreign package for reading SAS
XPORT files, a format that has been adopted as a standard by the US Food and Drug
Administration (http://www.sas.com/govedu/fda/faq.html). However, there is no function
in the foreign package for reading native SAS binaries (SAS7BDAT files). Other packages are
available from CRAN (http://cran.r-project.org) that offer the possibility of reading
SAS binary files: see the haven and sas7bdat packages.

The file fem.dta contains the FEM dataset in the format used by Stata. Read it into R
with

https://www.bendixcarstensen.com/SPE/data/fem.dat
http://www.sas.com/govedu/fda/faq.html
http://cran.r-project.org
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> library(foreign)
> fem5 <- read.dta("data/fem.dta")
> head(fem5)

The Stata data set contains value and variable labels. Stata variables with value labels are
automatically converted to factors.

There is no equivalent of variable labels in an R data frame, but the original variable labels
are not lost. They are still attached to the data frame as an invisible attribute, which you can
see with

> attr(fem5, "var.labels")

A lot of meta-data is attached to the data in the form of attributes. You can see the whole list
of attributes with

> attributes(fem5)

or just the attribute names with

> names(attributes(fem5))

The read.dta() function can only read data from Stata versions 5–12. The R Core Team
has not been able to keep up with changes in the Stata format. You may wish to try the
haven package and the readstata13 package, both available from CRAN.

1.2.9 Summary

In this exercise we have seen how to create a data frame in R from an external text file. We
have also reviewed some common mistakes that result in garbled data.

The capabilities of the foreign package for reading binary data have also been demonstrated
with a sample Stata data set.
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1.3 Tabulation

1.3.1 Introduction

R and its add-on packages provide several different tabulation functions with different
capabilities. The appropriate function to use depends on your goal. There are at least three
different uses for tables.

The first use is to create simple summary statistics that will be used for further calculations
in R. For example, a two-by-two table created by the table function can be passed to
fisher.test, which will calculate odds ratios and confidence intervals. The appearance of
these tables may, however, be quite basic, as their principal goal is to create new objects for
future calculations.

A quite different use of tabulation is to make “production quality” tables for publication.
You may want to generate reports from for publication in paper form, or on the World Wide
Web. The package xtable provides this capability, but it is not covered by this course.

An intermediate use of tabulation functions is to create human-readable tables for
discussion within your work-group, but not for publication. The Epi package provides a
function stat.table for this purpose, and this practical is designed to introduce this function.

1.3.2 The births data

We shall use the births data which concern 500 mothers who had singleton births in a large
London hospital. The outcome of interest is the birth weight of the baby, also dichotomised as
normal or low birth weight. These data are available in the Epi package:

> library(Epi)
> data(births)
> names(births)
> head(births)

In order to work with this data set we need to transform some of the variables into factors.
This is done with the following commands:

> births$hyp <- factor(births$hyp,labels=c("normal","hyper"))
> births$sex <- factor(births$sex,labels=c("M","F"))
> births$agegrp <- cut(births$matage,breaks=c(20,25,30,35,40,45),right=FALSE)
> births$gest4 <- cut(births$gestwks,breaks=c(20,35,37,39,45),right=FALSE)

Now use str(births) to examine the modified data frame. We have transformed the binary
variables hyp and sex into factors with informative labels. This will help when displaying the
tables. We have also created grouped variables agegrp and gest4 from the continuous
variables matage and gestwks so that they can be tabulated.

1.3.3 One-way tables

The simplest table one-way table is created by

> stat.table(index = sex, data = births)

This creates a count of individuals, classified by levels of the factor sex. Compare this table
with the equivalent one produced by the table function. Note that stat.table has a data

argument that allows you to use variables in a data frame without specifying the frame.
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You can display several summary statistics in the same table by giving a list of expressions
to the contents argument:

> stat.table(index = sex, contents = list(count(), percent(sex)), data=births)

Only a limited set of expressions are allowed: see the help page for stat.table for details.
You can also calculate marginal tables by specifying margin=TRUE in your call to

stat.table. Do this for the above table. Check that the percentages add up to 100 and the
total for count() is the same as the number of rows of the data frame births. To see how
the mean birth weight changes with sex, try

> stat.table(index = sex, contents = mean(bweight), data=births)

Add the count to this table. Add also the margin with margin=TRUE. As an alternative to
bweight we can look at lowbw with

> stat.table(index = sex, contents = percent(lowbw), data=births)

All the percentages are 100! To use the percent function the variable lowbw must also be in
the index, as in

> stat.table(index = list(sex,lowbw), contents = percent(lowbw), data=births)

The final column is the percentage of babies with low birth weight by different categories of
gestation.

1. Obtain a table showing the frequency distribution of gest4.

2. Show how the mean birth weight changes with gest4.

3. Show how the percentage of low birth weight babies changes with gest4.

Another way of obtaining the percentage of low birth weight babies by gestation is to use
the ratio function:

> stat.table(gest4,ratio(lowbw,1,100),data=births)

This only works because lowbw is coded 0/1, with 1 for low birth weight.
Tables of odds can be produced in the same way by using ratio(lowbw, 1-lowbw). The

ratio function is also very useful for making tables of rates with (say) ratio(D,Y,1000)
where D is the number of failures, and Y is the follow-up time. We shall return to rates in a
later practical.

1.3.4 Improving the Presentation of Tables

The stat.table function provides default column headings based on the contents argument,
but these are not always very informative. Supply your own column headings using tagged
lists as the value of the contents argument, within a stat.table call:

> stat.table(gest4,contents = list( N=count(),
+ "(%)" = percent(gest4)),data=births)

This improves the readability of the table. It remains to give an informative title to the index
variable. You can do this in the same way: instead of giving gest4 as the index argument to
stat.table, use a named list:

> stat.table(index = list("Gestation time" = gest4),data=births)
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1.3.5 Two-way Tables

The following call gives a 2× 2 table showing the mean birth weight cross-classified by sex

and hyp.

> stat.table(list(sex,hyp), contents=mean(bweight), data=births)

Add the count to this table and repeat the function call using margin = TRUE to calculate the
marginal tables. Use stat.table with the ratio function to obtain a 2× 2 table of percent
low birth weight by sex and hyp. You can have fine-grained control over which margins to
calculate by giving a logical vector to the margin argument. Use margin=c(FALSE, TRUE) to
calculate margins over sex but not hyp. This might not be what you expect, but the margin

argument indicates which of the index variables are to be marginalized out, not which
index variables are to remain.

1.3.6 Printing

Just like every other R function, stat.table produces an object that can be saved and
printed later, or used for further calculation. You can control the appearance of a table with
an explicit call to print()

There are two arguments to the print method for stat.table. The width argument which
specifies the minimum column width, and the digits argument which controls the number of
digits printed after the decimal point. This table

> odds.tab <- stat.table(gest4, list("odds of low bw" = ratio(lowbw,1-lowbw)),
+ data=births)
> print(odds.tab)

shows a table of odds that the baby has low birth weight. Use width=15 and digits=3 and
see the difference.
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1.4 Graphics in R

There are three kinds of plotting functions in R:

1. Functions that generate a new plot, e.g. hist() and plot().

2. Functions that add extra things to an existing plot, e.g. lines() and text().

3. Functions that allow you to interact with the plot, e.g. locator() and identify().

The normal procedure for making a graph in R is to make a fairly simple initial plot and then
add on points, lines, text etc., preferably in a script.

1.4.1 Simple plot on the screen

Load the births data and get an overview of the variables:

> library( Epi )
> data( births )
> str( births )

Now look at the birthweight distribution with

> hist(births$bweight)

The histogram can be refined – take a look at the possible options with

> help(hist)

and try some of the options, for example:

> hist(births$bweight, col="gray", border="white")

To look at the relationship between birthweight and gestational weeks, try

> with(births, plot(gestwks, bweight))

You can change the plot-symbol by the option pch=. If you want to see all the plot symbols
try:

> plot(1:25, pch=1:25)

4. Make a plot of the birth weight versus maternal age with

> with(births, plot(matage, bweight) )

5. Label the axes with

> with(births, plot(matage, bweight, xlab="Maternal age", ylab="Birth weight (g)") )
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1.4.2 Colours

There are many colours recognized by R. You can list them all by colours() or, equivalently,
colors() (R allows you to use British or American spelling). To colour the points of
birthweight versus gestational weeks, try

> with(births, plot(gestwks, bweight, pch=16, col="green") )

This creates a solid mass of colour in the centre of the cluster of points and it is no longer
possible to see individual points. You can recover this information by overwriting the points
with black circles using the points() function.

> with(births, points(gestwks, bweight, pch=1) )

Note: when the number of data points on a scatter plot is large, you may also want to
decrease the point size: to get points that are 50% of the original size, add the parameter
cex=0.5 (or another number <1 for different sizes).

1.4.3 Adding to a plot

The points() function just used is one of several functions that add elements to an existing
plot. By using these functions, you can create quite complex graphs in small steps.

Suppose we wish to recreate the plot of birthweight vs gestational weeks using different
colours for male and female babies. To start with an empty plot, try

> with(births, plot(gestwks, bweight, type="n"))

Then add the points with the points function.

> with(births, points(gestwks[sex==1], bweight[sex==1], col="blue"))
> with(births, points(gestwks[sex==2], bweight[sex==2], col="red"))

To add a legend explaining the colours, try

> legend("topleft", pch=1, legend=c("Boys","Girls"), col=c("blue","red"))

which puts the legend in the top left hand corner.
Finally we can add a title to the plot with

> title("Birth weight vs gestational weeks in 500 singleton births")

1.4.3.1 Using indexing for plot elements

One of the most powerful features of R is the possibility to index vectors, not only to get
subsets of them, but also for repeating their elements in complex sequences.

Putting separate colours on males and female as above would become very clumsy if we had
a 5 level factor instead of sex.

Instead of specifying one color for all points, we may specify a vector of colours of the same
length as the gestwks and bweight vectors. This is rather tedious to do directly, but R allows
you to specify an expression anywhere, so we can use the fact that sex takes the values 1 and
2, as follows:

First create a colour vector with two colours, and take look at sex:
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> c("blue","red")
> births$sex

Now see what happens if you index the colour vector by sex:

> c("blue","red")[births$sex]

For every occurrence of a 1 in sex you get "blue", and for every occurrence of 2 you get
"red", so the result is a long vector of "blue"s and "red"s corresponding to the males and
females. This can now be used in the plot:

> with(births, plot( gestwks, bweight, pch=16, col=c("blue","red")[sex]) )

The same trick can be used if we want to have a separate symbol for mothers over 40 say. We
first generate the indexing variable:

> births$oldmum <- ( births$matage >= 40 ) + 1

Note we add 1 because ( matage >= 40 ) generates a logic variable, so by adding 1 we get a
numeric variable with values 1 and 2, suitable for indexing:

> with(births, plot( gestwks, bweight, pch=c(16,3)[oldmum], col=c("blue","red")[sex] ))

so where oldmum is 1 we get pch=16 (a dot) and where oldmum is 2 we get pch=3 (a cross).
R will accept any kind of complexity in the indexing as long as the result is a valid index,

so you don’t need to create the variable oldmum, you can create it on the fly:

> with(births, plot( gestwks, bweight, pch=c(16,3)[(matage>=40 )+1], col=c("blue","red")[sex] ))

1.4.3.2 Generating colours

R has functions that generate a vector of colours for you. For example,

> rainbow(4)

produces a vector with 4 colours (not immediately human readable, though). There are a few
other functions that generates other sequences of colours, type ?rainbow to see them. The
color function (or colour function if you prefer) returns a vector of the colour names that R
knows about. These names can also be used to specify colours.

Gray-tones are produced by the function gray (or grey), which takes a numerical argument
between 0 and 1; gray(0) is black and gray(1) is white. Try:

> plot( 0:10, pch=16, cex=3, col=gray(0:10/10) )
> points( 0:10, pch=1, cex=3 )

1.4.4 Saving your graphs for use in other documents

If you need to use the plot in a report or presentation, you can save it in a graphics file. Once
you have generated the script (sequence of R commands) that produce the graph (and it looks
ok on screen), you can start a non-interactive graphics device and then re-run the script.
Instead of appearing on the screen, the plot will now be written directly to a file. After the
plot has been completed you will need to close the device again in order to be able to access
the file. Try:
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> pdf(file="bweight_gwks.pdf", height=4, width=4)
> with(births, plot( gestwks, bweight, col=c("blue","red")[sex]) )
> legend("topleft", pch=1, legend=c("Boys","Girls"), col=c("blue","red"))
> dev.off()

This will give you a portable document file bweight_gwks.pdf with a graph which is 4 inches
tall and 4 inches wide.

Instead of pdf, other formats can be used (jpg, png, tiff, . . . ). See help(Devices) for the
available options.

In window-based environments (R GUI for Windows, R-Studio) you may also use the menu

( File→ Save as . . . or Export ) to save the active graph as a file and even copy-paste may

work (from R graphics window to Word, for instance) – however, writing it manually into the
file is recommended for reproducibility purposes (in case you need to redraw your graph with
some modifications).

1.4.5 The par() command

It is possible to manipulate any element in a graph, by using the graphics options. These are
collected on the help page of par(). For example, if you want axis labels always to be
horizontal, use the command par(las=1). This will be in effect until a new graphics device is
opened.

Look at the typewriter-version of the help-page with

> help(par)

or better, use the the html-version through Help→ Html help→ Packages→ graphics→
P→ par .

It is a good idea to take a print of this (having set the text size to “smallest” because it is
long) and carry it with you at any time to read in buses, cinema queues, during boring
lectures etc. Don’t despair, few R-users can understand what all the options are for.
par() can also be used to ask about the current plot, for example par("usr") will give you

the exact extent of the axes in the current plot.
If you want more plots on a single page you can use the command

> par( mfrow=c(2,3) )

This will give you a layout of 2 rows by 3 columns for the next 6 graphs you produce. The
plots will appear by row, i.e. in the top row first. If you want the plots to appear columnwise,
use par( mfcol=c(2,3) ) (you still get 2 rows by 3 columns).

To restore the layout to a single plot per page use

> par(mfrow=c(1,1))

If you want a more detailed control over the layout of multiple graphs on a single page look at
?layout.

1.4.6 Interacting with a plot

The locator() function allows you to interact with the plot using the mouse. Typing
locator(1) shifts you to the graphics window and waits for one click of the left mouse
button. When you click, it will return the corresponding coordinates.
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You can use locator() inside other graphics functions to position graphical elements
exactly where you want them. Recreate the birth-weight plot,

> with(births, plot(gestwks, bweight, col = c("blue", "red")[sex]) )

and then add the legend where you wish it to appear by typing

> legend(locator(1), pch=1, legend=c("Boys","Girls"), col=c("blue","red") )

The identify() function allows you to find out which records in the data correspond to
points on the graph. Try

> with(births, identify(gestwks, bweight))

When you click the left mouse button, a label will appear on the graph identifying the row
number of the nearest point in the data frame births. If there is no point nearby, R will print
a warning message on the console instead. To end the interaction with the graphics window,
right click the mouse: the identify function returns a vector of identified points.

1. Use identify() to find which records correspond to the smallest and largest number of
gestational weeks and view the corresponding records:

> with(births, births[identify(gestwks, bweight), ])
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1.5 Simple simulation

Monte Carlo methods are computational procedures dealing with simulation of artificial data
from given probability distributions with the purpose of learning about the behaviour of
phenomena involving random variability. These methods have a wide range of applications in
statistics as well as in several branches of science and technology. By solving the following
exercises you will learn to use some basic tools of statistical simulation.

1. Whenever using a random number generator (RNG) for a simulation study (or for
another purpose, such as for producing a randomization list to be used in a clinical trial
or for selecting a random sample from a large cohort), it is a good practice to set first
the seed. It is a number that determines the initial state of the RNG, from which it
starts creating the desired sequence of pseudo-random numbers. Explicit specification of
the seed enables the reproducibility of the sequence. – Instead of the number 5462319
below you may use your own seed of choice.

> set.seed(5462319)

2. Generate a random sample of size 20 from a normal distribution with mean 100 and
standard deviation 10. Draw a histogram of the sampled values and compute the
conventional summary statistics

> x <- rnorm(20, 100, 10)
> hist(x)
> c(mean(x), sd(x))

Repeat the above lines and compare the results.

3. Now replace the sample size 20 by 1000 and run again twice the previous command lines
with this size but keeping the parameter values as before. Compare the results between
the two samples here as well as with those in the previous item.

4. Generate 500 observations from a Bernoulli(p) distribution, or Bin(1, p) distribution,
taking values 1 and 0 with probabilities p and 1− p, respectively, when p = 0.4:

> X <- rbinom(500, 1, 0.4)
> table(X)

5. Now generate another 0/1 variable Y , being dependent on previously generated X, so
that P (Y = 1|X = 1) = 0.2 and P (Y = 1|X = 0) = 0.1.

> Y <- rbinom(500,1,0.1*X+0.1)
> table(X,Y)
> prop.table(table(X,Y),1)

6. Generate data obeying a simple linear regression model yi = 5 + 0.1xi + εi, i = 1, . . . 100,
in which εi ∼ N(0, 102), and xi values are integers from 1 to 100. Plot the (xi, yi)-values,
and estimate the parameters of that model.
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> x <- 1:100
> y <- 5 + 0.1*x + rnorm(100,0,10)
> plot(x,y)
> abline(lm(y~x))
> summary(lm(y~x))$coef

Are your estimates consistent with the data-generating model? Run the code a couple of
times to see the variability in the parameter estimates.
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1.6 Calculation of rates, RR and RD

This exercise is very prescriptive, so you should make an effort to really understand everything
you type into R. Consult the relevant slides of the lecture on “Poisson regression for rates . . . ”

1.6.1 Hand calculations for a single rate

Let λ be the true hazard rate or theoretical incidence rate, its estimator being the empirical
incidence rate λ̂ = D/Y = ’no. cases/person-years’. Recall that the standard error of the

empirical rate is SE(λ̂) = λ̂/
√
D.

The simplest approximate 95% confidence interval (CI) for λ is given by

λ̂± 1.96× SE(λ̂)

An alternative approach is based on logarithmic transformation of the empirical rate. The
standard error of the log-rate θ̂ = log(λ̂) is SE(θ̂) = 1/

√
D. Thus, a simple approximate 95%

confidence interval for the log-hazard θ = log(λ) is obtained from

θ̂ ± 1.96/
√
D = log(λ̂)± 1.96/

√
D

When taking the exponential from the above limits, we get another approximate confidence
interval for the hazard λ itself:

exp{log(λ̂)± 1.96/
√
D} = λ̂

×
÷ EF,

where EF = exp{1.96× SE[log(λ̂)]} is the error factor associated with the 95% interval. This
approach provides a more accurate approximation with very small numbers of cases.
(However, both these methods fail when D = 0, in which case an exact method or one based
on profile-likelihood is needed.)

1. Suppose you have 15 events during 5532 person-years. Let’s use R as a simple desk
calculator to derive the rate (in 1000 person-years; therefore 5.532) and the first version
of an approximate confidence interval:

> library( Epi )
> options(digits=4) # to cut down decimal points in the output

> D <- 15
> Y <- 5.532 # thousands of years
> rate <- D / Y
> SE.rate <- rate/sqrt(D)
> c(rate, SE.rate, rate + c(-1.96, 1.96)*SE.rate )

2. Compute now the approximate confidence interval using the method based on
log-transformation and compare the result with that in item (a)

> SE.logr <- 1/sqrt(D)
> EF <- exp( 1.96 * SE.logr )
> c(log(rate), SE.logr)
> c( rate, EF, rate/EF, rate*EF )
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1.6.2 Poisson model for a single rate with logarithmic link

You are able to estimate λ and compute its CI with a Poisson model, as described in the
relevant slides in the lecture handout.

3. Use the number of events as the response and the log-person-years as an offset term,
and fit the Poisson model with log-link

> m <- glm( D ~ 1, family=poisson(link=log), offset=log(Y) )
> summary( m )

What is the interpretation of the parameter in this model?

4. The summary method produces too much output. You can extract CIs for the model
parameters directly from the fitted model on the scale determined by the link function
with the ci.lin()-function. Thus, the estimate, SE, and confidence limits for the
log-rate θ = log(λ) are obtained by:

> ci.lin( m )

However, to get the confidence limits for the rate λ = exp(θ) on the original scale, the
results must be exp-transformed:

> ci.lin( m, Exp=T)

To get just the point estimate and CI for λ from log-transformed quantities you are
recommended to use function ci.exp(), which is actually a wrapper of ci.lin():

> ci.exp( m)
> ci.lin( m, Exp=T)[, 5:7]

Both functions are found from Epi package. – Note that the test statistic and P -value
are rarely interesting quantities for a single rate.

5. There is an alternative way of fitting a Poisson model: Use the empirical rate λ̂ = D/Y
as a scaled Poisson response, and the person-years as weight instead of offset (albeit it
will give you a warning about non-integer response in a Poisson model, but you can
ignore this warning):

> mw <- glm( D/Y ~ 1, family=poisson, weight=Y )
> ci.exp( mw )

Verify that this gave the same results as above.
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1.6.3 Poisson model for a single rate with identity link

The advantage of the approach based on weighting is that it allows sensible use of the identity
link. The response is the same but the parameter estimated is now the rate itself, not the
log-rate.

6. Fit the Poisson model with identity link

> mi <- glm( D/Y ~ 1, family=poisson(link=identity), weight=Y )
> coef( mi )

What is the meaning of the intercept in this model?

Verify that you actually get the same rate estimate as before.

7. Now use ci.lin() to produce the estimate and the confidence intervals from this
model:

> ci.lin( mi )
> ci.lin( mi )[, c(1,5,6)]

1.6.4 Poisson model assuming same rate for several periods

Now, suppose the events and person years are collected over three periods.

8. Read in the data and compute period-specific rates

> Dx <- c(3,7,5)
> Yx <- c(1.412,2.783,1.337)
> Px <- 1:3
> rates <- Dx/Yx
> rates

9. Fit the same model as before, assuming a single rate to the data for the separate
periods. Compare the result from previous ones

> m3 <- glm( Dx ~ 1, family=poisson, offset=log(Yx) )
> ci.exp( m3 )

10. Now test whether the rates are the same in the three periods: Try to fit a model with
the period as a factor in the model:

> mp <- glm( Dx ~ factor(Px), offset=log(Yx), family=poisson )

and compare the two models using anova() with the argument test="Chisq":

> anova( m3, mp, test="Chisq" )

Compare the test statistic to the deviance of the model mp.

What is the deviance good for?
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1.6.5 Analysis of rate ratio

We now switch to comparison of two rates λ1 and λ0, i.e. the hazard in an exposed group vs.
that in an unexposed one.

Consider first estimation of the true rate ratio ρ = λ1/λ0 between the groups. Suppose we
have pertinent empirical data (cases and person-times) from both groups, (D1, Y1) and
(D0, Y0). The point estimate of ρ is the empirical rate ratio

RR =
D1/Y1
D0/Y0

It is known that the variance of log(RR), that is, the difference of the log of the empirical

rates log(λ̂1)− log(λ̂0) is estimated as

var(log(RR)) = var{log(λ̂1/λ̂0)}
= var{log(λ̂1)}+ var{log(λ̂0)}
= 1/D1 + 1/D0

Based on a similar argument as before, an approximate 95% CI for the true rate ratio λ1/λ0 is
then:

RR
×
÷ exp

(
1.96

√
1

D1

+
1

D0

)
Suppose you have 15 events during 5532 person-years in an unexposed group and 28 events
during 4783 person-years in an exposed group:

11. Calculate the the rate-ratio and CI by direct application of the above formulae:

> D0 <- 15 ; D1 <- 28
> Y0 <- 5.532 ; Y1 <- 4.783
> RR <- (D1/Y1)/(D0/Y0)
> SE.lrr <- sqrt(1/D0+1/D1)
> EF <- exp( 1.96 * SE.lrr)
> c( RR, RR/EF, RR*EF )

12. Now achieve this using a Poisson model:

> D <- c(D0,D1) ; Y <- c(Y0,Y1); expos <- 0:1
> mm <- glm( D ~ factor(expos), family=poisson, offset=log(Y) )

What do the parameters mean in this model?

13. You can extract the exponentiated parameters in two ways:

> ci.exp( mm )
> ci.lin( mm, E=T )[,5:7]
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1.6.6 Analysis of rate difference

For the true rate difference δ = λ1 − λ0, the natural estimator is the empirical rate difference

δ̂ = λ̂1 − λ̂0 = D1/Y1 −D0/Y0 = RD.

Its variance is just the sum of the variances of the two rates (since the latter are based on
independent samples):

var(RD) = var(λ̂1) + var(λ̂0)

= D1/Y
2
1 +D0/Y

2
0

14. Use this formula to compute the rate difference and a 95% confidence interval for it:

> rd <- diff( D/Y )
> sed <- sqrt( sum( D/Y^2 ) )
> c( rd, rd+c(-1,1)*1.96*sed )

15. Verify that this is the confidence interval you get when you fit an additive model with
exposure as factor:

> ma <- glm( D/Y ~ factor(expos),
+ family=poisson(link=identity), weight=Y )
> ci.lin( ma )[, c(1,5,6)]

1.6.7 Optional: Calculations using matrix tools

NB. This subsection requires some familiarity with matrix algebra. Do this
only after you have done the other exercise of this session.

16. Explore the function ci.mat(), which lets you use matrix multiplication (operator
'%*%' in R) to produce a confidence interval from an estimate and its standard error (or
CIs from whole columns of estimates and SEs):

> ci.mat
> ci.mat()

As you see, this function returns a 2× 3 matrix (2 rows, 3 columns) containing familiar
numbers.

17. When you combine the single rate and its standard error into a row vector of length 2,
i.e. a 1× 2 matrix, and multiply this by the 2× 3 matrix above, the computation
returns a 1× 3 matrix containing the point estimate and the confidence limit. – Apply
this method to the single rate calculations in 1.6.1; first creating the 1× 2 matrix and
then performing the matrix multiplication.

> rateandSE <- c( rate, SE.rate )
> rateandSE
> rateandSE %*% ci.mat()
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18. When the confidence interval is based on the log-rate and its standard error, the result
is obtained by appropriate application of the exp-function on the pertinent matrix
product

> lograndSE <- c( log(rate), SE.logr )
> lograndSE
> exp( lograndSE %*% ci.mat() )

19. For computing the rate ratio and its CI as in 1.6.5, matrix multiplication with ci.mat()

should give the same result as there:

> exp( c( log(RR), SE.lrr ) %*% ci.mat() )

20. The main argument in function ci.mat() is alpha, which sets the confidence level:
1− α. The default value is alpha = 0.05, corresponding to the level 1− 0.05 = 95 %.
If you wish to get the confidence interval for the rate ratio at the 90 % level (= 1− 0.1),
for instance, you may proceed as follows:

> ci.mat( alpha=0.1 )
> exp( c( log(RR), SE.lrr ) %*% ci.mat(alpha=0.1) )

21. Look again to the model used to analyse the rate ratio in 1.6.5. Often one would like to
get simultaneously both the rates and the ratio between them. This can be achieved in
one go using the contrast matrix argument ctr.mat to ci.lin() or ci.exp(). Try:

> CM <- rbind( c(1,0), c(1,1), c(0,1) )
> rownames( CM ) <- c("rate 0","rate 1","RR 1 vs. 0")
> CM
> mm <- glm( D ~ factor(expos),
+ family=poisson(link=log), offset=log(Y) )
> ci.exp( mm, ctr.mat=CM )

22. Use the same machinery to the additive model to get the rates and the rate-difference in
one go. Note that the annotation of the resulting estimates are via the column-names of
the contrast matrix.

> rownames( CM ) <- c("rate 0","rate 1","RD 1 vs. 0")
> ma <- glm( D/Y ~ factor(expos),
+ family=poisson(link=identity), weight=Y )
> ci.lin( ma, ctr.mat=CM )[, c(1,5,6)]
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1.7 Logistic regression (GLM)

1.7.1 Malignant melanoma in Denmark

In the mid-80s a case-control study on risk factors for malignant melanoma was conducted in
Denmark (Østerlind et al. The Danish case-control study of cutaneous malignant melanoma I:
Importance of host factors. Int J Cancer 1988; 42: 200-206).

The cases were patients with skin melanoma (excluding lentigo melanoma), newly
diagnosed from 1 Oct, 1982 to 31 March, 1985, aged 20-79, from East Denmark, and they
were identified from the Danish Cancer Registry.

The controls (twice as many as cases) were drawn from the residents of East Denmark in
April, 1984, as a random sample stratified by sex and age (within the same 5 year age group)
to reflect the sex and age distribution of the cases. This is called group matching, and in such
a study, it is necessary to control for age and sex in the statistical analysis. (Yes indeed: In
spite of the fact that stratified sampling by sex and age removed the statistical association of
these variables with melanoma from the final case-control data set, the analysis must control
for variables which determine the probability of selecting subjects from the base population to
the study sample.)

The population of East Denmark is a dynamic one. Sampling the controls only at one time
point is a rough approximation of incidence density sampling, which ideally would spread out
over the whole study period. Hence the exposure odds ratios calculable from the data are
estimates of the corresponding hazard rate ratios between the exposure groups.

After exclusions, refusals etc., 474 cases (92% of eligible cases) and 926 controls (82%) were
interviewed. This was done face-to-face with a structured questionnaire by trained
interviewers, who were not informed about the subject’s case-control status.

For this exercise we have selected a few host variables from the study in an ascii-file,
melanoma.dat. The variables are listed in table 2.1.

Table 1.1: Variables in the melanoma dataset.

Variable Units or Coding Type Name

Case-control status 1=case, 0=control numeric cc

Sex 1=male, 2=female numeric sex

Age at interview age in years numeric age

Skin complexion 0=dark, 1=medium, 2=light numeric skin

Hair colour 0=dark brown/black, 1=light brown,
2=blonde, 3=red numeric hair

eye colour 0=brown, 1=grey, green, 2=blue numeric eyes

Freckles 1=many, 2=some, 3=none numeric freckles

Naevi, small no. naevi < 5mm numeric nvsmall

Naevi, largs no. naevi ≥ 5mm numeric nvlarge
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1.7.2 Reading the data

Start R and load the Epi package using the function library(). Read the data set from the
file melanoma.dat found in the course website to a data frame with name mel using the
read.table() function. Remember to specify that missing values are coded ”.”, and that
variable names are in the first line of the file. View the overall structure of the data frame,
and list the first 20 rows of mel.

> library(Epi)
> mel <- read.table("http://bendixcarstensen.com/SPE/data/melanoma.dat", header=TRUE, na.strings=".")
> str(mel)
> head(mel, n=20)

1.7.3 House keeping

The structure of the data frame mel tells us that all the variables are numeric (integer), so
first you need to do a bit of house keeping. For example the variables sex, skin, hair, eye

need to be converted to factors, with labels, and freckles which is coded 4 for none down to
1 for many (not very intuitive) needs to be recoded, and relabelled.

To avoid too much typing and to leave plenty of time to think about the analysis, these
house keeping commands are in a script file called melanoma-house.r. You should study this
script carefully before running it. The coding of freckles can be reversed by subtracting the
current codes from 4. Once recoded the variable needs to be converted to a factor with labels
”none”, etc. Age is currently a numeric variable recording age to the nearest year, and it will
be convenient to group these values into (say) 10 year age groups, using cut. In this case we
choose to create a new variable, rather than change the original.

> source("http://bendixcarstensen.com/SPE/data/melanoma-house.r")

Look again at the structure of the data frame mel and note the changes. Use the command
summary(mel) to look at the univariate distributions.

This is enough housekeeping for now - let’s turn to something a bit more interesting.

1.7.4 One variable at a time

As a first step it is a good idea to start by looking at the numbers of cases and controls by
each variable separately, ignoring age and sex. Try

> with(mel, table(cc,skin))
> stat.table(skin, contents=ratio(cc,1-cc), data=mel)

to see the numbers of cases and controls, as well as the odds of being a case by skin colour
Now use effx() to get crude estimates of the hazard ratios for the effect of skin colour.

> effx(cc, type="binary", exposure=skin, data=mel)

• Look at the crude effect estimates of hair, eyes and freckles in the same way.
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1.7.5 Generalized linear models with binomial family and logit link

The function effx() is just a wrapper for the glm() function, and you can show this by
fitting the glm directly with

> mf <- glm(cc ~ freckles, family="binomial", data=mel)
> round(ci.exp( mf ),2)
>

Comparison with the output from effx() shows the results to be the same.
Note that in effx() the type of response is “binary” whereas in glm() the family of

probability distributions used to fit the model is “binomial”. There is a 1-1 relationship
between type of response and family:

metric gaussian
binary binomial
failure/count poisson

1.7.6 Controlling for age and sex

Because the probability that a control is selected into the study depends on age and sex it is
necessary to control for age and sex. For example, the effect of freckles controlled for age and
sex is obtained with

> effx(cc, typ="binary", exposure=freckles, control=list(age.cat,sex),data=mel)

or

> mfas <- glm(cc ~ freckles + age.cat + sex, family="binomial", data=mel)
> round(ci.exp(mfas), 2)

Do the adjusted estimates differ from the crude ones that you computed with effx()?

1.7.7 Likelihood ratio tests

There are 2 effects estimated for the 3 levels of freckles, and glm() provides a test for each
effect separately, but to test for no effect at all of freckles you need a likelihood ratio test.
This involves fitting two models, one without freckles and one with, and recording the
change in deviance. Because there are some missing values for freckles it is necessary to
restrict the first model to those subjects who have values for freckles.

> mas <- glm(cc ~ age.cat + sex, family="binomial", data=subset(mel, !is.na(freckles)) )
> anova(mas, mfas, test="Chisq")

The change in residual deviance is 1785.9− 1737.1 = 48.8 on 1389− 1387 = 2 degrees of
freedom. The P -value corresponding to this change is obtained from the upper tail of the
cumulative distribution of the χ2-distribution with 2 df:

> 1 - pchisq(48.786, 2)

• There are 3 effects for the 4 levels of hair colour (hair). To obtain adjusted estimates for
the effect of hair colour and to test the pertinent null hypothesis fit the relevant models, print
the and use anova to test for no effects of hair colour. Compare the estimates with the crude
ones and assess the evidence against the null hypothesis.
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1.7.8 Relevelling

From the above you can see that subjects at each of the 3 levels light-brown, blonde, and red,
are at greater risk than subjects with dark hair, with similar odds ratios. This suggests
creating a new variable hair2 which has just two levels, dark and the other three. The
Relevel() function in Epi has been used for this in the house keeping script.

• Use effx() to compute the odds-ratio of melanoma between persons with red, blonde or
light brown hair versus those with dark hair. Reproduce these results by fitting an
appropriate glm. Use also a likelihood ratio test to test for the effect of hair2.

1.7.9 Controlling for other variables

When you control the effect of an exposure for some variable you are asking a question about
what would the effect be if the variable is kept constant. For example, consider the effect of
freckles controlled for hair2. We first stratify by hair2 with

> effx(cc, type="binary", exposure=freckles,
+ control=list(age.cat,sex), strata=hair2, data=mel)

The effect of freckles is still apparent in each of the two strata for hair colour. Use effx() to
control for hair2, too, in addition to age.cat and sex.

> effx(cc, type="binary", exposure=freckles,
+ control=list(age.cat,sex,hair2), data=mel)

It is tempting to control for variables without thinking about the question you are thereby
asking. This can lead to nonsense.

1.7.10 Stratification using glm()

We shall reproduce the output from

> effx(cc, type="binary", exposure=freckles,
+ control=list(age.cat,sex), strata=hair2,data=mel)

using glm(). To do this requires a nested model formula:

> mfas.h <- glm(cc ~ hair2/freckles + age.cat + sex, family="binomial", data=mel)
> ci.exp(mfas.h )

In amongst all the other effects you can see the two effects of freckles for dark hair (1.61 and
2.84) and the two effects of freckles for other hair (1.42 and 3.15).

1.7.11 Naevi

The distributions of nvsmall and nvlarge are very skew to the right. You can see this with

> with(mel, stem(nvsmall))
> with(mel, stem(nvlarge))

Because of this it is wise to categorize them into a few classes

– small naevi into four: 0, 1, 2-4, and 5+;
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– large naevi into three: 0, 1, and 2+.

This has been done in the house keeping script.

• Look at the joint frequency distribution of these new variables using with(mel, table(

)). Are they strongly associated?

• Compute the sex- and age-adjusted OR estimates (with 95% CIs) associated with the
number of small naevi first by using effx(), and then by fitting separate glms including sex,
age.cat and nvsma4 in the model formula.

• Do the same with large naevi nvlar3.

• Now fit a glm containing age.cat, sex, nvsma4 and nvlar3. What is the interpretation
of the coefficients for nvsma4 and nvlar3?

1.7.12 Treating freckles as a numeric exposure

The evidence for the effect of freckles is already convincing. However, to demonstrate how
it is done, we shall perform a linear trend test by treating freckles as a numeric exposure.

> mel$fscore<-as.numeric(mel$freckles)
> effx(cc, type="binary", exposure=fscore, control=list(age.cat,sex), data=mel)

You can check for linearity of the log odds of being a case with fscore by comparing the
model containing freckles as a factor with the model containing freckles as numeric.

> m1 <- glm(cc ~ freckles + age.cat + sex, family="binomial", data=mel)
> m2 <- glm(cc ~ fscore + age.cat + sex, family="binomial", data=mel)
> anova(m2, m1, test="Chisq")

There is no evidence against linearity (p = 0.22).
It is sometimes helpful to look at the linearity in more detail with

> m1 <- glm(cc ~ C(freckles, contr.cum) + age.cat + sex, family="binomial",data=mel)
> round(ci.exp(m1 ), 2)
> m2 <- glm(cc ~ fscore + age.cat + sex, family="binomial",data=mel)
> round(ci.exp(m2), 2)

The use of C(freckles, contr.cum) makes each odds ratio to compare the odds at that level
versus the previous level; not against the baseline (except for the 2nd level). If the log-odds
are linear then these odds ratios should be the same (and the same as the odds ratio for
fscore in m2.

1.7.13 Graphical displays

The odds ratios (with CIs) can be graphically displayed using function plotEst() in Epi. It
uses the value of ci.lin() evaluated on the fitted model object. As the intercept and the
effects of age and sex are of no interest, we shall drop the corresponding rows (the 7 first ones)
from the matrix produced by ci.lin(), and the plot is based just on the 1st, 5th and the 6th
column of this matrix:

> m <- glm(cc ~ nvsma4 + nvlar3 + age.cat + sex, family="binomial",data=mel)
> plotEst( exp( ci.lin(m)[ 2:5, -(2:4)] ), xlog=T, vref=1 )

The xlog argument makes the OR axis logarithmic.
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1.8 Estimation of effects: simple and more complex

This exercise deals with analysis of metric or continuous response variables. We start with
simple estimation of effects of a binary, categorical or a numeric explanatory variable, the
exposure variable of interest. Then evaluation of potential modification confounding and/or
by other variables is considered by stratification by and adjustment or control for these
variables. Use of function effx() for such tasks is introduced together with functions lm()

and glm() that can be used for more general linear and generalized linear models. Finally,
more complex polynomial models for the effect of a numeric exposure variable are illustrated.

1.8.1 Response and explanatory variables

Identifying the response or outcome variable correctly is the key to analysis. The main types
are:

� Metric (a measurement taking many values, usually with units)

� Binary (two values coded 1/0)

� Failure (does the subject fail at end of follow-up, coded 1/0, and how long was
follow-up, measurement of time)

� Count (aggregated data on failures in a group)

All these response variable are numeric.
Variables on which the response may depend are called explanatory variables. They can be

categorical factors or numeric variables. A further important aspect of explanatory variables
is the role they will play in the analysis.

� Primary role: exposure.

� Secondary role: confounder and/or modifier.

The word effect is a general term referring to ways of comparing the values of the response
variable at different levels of an explanatory variable. The main measures of effect are:

� Differences in means for a metric response.

� Ratios of odds for a binary response.

� Ratios of rates for a failure or count response.

Other measures of effect include ratios of geometric means for positive-valued metric
outcomes, differences and ratios between proportions (risk difference and risk ratio), and
differences between failure rates.
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1.8.2 Data set births

We shall use the births data to illustrate different aspects in estimating effects of various
exposures on a metric response variable bweight = birth weight, recorded in grams.

1. Load the Epi package and the data set and look at its content

> library(Epi)
> data(births)
> str(births)

2. Because all variables are numeric we need first to do a little housekeeping. Two of them
are directly converted into factors, and categorical versions are created of two
continuous variables by function cut().

> births$hyp <- factor(births$hyp, labels = c("normal", "hyper"))
> births$sex <- factor(births$sex, labels = c("M", "F"))
> births$agegrp <- cut(births$matage,
+ breaks = c(20, 25, 30, 35, 40, 45), right = FALSE)
> births$gest4 <- cut(births$gestwks,
+ breaks = c(20, 35, 37, 39, 45), right = FALSE)

3. Have a look at univariate summaries of the different variables in the data; especially the
location and dispersion of the distribution of bweight.

> summary(births)
> with(births, sd(bweight) )

1.8.3 Simple estimation with effx(), lm() and glm()

We are ready to analyze the “effect” of sex on bweight. A binary exposure variable, like sex,
leads to an elementary two-group comparison of group means for a metric response.

4. Comparison of two groups is commonly done by the conventional t-test and the
associated confidence interval.

> with( births, t.test(bweight ~ sex, var.equal=T) )

The P -value refers to the test of the null hypothesis that there is no effect of sex on
birth weight (quite an uninteresting null hypothesis in itself!). However, t.test() does
not provide the point estimate for the effect of sex; only the test result and a confidence
interval.

5. The function effx() in Epi is intended to introduce the estimation of effects in
epidemiology, together with the related ideas of stratification and controlling, i.e.
adjustment for confounding, without the need for familiarity with statistical modelling.
It is in fact a wrapper of function glm() that fits generalized linear models. – Now, do
the same analysis with effx()

> effx(response=bweight, type="metric", exposure=sex, data=births)
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The estimated effect of sex on birth weight, measured as a difference in means between
girls and boys, is −197 g. Either the output from t.test() above or the command

> stat.table(sex, mean(bweight), data=births)

confirms this (3032.8− 3229.9 = −197.1).

6. The same task can easily be performed by lm() or by glm(). The main argument in
both is the model formula, the left hand side being the response variable and the right
hand side after ∼ defines the explanatory variables and their joint effects on the
response. Here the only explanatory variable is the binary factor sex. With glm() one
specifies the family, i.e. the assumed distribution of the response variable, but in case
you use lm(), this argument is not needed, because lm() fits only models for metric
responses assuming Gaussian distribution.

> m1 <- glm(bweight ~ sex, family=gaussian, data=births)
> summary(m1)

Note the amount of output that summary() method produces. The point estimate plus
confidence limits can, though, be concisely obtained by ci.lin().

> round( ci.lin(m1)[ , c(1,5,6)] , 1)

7. Now, use effx() to find the effect of hyp (maternal hypertension) on bweight.

1.8.4 Factors on more than two levels

The variable gest4 became as the result of cutting gestwks into 4 groups with left-closed and
right-open boundaries [20,35) [35,37) [37,39) [39,45).

8. We shall find the effects of gest4 on the metric response bweight.

> effx(response=bweight,typ="metric",exposure=gest4,data=births)

There are now 3 effect estimates:

[35,37) vs [20,35) 857

[37,39) vs [20,35) 1360

[39,45) vs [20,35) 1668

The command

> stat.table(gest4,mean(bweight),data=births)

confirms that the effect of agegrp (level 2 vs level 1) is 2590− 1733 = 857, etc.

9. Compute these estimates by lm() and find out how the coefficients are related to the
group means

> m2 <- lm(bweight ~ gest4, data = births)
> round( ci.lin(m2)[ , c(1,5,6)] , 1)



IARC, 2018 1.8 Estimation of effects: simple and more complex 45

1.8.5 Stratified effects and interaction or effect modification

We shall now examine whether and to what extent the effect of hyp on bweight varies by
gest4.

10. The following “interaction plot” shows how the mean bweight depends jointly on hyp

and gest4

> par(mfrow=c(1,1))
> with( births, interaction.plot(gest4, hyp, bweight) )

It appears that the mean difference in bweight between normotensive and hypertensive
mothers is inversely related to gestational age.

11. Let us get numerical values for the mean differences in the different gest4 categories:

> effx(bweight, type="metric", exposure=hyp, strata=gest4,data=births)

The estimated effects of hyp in the different strata defined by gest4 thus range from
about −100 g among those with ≥ 39 weeks of gestation to about −700 g among those
with < 35 weeks of gestation. The error margin especially around the latter estimate is
quite wide, though. The P -value 0.055 from the test for effect modification indicates
weak evidence against the null hypothesis of “no interaction between hyp and gest4”.
On the other hand, this test may well be not very sensitive given the small number of
preterm babies in these data.

12. Stratified estimation of effects can also be done by lm(), and you should get the same
results:

> m3 <- lm(bweight ~ gest4/hyp, data = births)
> round( ci.lin(m3)[ , c(1,5,6)], 1)

13. An equivalent model with an explicit interaction term between gest4 and hyp is fitted
as follows

> m3I <- lm(bweight ~ gest4 + hyp + gest4:hyp, data = births)
> round( ci.lin(m3I)[ , c(1,5,6)], 1)

From this output you would find a familiar estimate −673 g for those < 35 gestational
weeks. The remaining coefficients are estimates of the interaction effects such that e.g.
515 = −158− (−673) g describes the contrast in the effect of hyp on bweight between
those 35 to < 37 weeks and those < 35 weeks of gestation.

14. Perhaps a more appropriate reference level for the categorized gestational age would be
the highest one. Changing the reference level, here to be the 4th category, can be done
by Relevel() function in the Epi package, after which an equivalent interaction model
is fitted, now using a shorter expression for it in the model formula:

> births$gest4b <- Relevel( births$gest4, ref = 4)
> m3Ib <- lm(bweight ~ gest4b*hyp, data = births)
> round( ci.lin(m3Ib)[ , c(1,5,6)], 1)
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Notice now the coefficient −91.6 for hyp. It estimates the effect of hyp on bweight

among those with ≥ 39 weeks of gestation. The estimate −88.5 g = −180.1− (−91.6) g
describes the additional effect of hyp in the category 37 to 38 weeks of gestation upon
that in the reference class.

15. At this stage it is interesting to compare the results from the interaction models to those
from the corresponding main effects model, in which the effect of hyp is assumed not to
be modified by gest4:

> m3M <- lm(bweight ~ gest4 + hyp, data = births)
> round( ci.lin(m3M)[ , c(1,5,6)], 1)

The estimate −201 g describing the overall effect of hyp is obtained as a weighted
average of the stratum-specific estimates obtained by effx() above. It is a meaningful
estimate adjusting for gest4 insofar as it is reasonable to assume that the effect of hyp
is not modified by gest4. This assumption or the “no interaction” null hypothesis can
formally be tested by a common deviance test.

> anova(m3I, m3M)

The P -value is practically the same as before when the interaction was tested in effx().
However, in spite of obtaining a “non-significant” result from this test, the possibility of
a real interaction should not be ignored in this case.

16. Now, use effx() to stratify (i) the effect of hyp on bweight by sex and then (ii)
perform the stratified analysis using the two ways of fitting an interaction model with lm.

Look at the results. Is there evidence for the effect of hyp being modified by sex?

1.8.6 Controlling or adjusting for the effect of hyp for sex

The effect of hyp is controlled for – or adjusted for – sex by first looking at the estimated
effects of hyp in the two stata defined by sex, and then combining these effects if they seem
sufficiently similar. In this case the estimated effects were −496 and −380 which look quite
similar (and the P -value against “no interaction” was quite large, too), so we can perhaps
combine them, and control for sex.

17. The combining is done by declaring sex as a control variable:

> effx(bweight, type="metric", exposure=hyp, control=sex, data=births)

18. The same is done with lm() as follows:

> m4 <- lm(bweight ~ sex + hyp, data = births)
> ci.lin(m4)[ , c(1,5,6)]

The estimated effect of hyp on bweight controlled for sex is thus −448 g. There can be
more than one control variable, e.g control=list(sex,agegrp).

Many people go straight ahead and control for variables which are likely to confound the
effect of exposure without bothering to stratify first, but usually it is useful to stratify
first.
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1.8.7 Numeric exposures

If we wished to study the effect of gestation time on the baby’s birth weight then gestwks is a
numeric exposure.

19. Assuming that the relationship of the response with gestwks is roughly linear (for a
metric response) we can estimate the linear effect of gestwks, both with effx() and
with lm() as follows:

> effx(response=bweight, type="metric", exposure=gestwks,data=births)
> m5 <- lm(bweight ~ gestwks, data=births) ; ci.lin(m5)[ , c(1,5,6)]

We have fitted a simple linear regression model and obtained estimates of the two
regression coefficient: intercept and slope. The linear effect of gestwks is thus
estimated by the slope coefficient, which is 197 g per each additional week of gestation.

20. You cannot stratify by a numeric variable, but you can study the effects of a numeric
exposure stratified by (say) agegrp with

> effx(bweight, type="metric", exposure=gestwks, strata=agegrp, data=births)

You can control/adjust for a numeric variable by putting it in the control list.

1.8.8 Checking the assumptions of the linear model

At this stage it will be best to make some visual check concerning our model assumptions
using plot(). In particular, when the main argument for the generic function plot() is a
fitted lm object, it will provide you some common diagnostic graphs.

21. To check whether bweight goes up linearly with gestwks try

> with(births, plot(gestwks,bweight))
> abline(m5)

22. Moreover, take a look at the basic diagnostic plots for the fitted model.

> par(mfrow=c(2,2))
> plot(m5)

What can you say about the agreement with data of the assumptions of the simple
linear regression model, like linearity of the systematic dependence, homoskedasticity
and normality of the error terms?

1.8.9 Third degree polynomial of gestwks

A common practice to assess possible deviations from linearity is to compare the fit of the
simple model with models having higher order polynomial terms. In perinatal epidemiology a
popular model for describing the relationship between gestational age and birth weight is a
3rd degree polynomial.
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23. For fitting a third degree polynomial of gestwks we can update our previous simple
linear model by adding the quadratic and cubic terms of gestwks using the insulate
operator I()

> m6 <- update(m5, . ~ . + I(gestwks^2) + I(gestwks^3))
> round(ci.lin(m6)[, c(1,5,6)], 1)

The intercept and linear coefficients are really spectacular – but don’t make any sense!

24. A more elegant way of fitting polynomial models is to utilize orthogonal polynomials,
which are linear transformations of the original polynomial terms such that they are
mutually uncorrelated. However, they are scaled in such a way that the estimated
regression coefficients are also difficult to interpret, apart from the intercept term.

25. As function poly() creating orthogonal polynomials does not accepet missing values, we
shall only include babies whose value of gestwks is not missing. Let us also perform an
F test for the null hypothesis of simple linear effect against the 3rd degree polynomial
model

> births2 <- subset(births, !is.na(gestwks))
> m.ortpoly <- lm(bweight ~ poly(gestwks, 3), data= births2 )
> round(ci.lin(m.ortpoly)[, c(1,5,6)], 1)
> anova(m5, m.ortpoly)

Note that the estimated intercept 3138 g has the same value as the mean birth weight
among all those babies who are included, i.e. whose gestational age was known.

There seems to be strong evidence against simple linear regression; addition of the
quadratic and the cubic term appears to have reduced the residual sum of squares
“highly significantly”.

26. Irrespective of whether the polynomial terms were orthogonalized or not, the fitted or
predicted values for the response variable remain the same. As the next step we shall
present graphically the fitted polynomial curve together with 95 % confidence limits for
the expected responses as well as 95 % prediction intervals for individual observations in
new data comprising gestational weeks from 24 to 45 in steps of 0.25 weeks.

> nd <- data.frame(gestwks = seq(24, 45, by = 0.25) )
> fit.poly <- predict( m.ortpoly, newdata=nd, interval="conf" )
> pred.poly <- predict( m.ortpoly, newdata=nd, interval="pred" )
> par(mfrow=c(1,1))
> with( births, plot( bweight ~ gestwks, xlim = c(23, 46), cex.axis= 1.5, cex.lab = 1.5 ) )
> matlines( nd$gestwks, fit.poly, lty=1, lwd=c(3,2,2), col=c('red','blue','blue') )
> matlines( nd$gestwks, pred.poly, lty=1, lwd=c(3,2,2), col=c('red','green','green') )

The fitted curve fits nicely within the range of observed values of the regressor.
However, the tail behaviour in polynomial models tends to be problematic.

We shall continue the analysis in the next practical, in which the apparently curved
effect of gestwks is modelled by a penalized spline. Also, key details in fitting linear
regression models and spline models are covered in the lecture of this afternoon.
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1.8.10 Extra (if you have time): Frequency data

Data from very large studies are often summarized in the form of frequency data, which
records the frequency of all possible combinations of values of the variables in the study. Such
data are sometimes presented in the form of a contingency table, sometimes as a data frame
in which one variable is the frequency. As an example, consider the UCBAdmissions data,
which is one of the standard R data sets, and refers to the outcome of applications to 6
departments in the graduate school at Berkeley by gender.

27. Let us have a look at the data

> UCBAdmissions

You can see that the data are in the form of a 2× 2× 6 contingency table for the three
variables Admit (admitted/rejected), Gender (male/female), and Dept (A/B/C/D/E/F).
Thus in department A 512 males were admitted while 312 were rejected, and so on. The
question of interest is whether there is any bias against admitting female applicants.

28. The next command coerces the contingency table to a data frame, and shows the first
10 lines.

> ucb <- as.data.frame(UCBAdmissions)
> head(ucb)

The relationship between the contingency table and the data frame should be clear.

29. Let us turn Admit into a numeric variable coded 1 for rejection, 0 for admission

> ucb$Admit <- as.numeric(ucb$Admit)-1

The effect of Gender on Admit is crudely estimated by

> effx(Admit,type="binary",exposure=Gender,weights=Freq,data=ucb)

The odds of rejection for female applicants thus appear to be 1.84 times the odds for
males (note the use of weights to take account of the frequencies). A crude analysis
therefore suggests there is a strong bias against admitting females.

30. Continue the analysis by stratifying the crude analysis by department - does this still
support a bias against females? What is the effect of gender controlled for department?
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1.9 Estimation and reporting of curved effects

This exercise deals with modelling of curved effects of continuous explanatory variables both
on a metric response assuming the Gaussian distribution and on a count or rate outcome
based on the Poisson family.

In the first part we continue our analysis on gestational age on birth weight focussing on
fitting spline models, both unpenalized and a penalized one.

In the second part we analyse the testisDK data found in the Epi package. It contains the
numbers of cases of testis cancer and mid-year populations (person-years) in 1-year age groups
in Denmark during 1943–96. In this analysis we apply Poisson regression on the incidence
rates treating age and calendar time, first as categorical but then fitting a penalized spline
model.

1.9.1 Data births: Simple linear regression and 3rd degree
polynomial

Recall what was done in items 17 to 24 of the Exercise on simple estimation of effects, in
which a simple linear regression and a 3rd degree polynomial were fitted. The main results are
also shown on slides 6, 8, 9, and 20 of the lecture on linear models.

1. Make a basic scatter plot and draw the fitted line from a simple linear regression on it.

> library(Epi)
> data(births)
> par(mfrow=c(1,1))
> with(births, plot(gestwks, bweight))
> mlin <- lm( bweight ~ gestwks, data = births )
> abline( mlin )

2. Repeat also the diagnostic plots of this simple model

> par( mfrow=c(2,2) )
> plot( mlin )

Some deviation from the linear model is apparent.

1.9.2 Fitting a natural cubic spline

A popular approach for flexible modelling is based on natural regression splines, which have
more reasonable tail behaviour than polynomial regression.

3. By the following piece of code you can fit a natural cubic spline with 5 pre-specified
knots to be put at 28, 34, 38, 40 and 43 weeks of gestation, respectively, determining the
degree of smoothing.

> library(splines)
> mNs5 <- lm( bweight ~ Ns( gestwks, knots = c(28,34,38,40,43)),
+ data = births )
> round( ci.exp( mNs5, Exp=FALSE ), 1)
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These regression coefficients are even less interpretable than those in the polynomial
model.

4. A graphical presentation of the fitted curve together with the confidence and prediction
intervals is more informative:

> nd <- data.frame(gestwks = seq(24, 45, by = 0.25) )
> fit.Ns5 <- predict( mNs5, newdata=nd, interval="conf" )
> pred.Ns5 <- predict( mNs5, newdata=nd, interval="pred" )
> par(mfrow=c(1,1))
> with( births, plot(bweight ~ gestwks, xlim=c(23, 46), cex.axis=1.5, cex.lab=1.5 ) )
> matlines( nd$gestwks, fit.Ns5, lty=1, lwd=c(3,2,2), col=c('red','blue','blue') )
> matlines( nd$gestwks, pred.Ns5, lty=1, lwd=c(3,2,2), col=c('red','green','green') )

Compare this with the 3rd order curve previously fitted (see slide 20 of the lecture). In
a natural spline the curve is constrained to be linear beyond the extreme knots.

5. Take a look at the basic diagnostic plots from the spline model.

> par(mfrow=c(2,2))
> plot(mNs5)

How would you interpret these plots?

The choice of the number of knots and their locations can be quite arbitrary, and the
results are often sensitive to these choices.

6. To illustrate arbitrariness and associated problems with specification of knots, you may
now fit another natural spline model like the one above but now with 10 knots at the
following sequence of points: seq(25, 43, by = 2). Display graphically the results
The behaviour of the curve is really wild for small values of gestwks!

1.9.3 Penalized spline model

One way to go around the arbitrariness in the specification of knots is to fit a penalized spline
model, which imposes a “roughness penalty” on the curve. Even though a big number of knots
are initially allowed, the resulting fitted curve will be optimally smooth.

You cannot fit a penalized spline model with lm() or glm(), Instead, function gam() in
package mgcv can be used for this purpose.

7. You must first install R package mgcv into your computer.

8. When calling gam(), the model formula contains expression ’s(X)’ for any explanatory
variable X, for which you wish to fit a smooth function

> library(mgcv)
> mPs <- gam( bweight ~ s(gestwks), data = births)
> summary(mPs)

From the output given by summary() you find that the estimated intercept is here, too,
equal to the overall mean birth weight in the data. The estimated residual variance is
given by “Scale est.” or from subobject sig2 of the fitted gam object. Taking square
root you will obtain the estimated residual standard deviation: 445.2 g.
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> mPs$sig2
> sqrt(mPs$sig2)

The degrees of freedom in this model are not computed as simply as in previous models,
and they typically are not integer-valued. However, the fitted spline seems to consume
only a little more degrees of freedom as the 3rd degree polynomial above.

9. As in previous models we shall plot the fitted curve together with 95 % confidence
intervals for the mean responses and 95 % prediction intervals for individual responses.
Obtaining these quantities from the fitted gam object requires a bit more work than with
lm objects

> pr.Ps <- predict( mPs, newdata=nd, se.fit=TRUE )
> par(mfrow=c(1,1))
> with(births, plot(bweight ~ gestwks, xlim=c(24, 45), cex.axis=1.5, cex.lab=1.5) )
> matlines( nd$gestwks, cbind(pr.Ps$fit,
+ pr.Ps$fit - 2*pr.Ps$se.fit, pr.Ps$fit + 2*pr.Ps$se.fit),
+ lty=1, lwd=c(3,2,2), col=c('red','blue','blue') )
> matlines( nd$gestwks, cbind(pr.Ps$fit,
+ pr.Ps$fit - 2*sqrt( pr.Ps$se.fit^2 + mPs$sig2),
+ pr.Ps$fit + 2*sqrt( pr.Ps$se.fit^2 + mPs$sig2)),
+ lty=1, lwd=c(3,2,2), col=c('red','green','green') )

The fitted curve is indeed clearly more reasonable than the polynomial.

1.9.4 Testis cancer: Data input and housekeeping

We shall now switch to analyzing the incidence of testis cancer in Denmark during 1943–1998
by age and calendar time or period.

10. Load the data and inspect its structure:

> library( Epi )
> data( testisDK )
> str( testisDK )
> summary( testisDK )
> head( testisDK )

11. There are nearly 5000 observations from 90 one-year age groups and 54 calendar years.
To get a clearer picture of what’s going one we do some housekeeping. The age range
will be limited to 15–79 years, and age and period are both categorised into 5-year
intervals – according to the time-honoured practice in epidemiology.

> tdk <- subset(testisDK, A > 14 & A < 80)
> tdk$Age <- cut(tdk$A, br = 5*(3:16), include.lowest=TRUE, right=FALSE)
> nAge <- length(levels(tdk$Age))
> tdk$Per <- cut(tdk$P, br = seq(1943,1998,by=5),
+ include.lowest=TRUE, right=FALSE)
> nPer <- length(levels(tdk$Per))
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1.9.5 Some descriptive analysis

Computation and tabulation of incidence rates

12. Tabulate numbers of cases and person-years, and compute the incidence rates (per
100,000 y) in each 5 y × 5 y cell using stat.table()

> tab <- stat.table( index = list(Age, Per),
+ contents = list(D = sum(D),
+ Y = sum(Y/1000),
+ rate = ratio(D, Y, 10^5) ),
+ margins = TRUE,
+ data = tdk )
> print(tab, digits=c(sum=0, ratio=1))

Look at the incidence rates in the column margin and in the row margin. In which age
group is the marginal age-specific rate highest? Do the period-specific marginal rates
have any trend over time?

13. From the saved table object tab you can plot an age-incidence curve for each period
separately, after you have checked the structure of the table, so that you know the
relevant dimensions in it.

> str(tab)
> par(mfrow=c(1,1))
> plot( c(15,80), c(1,30), type='n', log='y', cex.lab = 1.5, cex.axis = 1.5,
+ xlab = "Age (years)", ylab = "Incidence rate (per 100000 y)")
> for (p in 1:nPer)
+ lines( seq(17.5, 77.5, by = 5), tab[3, 1:nAge, p], type = 'o', pch = 16,
+ lty = rep(1:6, 2)[p] )

Is there any common pattern in the age-incidence curves across the periods?

1.9.6 Age and period as categorical factors

We shall first fit a Poisson regression model with log link on age and period model in the
traditional way, in which both factors are treated as categorical. The model is additive on the
log-rate scale. It is useful to scale the person-years to be expressed in 105 y.

14. > mCat <- glm( D ~ Age + Per, offset=log(Y/100000), family=poisson, data= tdk )
> round( ci.exp( mCat ), 2)

What do the estimated rate ratios tell about the age and period effects?

15. A graphical inspection of point estimates and confidence intervals can be obtained as
follows. In the beginning it is useful to define shorthands for the pertinent mid-age and
mid-period values of the different intervals
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> aMid <- seq(17.5, 77.5, by = 5)
> pMid <- seq(1945, 1995, by = 5)
> par(mfrow=c(1,2))
> plot( c(15,80), c(0.6, 6), type='n', log='y', cex.lab = 1.5, cex.axis = 1.5,
+ xlab = "Age (years)", ylab = "Rate ratio")
> lines( aMid, c( 1, ci.exp(mCat)[2:13, 1] ), type = 'o', pch = 16 )
> segments( aMid[-1], ci.exp(mCat)[2:13, 2], aMid[-1], ci.exp(mCat)[2:13, 3] )
> plot( c(1943,1998), c(0.6, 6), type='n', log='y', cex.lab = 1.5, cex.axis = 1.5,
+ xlab = "Calendar year - 1900", ylab = "Rate ratio")
> lines( pMid,c( 1, ci.exp(mCat)[14:23, 1] ), type = 'o', pch = 16 )
> segments( pMid[-1], ci.exp(mCat)[14:23, 2],
+ pMid[-1], ci.exp(mCat)[14:23, 3] )

16. In the fitted model the reference category for each factor was the first one. As age is the
dominating factor, it may be more informative to remove the intercept from the model.
As a consequence the age effects describe fitted rates at the reference level of the period
factor. For the latter one could choose the middle period 1968-72.

> tdk$Per70 <- Relevel(tdk$Per, ref = 6)
> mCat2 <- glm( D ~ -1 + Age +Per70, offset=log(Y/100000), family=poisson, data= tdk )
> round( ci.exp( mCat2 ), 2)

We shall plot just the point estimates from the latter model

> par(mfrow=c(1,2))
> plot( c(15,80), c(2, 20), type='n', log='y', cex.lab = 1.5, cex.axis = 1.5,
+ xlab = "Age (years)", ylab = "Incidence rate (per 100000 y)")
> lines( aMid, c(ci.exp(mCat2)[1:13, 1] ), type = 'o', pch = 16 )
> plot( c(1943,1998), c(0.4, 2), type='n', log='y', cex.lab = 1.5, cex.axis = 1.5,
+ xlab = "Calendar year", ylab = "Rate ratio")
> lines( pMid, c(ci.exp(mCat2)[14:18, 1], 1, ci.exp(mCat2)[19:23, 1]),
+ type = 'o', pch = 16 )

1.9.7 Generalized additive model with penalized splines

It is obvious that the age effect on the log-rate scale is highly non-linear, but it is less clear
whether the true period effect deviates from linearity. Nevertheless, there are good indications
to try fitting smooth continuous functions for both.

17. As the next task we fit a generalized additive model for the log-rate on continuous age
and period applying penalized splines with default settings of function gam() in package
mgcv. In this fitting an “optimal” value for the penalty parameter is chosen based on an
AIC-like criterion known as UBRE.

> library(mgcv)
> mPen <- gam( D ~ s(A) + s(P), offset = log(Y/100000),
+ family = poisson, data = tdk)
> summary(mPen)

The summary is quite brief, and the only estimated coefficient is the intercept, which
sets the baseline level for the log-rates, against which the relative age effects and period
effects will be contrasted. On the rate scale the baseline level (per 100000 y) is obtained
by exp(1.7096)
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18. See also the default plot for the fitted curves (solid lines) describing the age and the
period effects which are interpreted as contrasts to the baseline level on the log-rate
scale.

> par(mfrow=c(1,2))
> plot(mPen, seWithMean=TRUE)
> abline(v = 1968, h = 0, lty=3)

The dashed lines describe the 95 % confidence band for the pertinent curve. One could
get the impression that year 1968 would be some kind of reference value for the period
effect, as it was in the categorical model previously fitted. This is not the case, however,
because gam() by default parametrizes the spline effects such that the reference level, at
which the spline effect is nominally zero, is the overall “grand mean” value of the
log-rate in the data. This corresponds to the principle of sum contrasts (contr.sum) for
categorical explanatory factors.

From the summary you will also find that the degrees of freedom value required for the
age effect is nearly the same as the default dimension k − 1 = 9 of the part of the model
matrix (or basis) initially allocated for each smooth function. (Here k refers to the
relevant argument that determines the basis dimension when specifying a smooth term
by s() in the model formula). On the other hand the period effect takes just about 3 df.

19. It is a good idea to do some diagnostic checking of the fitted model

> gam.check(mPen)

The four diagnostic plots are analogous to some of those used in the context of linear
models for Gaussian responses, but not all of them may be as easy to interpret. – Pay
attention to the note given in the printed output about the value of k.

20. Let us refit the model but now with an increased k for age:

> mPen2 <- gam( D ~ s(A, k=20) + s(P), offset = log(Y/100000),
+ family = poisson, data = tdk)
> summary(mPen2)
> gam.check(mPen2)

With this choice of k the df value for age became about 11, which is well below
k − 1 = 19. Let us plot the fitted curves from this fitting, too

> par( mfrow=c(1,2) )
> plot( mPen2, seWithMean=TRUE )
> abline( v=1968, h=0, lty=3 )

There does not seem to have happened any essential changes from the previously fitted
curves, so maybe 8 df could, after all, be quite enough for the age effect.

21. Graphical presentation of the effects can be improved from that supported by
plot.gam(). We can, for instance, present the age curve to describe the “mean”
incidence rates by age, averaged over the 54 years. For that purpose we need to merge
the intercept with the age effect. The period curve will be expressed in terms of rate
ratios in relation to the fitted baseline rate, as determined by the model intercept.
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In order to produce these plots one needs to extract certain items from the fitted gam

object mPen2 and do some calculations. A source script named “plotPenSplines.R”
that does all of that can be found from the /R subdirectory on the course website.

> source("http://bendixcarstensen.com/SPE/R/plotPenSplines.R")

One could continue the analysis of these data by fitting an age-cohort model as an
alternative to the age-period model, as well as an age-cohort-period model.
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1.10 Graphics meccano

The plot below is from a randomized study of the effect of Tamoxifen treatment on bone
mineral metabolism, in a group of patients who were treated for breast cancer.
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The data are available in the file alkfos.csv (using comma as separator, so read.csv will
read it).

> alkfos <- read.csv("./data/alkfos.csv") # change filename as needed

The purpose of this exercise is to show you how to build a similar graph using base graphics
in R. This will take you through a number of fundamental techniques. The exercise will also
walk you through creating the graph using ggplot2.

To get started, run the code in the housekeeping script alkfos-house.r . You probably
should not study the code in too much detail at this point. The script create the following
objects in your workspace.

� times, a vector of length 7 giving the observation times

� means, a 2× 7 matrix giving the mean percentage change at each time point. Each
group has its own row.

� sems, a 2× 7 matrix giving standard errors of the means, used to create the error bars.

� available, a 2× 7 matrixing giving the number of participants still available

Use the objects() to see the objects created function to see them.
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1.10.1 Base graphics

Now we start building the plot. It is important that you use some form of script to hold the R
code since you will frequently have to modify and rerun previously entered code.

1. First, plot the means for group 1 (i.e. means[1,]) against times, using type="b" (look
up what this does)

2. Then add a similar curve for group 2 to the plot using points or lines. Notice that the
new points are below the y scale of the plot, so you need to revise the initial plot by
setting a suitable ylim value.

3. Add the error bars using segments. (You can calculate the endpoints using upper <-

means + sems etc.). You may have to adjust the ylim again.

4. Add the horizontal line at y = 0 using abline

5. Use xlab and ylab in the initial plot call to give better axis labels.

6. We need a nonstandard x axis. Use xaxt="n" to avoid plotting it at first, then add a
custom axis with axis

7. The counts below the x axis can be added using mtext on lines 5 and 6 below the
bottom of the plot, but you need to make room for the extra lines. Use par(mar=.1 +

c(8,4,4,2)) before plotting anything to achieve this.

You now have quite a good reconstruction of the original plot. There are some additional
steps you can take to reproduce the published plot exactly. These are advanced exercises so
feel free to come back to them later.

8. It is not too important here (it was for some other variables in the study), but the
S-PLUS plot has the points for the second group offset horizontally by a small amount
(.25) to prevent overlap. Redo the plot with this modification.

9. Further things to fiddle with: Get rid of the bounding box. Add Control/Tamoxifen
labels to the lines of counts. Perhaps use different plotting symbols. Rotate the y axis
values. Modify the line widths or line styles.

10. Finally, try plotting to the pdf() device and view the results using a PDF viewer (e.g.
Adobe Acrobat Reader). You may need to change the pointsize option and/or the
plot dimensions for optimal appearance. You might also try saving the plot as a metafile
and include it in a Word document.

1.10.2 Using ggplot2

The housekeeping script alkfos-house.r also creates a data frame ggdata containing the
variables in long format. The code for generating the data frame is shown below, but you do
not need to repeat it if you have run the script.
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> ggdata <- data.frame(
+ times = rep(times, 2),
+ means = c(means[1,], means[2,]),
+ sds = c(sds[1,], sds[2,]),
+ available = c(available[1,], available[2,]),
+ treat = rep(c("placebo","tamoxifen"), each=7)
+ )
> ggdata <- transform(ggdata, sems = sds/sqrt(available))

To create a first approximation to the plot in ggplot2 we use the qplot function (short for
“quick plot”). First you must install the ggplot2 package from CRAN and then load it:

> library(ggplot2)
> qplot(x=times, y=means, group=treat, geom=c("point", "line") , data=ggdata)

The first arguments to qplot are called “aesthetics” in the grammar of graphics. Here we
want to plot y=means by x=times grouped by group=treat. The aesthetics are used by the
“geometries”, which are specified with the geom argument. Here we want to plot both points
and lines. The data argument tells qplot to get the aesthetics from the data frame ggdata.

To add the error bars, we add a new geometry “linerange” which uses the aesthetics ymin

and ymax

> p <- qplot(x=times, y=means, group=treat, ymin=means-sems, ymax=means+sems,
+ yintercept=0, geom=c("point", "line", "linerange"), data=ggdata)
> print(p)

In this case we are saving the output of qplot to an R object p. This means the plot will not
appear automatically when we call qplot. Instead, we must explicitly print it.

Note how the y axes are automatically adjusted to include the error bars. This is because
they are included in the call to qplot and not added later (as was the case with base
graphics).

It remains to give informative axis labels and put the right tick marks on the x-axis. This is
done by adding scales to the plot

> p <- p +
+ scale_x_continuous(name="Months after randomization", breaks=times[1:7]) +
+ scale_y_continuous(name="% change in alkaline phosphatase")
> print(p)

We can also change the look and feel of the plot by adding a theme (in this case the black and
white theme).

> p + theme_bw()

As an alternative to qplot, we can use the ggplot function to define the data and the
common aesthetics, then add the geometries with separate function calls. All the grobs
(graphical objects) created by these function calls are combined with the + operator:

> p <- ggplot(data=ggdata,
+ aes(x=times, y=means, ymin=means-sems, ymax=means+sems, group=treat)) +
+ geom_point() +
+ geom_line() +
+ geom_linerange() +
+ geom_hline(yintercept=0, colour="darkgrey") +
+ scale_x_continuous(breaks=times[1:7])

This call adds another geometry “hline” which uses the aesthetic yintercept to add a
horizontal line at 0 on the y-axis. Note that this alternate syntax allows each geometry to have
its own aesthetics: here we draw the horizontal line in darkgrey instead of the default black.
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1.10.3 Grid graphics

As a final, advanced topic, this subsection shows how viewports from the grid package may
be used to display the plot and the table in the same graph. First we create a text table:

> tab <- ggplot(data=ggdata, aes(x=times, y=treat, label=available)) +
+ geom_text(size=3) + xlab(NULL) + ylab(NULL) +
+ scale_x_continuous(breaks=NULL)
> tab

Then we create a layout that will contain the graph above the table. Most of the space is
taken by the graph. The grid.show.layout allows you to preview the layout.

> library(grid)
> Layout <- grid.layout(nrow = 2, ncol = 1, heights = unit(c(2, 0.25),
+ c("null", "null")))
> grid.show.layout(Layout)

The units are relative (“null”) units. You can specify exact sizes in centimetres, inches, or lines
if you prefer.

We then print the graph and the table in the appropriate viewports

> grid.newpage() #Clear the page
> pushViewport(viewport(layout=Layout))
> print(p, vp=viewport(layout.pos.row=1, layout.pos.col=1))
> print(tab, vp=viewport(layout.pos.row=2, layout.pos.col=1))

Notice that the left margins do not match. One way to get the margins to match is to use the
plot_grid function from the cowplot package.

> library(cowplot)
> plot_grid(p, tab, align="v", ncol=1, nrow=2, rel_heights=c(5,1))
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1.11 Survival analysis: Oral cancer patients

1.11.1 Description of the data

File oralca2.txt, that you may access from a url address to be given in the practical,
contains data from 338 patients having an oral squamous cell carcinoma diagnosed and
treated in one tertiary level oncological clinic in Finland since 1985, followed-up for mortality
until 31 December 2008. The dataset contains the following variables:

sex = sex, a factor with categories 1 = "Female", 2 = "Male",
age = age (years) at the date of diagnosing the cancer,
stage = TNM stage of the tumour (factor): 1 = "I", ..., 4 = "IV", 5 = "unkn",
time = follow-up time (in years) since diagnosis until death or censoring,
event = event ending the follow-up (numeric):

0 = censoring alive, 1 = death from oral cancer, 2 = death from other causes.

1.11.2 Loading the packages and the data

11. Load the R packages Epi, mstate, and survival needed in this exercise.

> library(Epi)
> library(popEpi)
> library(data.table)
> library(knitr)
> library(survival)

12. Read the datafile oralca2.txt from a website, whose precise address will be given in
the practical, into an R data frame named orca. Look at the head, structure and the
summary of the data frame. Using function table() count the numbers of censorings as
well as deaths from oral cancer and other causes, respectively, from the event variable.

> orca <- read.table("oralca2.txt", header=T)
> head(orca) ; str(orca) ; summary(orca)

1.11.3 Total mortality: Kaplan–Meier analyses

1. We start our analysis of total mortality pooling the two causes of death into a single
outcome. First, construct a survival object orca$suob from the event variable and the
follow-up time using function Surv(). Look at the structure and summary of
orca$suob .

> orca$suob <- Surv(orca$time, 1*(orca$event > 0) )
> str(orca$suob)
> summary(orca$suob)

2. Create a survfit object s.all, which does the default calculations for a Kaplan–Meier
analysis of the overall (marginal) survival curve.

> s.all <- survfit(suob ~ 1, data=orca)
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See the structure of this object and apply print() method on it, too. Look at the
results; what do you find?

> s.all
> str(s.all)

3. The summary method for a survfit object would return a lengthy life table. However,
the plot method with default arguments offers the Kaplan–Meier curve for a
conventional illustration of the survival experience in the whole patient group.
Alternatively, instead of graphing survival proportions, one can draw a curve describing
their complements: the cumulative mortality proportions. This curve is drawn together
with the survival curve as the result of the second command line below.

> plot(s.all)
> lines(s.all, fun = "event", mark.time=F, conf.int=F)

The effect of option mark.time=F is to omit marking the times when censorings
occurred.

1.11.4 Total mortality by stage

Tumour stage is an important prognostic factor in cancer survival studies.

1. Plot separate cumulative mortality curves for the different stage groups marking them
with different colours, the order which you may define yourself. Also find the median
survival time for each stage.

> s.stg <- survfit(suob ~ stage, data= orca)
> col5 <- c("green", "blue", "black", "red", "gray")
> plot(s.stg, col= col5, fun="event", mark.time=F )
> s.stg

2. Create now two parallel plots of which the first one describes the cumulative hazards
and the second one graphs the log-cumulative hazards against log-time for the different
stages. Compare the two presentations with each other and with the one in the previous
item.

> par(mfrow=c(1,2))
> plot(s.stg, col= col5, fun="cumhaz", main="cum. hazards" )
> plot(s.stg, col= col5, fun="cloglog", main = "cloglog: log cum.haz" )

3. If the survival times were exponentially distributed in a given (sub)population the
corresponding cloglog-curve should follow an approximately linear pattern. Could this
be the case here in the different stages?

4. Also, if the survival distributions of the different subpopulations would obey the
proportional hazards model, the vertical distance between the cloglog-curves should be
approximately constant over the time axis. Do these curves indicate serious deviation
from the proportional hazards assumption?
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5. In the lecture handouts (p. 34, 37) it was observed that the crude contrast between
males and females in total mortality appears unclear, but the age-adjustment in the Cox
model provided a more expected hazard ratio estimate. We shall examine the
confounding by age somewhat closer. First categorize the continuous age variable into,
say, three categories by function cut() using suitable breakpoints, like 55 and 75 years,
and cross-tabulate sex and age group:

> orca$agegr <- cut(orca$age, br=c(0,55,75, 95))
> stat.table( list( sex, agegr), list( count(), percent(agegr) ),
+ margins=T, data = orca )

Male patients are clearly younger than females in these data.

Now, plot Kaplan–Meier curves jointly classified by sex and age.

> s.agrx <- survfit(suob ~ agegr + sex, data=orca)
> par(mfrow=c(1,1))
> plot(s.agrx, fun="event", mark.time=F, xlim = c(0,15),
+ col=rep(c("red", "blue"),3), lty=c(2,2, 1,1, 5,5))

In each ageband the mortality curve for males is on a higher level than that for females.

1.11.5 Event-specific cumulative mortality curves

We move on to analysing cumulative mortalities for the two causes of death separately, first
overall and then by prognostic factors.

1. Use the survfit-function in survival package with option type="mstate".

> library(survival)
> cif1 <- survfit( Surv( time, event, type="mstate") ~ 1,
+ data = orca)
> str(cif1)

2. One could apply here the plot method of the survfit object to plot the cumulative
incidences for each cause. However, we suggest that you use instead a simple function
plotCIF() found in the Epi package. The main arguments are

data = data frame created by function survfit(), (1.1)

event = indicator for the event: values 1 or 2. (1.2)

Other arguments are like in the ordinary plot() function.

3. Draw two parallel plots describing the overall cumulative incidence curves for both
causes of death

> par(mfrow=c(1,2))
> plotCIF(cif1, 1, main = "Cancer death")
> plotCIF(cif1, 2, main= "Other deaths")
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4. Compute the estimated cumulative incidences by stage for both causes of death. Now
you have to add variable stage to survfit-function.

See the structure of the resulting object, in which you should observe strata variable
containing the stage grouping variable. Plot the pertinent curves in two parallel graphs.
Cut the y-axis for a more efficient graphical presentation

> col5 <- c("green", "blue", "black", "red", "gray")
> cif2 <- survfit( Surv( time, event, type="mstate") ~ stage,
+ data = orca)
> str(cif2)
> par(mfrow=c(1,2))
> plotCIF(cif2, 1, main = "Cancer death by stage",
+ col = col5, ylim = c(0, 0.7) )
> plotCIF(cif2, 2, main= "Other deaths by stage",
+ col=col5, ylim = c(0, 0.7) )

Compare the two plots. What would you conclude about the effect of stage on the two
causes of death?

5. Using another function stackedCIF() in Epi you can put the two cumulative incidence
curves in one graph but stacked upon one another such that the lower curve is for the
cancer deaths and the upper curve is for total mortality, and the vertical difference
between the two curves describes the cumulative mortality from other causes. You can
also add some colours for the different zones:

> par(mfrow=c(1,1))
> stackedCIF(cif1, colour = c("gray70", "gray85"))

1.11.6 Regression modelling of overall mortality.

1. Fit the semiparametric proportional hazards regression model, a.k.a. the Cox model, on
all deaths including sex, age and stage as covariates. Use function coxph() in package
survival. It is often useful to center and scale continuous covariates like age here. The
estimated rate ratios and their confidence intervals can also here be displayed by
applying ci.lin() on the fitted model object.

> options(show.signif.stars = F)
> m1 <- coxph(suob ~ sex + I((age-65)/10) + stage, data= orca)
> summary( m1 )
> round( ci.exp(m1 ), 4 )

Look at the results. What are the main findings?

2. Check whether the data are sufficiently consistent with the assumption of proportional
hazards with respect to each of the variables separately as well as globally, using the
cox.zph() function.

> cox.zph(m1)
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3. No evidence against proportionality assumption could apparently be found. Moreover,
no difference can be observed between stages I and II in the estimates. On the other
hand, the group with stage unknown is a complex mixture of patients from various true
stages. Therefore, it may be prudent to exclude these subjects from the data and to
pool the first two stage groups into one. After that fit a model in the reduced data with
the new stage variable.

> orca2 <- subset(orca, stage != "unkn")
> orca2$st3 <- Relevel( orca2$stage, list(1:2, 3, 4:5) )
> levels(orca2$st3) = c("I-II", "III", "IV")
> m2 <- update(m1, . ~ . - stage + st3, data=orca2 )
> round( ci.exp(m2 ), 4)

4. Plot the predicted cumulative mortality curves by stage, jointly stratified by sex and
age, focusing only on 40 and 80 year old patients, respectively, based on the fitted model
m2. You need to create a new artificial data frame containing the desired values for the
covariates.

> newd <- data.frame( sex = c( rep("Male", 6), rep("Female", 6) ),
+ age = rep( c( rep(40, 3), rep(80, 3) ), 2 ),
+ st3 = rep( levels(orca2$st3), 4) )
> newd
> col3 <- c("green", "black", "red")
> par(mfrow=c(1,2))
> plot( survfit(m2, newdata= subset(newd, sex=="Male" & age==40)),
+ col=col3, fun="event", mark.time=F)
> lines( survfit(m2, newdata= subset(newd, sex=="Female" & age==40)),
+ col= col3, fun="event", lty = 2, mark.time=F)
> plot( survfit(m2, newdata= subset(newd, sex=="Male" & age==80)),
+ ylim = c(0,1), col= col3, fun="event", mark.time=F)
> lines( survfit(m2, newdata= subset(newd, sex=="Female" & age==80)),
+ col=col3, fun="event", lty=2, mark.time=F)
>

1.11.7 Modelling event-specific hazards and hazards of the
subdistribution

1. Fit the Cox model for the cause-specific hazard of cancer deaths with the same
covariates as above. In this case only cancer deaths are counted as events and deaths
from other causes are included into censorings.

> m2haz1 <- coxph( Surv( time, event==1) ~ sex + I((age-65)/10) + st3 , data=orca2 )
> round( ci.exp(m2haz1 ), 4)
> cox.zph(m2haz1)

Compare the results with those of model m2. What are the major differences?

2. Fit a similar model for deaths from other causes and compare the results.

> m2haz2 <- coxph( Surv( time, event==2) ~ sex + I((age-65)/10) + st3 , data=orca2 )
> round( ci.exp(m2haz2 ), 4)
> cox.zph(m2haz2)
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3. Finally, fit the Fine–Gray model for the hazard of the subdistribution for cancer deaths
with the same covariates as above. For this you have to first load package cmprsk,
containing the necessary function crr(), and attach the data frame.

> library(cmprsk)
> attach(orca2)
> m2fg1 <- crr(time, event, cov1 = model.matrix(m2), failcode=1)
> summary(m2fg1, Exp=T)

Compare the results with those of model m2 and m2haz1.

4. Fit a similar model for deaths from other causes and compare the results.

> m2fg2 <- crr(time, event, cov1 = model.matrix(m2), failcode=2)
> summary(m2fg2, Exp=T)

1.11.8 Analysis of relative survival

1. Load package popEpi for the estimation of relative survival. Use the (simulated) female
Finnish breast cancer patients diagnosed between 1993-2012, called sibr.

> library(popEpi)
> head(sibr)

2. Prepare the data by using lexpand command in the popEpi package, define follow-up
time intervals, (calendar time) period that you are interested and where are the
population mortality figures. Calculate 5-year observed survival (2008-2012) using
period method by Ederer II (default)

> ## pretend some are male
> set.seed(1L)
> sire$sex <- rbinom(nrow(sire), 1, 0.01)
> BL <- list(fot = seq(0, 5, 1/12))
> x <- lexpand(sire,
+ birth = bi_date,
+ entry = dg_date,
+ exit = ex_date,
+ status = status,
+ breaks = BL,
+ pophaz = popmort,
+ aggre = list(sex, fot))

3. Calculate 5-year relative survival (2008-2012) using period method by Ederer II
(default)

> st.e2 <- survtab_ag(fot ~ sex, data = x,
+ surv.type = "surv.rel",
+ pyrs = "pyrs", n.cens = "from0to0",
+ d = c("from0to1", "from0to2"))
> plot(st.e2, y = "r.e2", col = c("black", "red"),lwd=4)
>
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1.11.9 Lexis object with multi-state set-up

Before entering to analyses of cause-specific mortality it might be instructive to apply some
Lexis tools to illustrate the competing-risks set-up. More detailed explanation of these tools
will be given by Bendix in this afternoon.

1. Form a Lexis object from the data frame and print a summary of it. We shall name the
main (and only) time axis in this object as stime.

> orca.lex <- Lexis(exit = list(stime = time),
+ exit.status = factor(event,
+ labels = c("Alive", "Oral ca. death", "Other death")),
+ data = orca)
> summary(orca.lex)

2. Draw a box diagram of the two-state set-up of competing transitions. Run first the
following command line

boxes( orca.lex )

Now, move the cursor to the point in the graphics window, at which you wish to put the
box for “Alive”, and click. Next, move the cursor to the point at which you wish to have
the box for “Oral ca. death”, and click. Finally, do the same with the box for “Other
death”. If you are not happy with the outcome, run the command line again and repeat
the necessary mouse moves and clicks.

1.11.10 Poisson regression as an alternative to Cox model

It can be shown that the Cox model with an unspecified form for the baseline hazard λ0(t) is
mathematically equivalent to the following kind of Poisson regression model. Time is treated
as a categorical factor with a dense division of the time axis into disjoint intervals or
timebands such that only one outcome event occurs in each timeband. The model formula
contains this time factor plus the desired explanatory terms.

A sufficient division of time axis is obtained by first setting the break points between
adjacent timebands to be those time points at which an outcome event has been observed to
occur. Then, the pertinent lexis object is created and after that it will be split according to
those breakpoints. Finally, the Poisson regression model is fitted on the splitted lexis object
using function glm() with appropriate specifications.

We shall now demonstrate the numerical equivalence of the Cox model m2haz1 for oral
cancer mortality that was fitted above, and the corresponding Poisson regression.

1. First we form the necessary lexis object by just taking the relevant subset of the
already available orca.lex object. Upon that the three-level stage factor st3 is created
as above.

> orca2.lex <- subset(orca.lex, stage != "unkn" )
> orca2.lex$st3 <- Relevel( orca2$stage, list(1:2, 3, 4:5) )
> levels(orca2.lex$st3) = c("I-II", "III", "IV")
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Then, the break points of time axis are taken from the sorted event times, and the
lexis object is split by those breakpoints. The timeband factor is defined according to
the splitted survival times stored in variable stime.

> cuts <- sort(orca2$time[orca2$event==1])
> orca2.spl <- splitLexis( orca2.lex, br = cuts, time.scale="stime" )
> orca2.spl$timeband <- as.factor(orca2.spl$stime)

As a result we now have an expanded lexis object in which each subject has several
rows; as many rows as there are such timebands during which he/she is still at risk. The
outcome status lex.Xst has value 0 in all those timebands, over which the subject stays
alive, but assumes the value 1 or 2 at his/her last interval ending at the time of death. –
See now the structure of the splitted object.

> str(orca2.spl)
> orca2.spl[ 1:20, ]

2. We are ready to fit the desired Poisson model for oral cancer death as the outcome. The
splitted person-years are contained in lex.dur, and the explanatory variables are the
same as in model m2haz1. – This fitting may take some time . . .

> m2pois1 <- glm( 1*(lex.Xst=="Oral ca. death") ~
+ -1 + timeband + sex + I((age-65)/10) + st3,
+ family=poisson, offset = log(lex.dur), data = orca2.spl)

We shall display the estimation results graphically for the baseline hazard (per 1000
person-years) and numerically for the rate ratios associated with the covariates. Before
doing that it is useful to count the length ntb of the block occupied by baseline hazard
in the whole vector of estimated parameters. However, owing to how the splitting to
timebands was done, the last regression coefficient is necessarily zero and better be
omitted when displaying the results. Also, as each timeband is quantitatively named
accoding to its leftmost point, it is good to compute the midpoint values tbmid for the
timebands

> tb <- as.numeric(levels(orca2.spl$timeband)) ; ntb <- length(tb)
> tbmid <- (tb[-ntb] + tb[-1])/2 # midpoints of the intervals
> round( ci.exp(m2pois1 ), 3)
> par(mfrow=c(1,1))
> plot( tbmid, 1000*exp(coef(m2pois1)[1:(ntb-1)]),
+ ylim=c(5,3000), log = "xy", type = "l")

Compare the regression coefficients and their error margins to those model m2haz1. Do
you find any differences? How does the estimated baseline hazard look like?

3. The estimated baseline looks quite ragged when based on 71 separate parameters. A
smoothed estimate may be obtained by spline modelling using the tools contained in
package splines (see the practical of Saturday 25 May afternoon). With the following
code you will be able to fit a reasonable spline model for the baseline hazard and draw
the estimated curve (together with a band of the 95% confidence limits about the fitted
values). From the same model you should also obtain quite familiar results for the rate
ratios of interest.
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> library(splines)
> m2pspli <- update(m2pois1, . ~ ns(stime, df = 6, intercept = F) +
+ sex + I((age-65)/10) + st3)
> round( ci.exp( m2pspli ), 3)
> news <- data.frame( stime = seq(0,25, length=301), lex.dur = 1000, sex = "Female",
+ age = 65, st3 = "I-II")
> blhaz <- predict(m2pspli, newdata = news, se.fit = T, type = "link")
> blh95 <- cbind(blhaz$fit, blhaz$se.fit) %*% ci.mat()
> par(mfrow=c(1,1))
> matplot( news$stime, exp(blh95), type = "l", lty = c(1,1,1), lwd = c(2,1,1) ,
+ col = rep("black", 3), log = "xy", ylim = c(5,3000) )
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1.12 Time-splitting, time-scales and SMR

This exercise is about mortaity among Danish Diabetes patients. It is based on the dataset
DMlate, a random sample of 10,000 patients from the Danish Diabetes Register (scrambeled
dates), all with date of diagnosis after 1994.

1. First load the data and take a look at the data:

library( Epi )
library( mgcv )
library( splines )
sessionInfo()
data( DMlate )
str( DMlate )

You can get a more detailed explanation of the data by referring to the help page:

?DMlate

2. Set up the dataset as a Lexis object with age, calendar time and duration of diabetes as
timescales, and date of death as event. Make sure that you know what each of the
arguments to Lexis mean:

LL <- Lexis( entry = list( A = dodm-dobth,
P = dodm,

dur = 0 ),
exit = list( P = dox ),

exit.status = factor( !is.na(dodth),
labels=c("Alive","Dead") ),

data = DMlate )

Take a look at the first few lines of the resulting dataset using head().

3. Get an overall overview of the mortality by using stat.table to tabulate no. deaths,
person-years and the crude mortality rate by sex.

4. If we want to assess how mortality depends on age, calendar time and duration or how it
relates to population mortality, we should in principle split the follow-up along all three
time scales. In practice it is sufficient to split it along one of the time-scales and then use
the value of each of the time-scales at the left endpoint of the intervals. Use splitLexis

(or splitMulti from the popEpi package) to split the follow-up along the age-axis in
sutiable intervals (here set to 1/2 year, but really immaterial as long as it is small):

SL <- splitLexis( LL, breaks=seq(0,125,1/2), time.scale="A" )
summary( SL )

How many records are now in the dataset? How many person-years? Compare to the
original Lexis-dataset.
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SMR

The SMR is the Standardized Mortality Ratio, which is the mortality rate-ratio between the
diabetes patients and the general population. In real studies we would subtract the deaths
and the person-years among the diabetes patients from those of the general population, but
since we do not have access to these, we make the comparison to the general population at
large, i.e. also including the diabetes patients. We now want to include the population
mortality rates as a fixed variable in the split dataset; for each record in the split dataset we
attach the value of the population mortality for the relevant sex, and and calendar time. This
can be achieved in two ways: Either we just use the current split of follow-up time and
allocate the population mortality rates for some suitably chosen (mid-)point of the follow-up
in each, or we make a second split by date, so that follow-up in the diabetes patients is in the
same classification of age and data as the population mortality table.

5. We will use the former approach, using the dataset split in 6 month intervals, and then
include as an extra variable the population mortality as available from the data set
M.dk. First create the variables in the diabetes dataset that we need for matching with
the population mortality data, that is age, date and sex at the midpoint of each of the
intervals (or rater at a point 3 months after the left endpoint of the interval — recall we
split the follow-up in 6 month intervals). We need to have variables of the same type
when we merge, so we must transform the sex variable in M.dk to a factor, and must for
each follow-up interval in the SL data have an age and a period variable that can be
used in merging with the population data.

str( SL )
SL$Am <- floor( SL$A+0.25 )
SL$Pm <- floor( SL$P+0.25 )
data( M.dk )
str( M.dk )
M.dk <- transform( M.dk, Am = A,

Pm = P,
sex = factor( sex, labels=c("M","F") ) )

str( M.dk )

Then match the rates from M.dk into SL — sex, Am and Pm are the common variables,
and therefore the match is on these variables:

SLr <- merge( SL, M.dk[,c("sex","Am","Pm","rate")] )
dim( SL )
dim( SLr )

This merge (remember to ?merge!) only takes rows that have information from both
datasets, hence the slightly fewer rows in SLr than in SL.

6. Compute the expected number of deaths as the person-time multiplied by the
corresponding population rate, and put it in a new variable, E, say (Expected). Use
stat.table to make a table of observed, expected and the ratio (SMR) by age (suitably
grouped) and sex.

7. Fit a poisson model with sex as the explanatory varable and log-expected as offset to
derive the SMR (and c.i.). Some of the population mortality rates are 0, so you need to
exclude those records from the analysis.
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msmr <- glm( (lex.Xst=="Dead") ~ sex - 1 + offset(log(E)),
family = poisson,
data = subset(SLr,E>0) )

ci.exp( msmr )

Recogninse the numbers?

Age-specific mortality

8. Now estimate age-specific mortality curves for men and women separately, using splines
as implemented in gam. We use k=20 to be sure to catch any irregularities by age.

r.m <- gam( (lex.Xst=="Dead") ~ s(A,k=20) + offset( log(lex.dur) ),
family = poisson,
data = subset( SL, sex=="M" ) )

gam.check( r.f )

Make sure you understand all the components on this modeling statement.

9. Now, extract the estimated rates by using the wrapper function ci.pred that computes
predicted rates and confidence limits for these. Note that lex.dur is a covariate in the
context of prediction; by putting this to 1000 in the prediction dataset we get the rates
in units of deaths per 1000 PY:

nd <- data.frame( A = seq(10,90,0.5),
lex.dur = 1000)

p.m <- ci.pred( r.m, newdata = nd )
str( p.m )

10. Plot the predicted rates for men and women together - using for example matplot.

p.f <- ci.pred( r.f, newdata = nd )
matplot( nd$A, cbind(p.m,p.f),

type="l", col=rep(c("blue","red"),each=3), lwd=c(3,1,1), lty=1,
log="y", xlab="Age", ylab="Mortality of DM ptt per 1000 PY")

Period and duration effects

11. We now want to model the mortality rates among diabetes patients also including
current date and duration of diabetes, using penalized splines. Use the argument
bs="cr" to s() to get cubic splines indstead of thin plate ("tp") splines which is ithe
default, and check if you have a reasonable fit:

Mtp <- gam( (lex.Xst=="Dead") ~ s( A, bs="cr", k=10 ) +
s( P, bs="cr", k=10 ) +
s( dur, bs="cr", k=10 ),

offset = log( lex.dur/1000 ),
family = poisson,
data = subset( SL, sex=="M" ) )

summary( Mcr )
gam.check( Mcr )
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Fit the same model for women as well. Are the models reasinable fitting?

12. Plot the estimated effects, using the default plot method for gam objects. Remember
that there are three effects estimated, so it ise useful set up a multi-panel display, and
for the sake of comparability to set ylim to the same for men and women:

par( mfrow=c(2,3) )
plot( Mcr, ylim=c(-3,3) )
plot( Fcr, ylim=c(-3,3) )

13. Compare the fit of the naive model with just age and the three-factor models, using
anova, e.g.:

anova( Mcr, r.m, test="Chisq" )

14. The model we fitted has three time-scales: current age, current date and current
duration of diabetes, so the effects that we report are not immediately interpretable, as
they are (as in any kind of multiple regressions) to be interpreted as “all else equal”
which they are not, as the three time scales advance simultaneously at the same pace.
The reporting would therefore more naturally be only on the mortality scale as a
function of age, but showing the mortality for persons diagnosed in different ages, using
separate displays for separate years of diagnosis. This is most easily done using the
ci.pred function with the newdata= argument. So a person diagnosed in age 50 in 1995
will have a mortality measured in cases per 1000 PY as:

pts <- seq(0,20,1/2)
nd <- data.frame( A = 50+pts,

P = 1995+pts,
dur = pts,

lex.dur = 1000 )
m.pr <- ci.pred( Mcr, newdata=nd )

Note however, that if you have used the offset=) argument in the mdel specification
rather than the + offset() in the model fromula, the offset specification in nd will be
ignored, and prediction be made for the scale chosen in the model specification. Now
take a look at the result from the ci.pred statement and construct prediction of
mortality for men and women diagnosed in a range of ages, say 50, 60, 70, and plot
these together in the same graph:

cbind( nd, ci.pred( Mcr, newdata=nd ) )

15. From figure 2.3 it seems that the duration effect is dramatically over-modeled, so we
refit constraining the d.f. to 5:

Mcr <- gam( (lex.Xst=="Dead") ~ s( A, bs="cr", k=10 ) +
s( P, bs="cr", k=10 ) +
s( dur, bs="cr", k=5 ) +

offset( log( lex.dur ) ),
family = poisson,
data = subset( SL, sex=="M" ) )

Fcr <- update( Mcr, data = subset( SL, sex=="F" ) )

What do you conclude from the plots?
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1.12.1 SMR modeling

16. Now model the SMR using age and date of diagnosis and diabetes duration as
explanatory variables, including the log-expected-number instead of the log-person-years
as offset, using separate models for men and women. You can re-use the code you used
for fitting models for the rates, you only need to use the expedtd numbers instead of the
person-years. But remember to exclude those units where no deaths in the population
occur (that is where the rate is 0) — an offset of −∞ will crash gam. Plot the estimated
smooth effects from both models using e.g. plot.gam. What do you see?

17. Plot the predicted SMRs from the models for men and women diagnosed in ages 50, 60
and 70 as you dif for the rates. What do you see?

18. Try to simplify the model to one with a simple sex effect, linear effects of age and date
of follow-up, and a smooth effect of duration, giving an estimate of the change in SMR
by age and calendar time. How much does SMR change by each year of age? And by
each calendar year?

19. Use your previous code to plot the predicted mortality from this model too. Are the
predicted SMR curves credible?

20. (optional) We may deem the curves non-credible and ultimately resort to a brutal
parametric assumption without any penalty. If we choose a natural spline for the
duration with knost at 0,1,3,6 years we get a model with 3 parameters, try:

dim( Ns(SLr$dur, knots=c(0,1,3,6) ) )

Now fit the same model (also ignoring sex) as above using this:

SMRglm <- glm( (lex.Xst=="Dead") ~ I(A-60) +
I(P-2000) +
Ns( dur, knots=c(0,1,4,8) ) +
offset( log(E) ),

family = poisson,
data = SLr )

Plot the estimated SMRs from this model as before, and give a conclusion on SMR for
diabetes patients.
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1.13 Causal inference

1.13.1 Proper adjustment for confounding in regression models

The first exercise of this session will ask you to simulate some data according to pre-specified
causal structure (don’t take the particular example too seriously) and see how you should
adjust the analysis to obtain correct estimates of the causal effects.

Suppose one is interested in the effect of beer-drinking on body weight. Let’s assume that
in addition to the potential effect of beer on weight, the following is true in reality:

� Men drink more beer than women

� Men have higher body weight than women

� People with higher body weight tend to have higher blood pressure

� Beer-drinking increases blood pressure

The task is to simulate a dataset in accordance with this model, and subsequently analyse
it to see, whether the results would allow us to conclude the true association structure.

1. Sketch a causal graph (not necessarily with R) to see, how should one generate the data

2. Suppose the actual effect sizes are following:

� The probability of beer-drinking is 0.2 for females and 0.7 for males

� Men weigh on average 10kg more than women

� One kg difference in body weight corresponds in average to 0.5mmHg difference in
(systolic) blood pressures

� Beer-drinking increases blood pressure by 10mmHg in average.

� Beer-drinking has no effect on body weight

The R commands to generate the data are:

> bdat= data.frame(sex = c(rep(0,500),rep(1,500)) )
> # a data frame with 500 females, 500 males
> bdat$beer <- rbinom(1000,1,0.2+0.5*bdat$sex)
> bdat$weight <- 60 + 10*bdat$sex + rnorm(1000,0,7)
> bdat$bp <- 110 + 0.5*bdat$weight + 10*bdat$beer + rnorm(1000,0,10)

3. Now fit the following models for body weight as dependent variable and beer-drinking as
independent variable. Look, what is the estimated effect size:

(a) Unadjusted (just simple linear regression)

(b) Adjusted for sex

(c) Adjusted for sex and blood pressure

4. What would be the conclusions on the effect of beer on weight, based on the three
models? Do they agree? Which (if any) of the models gives an unbiased estimate of the
actual causal effect of interest?
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5. How can the answer be seen from the graph?

6. Now change the data-generation algorithm so, that in fact beer-drinking does increase
the body weight by 2kg. Look, what are the conclusions in the above models now. Thus
the data is generated as before, but the weight variable is computed as:

> bdat$weight <- 60 + 10*bdat$sex + 2*bdat$beer + rnorm(1000,0,7)

7. Suppose one is interested in the effect of beer-drinking on blood pressure instead, and is
fitting a) an unadjusted model for blood pressure, with beer as an only covariate; b) a
model with beer, weight and sex as covariates. Would either a) or b) give an unbiased
estimate for the effect? (You may double-check whether the simulated data is consistent
with your answer).

1.13.2 Instrumental variables estimation, Mendelian
randomization and assumptions

In the lecture slides it was shown that in a model for blood glucose level (associated with the
risk of diabetes), both BMI and FTO genotype were significant. Seeing such result in a real
dataset may misleadingly be interpreted as an evidence of a direct effect of FTO genotype on
glucose. Conduct a simulation study to verify that one may see a significant genotype effect
on outcome in such model if in fact the assumptions for Instrumental Variables estimation
(Mendelian Randomization) are valid – genotype has a direct effect on the exposure only,
whereas exposure-outcome association is confounded.

1. Start by generating the genotype variable as Binomial(2,p), with p = 0.2:

> n <- 10000
> mrdat <- data.frame(G = rbinom(n,2,0.2))
> table(mrdat$G)

2. Also generate the confounder variable U

> mrdat$U <- rnorm(n)

3. Generate a continuous (normally distributed) exposure variable BMI so that it depends
on G and U . Check with linear regression, whether there is enough power to get
significant parameter estimates. For instance:

> mrdat$BMI <- with(mrdat, 25 + 0.7*G + 2*U + rnorm(n) )

4. Finally generate Y (”Blood glucose level”) so that it depends on BMI and U (but not
on G).

> mrdat$Y <- with(mrdat, 3 + 0.1*BMI - 1.5*U + rnorm(n,0,0.5) )

5. Verify, that simple regression model for Y , with BMI as a covariate, results in a biased
estimate of the causal effect (parameter estimate is different from what was generated)
How different is the estimate from 0.1?
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6. Estimate a regression model for Y with two covariates, G and BMI. Do you see a
significant effect of G? Could you explain analytically, why one may see a significant
parameter estimate for G there?

7. Find an IV (instrumental variables) estimate, using G as an instrument, by following
the algorithm in the lecture notes (use two linear models and find a ratio of the
parameter estimates). Does the estimate get closer to the generated effect size?

> mgx<-lm(BMI ~ G, data=mrdat)
> ci.lin(mgx) # check the instrument effect
> bgx<-mgx$coef[2] # save the 2nd coefficient (coef of G)
> mgy<-lm(Y ~ G, data=mrdat)
> ci.lin(mgy)
> bgy<-mgy$coef[2]
> causeff <- bgy/bgx
> causeff # closer to 0.1?

8. A proper simulation study would require the analysis to be run several times, to see the
extent of variability in the parameter estimates. A simple way to do it here would be
using a for-loop. Modify the code as follows (exactly the same commands as executed
so far, adding a few lines of code to the beginning and to the end):

> n <- 10000
> # initializing simulations:
> # 30 simulations (change it, if you want more):
> nsim<-30
> mr<-rep(NA,nsim) # empty vector for the outcome parameters
> for (i in 1:nsim) { # start the loop
+ ### Exactly the same commands as before:
+ mrdat <- data.frame(G = rbinom(n,2,0.2))
+ mrdat$U <- rnorm(n)
+ mrdat$BMI <- with(mrdat, 25 + 0.7*G + 2*U + rnorm(n) )
+ mrdat$Y <- with(mrdat, 3 + 0.1*BMI - 1.5*U + rnorm(n,0,0.5) )
+ mgx<-lm(BMI ~ G, data=mrdat)
+ bgx<-mgx$coef[2]
+ mgy<-lm(Y ~ G, data=mrdat)
+ bgy<-mgy$coef[2]
+ # Save the i'th parameter estimate:
+ mr[i]<-bgy/bgx
+ } # end the loop

Now look at the distribution of the parameter estimate:

> summary(mr)

9. (optional) Change the code of simulations so that the assumptions are violated: add a
weak direct effect of the genotype G to the equation that generates Y :

> mrdat$Y <- with(mrdat, 3 + 0.1*BMI - 1.5*U + 0.05*G + rnorm(n,0,0.5) )

Repeat the simulation study to see, what is the bias in the average estimated causal
effect of BMI on Y .
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10. (optional) Using library sem and function tsls, obtain a two-stage least squares
estimate for the causal effect. Do you get the same estimate as before?

> library(sem)
> summary(tsls(Y ~ BMI, ~G, data=mrdat))

Why are simulation exercises useful for causal inference?

If we simulate the data, we know the data-generating mechanism and the “true” causal effects.
So this is a way to check, whether an analysis approach will lead to estimates that correspond
to what is generated. One could expect to see similar phenomena in real data analysis, if the
data-generation mechanism is similar to what was used in simulations.



IARC, 2018
1.14 Nested case-control study and case-cohort study:

Risk factors of coronary heart disease 79

1.14 Nested case-control study and case-cohort study:

Risk factors of coronary heart disease

In this exercise we shall apply both the nested case-control (NCC) design and the case-cohort
(CC) design in sampling control subjects from a defined cohort or closed study population.
The case group comprises those cohort members who die from coronary heart disease (CHD)
during a > 20 years follow-up of the cohort. The risk factors of interest are cigarette smoking,
systolic blood pressure, and total cholesterol level.

Our study population is an occupational cohort comprising 1501 men working in blue-collar
jobs in one Nordic country. Eligible subjects had no history of coronary heart disease when
recruited to the study in the early 1990s. Smoking habits and many other items were inquired
at baseline by a questionnaire, and blood pressure was measured by a research nurse, the
values being written down on the questionnaire. Serum samples were also taken from the
cohort members at the same time and were stored in a freezer. For some reason, the data in
the questionnaires were not entered to any computer file, but the questionnaires were kept in
a safe storehouse for further purposes. Also, no biochemical analyses were initially performed
for the sera collected from the participants. However, dates of birth and dates of entry to the
study were recorded in an electronic file.

In 2010 the study was suddenly reactivated by those investigators of the original team who
were still alive then. As the first step mortality follow-up of the cohort members was executed
by record linkage to the national population register, from which the dates of death and
emigration were obtained. Another linkage was performed with the national register of causes
of death in order to get the deaths from coronary heard disease identified. As a result a data
file occoh.txt was completed containing the following variables:

id = identification number,
birth = date of birth,
entry = date of recruitment and baseline measurements,
exit = date of exit from mortality follow-up,

death = indicator for vital status at the end of follow-up,
= 1, if dead from any cause, and = 0, if alive,

chdeath = indicator for death from coronary heart disease,
= 1, if “yes”, and 0, if “no”.

This exercise is divided into five main parts:

(1) Description of the study base or the follow-up experience of the whole cohort,
identification of the cases and illustrating the risk sets.

(2) Nested case-control study within the cohort: (i) selection of controls by risk set or
time-matched sampling using function ccwc() in package Epi, (ii) collection of exposure
data for cases and controls from the pertinent data base of the whole cohort to the
case-control data set using function merge(), and (iii) analysis of case-control data
using function clogit() in package survival(),

(3) Case-cohort study within the cohort: (i) selection of a subcohort by simple random
sampling from the cohort, (ii) fitting the Cox model to the data by weighted partial
likelihood using function coxph() in package survival() with appropriate weighting
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and correction of estimated covariance matrix for the model coefficients; also using
function cch() in package survival() for the same task.

(4) Comparison of results from all previous analyses, also with those from a full cohort
design.

(5) Further tasks and homework.

1.14.1 Reading the cohort data, illustrating the study base and
risk sets

11. Load the packages Epi and survival. Read in the cohort data file and name the
resulting data frame as oc. See its structure and print the univariate summaries.

> library(Epi)
> library(survival)
> url <- "http://bendixcarstensen.com/SPE/data"
> oc <- read.table( paste(url, "occoh.txt", sep = "/"), header=TRUE)
> str(oc)
> summary(oc)

12. It is convenient to change all the dates into fractional calendar years

> oc$ybirth <- cal.yr(oc$birth)
> oc$yentry <- cal.yr(oc$entry)
> oc$yexit <- cal.yr(oc$exit)

We shall also compute the age at entry and at exit, respectively, as age will be the main
time scale in our analyses.

> oc$agentry <- oc$yentry - oc$ybirth
> oc$agexit <- oc$yexit - oc$ybirth

13. As the next step we shall create a lexis object from the data frame along the calendar
period and age axes, and as the outcome event we specify the coronary death.

> oc.lex <- Lexis( entry = list( per = yentry,
+ age = yentry - ybirth ),
+ exit = list( per = yexit),
+ exit.status = chdeath,
+ id = id, data = oc)
> str(oc.lex)
> summary(oc.lex)

14. At this stage it is informative to examine a graphical presentation of the follow-up lines
and outcome cases in a conventional Lexis diagram. To rationalize your work we have
created a separate source file plots-caco-ex.R to do the graphics for this tas as well as
for some forthcoming ones. The source source file is found in the same folder where the
data sets are.located – Load the source file and have a look at the content of the first
function in it
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> source( paste(url,"plots-caco-ex.R", sep = "/") )
> plot1

Function plot1() makes the graph required here. No arguments are needed when
calling the function

> plot1()

15. As age is here the main time axis, we shall illustrate the study base or the follow-up lines
and outcome events along the age scale, being ordered by age at exit. Function plot2()

in the same source file does the work. Vertical lines at those ages when new coronary
deaths occur are drawn to identify the pertinent risk sets. For that purpose it is useful
first to sort the data frame and the lexis object jointly by age at exit & age at entry,
and to give a new ID number according to that order.

> oc.ord <- cbind(ID = 1:1501, oc[ order( oc$agexit, oc$agentry), ] )
> oc.lexord <- Lexis( entry = list( age = agentry ),
+ exit = list( age = agexit),
+ exit.status = chdeath,
+ id = ID, data = oc.ord)
> plot2
> plot2()

Using function plot3() in the same source file we now zoom the graphical illustration of
the risk sets into event times occurring between 50 to 58 years.

> plot3
> plot3()

1.14.2 Nested case-control study

We shall now employ the strategy of risk-set sampling or time-matched sampling of controls,
i.e. we are conducting a nested case-control study within the cohort.

16. The risk sets are defined according to the age at diagnosis of the case. Further matching
is applied for age at entry by 1-year agebands. For this purpose we first generate a
categorical variable agen2 for age at entry

> oc.lex$agen2 <- cut(oc.lex$agentry, br = seq(40, 62, 1) )

Matched sampling from risk sets may be carried out using function ccwc() found in the
Epi package. Its main arguments are the times of entry and exit which specify the
time at risk along the main time scale (here age), and the outcome variable to be given
in the fail argument. The number of controls per case is set to be two, and the
additional matching factor is given. – After setting the RNG seed (with your own
number), make a call of this function and see the structure of the resulting data frame
cactrl containing the cases and the chosen individual controls.
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> set.seed(9863157)
> cactrl <-
+ ccwc(entry=agentry, exit=agexit, fail=chdeath,
+ controls = 2, match= agen2,
+ include = list(id, agentry),
+ data=oc.lex, silent=FALSE)
> str(cactrl)

Check the meaning of the four first columns of the case-control data frame from the help
page of function ccwc().

17. Now we shall start collecting data on the risk factors for the cases and their matched
controls, including determination of the total cholesterol levels from the frozen sera! The
storehouse of the risk factor measurements for the whole cohort is file
occoh-Xdata.txt. It contains values of the following variables.

id = identification number, the same as in occoh.txt,
smok = cigarette smoking with categories,

1: “never”, 2: “former”, 3: “1-14/d”, 4: “15+/d”,
sbp = systolic blood pressure (mmHg),

tchol = total cholesterol level (mmol/l).

> ocX <- read.table( paste(url, "occoh-Xdata.txt", sep = "/"), header=TRUE)
> str(ocX)

18. In the next step we collect the values of the risk factors for our cases and controls by
merging the case-control data frame and the storehouse file. In this operation we utilize
function merge() to select columns of two data frames: cactrl (all columns) and ocX

(four columns) and to merge these into a single file (see exercise 1.1, subsection 1.1.8,
where merge() was introduced). The id variable in both files is used as the key to link
each individual case or control with his own data on risk factors.

> oc.ncc <- merge(cactrl, ocX[, c("id", "smok", "tchol", "sbp")],
+ by = "id")
> str(oc.ncc)

19. We shall treat smoking as categorical and total cholesterol and systolic blood pressure as
quantitative risk factors, but the values of the latter will be divided by 10 to get more
interpretable effect estimates.

Convert the smoking variable into a factor.

> oc.ncc$smok <- factor(oc.ncc$smok,
+ labels = c("never", "ex", "1-14/d", ">14/d"))

20. It is useful to start the analysis of case-control data by simple tabulations by the
categorized risk factors. Crude estimates of the rate ratios associated with them, in
which matching is ignored, can be obtained as instructed in Janne’s lecture on Poisson
and logistic models on Saturday 23 May. We shall focus on smoking
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> stat.table( index = list( smok, Fail ),
+ contents = list( count(), percent(smok) ),
+ margins = T, data = oc.ncc )
> smok.crncc <- glm( Fail ~ smok, family=binomial, data = oc.ncc)
> round(ci.exp(smok.crncc), 3)

21. A proper analysis takes into account matching that was employed in the selection of
controls for each case from the pertinent risk set further restricted to subjects who were
about the same age at entry as the case was. Also, adjustment for the other risk factors
is desirable. In this analysis function clogit() in survival package is utilized. It is in
fact a wrapper of function coxph().

> m.clogit <- clogit( Fail ~ smok + I(sbp/10) + tchol +
+ strata(Set), data = oc.ncc )
> summary(m.clogit)
> round(ci.exp(m.clogit), 3)

Compare these with the crude estimates obtained above.

1.14.3 Case-cohort study

Now we start applying the second major outcome-selective sampling strategy for collecting
exposure data from a big study population

22. The subcohort is selected as a simple random sample (n = 260) from the whole cohort.
The id-numbers of the individuals that are selected will be stored in vector subcids,
and subcind is an indicator for inclusion to the subcohort.

> N <- 1501; n <- 260
> set.seed(1579863)
> subcids <- sample(N, n )
> oc.lex$subcind <- 1*(oc.lex$id %in% subcids)

23. We form the data frame oc.cc to be used in the subsequent analysis selecting the union
of the subcohort members and the case group from the data frame of the full cohort.
After that we collect the data of the risk factors from the data storehouse for the
subjects in the case-cohort data

> oc.cc <- subset( oc.lex, subcind==1 | chdeath ==1)
> oc.cc <- merge( oc.cc, ocX[, c("id", "smok", "tchol", "sbp")],
+ by ="id")
> str(oc.cc)

24. Function plot4() in the same source file creates a graphical illustration of the lifelines
contained in the case-cohort data. Lines for the subcohort non-cases are grey without
bullet at exit, those for subcohort cases are blue with blue bullet at exit, and for cases
outside the subcohort the lines are black and dotted with black bullets at exit.

> plot4
> plot4()
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25. Define the categorical smoking variable again.

> oc.cc$smok <- factor(oc.cc$smok,
+ labels = c("never", "ex", "1-14/d", ">14/d"))

A crude estimate of the hazard ratio for the various smoking categories k vs.
non-smokers (k = 1) can be obtained by tabulating cases (Dk) and person-years (yk) in
the subcohort by smoking and then computing the relevant exposure odds ratio for each
category:

HRcrude
k =

Dk/D1

yk/y1

> sm.cc <- stat.table( index = smok,
+ contents = list( Cases = sum(lex.Xst), Pyrs = sum(lex.dur) ),
+ margins = T, data = oc.cc)
> print(sm.cc, digits = c(sum=0, ratio=1))
> HRcc <- (sm.cc[ 1, -5]/sm.cc[ 1, 1])/(sm.cc[ 2, -5]/sm.cc[2, 1])
> round(HRcc, 3)

26. To estimate jointly the rate ratios associated with the categorized risk factors we now fit
the pertinent Cox model applying the method of weighted partial likelihood as presented
by Ling & Ying (1993) and Barlow (1994). The weights for all cases and non-cases in
the subcohort are first computed and added to the data frame.

> N.nonc <- N-sum(oc.lex$chdeath) # non-cases in whole cohort
> n.nonc <- sum(oc.cc$subcind * (1-oc.cc$chdeath)) # non-cases in subcohort
> wn <- N.nonc/n.nonc # weight for non-cases in subcohort
> c(N.nonc, n.nonc, wn)
> oc.cc$w <- ifelse(oc.cc$subcind==1 & oc.cc$chdeath==0, wn, 1)

Next, the Cox model is fitted by the method of weighted partial likelihood using
coxph(), such that the robust covariance matrix will be used as the source of standard
errors for the coefficients.

> oc.cc$surob <- with(oc.cc, Surv(agentry, agexit, chdeath) )
> cc.we <- coxph( surob ~ smok + I(sbp/10) + tchol, robust = T,
+ weight = w, data = oc.cc)
> summary(cc.we)
> round( ci.exp(cc.we), 3)

The covariance matrix for the coefficients may also be computed by the dfbeta-method.
After that a comparison is made between standard errors from the naive, robust and
dfbeta covariance matrix, respectively. You will see that the naive SEs are essentially
smaller than those obtained by the robust and the dfbeta method, respectively.

> dfbw <- resid(cc.we, type='dfbeta')
> covdfb.we <- cc.we$naive.var +
+ (n.nonc*(N.nonc-n.nonc)/N.nonc)*var(dfbw[ oc.cc$chdeath==0, ] )
> cbind( sqrt(diag(cc.we$naive.var)), sqrt(diag(cc.we$var)),
+ sqrt(diag(covdfb.we)) )
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27. The same analysis can also be done using function cch() in package survival with
method = "LinYing" as follows:

> cch.LY <- cch( surob ~ smok + I(sbp/10) + tchol, stratum=NULL,
+ subcoh = ~subcind, id = ~id, cohort.size = N, data = oc.cc,
+ method ="LinYing" )
> summary(cch.LY)

28. The summary() method for the cch() object does not print the standard errors for the
coefficients. The following comparison demonstrates numerically that the method of Lin
& Ying is the same as weighted partial likelihood coupled with dfbeta covariance
matrix.

> cbind( coef( cc.we), coef(cch.LY) )
> round( cbind( sqrt(diag(cc.we$naive.var)), sqrt(diag(cc.we$var)),
+ sqrt(diag(covdfb.we)), sqrt(diag(cch.LY$var)) ), 3)

1.14.4 Full cohort analysis and comparisons

Finally, suppose the investigators could afford to collect the data of risk factors from the
storehouse for the whole cohort.

29. Let us form the data frame corresponding to the full cohort design and convert again
smoking to be categorical.

> oc.full <- merge( oc.lex, ocX[, c("id", "smok", "tchol", "sbp")],
+ by.x = "id", by.y = "id")
> oc.full$smok <- factor(oc.full$smok,
+ labels = c("never", "ex", "1-14/d", ">14/d"))

Juts for comparison with the corresponding analysis in case-cohort data perform a
similar crude estimation of hazard ratios associated with smoking.

> sm.coh <- stat.table( index = smok,
+ contents = list( Cases = sum(lex.Xst), Pyrs = sum(lex.dur) ),
+ margins = T, data = oc.full)
> print(sm.coh, digits = c(sum=0, ratio=1))
> HRcoh <- (sm.coh[ 1, -5]/sm.coh[ 1, 1])/(sm.coh[ 2, -5]/sm.coh[2, 1])
> round(HRcoh, 3)

30. Fit now the Cox model to the full cohort, and there is no need to employ extra tricks
upon the ordinary coxph() fit.

> cox.coh <- coxph( Surv(agentry, agexit, chdeath) ~
+ smok + I(sbp/10) + tchol, data = oc.full)
> summary(cox.coh)

31. Lastly, a comparison of the point estimates and standard errors between the different
designs, including variants of analysis for the case-cohort design, can be performed.
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> betas <- round(cbind( coef(cox.coh),
+ coef(m.clogit),
+ coef(cc.we), coef(cch.LY) ), 3)
> colnames(betas) <- c("coh", "ncc", "cc.we", "cch.LY")
> betas
> SEs <- round(cbind( sqrt(diag(cox.coh$var)),
+ sqrt(diag(m.clogit$var)), sqrt(diag(cc.we$naive.var)),
+ sqrt(diag(cc.we$var)), sqrt(diag(covdfb.we)),
+ sqrt(diag(cch.LY$var)) ), 3)
> colnames(SEs) <- c("coh", "ncc", "ccwe-nai",
+ "ccwe-rob", "ccwe-dfb", "cch-LY")
> SEs

You will notice that the point estimates of the coefficients obtained from the full cohort,
nested case-control, and case-cohort analyses, respectively, are somewhat variable.

However, the standard errors across the NCC and different proper CC analyses are
relatively similar. Those from a naive covariance matrix of a CC analysis, though, are
practically equal to the SEs from the full cohort analysis, reflecting the fact that the
naive analysis implicitly assumes there being as much information available as there is
with full cohort data.

1.14.5 Further exercises and homework

32. If you have time, you could run both the NCC study and CC study again but now with
a larger control group or subcohort; for example 4 controls per case in NCC and n = 520
as the subcohort size in CC. Remember resetting the seed first. Pay attention in the
results to how much closer will be the point estimates and the proper SEs to those
obtained from the full cohort design.

33. Instead of simple linear terms for sbp and tchol you could try to fit spline models to
describe their effects.

34. A popular alternative to weighted partial likelihood in the analysis of case-cohort data is
the pseudo-likelihood method (Prentice 1986), which is based on “late entry” to follow-up
of the case subjects not belonging to the subcohort. A longer way of applying this
approach, which you could try at home after the course, would first require
manipulation of the oc.cc data frame, as outlined on slide 34. Then coxph() would be
called like in model object cc.we above but now with weights = 1. Similar corrections
on the covariance matrix are needed, too. However, a shorter way is provided by
function cch() which you can apply directly to the case-cohort data oc.cc as before
but now with method = "Prentice". – Try this and compare the results with those
obtained by weighted partial likelihood in models cc.we and cch.LY.

35. Yet another computational solution for maximizing weighted partial likelihood is
provided by a combination of functions twophase() and svycoxph() of the survey

package. The approach is illustrated with an example in a vignette “Two-phase designs
in epidemiology” by Thomas Lumley (see
http://cran.r-project.org/web/packages/survey/vignettes/epi.pdf, p. 4–7). –
You can try this at home and check that you would obtain similar results as with
models cc.we and cch.LY.
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1.15 Time-dependent variables and multiple states

The following practical exercise is based on the data from paper:

P Hovind, L Tarnow, P Rossing, B Carstensen, and HH Parving: Improved survival in
patients obtaining remission of nephrotic range albuminuria in diabetic nephropathy.
Kidney Int, 66(3):1180–1186, Sept 2004.

You can find a .pdf-version of the paper here:
http://BendixCarstensen.com/~bxc/AdvCoh/papers/Hovind.2004.pdf

1.15.1 The renal failure dataset

The dataset renal.dta contains data on follow up of 125 patients from Steno Diabetes
Center. They enter the study when they are diagnosed with nephrotic range albuminuria
(NRA). This is a condition where the levels of albumin in the urine is exceeds a certain level
as a sign of kidney disease. The levels may however drop as a consequence of treatment, this
is called remission. Patients exit the study at death or kidney failure (dialysis or transplant).

Table 1.2: Variables in renal.dta.

id Patient id
sex 1=male, 2=female
dob Date of birth
doe Date of entry into the study (2.5 years after NRA)
dor Date of remission. Missing if no remission has occurred
dox Date of exit from study

event Exit status: 1,2,3=event (death, ESRD), 0=censored

1. The dataset is in Stata-format, so you must read the dataset using read.dta from the
foreign package (which is part of the standard R-distribution). At the same time,
convert sex to a proper factor. Choose where to read the dataset.

library( Epi ) ; clear()
library( foreign )
# renal <- read.dta( "http://BendixCarstensen.com/SPE/data/renal.dta" )
# renal <- read.dta( "./data/renal.dta" )
renal$sex <- factor( renal$sex, labels=c("M","F") )
head( renal )

2. Use the Lexis function to declare the data as survival data with age, calendar time and
time since entry into the study as timescales. Label any event > 0 as “ESRD”, i.e. renal
death (death of kidney (transplant or dialysis), or person). Note that you must make
sure that the “alive” state (here NRA) is the first, as Lexis assumes that everyone starts
in this state (unless of course entry.status is specified):

http://BendixCarstensen.com/~bxc/AdvCoh/papers/Hovind.2004.pdf
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Lr <- Lexis( entry = list( per=doe,
age=doe-dob,
tfi=0 ),

exit = list( per=dox ),
exit.status = factor( event>0, labels=c("NRA","ESRD") ),

data = renal )
str( Lr )
summary( Lr )

Make sure you know what the variables in Lr stand for.

3. Visualize the follow-up in a Lexis-diagram, by using the plot method for Lexis objects.

plot( Lr, col="black", lwd=3 )
subset( Lr, age<0 )

What is wrong here? List the data for the person with negative entry age.

4. Correct the data and make a new plot, for example by:

Lr <- transform( Lr, dob = ifelse( dob>2000, dob-100, dob ),
age = ifelse( dob>2000, age+100, age ) )

subset( Lr, id==586 )
plot( Lr, col="black", lwd=3 )

5. (Optional, esoteric) We can produce a slightly more fancy Lexis diagram. Note that we
have a x-axis of 40 years, and a y-axis of 80 years, so when specifying the output file
adjust the total width of the plot so that the use of mai (look up the help page for par)
to specify the margins of the plot so that it leaves a plotting area twice as high as wide.
The mai argument to par gives the margins in inches, so the total size of the horizontal
and vertical margins is 1 inch each, to which we add 80/5 in the height, and 40/5 in the
horizontal direction, each giving exactly 5 years per inch in physical size.

6. Now make a Cox-regression analysis of the enpoint ESRD with the variables sex and age
at entry into the study, using time since entry to the study as time scale.

library( survival )
mc <- coxph( Surv( lex.dur, lex.Xst=="ESRD" ) ~

I(age/10) + sex, data=Lr )
summary( mc )

What is the The hazard ratio between males and females? Between two persons who
differ 10 years in age at entry?

7. The main focus of the paper was to assess whether the occurrence of remission (return
to a lower level of albumin excretion, an indication of kidney recovery) influences
mortality. “Remission” is a time-dependent variable which is initially 0, but takes the
value 1 when remission occurs. In order to handle this, each person who sees a remission
must have two records:

� One record for the time before remission, where entry is doe, exit is dor, remission
is 0, and event is 0.



IARC, 2018 1.15 Time-dependent variables and multiple states 89

� One record for the time after remission, where entry is dor, exit is dox, remission is
1, and event is 0 or 1 according to whether the person had an event at dox.

This is accomplished using the cutLexis function on the Lexis object, where we
introduce a remission state “Rem”. You must declare the “NRA” state as a precursor
state, i.e. a state that is less severe than “Rem” in the sense that a person who see a
remission will stay in the “Rem” state unless he goes to the “ESRD” state. Also use
split.state=TRUE to have different ESRD states according to whether a person had
had remission or not prioer to ESRD. The statement to do this is:

Lc <- cutLexis( Lr, cut = Lr$dor, # where to cut follow up
timescale = "per", # what timescale are we referring to
new.state = "Rem", # name of the new state

split.state = TRUE, # different states sepending on previous
precursor.states = "NRA" ) # which states are less severe

summary( Lc )

List the records from a few select persons (choose values for lex.id, using for example
subset( Lc, lex.id %in% c(5,7,9) ), or other numbers).

8. Now show how the states are connected and the number of transitions between them by
using boxes. This is an interactive command that requires you to click in the graph
window:

boxes( Lc )

It has a couple of fancy arguments, try:

boxes( Lc, boxpos=TRUE, scale.R=100, show.BE=TRUE, hm=1.5, wm=1.5 )

You may even be tempted to read the help page for boxes.Lexis . . .

9. Plot a Lexis diagram where different coloring is used for different segments of the
follow-up. The plot.Lexis function draws a line for each record in the dataset, so you
can index the coloring by lex.Cst and lex.Xst as appropriate — indexing by a factor
corresponds to indexing by the index number of the factor levels, so you must be know
which order the factor levels are in:

par( mai=c(3,3,1,1)/4, mgp=c(3,1,0)/1.6 )
plot( Lc, col=c("red","limegreen")[Lc$lex.Cst],

xlab="Calendar time", ylab="Age",
lwd=3, grid=0:20*5, xlim=c(1970,2010), ylim=c(0,80), xaxs="i", yaxs="i", las=1 )

points( Lc, pch=c(NA,NA,16)[Lc$lex.Xst],
col=c("red","limegreen","transparent")[Lc$lex.Cst])

points( Lc, pch=c(NA,NA,1)[Lc$lex.Xst],
col="black", lwd=2 )

10. Make Cox-regression of mortality (i.e. endpoint “ESRD” or “ESRD(Rem)”) with sex, age
at entry and remission as explanatory variables, using time since entry as timescale, and
include lex.Cst as time-dependent variable, and indicate that each record represents
follow-up from tfi to tfi+lex.dur. Make sure that you know why what goes where
here in the call to coxph.
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( EP <- levels(Lc)[3:4] )
m1 <- coxph( Surv( tfi, # from

tfi+lex.dur, # to
lex.Xst %in% EP ) ~ # event

sex + I((doe-dob-50)/10) + # fixed covariates
(lex.Cst=="Rem"), # time-dependent variable
data = Lc )

summary( m1 )

What is the effect of of remission on the rate of ESRD?

11. The assumption in this model about the two rates of remission is that they are
proportional as functions of time since remission. This can tested with the cox.zph

function:

cox.zph( m1 )

Is there indication of non-proportionality between the rates of ESRD?

1.15.2 Splitting the follow-up time

In order to explore the effect of remission on the rate of ESRD, we shall split the data further
into small pieces of follow-up. To this end we use the function splitLexis. The rates can
then be modeled using a Poisson-model, and the shape of the underlying rates be explored.
Furthermore, we can allow effects of both time since NRA and current age. To this end we
will use splines, so we need the splines and also the mgcv packages.

12. Now split the follow-up time every month after entry, and verify that the number of
events and risk time is the same as before and after the split:

sLc <- splitLexis( Lc, "tfi", breaks=seq(0,30,1/12) )
summary( Lc, scale=100 )
summary(sLc, scale=100 )

13. Try to fit the Poisson-model corresponding to the Cox-model we fitted previously. The
function ns() produces a model matrix corresponding to a piece-wise cubic function,
modeling the baseline hazard explicitly (think of the ns terms as the baseline hazard
that is not visible in the Cox-model)

library( splines )
mp <- glm( lex.Xst %in% EP ~ ns( tfi, df=4 ) +

sex + I((doe-dob-40)/10) + I(lex.Cst=="Rem"),
offset = log(lex.dur),
family = poisson,
data = sLc )

ci.exp( mp )

How does the effects of sex change from the Cox-model?

14. Try instead using the gam function from the mgcv package — a function that allows s,
that optimizes the number as well as the location of the knots:
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library( mgcv )
mx <- gam( (lex.Xst %in% EP) ~ s( tfi, k=10 ) +

sex + I((doe-dob-40)/10) + I(lex.Cst=="Rem"),
offset = log(lex.dur),
family = poisson,
data = sLc )

ci.exp( mp, subset=c("Cst","doe","sex") )
ci.exp( mx, subset=c("Cst","doe","sex") )

15. Extract the regression parameters from the models using ci.exp and compare with the
estimates from the Cox-model:

ci.exp( mx, subset=c("sex","dob","Cst"), pval=TRUE )
ci.exp( m1 )
round( ci.exp( mp, subset=c("sex","dob","Cst") ) / ci.exp( m1 ), 2 )

How lare is the difference in estimated regression parameters?

16. The model has the same assumptions as the Cox-model about proportionality of rates,
but there is an additional assumption that the hazard is a smooth function of time since
entry. It seems to be a sensible assumption (well, restriction) to put on the rates that
they vary smoothly by time. No such restriction is made in the Cox model. The gam

model optimizes the shape of the smoother by general cross-validation. Try to look at
the shape of the estimated effect of tfi:

plot( mx )

Is this a useful plot?

17. However, plot does not give you the absolute level of the underlying rates because it
bypasses the intercept. So try to predict the rates as a function of tfi and the
covariates, by setting up a prediction data frame. Note that age in the model
specification is entered as doe-dob, hence the prediction data frame must have these two
variables and not the age, but it is onlythe difference that matters for the prediction:

nd <- data.frame( tfi = seq(0,20,0.1),
sex = "M",
doe = 1990,
dob = 1940,

lex.Cst = "NRA",
lex.dur = 1 )

str( nd )
matplot( nd$tfi, ci.pred( mx, newdata=nd )*100,

type="l", lty=1, lwd=c(3,1,1), col="black",
log="y", xlab="Time since entry (years)",

ylab="ESRD rate (per 100 PY) for 50 year man" )

Try to overlay with the corresponding prediction from the glm model using ns.

18. Apart from the baseline timescale, time since NRA, the time since remission might be of
interest in describing the mortality rate. However this is only relevant for persons who
actually have a remission, but there is only 28 persons in this group and 8 events — this
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can be read of the plot with the little boxes, figure 2.11. With this rather limited
number of events we can certainly not expect to be able to model anything more
complicated than a linear trend with time since remission. The variable we want to have
in the model is current date (per) minus date of remission (dor): per-dor), but only
positive values of it. This can be fixed by using pmax(), but we must also deal with all
those who have missing values, so construct a variable which is 0 for persons in “NRA”
and time since remission for persons in “Rem”:

sLc <- transform( sLc, tfr = pmax( (per-dor)/10, 0, na.rm=TRUE ) )

19. Expand the model with this variable:

mPx <- gam( lex.Xst %in% EP ~ s( tfi, k=10 ) +
factor(sex) + I((doe-dob-40)/10) +
I(lex.Cst=="Rem") + tfr,

offset = log(lex.dur/100),
family = poisson,
data = sLc )

round( ci.exp( mPx ), 3 )

What can you say about the effect of tinesince remisssion on the rate of ESRD?

1.15.3 Prediction in a multistate model

If we want to make proper statements about the survival and disease probabilities we must
know not only how the occurrence of remission influences the rate of death/ESRD, but we
must also model the occurrence rate of remission itself.

20. The rates of ESRD were modelled by a Poisson model with effects of age and time since
NRA — in the models mp and mx. But if we want to model whole process we must also
model the remission rates transition from “NRA” to “Rem”, but the number of events is
rather small so we restrict covariates in this model to only time since NRA and sex.
Note that only the records that relate to the “NRA” state can be used:

mr <- gam( lex.Xst=="Rem" ~ s( tfi, k=10 ) + sex,
offset = log(lex.dur),
family = poisson,
data = subset( sLc, lex.Cst=="NRA" ) )

ci.exp( mr, pval=TRUE )

What is the remission rate-ration between men and women?

21. If we want to predict the probability of being in each of the three states using these
estimated rates, we may resort to analytical calculations of the probabilities from the
estimated rates, which is doable in this case, but which will be largely intractable for
more complicated models. Alternatively we can simulate the life course for a large group
of (identical) individuals through a model using the estimated rates. That will give a
simulated cohort (in the form of a Lexis object), and we can then just count the
number of persons in each state at each of a set of time points. This is accomplished
using the function simLexis. The input to this is the initial status of the persons whose
life-course we shall simulate, and the transition rates in suitable form:
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� Suppose we want predictions for men aged 50 at NRA. The input is in the form of
a Lexis object (where lex.dur and lex.Xst will be ignored). Note that in order
to carry over the time.scales and the time.since attributes, we construct the
input object using subset to select columns, and NULL to select rows (see the
example in the help file for simLexis):

inL <- subset( sLc, select=1:11 )[NULL,]
str( inL )
timeScales(inL)
inL[1,"lex.id"] <- 1
inL[1,"per"] <- 2000
inL[1,"age"] <- 50
inL[1,"tfi"] <- 0
inL[1,"lex.Cst"] <- "NRA"
inL[1,"lex.Xst"] <- NA
inL[1,"lex.dur"] <- NA
inL[1,"sex"] <- "M"
inL[1,"doe"] <- 2000
inL[1,"dob"] <- 1950
inL <- rbind( inL, inL )
inL[2,"sex"] <- "F"
inL
str( inL )

� The other input for the simulation is the transitions, which is a list with an
element for each transient state (that is “NRA” and “Rem”), each of which is again
a list with names equal to the states that can be reached from the transient state.
The content of the list will be glm objects, in this case the models we just fitted,
describing the transition rates:

Tr <- list( "NRA" = list( "Rem" = mr,
"ESRD" = mx ),

"Rem" = list( "ESRD(Rem)" = mx ) )

With this as input we can now generate a cohort, using N=10 to simulate life course of
10 persons (for each set of starting values in inL):

( iL <- simLexis( Tr, inL, N=10 ) )
summary( iL, by="sex" )

What type of object have you got as iL. Simulate a couple of thousand persons.

22. Now generate the life course of 5,000 persons, and look at the summary. The
system.time command is just to tell you how long it took, you may want to start with
1000 just to see how long that takes.

system.time(
sM <- simLexis( Tr, inL, N=5000 ) )
summary( sM, by="sex" )

Why are there so many ESRD-events in the resulting data set?

23. Now count how many persons are present in each state at each time for the first 10
years after entry (which is at age 50). This can be done by using nState. Try:
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nStm <- nState( subset(sM,sex=="M"), at=seq(0,10,0.1), from=50, time.scale="age" )
nStf <- nState( subset(sM,sex=="F"), at=seq(0,10,0.1), from=50, time.scale="age" )
head( nStf )

What is tn the object nStf?

24. With the counts of persons in each state at the designated time points (in nStm),
compute the cumulative fraction over the states, arranged in order given by perm:

ppm <- pState( nStm, perm=c(2,1,3,4) )
ppf <- pState( nStf, perm=c(2,1,3,4) )
head( ppf )
tail( ppf )

What do the entries in ppf represent?

25. Try to plot the cumulative probabilities using the plot method for pState objects:

plot( ppf )

Is this useful?

26. Now try to improve the plot so that it is easier to read, and easier to comapre men and
women:

par( mfrow=c(1,2) )
plot( ppm, col=c("limegreen","red","#991111","forestgreen") )
lines( as.numeric(rownames(ppm)), ppm[,"Rem"], lwd=4 )
text( 59.5, 0.95, "Men", adj=1, col="white", font=2, cex=1.2 )
axis( side=4, at=0:10/10 )
axis( side=4, at=1:99/100, labels=NA, tck=-0.01 )
plot( ppf, col=c("limegreen","red","#991111","forestgreen"), xlim=c(60,50) )
lines( as.numeric(rownames(ppf)), ppf[,"Rem"], lwd=4 )
text( 59.5, 0.95, "Women", adj=0, col="white", font=2, cex=1.2 )
axis( side=2, at=0:10/10 )
axis( side=2, at=1:99/100, labels=NA, tck=-0.01 )

What is the 10-year risk of remission for men and women respectively?



Chapter 2

Solutions

There is a chapter for each of the exercises used at the course. This is either a printout of the
R-program that performs the analyses, as well as the graphs produced by the programs, or
output from an R-weave solution file with a bit more elaborate text.

The code and the output from these programs are also available from the course homepage
in http://BendixCarstensen/SPE/R; they are called xxx-s.R; just before each chapter you
will find a line with the text xxx-s, indicating that the name of the script will be xxx-s.R.

95

http://BendixCarstensen/SPE/R
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2.3 Tabulation

2.3.1 Introduction

R and its add-on packages provide several different tabulation functions with different
capabilities. The appropriate function to use depends on your goal. There are at least three
different uses for tables.

The first use is to create simple summary statistics that will be used for further calculations
in R. For example, a two-by-two table created by the table function can be passed to
fisher.test, which will calculate odds ratios and confidence intervals. The appearance of
these tables may, however, be quite basic, as their principal goal is to create new objects for
future calculations.

A quite different use of tabulation is to make “production quality” tables for publication.
You may want to generate reports from for publication in paper form, or on the World Wide
Web. The package xtable provides this capability, but it is not covered by this course.

An intermediate use of tabulation functions is to create human-readable tables for
discussion within your work-group, but not for publication. The Epi package provides a
function stat.table for this purpose, and this practical is designed to introduce this function.

2.3.2 The births data

We shall use the births data which concern 500 mothers who had singleton births in a large
London hospital. The outcome of interest is the birth weight of the baby, also dichotomised as
normal or low birth weight. These data are available in the Epi package:

> library(Epi)
> data(births)
> names(births)

[1] "id" "bweight" "lowbw" "gestwks" "preterm" "matage" "hyp"
[8] "sex"

> head(births)

id bweight lowbw gestwks preterm matage hyp sex
1 1 2974 0 38.52 0 34 0 2
2 2 3270 0 NA NA 30 0 1
3 3 2620 0 38.15 0 35 0 2
4 4 3751 0 39.80 0 31 0 1
5 5 3200 0 38.89 0 33 1 1
6 6 3673 0 40.97 0 33 0 2

The housekeeping file for these data is births-house.r, which you can download from a
location to be specified in the practical. Assuming that you have copied the housekeeping file
into the subdirectory /data of your working directory, you should now start the session by
running this file with the command:

> source("data/births-house.r")

Make sure you know what the script file has done using str(births).

2.3.3 One-way tables

The simplest table one-way table is created by
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> stat.table(index = sex, data = births)
--------------
sex count()
--------------
M 264
F 236
--------------

This creates a count of individuals, classified by levels of the factor sex. Compare this table
with the equivalent one produced by the table function. Note that stat.table has a data

argument that allows you to use variables in a data frame without specifying the frame.
You can display several summary statistics in the same table by giving a list of expressions

to the contents argument:

> stat.table(index = sex, contents = list(count(), percent(sex)), data=births)
---------------------------
sex count() percent(sex)
---------------------------
M 264 52.8
F 236 47.2
---------------------------

Only a limited set of expressions are allowed: see the help page for stat.table for details.
You can also calculate marginal tables by specifying margin=TRUE in your call to

stat.table. Do this for the above table. Check that the percentages add up to 100 and the
total for count() is the same as the number of rows of the data frame births.

> stat.table(index = sex, contents = list(count(), percent(sex)),
+ margin=TRUE, data=births)
-----------------------------
sex count() percent(sex)
-----------------------------
M 264 52.8
F 236 47.2

Total 500 100.0
-----------------------------

To see how the mean birth weight changes with sex, try

> stat.table(index = sex, contents = mean(bweight), data=births)
--------------------
sex mean(bweight)
--------------------
M 3229.90
F 3032.83
--------------------

Add the count to this table. Add the margin with margin=TRUE.

> stat.table(index = sex, contents = list(count(), mean(bweight)),
+ margin=T, data=births)
------------------------------
sex count() mean(bweight)
------------------------------
M 264 3229.90
F 236 3032.83

Total 500 3136.88
------------------------------
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As an alternative to bweight we can look at lowbw with

> stat.table(index = sex, contents = percent(lowbw), data=births)
---------------------
sex percent(lowbw)
---------------------
M 100.0
F 100.0
---------------------

All the percentages are 100! To use the percent function the variable lowbw must also be in
the index, as in

> stat.table(index = list(sex,lowbw), contents = percent(lowbw), data=births)
----------------------

------lowbw------
sex 0 1
----------------------
M 89.8 10.2
F 86.0 14.0
----------------------

The final column is the percentage of babies with low birth weight by different categories of
gestation.

1. Obtain a table showing the frequency distribution of gest4.

2. Show how the mean birth weight changes with gest4.

3. Show how the percentage of low birth weight babies changes with gest4.

> stat.table(index = gest4, contents = count(), data=births)

------------------
gest4 count()
------------------
[20,35) 31
[35,37) 32
[37,39) 167
[39,45) 260
------------------

> stat.table(index = gest4, contents = mean(bweight), data=births)

------------------------
gest4 mean(bweight)
------------------------
[20,35) 1733.74
[35,37) 2590.31
[37,39) 3093.77
[39,45) 3401.26
------------------------

> stat.table(index = list(lowbw,gest4), contents = percent(lowbw), data=births)

----------------------------------------
--------------gest4--------------

lowbw [20,35) [35,37) [37,39) [39,45)
----------------------------------------
0 19.4 59.4 89.2 98.8
1 80.6 40.6 10.8 1.2
----------------------------------------
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Another way of obtaining the percentage of low birth weight babies by gestation is to use
the ratio function:

> stat.table(gest4,ratio(lowbw,1,100),data=births)

-----------------------
gest4 ratio(lowbw,

1, 100)
-----------------------
[20,35) 80.65
[35,37) 40.62
[37,39) 10.78
[39,45) 1.15
-----------------------

This only works because lowbw is coded 0/1, with 1 for low birth weight.
Tables of odds can be produced in the same way by using ratio(lowbw, 1-lowbw). The

ratio function is also very useful for making tables of rates with (say) ratio(D,Y,1000)
where D is the number of failures, and Y is the follow-up time. We shall return to rates in a
later practical.

2.3.4 Improving the Presentation of Tables

The stat.table function provides default column headings based on the contents argument,
but these are not always very informative. Supply your own column headings using tagged
lists as the value of the contents argument, within a stat.table call:

> stat.table(gest4,contents = list( N=count(),
+ "(%)" = percent(gest4)),data=births)

--------------------------
gest4 N (%)
--------------------------
[20,35) 31 6.3
[35,37) 32 6.5
[37,39) 167 34.1
[39,45) 260 53.1
--------------------------

This improves the readability of the table. It remains to give an informative title to the index
variable. You can do this in the same way: instead of giving gest4 as the index argument to
stat.table, use a named list:

> stat.table(index = list("Gestation time" = gest4),data=births)

--------------------
Gestation count()
time
--------------------
[20,35) 31
[35,37) 32
[37,39) 167
[39,45) 260
--------------------
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2.3.5 Two-way Tables

The following call gives a 2× 2 table showing the mean birth weight cross-classified by sex

and hyp.

> stat.table(list(sex,hyp), contents=mean(bweight), data=births)

----------------------
-------hyp-------

sex normal hyper
----------------------
M 3310.75 2814.40
F 3079.50 2699.72
----------------------

Add the count to this table and repeat the function call using margin = TRUE to calculate the
marginal tables.

> stat.table(list(sex,hyp), contents=list(count(), mean(bweight)),
+ margin=T, data=births)

--------------------------------
-----------hyp-----------

sex normal hyper Total
--------------------------------
M 221 43 264

3310.75 2814.40 3229.90

F 207 29 236
3079.50 2699.72 3032.83

Total 428 72 500
3198.90 2768.21 3136.88

--------------------------------

Use stat.table with the ratio function to obtain a 2× 2 table of percent low birth weight by
sex and hyp.

> stat.table(list(sex,hyp), contents=list(count(),mean(bweight)),margin=T, data=births)

--------------------------------
-----------hyp-----------

sex normal hyper Total
--------------------------------
M 221 43 264

3310.75 2814.40 3229.90

F 207 29 236
3079.50 2699.72 3032.83

Total 428 72 500
3198.90 2768.21 3136.88

--------------------------------

> stat.table(list(sex,hyp), contents=list(count(),ratio(lowbw,1,100)),margin=T, data=births)

--------------------------------
-----------hyp-----------

sex normal hyper Total
--------------------------------
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M 221 43 264
6.79 27.91 10.23

F 207 29 236
12.08 27.59 13.98

Total 428 72 500
9.35 27.78 12.00

--------------------------------

You can have fine-grained control over which margins to calculate by giving a logical vector
to the margin argument. Use margin=c(FALSE, TRUE) to calculate margins over sex but not
hyp. This might not be what you expect, but the margin argument indicates which of the
index variables are to be marginalized out, not which index variables are to remain.

2.3.6 Printing

Just like every other R function, stat.table produces an object that can be saved and
printed later, or used for further calculation. You can control the appearance of a table with
an explicit call to print()

There are two arguments to the print method for stat.table. The width argument which
specifies the minimum column width, and the digits argument which controls the number of
digits printed after the decimal point. This table

> odds.tab <- stat.table(gest4, list("odds of low bw" = ratio(lowbw,1-lowbw)),
+ data=births)
> print(odds.tab)

------------------
gest4 odds of

low bw
------------------
[20,35) 4.17
[35,37) 0.68
[37,39) 0.12
[39,45) 0.01
------------------

shows a table of odds that the baby has low birth weight. Use width=15 and digits=3 and
see the difference.

> print(odds.tab, width=15, digits=3)

--------------------------
gest4 odds of low bw
--------------------------
[20,35) 4.167
[35,37) 0.684
[37,39) 0.121
[39,45) 0.012
--------------------------
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2.4 Graphics in R

There are three kinds of plotting functions in R:

1. Functions that generate a new plot, e.g. hist() and plot().

2. Functions that add extra things to an existing plot, e.g. lines() and text().

3. Functions that allow you to interact with the plot, e.g. locator() and identify().

The normal procedure for making a graph in R is to make a fairly simple initial plot and then
add on points, lines, text etc., preferably in a script.

2.4.1 Simple plot on the screen

Load the births data and get an overview of the variables:

> library( Epi )
> data( births )
> str( births )

Now look at the birthweight distribution with

> hist(births$bweight)

The histogram can be refined – take a look at the possible options with

> help(hist)

and try some of the options, for example:

> hist(births$bweight, col="gray", border="white")

To look at the relationship between birthweight and gestational weeks, try

> with(births, plot(gestwks, bweight))

You can change the plot-symbol by the option pch=. If you want to see all the plot symbols
try:

> plot(1:25, pch=1:25)

4. Make a plot of the birth weight versus maternal age with

> with(births, plot(matage, bweight) )

5. Label the axes with

> with(births, plot(matage, bweight, xlab="Maternal age", ylab="Birth weight (g)") )
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2.4.2 Colours

There are many colours recognized by R. You can list them all by colours() or, equivalently,
colors() (R allows you to use British or American spelling). To colour the points of
birthweight versus gestational weeks, try

> with(births, plot(gestwks, bweight, pch=16, col="green") )

This creates a solid mass of colour in the centre of the cluster of points and it is no longer
possible to see individual points. You can recover this information by overwriting the points
with black circles using the points() function.

> with(births, points(gestwks, bweight, pch=1) )

Note: when the number of data points on a scatter plot is large, you may also want to
decrease the point size: to get points that are 50% of the original size, add the parameter
cex=0.5 (or another number <1 for different sizes).

2.4.3 Adding to a plot

The points() function just used is one of several functions that add elements to an existing
plot. By using these functions, you can create quite complex graphs in small steps.

Suppose we wish to recreate the plot of birthweight vs gestational weeks using different
colours for male and female babies. To start with an empty plot, try

> with(births, plot(gestwks, bweight, type="n"))

Then add the points with the points function.

> with(births, points(gestwks[sex==1], bweight[sex==1], col="blue"))
> with(births, points(gestwks[sex==2], bweight[sex==2], col="red"))

To add a legend explaining the colours, try

> legend("topleft", pch=1, legend=c("Boys","Girls"), col=c("blue","red"))

which puts the legend in the top left hand corner.
Finally we can add a title to the plot with

> title("Birth weight vs gestational weeks in 500 singleton births")

2.4.3.1 Using indexing for plot elements

One of the most powerful features of R is the possibility to index vectors, not only to get
subsets of them, but also for repeating their elements in complex sequences.

Putting separate colours on males and female as above would become very clumsy if we had
a 5 level factor instead of sex.

Instead of specifying one color for all points, we may specify a vector of colours of the same
length as the gestwks and bweight vectors. This is rather tedious to do directly, but R allows
you to specify an expression anywhere, so we can use the fact that sex takes the values 1 and
2, as follows:

First create a colour vector with two colours, and take look at sex:
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> c("blue","red")
> births$sex

Now see what happens if you index the colour vector by sex:

> c("blue","red")[births$sex]

For every occurrence of a 1 in sex you get "blue", and for every occurrence of 2 you get
"red", so the result is a long vector of "blue"s and "red"s corresponding to the males and
females. This can now be used in the plot:

> with(births, plot( gestwks, bweight, pch=16, col=c("blue","red")[sex]) )

The same trick can be used if we want to have a separate symbol for mothers over 40 say. We
first generate the indexing variable:

> births$oldmum <- ( births$matage >= 40 ) + 1

Note we add 1 because ( matage >= 40 ) generates a logic variable, so by adding 1 we get a
numeric variable with values 1 and 2, suitable for indexing:

> with(births, plot( gestwks, bweight, pch=c(16,3)[oldmum], col=c("blue","red")[sex] ))

so where oldmum is 1 we get pch=16 (a dot) and where oldmum is 2 we get pch=3 (a cross).
R will accept any kind of complexity in the indexing as long as the result is a valid index,

so you don’t need to create the variable oldmum, you can create it on the fly:

> with(births, plot( gestwks, bweight, pch=c(16,3)[(matage>=40 )+1], col=c("blue","red")[sex] ))

2.4.3.2 Generating colours

R has functions that generate a vector of colours for you. For example,

> rainbow(4)

produces a vector with 4 colours (not immediately human readable, though). There are a few
other functions that generates other sequences of colours, type ?rainbow to see them. The
color function (or colour function if you prefer) returns a vector of the colour names that R
knows about. These names can also be used to specify colours.

Gray-tones are produced by the function gray (or grey), which takes a numerical argument
between 0 and 1; gray(0) is black and gray(1) is white. Try:

> plot( 0:10, pch=16, cex=3, col=gray(0:10/10) )
> points( 0:10, pch=1, cex=3 )

2.4.4 Saving your graphs for use in other documents

If you need to use the plot in a report or presentation, you can save it in a graphics file. Once
you have generated the script (sequence of R commands) that produce the graph (and it looks
ok on screen), you can start a non-interactive graphics device and then re-run the script.
Instead of appearing on the screen, the plot will now be written directly to a file. After the
plot has been completed you will need to close the device again in order to be able to access
the file. Try:
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> pdf(file="bweight_gwks.pdf", height=4, width=4)
> with(births, plot( gestwks, bweight, col=c("blue","red")[sex]) )
> legend("topleft", pch=1, legend=c("Boys","Girls"), col=c("blue","red"))
> dev.off()

This will give you a portable document file bweight_gwks.pdf with a graph which is 4 inches
tall and 4 inches wide.

Instead of pdf, other formats can be used (jpg, png, tiff, . . . ). See help(Devices) for the
available options.

In window-based environments (R GUI for Windows, R-Studio) you may also use the menu

( File→ Save as . . . or Export ) to save the active graph as a file and even copy-paste may

work (from R graphics window to Word, for instance) – however, writing it manually into the
file is recommended for reproducibility purposes (in case you need to redraw your graph with
some modifications).

2.4.5 The par() command

It is possible to manipulate any element in a graph, by using the graphics options. These are
collected on the help page of par(). For example, if you want axis labels always to be
horizontal, use the command par(las=1). This will be in effect until a new graphics device is
opened.

Look at the typewriter-version of the help-page with

> help(par)

or better, use the the html-version through Help→ Html help→ Packages→ graphics→
P→ par .

It is a good idea to take a print of this (having set the text size to “smallest” because it is
long) and carry it with you at any time to read in buses, cinema queues, during boring
lectures etc. Don’t despair, few R-users can understand what all the options are for.
par() can also be used to ask about the current plot, for example par("usr") will give you

the exact extent of the axes in the current plot.
If you want more plots on a single page you can use the command

> par( mfrow=c(2,3) )

This will give you a layout of 2 rows by 3 columns for the next 6 graphs you produce. The
plots will appear by row, i.e. in the top row first. If you want the plots to appear columnwise,
use par( mfcol=c(2,3) ) (you still get 2 rows by 3 columns).

To restore the layout to a single plot per page use

> par(mfrow=c(1,1))

If you want a more detailed control over the layout of multiple graphs on a single page look at
?layout.

2.4.6 Interacting with a plot

The locator() function allows you to interact with the plot using the mouse. Typing
locator(1) shifts you to the graphics window and waits for one click of the left mouse
button. When you click, it will return the corresponding coordinates.
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You can use locator() inside other graphics functions to position graphical elements
exactly where you want them. Recreate the birth-weight plot,

> with(births, plot(gestwks, bweight, col = c("blue", "red")[sex]) )

and then add the legend where you wish it to appear by typing

> legend(locator(1), pch=1, legend=c("Boys","Girls"), col=c("blue","red") )

The identify() function allows you to find out which records in the data correspond to
points on the graph. Try

> with(births, identify(gestwks, bweight))

When you click the left mouse button, a label will appear on the graph identifying the row
number of the nearest point in the data frame births. If there is no point nearby, R will print
a warning message on the console instead. To end the interaction with the graphics window,
right click the mouse: the identify function returns a vector of identified points.

1. Use identify() to find which records correspond to the smallest and largest number of
gestational weeks and view the corresponding records:

> with(births, births[identify(gestwks, bweight), ])
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2.5 Simple simulation

Monte Carlo methods are computational procedures dealing with simulation of artificial data
from given probability distributions with the purpose of learning about the behaviour of
phenomena involving random variability. These methods have a wide range of applications in
statistics as well as in several branches of science and technology. By solving the following
exercises you will learn to use some basic tools of statistical simulation.

1. Whenever using a random number generator (RNG) for a simulation study (or for
another purpose, such as for producing a randomization list to be used in a clinical trial
or for selecting a random sample from a large cohort), it is a good practice to set first
the seed. It is a number that determines the initial state of the RNG, from which it
starts creating the desired sequence of pseudo-random numbers. Explicit specification of
the seed enables the reproducibility of the sequence. – Instead of the number 5462319
below you may use your own seed of choice.

> set.seed(5462319)

2. Generate a random sample of size 20 from a normal distribution with mean 100 and
standard deviation 10. Draw a histogram of the sampled values and compute the
conventional summary statistics

> x <- rnorm(20, 100, 10)
> hist(x)
> c(mean(x), sd(x))

Repeat the above lines and compare the results.

> x <- rnorm(20, 100, 10)
> hist(x)
> c(mean(x), sd(x))

3. Now replace the sample size 20 by 1000 and run again twice the previous command lines
with this size but keeping the parameter values as before. Compare the results between
the two samples here as well as with those in the previous item.

> x <- rnorm(1000, 100, 10)
> hist(x)
> c(mean(x), sd(x))

> x <- rnorm(1000, 100, 10)
> hist(x)
> c(mean(x), sd(x))

4. Generate 500 observations from a Bernoulli(p) distribution, or Bin(1, p) distribution,
taking values 1 and 0 with probabilities p and 1− p, respectively, when p = 0.4:

> X <- rbinom(500, 1, 0.4)
> table(X)
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5. Now generate another 0/1 variable Y , being dependent on previously generated X, so
that P (Y = 1|X = 1) = 0.2 and P (Y = 1|X = 0) = 0.1.

> Y <- rbinom(500,1,0.1*X+0.1)
> table(X,Y)
> prop.table(table(X,Y),1)

6. Generate data obeying a simple linear regression model yi = 5 + 0.1xi + εi, i = 1, . . . 100,
in which εi ∼ N(0, 102), and xi values are integers from 1 to 100. Plot the (xi, yi)-values,
and estimate the parameters of that model.

> x <- 1:100
> y <- 5 + 0.1*x + rnorm(100,0,10)
> plot(x,y)
> abline(lm(y~x))
> summary(lm(y~x))$coef

Are your estimates consistent with the data-generating model? Run the code a couple of
times to see the variability in the parameter estimates.
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2.6 Calculation of rates, RR and RD

This exercise is very prescriptive, so you should make an effort to really understand everything
you type into R. Consult the relevant slides of the lecture on “Poisson regression for rates . . . ”

2.6.1 Hand calculations for a single rate

Let λ be the true hazard rate or theoretical incidence rate, its estimator being the empirical
incidence rate λ̂ = D/Y = ’no. cases/person-years’. Recall that the standard error of the

empirical rate is SE(λ̂) = λ̂/
√
D.

The simplest approximate 95% confidence interval (CI) for λ is given by

λ̂± 1.96× SE(λ̂)

An alternative approach is based on logarithmic transformation of the empirical rate. The
standard error of the log-rate θ̂ = log(λ̂) is SE(θ̂) = 1/

√
D. Thus, a simple approximate 95%

confidence interval for the log-hazard θ = log(λ) is obtained from

θ̂ ± 1.96/
√
D = log(λ̂)± 1.96/

√
D

When taking the exponential from the above limits, we get another approximate confidence
interval for the hazard λ itself:

exp{log(λ̂)± 1.96/
√
D} = λ̂

×
÷ EF,

where EF = exp{1.96× SE[log(λ̂)]} is the error factor associated with the 95% interval. This
approach provides a more accurate approximation with very small numbers of cases.
(However, both these methods fail when D = 0, in which case an exact method or one based
on profile-likelihood is needed.)

1. Suppose you have 15 events during 5532 person-years. Let’s use R as a simple desk
calculator to derive the rate (in 1000 person-years) and the first version of an
approximate confidence interval:

> library( Epi )
> options(digits=4) # cut the number of decimals in the output

> D <- 15
> Y <- 5.532 # thousands of years
> rate <- D / Y
> SE.rate <- rate/sqrt(D)
> c(rate, SE.rate, rate + c(-1.96, 1.96)*SE.rate )

[1] 2.7115 0.7001 1.3393 4.0837

2. We then compute the approximate confidence interval using the method based on
log-transformation and compare the result with that in item (a)

> SE.logr <- 1/sqrt(D)
> EF <- exp( 1.96 * SE.logr )
> c(log(rate), SE.logr)

[1] 0.9975 0.2582

> c( rate, EF, rate/EF, rate*EF )

[1] 2.711 1.659 1.635 4.498
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2.6.2 Poisson model for a single rate with logarithmic link

We can estimate the rate λ and compute its CI with a Poisson model, as described in the
lecture.

3. Use the number of events as the response and the log-person-years as an offset term,
and fit the Poisson model with log-link

> m <- glm( D ~ 1, family=poisson(link=log), offset=log(Y) )
> summary( m )

Call:
glm(formula = D ~ 1, family = poisson(link = log), offset = log(Y))

Deviance Residuals:
[1] 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.998 0.258 3.86 0.00011 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 0 on 0 degrees of freedom
Residual deviance: 0 on 0 degrees of freedom
AIC: 6.557

Number of Fisher Scoring iterations: 3

What is the interpretation of the parameter in this model?

4. The summary method produces a lot of output, so we extract CIs for the model
parameters directly from the fitted model on the scale determined by the link function
with the ci.lin()-function. Thus, the estimate, SE, and confidence limits for the
log-rate θ = log(λ) are obtained by:

> ci.lin( m )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 0.9975 0.2582 3.863 0.0001119 0.4914 1.504

However, to get the confidence limits for the rate λ = exp(θ) on the original scale, the
results must be exp-transformed, we can either do:

> ci.lin( m, Exp=TRUE )

Estimate StdErr z P exp(Est.) 2.5% 97.5%
(Intercept) 0.9975 0.2582 3.863 0.0001119 2.711 1.635 4.498

or if we just want the point estimate and CI for λ from log-transformed quantities we
can use ci.exp(), which is actually a wrapper of ci.lin(); optionally with p-values:

> ci.exp( m )
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exp(Est.) 2.5% 97.5%
(Intercept) 2.711 1.635 4.498

> ci.exp( m, pval=TRUE )

exp(Est.) 2.5% 97.5% P
(Intercept) 2.711 1.635 4.498 0.0001119

Both functions are found from Epi package. Note that the test statistic and P -value are
rarely interesting quantities for a single rate.

5. There is an alternative way of fitting a Poisson model: Use the empirical rate λ̂ = D/Y
as a scaled Poisson response, and the person-years as weight instead of offset (albeit it
will give you a warning about non-integer response in a Poisson model, but you can
ignore this warning):

> mw <- glm( D/Y ~ 1, family=poisson, weight=Y )
> ci.exp( mw, pval=T )

exp(Est.) 2.5% 97.5% P
(Intercept) 2.711 1.635 4.498 0.0001119

We see that this gives exactly the same results as above.

2.6.3 Poisson model for a single rate with identity link

The advantage of the approach based on weighting is that it allows sensible use of the identity
link. The response is the same but the parameter estimated is now the rate itself, not the
log-rate.

6. Fit the Poisson model with identity link

> mi <- glm( D/Y ~ 1, family=poisson(link=identity), weight=Y )
> coef( mi )

(Intercept)
2.711

What is the meaning of the intercept in this model?

Verify that you actually get the same rate estimate as before.

7. Now use ci.lin() to produce the estimate and the confidence intervals from this
model:

> ci.lin( mi )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 2.711 0.7001 3.873 0.0001075 1.339 4.084

> ci.lin( mi )[, c(1,5,6)]

Estimate 2.5% 97.5%
2.711 1.339 4.084
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The confidence limits are not the same as from the multiplicative model, because they
are derived from an approximation of the distribution of the rate being normally
distributed, whereas the multiplicative model uses an assumption thet the log-rate is
normally distributed.

The confidence limits from this model are based on the 2nd derivative of the
log-likelihood with respect to the rate, and not as before with respect to the log rate,
and therefore they are different — they are symmetrical on the rate-scale and not on the
log-rate scale:

`(λ) = D ln(λ)− λY `′(λ) = D/λ− Y `′′(λ) = −D/λ2
∣∣
λ=D/Y

= −Y 2/D

Thus the observed information is Y 2/D and hence the approximate standard deviation
of the rate is square root of the inverse of this,

√
D/Y , which is exactly the standard

deviation you got from the model:

> ci.lin( mi )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 2.711 0.7001 3.873 0.0001075 1.339 4.084

> sqrt(D)/Y

[1] 0.7001

2.6.4 Poisson model assuming same rate for several periods

Now, suppose the events and person years are collected over three periods.

8. Read in the data and compute period-specific rates

> Dx <- c(3,7,5)
> Yx <- c(1.412,2.783,1.337)
> Px <- 1:3
> rates <- Dx/Yx
> rates

[1] 2.125 2.515 3.740

9. We fit the same model as before, assuming a single constant rate across the separate
periods; and we get the same result:

> m3 <- glm( Dx ~ 1, family=poisson, offset=log(Yx) )
> ci.exp( m3 )

exp(Est.) 2.5% 97.5%
(Intercept) 2.711 1.635 4.498

10. We can test whether the rates are the same in the three periods by fitting a model with
the period as a factor in the model:

> mp <- glm( Dx ~ factor(Px), offset=log(Yx), family=poisson )
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and compareing the two models using anova() with the argument test="Chisq":

> options( digits=7 )
> anova( m3, mp, test="Chisq" )

Analysis of Deviance Table

Model 1: Dx ~ 1
Model 2: Dx ~ factor(Px)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2 0.70003
2 0 0.00000 2 0.70003 0.7047

We see that the deviance of the model with the constant rates is the same as the
likelihood-ratio test versus the model with three separate rates. The deviance is namely
in general the likelihood-ratio test of a given model versus the most detailed model
possible for the dataset. And in this case, with a dataset of 3 observations, the most
detailed model is exactly the one we fitted with one rate per line in the dataset.

2.6.5 Analysis of a rate ratio

We now switch to comparison of two rates λ1 and λ0, i.e. the hazard in an exposed group vs.
that in an unexposed one. Consider first estimation of the true rate ratio ρ = λ1/λ0 between
the groups. Suppose we have pertinent empirical data (cases and person-times) from both
groups, (D1, Y1) and (D0, Y0). The point estimate of ρ is the empirical rate ratio

RR =
D1/Y1
D0/Y0

It is known that the variance of log(RR), that is, the difference of the log of the empirical

rates log(λ̂1)− log(λ̂0) is estimated as

var(log(RR)) = var{log(λ̂1/λ̂0)}
= var{log(λ̂1)}+ var{log(λ̂0)}
= 1/D1 + 1/D0

Based on a similar argument as before, an approximate 95% CI for the true rate ratio λ1/λ0 is
then:

RR
×
÷ exp

(
1.96

√
1

D1

+
1

D0

)
Suppose you have 15 events during 5532 person-years in an unexposed group and 28 events
during 4783 person-years in an exposed group:

11. Calculate the the rate-ratio and CI by direct application of the above formulae:

> D0 <- 15 ; D1 <- 28
> Y0 <- 5.532 ; Y1 <- 4.783
> RR <- (D1/Y1)/(D0/Y0)
> SE.lrr <- sqrt(1/D0+1/D1)
> EF <- exp( 1.96 * SE.lrr)
> c( RR, RR/EF, RR*EF )
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[1] 2.158980 1.153146 4.042153

12. Now achieve this using a Poisson model:

> D <- c(D0,D1) ; Y <- c(Y0,Y1); expos <- 0:1
> mm <- glm( D ~ factor(expos), family=poisson, offset=log(Y) )

What do the parameters mean in this model?

13. You can extract the exponentiated parameters in two ways:

> ci.exp( mm)

exp(Est.) 2.5% 97.5%
(Intercept) 2.711497 1.634669 4.497678
factor(expos)1 2.158980 1.153160 4.042106

> ci.lin( mm, E=T)[,5:7]

exp(Est.) 2.5% 97.5%
(Intercept) 2.711497 1.634669 4.497678
factor(expos)1 2.158980 1.153160 4.042106

2.6.6 Analysis of rate difference

For the true rate difference δ = λ1 − λ0, the natural estimator is the empirical rate difference

δ̂ = λ̂1 − λ̂0 = D1/Y1 −D0/Y0 = RD.

Its variance is just the sum of the variances of the two rates (since the latter are based on
independent samples):

var(RD) = var(λ̂1) + var(λ̂0)

= D1/Y
2
1 +D0/Y

2
0

14. Use this formula to compute the rate difference and a 95% confidence interval for it:

> rd <- diff( D/Y )
> sed <- sqrt( sum( D/Y^2 ) )
> c( rd, rd+c(-1,1)*1.96*sed )

[1] 3.1425697 0.5764816 5.7086578

15. Verify that this is the confidence interval you get when you fit an additive model with
exposure as factor:

> ma <- glm( D/Y ~ factor(expos),
+ family=poisson(link=identity), weight=Y )
> ci.lin( ma )[, c(1,5,6)]

Estimate 2.5% 97.5%
(Intercept) 2.711497 1.3393153 4.083678
factor(expos)1 3.142570 0.5765288 5.708611
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2.6.7 Calculations using matrix tools

NB. This subsection requires some familiarity with matrix algebra.

16. Explore the function ci.mat(), which lets you use matrix multiplication (operator
'%*%' in R) to produce a confidence interval from an estimate and its standard error (or
CIs from whole columns of estimates and SEs):

> ci.mat

function (alpha = 0.05, df = Inf)
{

ciM <- rbind(c(1, 1, 1), qt(1 - alpha/2, df) * c(0, -1, 1))
colnames(ciM) <- c("Estimate", paste(formatC(100 * alpha/2,

format = "f", digits = 1), "%", sep = ""), paste(formatC(100 *
(1 - alpha/2), format = "f", digits = 1), "%", sep = ""))

ciM
}
<bytecode: 0x6b43558>
<environment: namespace:Epi>

> ci.mat()

Estimate 2.5% 97.5%
[1,] 1 1.000000 1.000000
[2,] 0 -1.959964 1.959964

As you see, this function returns a 2× 3 matrix (2 rows, 3 columns) containing familiar
numbers.

17. When you combine the single rate and its standard error into a row vector of length 2,
i.e. a 1× 2 matrix, and multiply this by the 2× 3 matrix above, the computation
returns a 1× 3 matrix containing the point estimate and the confidence limit. – Apply
this method to the single rate calculations in 1.6.1; first creating the 1× 2 matrix and
then performing the matrix multiplication.

> rateandSE <- c( rate, SE.rate )
> rateandSE

[1] 2.7114967 0.7001054

> rateandSE %*% ci.mat()

Estimate 2.5% 97.5%
[1,] 2.711497 1.339315 4.083678

18. When the confidence interval is based on the log-rate and its standard error, the result
is obtained by appropriate application of the exp-function on the pertinent matrix
product

> lograndSE <- c( log(rate), SE.logr )
> lograndSE

[1] 0.9975008 0.2581989

> exp( lograndSE %*% ci.mat() )
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Estimate 2.5% 97.5%
[1,] 2.711497 1.634669 4.497678

19. For computing the rate ratio and its CI as in 1.6.5, matrix multiplication with ci.mat()

should give the same result as there:

> exp( c( log(RR), SE.lrr ) %*% ci.mat() )

Estimate 2.5% 97.5%
[1,] 2.15898 1.15316 4.042106

20. The main argument in function ci.mat() is alpha, which sets the confidence level:
1− α. The default value is alpha = 0.05, corresponding to the level 1− 0.05 = 95 %.
If you wish to get the confidence interval for the rate ratio at the 90 % level (= 1− 0.1),
for instance, you may proceed as follows:

> ci.mat(alpha=0.1)

Estimate 5.0% 95.0%
[1,] 1 1.000000 1.000000
[2,] 0 -1.644854 1.644854

> exp( c( log(RR), SE.lrr ) %*% ci.mat(alpha=0.1) )

Estimate 5.0% 95.0%
[1,] 2.15898 1.275491 3.654429

21. Look again the model used to analyse the rate ratio in 1.6.5. Often one would like to get
simultaneously both the rates and the ratio between them. This can be achieved in one
go using the contrast matrix argument ctr.mat to ci.lin() or ci.exp(). Try:

> CM <- rbind( c(1,0), c(1,1), c(0,1) )
> rownames( CM ) <- c("rate 0","rate 1","RR 1 vs. 0")
> CM

[,1] [,2]
rate 0 1 0
rate 1 1 1
RR 1 vs. 0 0 1

> mm <- glm( D ~ factor(expos),
+ family=poisson(link=log), offset=log(Y) )
> ci.exp( mm, ctr.mat=CM)

exp(Est.) 2.5% 97.5%
rate 0 2.711497 1.634669 4.497678
rate 1 5.854066 4.041994 8.478512
RR 1 vs. 0 2.158980 1.153160 4.042106

22. Use the same machinery to the additive model to get the rates and the rate-difference in
one go. Note that the annotation of the resulting estimates are via the column-names of
the contrast matrix.
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> rownames( CM ) <- c("rate 0","rate 1","RD 1 vs. 0")
> ma <- glm( D/Y ~ factor(expos),
+ family=poisson(link=identity), weight=Y )
> ci.lin( ma, ctr.mat=CM )[, c(1,5,6)]

Estimate 2.5% 97.5%
rate 0 2.711497 1.3393153 4.083678
rate 1 5.854066 3.6857298 8.022403
RD 1 vs. 0 3.142570 0.5765288 5.708611
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2.7 Logistic regression (GLM)

2.7.1 Malignant melanoma in Denmark

In the mid-80s a case-control study on risk factors for malignant melanoma was conducted in
Denmark (Østerlind et al. The Danish case-control study of cutaneous malignant melanoma I:
Importance of host factors. Int J Cancer 1988; 42: 200-206).

The cases were patients with skin melanoma (excluding lentigo melanoma), newly
diagnosed from 1 Oct, 1982 to 31 March, 1985, aged 20-79, from East Denmark, and they
were identified from the Danish Cancer Registry.

The controls (twice as many as cases) were drawn from the residents of East Denmark in
April, 1984, as a random sample stratified by sex and age (within the same 5 year age group)
to reflect the sex and age distribution of the cases. This is called group matching, and in such
a study, it is necessary to control for age and sex in the statistical analysis. (Yes indeed: In
spite of the fact that stratified sampling by sex and age removed the statistical association of
these variables with melanoma from the final case-control data set, the analysis must control
for variables which determine the probability of selecting subjects from the base population to
the study sample.)

The population of East Denmark is a dynamic one. Sampling the controls only at one time
point is a rough approximation of incidence density sampling, which ideally would spread out
over the whole study period. Hence the exposure odds ratios calculable from the data are
estimates of the corresponding hazard rate ratios between the exposure groups.

After exclusions, refusals etc., 474 cases (92% of eligible cases) and 926 controls (82%) were
interviewed. This was done face-to-face with a structured questionnaire by trained
interviewers, who were not informed about the subject’s case-control status.

For this exercise we have selected a few host variables from the study in an ascii-file,
melanoma.dat. The variables are listed in table 2.1.

Table 2.1: Variables in the melanoma dataset.

Variable Units or Coding Type Name

Case-control status 1=case, 0=control numeric cc

Sex 1=male, 2=female numeric sex

Age at interview age in years numeric age

Skin complexion 0=dark, 1=medium, 2=light numeric skin

Hair colour 0=dark brown/black, 1=light brown,
2=blonde, 3=red numeric hair

eye colour 0=brown, 1=grey, green, 2=blue numeric eyes

Freckles 1=many, 2=some, 3=none numeric freckles

Naevi, small no. naevi < 5mm numeric nvsmall

Naevi, largs no. naevi ≥ 5mm numeric nvlarge



IARC, 2018 2.7 Logistic regression (GLM) 119

2.7.2 Reading the data

Start R and load the Epi package using the function library(). Read the data set from the
file melanoma.dat found in the course website to a data frame with name mel using the
read.table() function. Remember to specify that missing values are coded ”.”, and that
variable names are in the first line of the file. View the overall structure of the data frame,
and list the first 20 rows of mel.

> library(Epi)
> mel <- read.table("http://bendixcarstensen.com/SPE/data/melanoma.dat", header=TRUE, na.strings=".")
> str(mel)

'data.frame': 1400 obs. of 9 variables:
$ cc : int 1 1 1 0 1 0 0 0 0 1 ...
$ sex : int 2 1 2 2 2 2 2 1 2 2 ...
$ age : int 71 68 42 66 36 68 68 39 75 49 ...
$ skin : int 2 2 1 0 1 2 0 2 2 2 ...
$ hair : int 0 0 1 2 0 2 0 0 0 1 ...
$ eyes : int 2 2 2 1 2 2 1 2 2 2 ...
$ freckles: int 2 1 3 2 3 2 2 2 1 2 ...
$ nvsmall : int 2 3 22 0 1 0 0 3 5 6 ...
$ nvlarge : int 0 0 1 0 0 0 0 0 0 0 ...

> head(mel, n=20)

cc sex age skin hair eyes freckles nvsmall nvlarge
1 1 2 71 2 0 2 2 2 0
2 1 1 68 2 0 2 1 3 0
3 1 2 42 1 1 2 3 22 1
4 0 2 66 0 2 1 2 0 0
5 1 2 36 1 0 2 3 1 0
6 0 2 68 2 2 2 2 0 0
7 0 2 68 0 0 1 2 0 0
8 0 1 39 2 0 2 2 3 0
9 0 2 75 2 0 2 1 5 0
10 1 2 49 2 1 2 2 6 0
11 0 1 48 2 1 2 3 4 0
12 1 2 67 0 0 2 2 1 0
13 0 1 50 1 0 2 3 4 0
14 1 2 38 2 0 1 3 8 0
15 0 2 33 2 1 2 2 3 0
16 0 2 39 1 0 1 3 0 2
17 0 2 39 1 1 2 3 0 0
18 1 1 50 0 1 1 1 3 1
19 0 2 35 2 0 2 2 1 0
20 0 2 35 2 0 1 3 5 0

2.7.3 House keeping

The structure of the data frame mel tells us that all the variables are numeric (integer), so
first you need to do a bit of house keeping. For example the variables sex, skin, hair, eye

need to be converted to factors, with labels, and freckles which is coded 4 for none down to
1 for many (not very intuitive) needs to be recoded, and relabelled.

To avoid too much typing and to leave plenty of time to think about the analysis, these
house keeping commands are in a script file called melanoma-house.r. You should study this
script carefully before running it. The coding of freckles can be reversed by subtracting the
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current codes from 4. Once recoded the variable needs to be converted to a factor with labels
”none”, etc. Age is currently a numeric variable recording age to the nearest year, and it will
be convenient to group these values into (say) 10 year age groups, using cut. In this case we
choose to create a new variable, rather than change the original.

> source("http://bendixcarstensen.com/SPE/data/melanoma-house.r")

Look again at the structure of the data frame mel and note the changes. Use the command
summary(mel) to look at the univariate distributions.

> str(mel)

'data.frame': 1400 obs. of 13 variables:
$ cc : int 1 1 1 0 1 0 0 0 0 1 ...
$ sex : Factor w/ 2 levels "M","F": 2 1 2 2 2 2 2 1 2 2 ...
$ age : int 71 68 42 66 36 68 68 39 75 49 ...
$ skin : Factor w/ 3 levels "dark","medium",..: 3 3 2 1 2 3 1 3 3 3 ...
$ hair : Factor w/ 4 levels "dark","light_brown",..: 1 1 2 3 1 3 1 1 1 2 ...
$ eyes : Factor w/ 3 levels "brown","grey-green",..: 3 3 3 2 3 3 2 3 3 3 ...
$ freckles: Factor w/ 3 levels "none","some",..: 2 3 1 2 1 2 2 2 3 2 ...
$ nvsmall : int 2 3 22 0 1 0 0 3 5 6 ...
$ nvlarge : int 0 0 1 0 0 0 0 0 0 0 ...
$ age.cat : Factor w/ 6 levels "[20,30)","[30,40)",..: 6 5 3 5 2 5 5 2 6 3 ...
$ hair2 : Factor w/ 2 levels "dark","other": 1 1 2 2 1 2 1 1 1 2 ...
$ nvsma4 : Factor w/ 4 levels "[0,1)","[1,2)",..: 3 3 4 1 2 1 1 3 4 4 ...
$ nvlar3 : Factor w/ 3 levels "[0,1)","[1,2)",..: 1 1 2 1 1 1 1 1 1 1 ...

> summary(mel)

cc sex age skin hair
Min. :0.0000 M:584 Min. :21.00 dark :318 dark :690
1st Qu.:0.0000 F:816 1st Qu.:42.00 medium:594 light_brown:548
Median :0.0000 Median :53.00 light :478 blonde : 61
Mean :0.3386 Mean :52.89 NA's : 10 red :101
3rd Qu.:1.0000 3rd Qu.:64.00
Max. :1.0000 Max. :81.00

eyes freckles nvsmall nvlarge age.cat
brown :187 none:633 Min. : 0.000 Min. : 0.0000 [20,30): 61
grey-green:450 some:526 1st Qu.: 0.000 1st Qu.: 0.0000 [30,40):202
blue :757 many:237 Median : 0.000 Median : 0.0000 [40,50):347
NA's : 6 NA's: 4 Mean : 1.163 Mean : 0.1565 [50,60):296

3rd Qu.: 1.000 3rd Qu.: 0.0000 [60,70):307
Max. :46.000 Max. :14.0000 [70,85):187
NA's :7 NA's :7

hair2 nvsma4 nvlar3
dark :690 [0,1) :922 [0,1) :1263
other:710 [1,2) :192 [1,2) : 95

[2,5) :176 [2,15): 35
[5,50):103 NA's : 7
NA's : 7

This is enough housekeeping for now - let’s turn to something a bit more interesting.

2.7.4 One variable at a time

As a first step it is a good idea to start by looking at the numbers of cases and controls by
each variable separately, ignoring age and sex. Try
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> with(mel, table(cc,skin))

skin
cc dark medium light
0 232 391 296
1 86 203 182

> stat.table(skin, contents=ratio(cc,1-cc), data=mel)

-------------------
skin ratio(cc,

1 - cc)
-------------------
dark 0.37
medium 0.52
light 0.61
-------------------

to see the numbers of cases and controls, as well as the odds of being a case by skin colour
Now use effx() to get crude estimates of the hazard ratios for the effect of skin colour.

> effx(cc, type="binary", exposure=skin, data=mel)

---------------------------------------------------------------------------
response : cc
type : binary
exposure : skin

skin is a factor with levels: dark / medium / light
baseline is dark
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of skin on cc
number of observations 1390

Effect 2.5% 97.5%
medium vs dark 1.40 1.04 1.89
light vs dark 1.66 1.22 2.26

Test for no effects of exposure on 2 df: p-value= 0.00499

• Look at the crude effect estimates of hair, eyes and freckles in the same way.

> with(mel, table(cc,hair))

hair
cc dark light_brown blonde red
0 490 341 36 59
1 200 207 25 42

> stat.table(hair, contents=ratio(cc,1-cc), data=mel)

------------------------
hair ratio(cc,

1 - cc)
------------------------
dark 0.41
light_brown 0.61
blonde 0.69
red 0.71
------------------------
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> effx(cc,type="binary",exposure=hair,data=mel)

---------------------------------------------------------------------------
response : cc
type : binary
exposure : hair

hair is a factor with levels: dark / light_brown / blonde / red
baseline is dark
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of hair on cc
number of observations 1400

Effect 2.5% 97.5%
light_brown vs dark 1.49 1.170 1.89
blonde vs dark 1.70 0.995 2.91
red vs dark 1.74 1.140 2.68

Test for no effects of exposure on 3 df: p-value= 0.0017

> with(mel, table(cc,eyes))

eyes
cc brown grey-green blue
0 123 312 488
1 64 138 269

> stat.table(eyes, contents=ratio(cc,1-cc), data=mel)

-----------------------
eyes ratio(cc,

1 - cc)
-----------------------
brown 0.52
grey-green 0.44
blue 0.55
-----------------------

> effx(cc, type="binary", exposure=eyes, data=mel)

---------------------------------------------------------------------------
response : cc
type : binary
exposure : eyes

eyes is a factor with levels: brown / grey-green / blue
baseline is brown
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of eyes on cc
number of observations 1394

Effect 2.5% 97.5%
grey-green vs brown 0.85 0.592 1.22
blue vs brown 1.06 0.756 1.48

Test for no effects of exposure on 2 df: p-value= 0.22

> with(mel, table(cc,freckles))
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freckles
cc none some many
0 466 343 114
1 167 183 123

> stat.table(freckles, contents=ratio(cc,1-cc),data=mel)

---------------------
freckles ratio(cc,

1 - cc)
---------------------
none 0.36
some 0.53
many 1.08
---------------------

> effx(cc, type="binary", exposure=freckles, data=mel)

---------------------------------------------------------------------------
response : cc
type : binary
exposure : freckles

freckles is a factor with levels: none / some / many
baseline is none
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of freckles on cc
number of observations 1396

Effect 2.5% 97.5%
some vs none 1.49 1.16 1.92
many vs none 3.01 2.21 4.11

Test for no effects of exposure on 2 df: p-value= 2.15e-11

2.7.5 Generalized linear models with binomial family and logit link

The function effx() is just a wrapper for the glm() function, and you can show this by
fitting the glm directly with

> mf <- glm(cc ~ freckles, family="binomial", data=mel)
> round(ci.exp( mf ),2)

exp(Est.) 2.5% 97.5%
(Intercept) 0.36 0.30 0.43
frecklessome 1.49 1.16 1.92
frecklesmany 3.01 2.21 4.11

>

Comparison with the output from effx() shows the results to be the same.
Note that in effx() the type of response is “binary” whereas in glm() the family of

probability distributions used to fit the model is “binomial”. There is a 1-1 relationship
between type of response and family:

metric gaussian
binary binomial
failure/count poisson
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2.7.6 Controlling for age and sex

Because the probability that a control is selected into the study depends on age and sex it is
necessary to control for age and sex. For example, the effect of freckles controlled for age and
sex is obtained with

> effx(cc, typ="binary", exposure=freckles, control=list(age.cat,sex),data=mel)

---------------------------------------------------------------------------
response : cc
type : binary
exposure : freckles
control vars : age.cat sex

freckles is a factor with levels: none / some / many
baseline is none
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of freckles on cc
controlled for age.cat sex

number of observations 1396

Effect 2.5% 97.5%
some vs none 1.51 1.17 1.95
many vs none 3.07 2.24 4.22

Test for no effects of exposure on 2 df: p-value= 2.55e-11

or

> mfas <- glm(cc ~ freckles + age.cat + sex, family="binomial", data=mel)
> round(ci.exp(mfas), 2)

exp(Est.) 2.5% 97.5%
(Intercept) 0.41 0.23 0.72
frecklessome 1.51 1.17 1.95
frecklesmany 3.07 2.24 4.22
age.cat[30,40) 0.90 0.49 1.67
age.cat[40,50) 0.91 0.51 1.62
age.cat[50,60) 0.97 0.54 1.75
age.cat[60,70) 0.82 0.45 1.48
age.cat[70,85) 0.89 0.48 1.65
sexF 0.94 0.74 1.19

Do the adjusted estimates differ from the crude ones that you computed with effx()?

2.7.7 Likelihood ratio tests

There are 2 effects estimated for the 3 levels of freckles, and glm() provides a test for each
effect separately, but to test for no effect at all of freckles you need a likelihood ratio test.
This involves fitting two models, one without freckles and one with, and recording the
change in deviance. Because there are some missing values for freckles it is necessary to
restrict the first model to those subjects who have values for freckles.

> mas <- glm(cc ~ age.cat + sex, family="binomial", data=subset(mel, !is.na(freckles)) )
> anova(mas, mfas, test="Chisq")
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Analysis of Deviance Table

Model 1: cc ~ age.cat + sex
Model 2: cc ~ freckles + age.cat + sex
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1389 1785.9
2 1387 1737.1 2 48.786 2.549e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The change in residual deviance is 1785.9− 1737.1 = 48.8 on 1389− 1387 = 2 degrees of
freedom. The P -value corresponding to this change is obtained from the upper tail of the
cumulative distribution of the χ2-distribution with 2 df:

> 1 - pchisq(48.786, 2)

[1] 2.548328e-11

• There are 3 effects for the 4 levels of hair colour (hair). To obtain adjusted estimates for
the effect of hair colour and to test the pertinent null hypothesis fit the relevant models, print
the and use anova to test for no effects of hair colour.

exp(Est.) 2.5% 97.5%
(Intercept) 0.39 0.22 0.69
hairlight_brown 1.50 1.18 1.91
hairblonde 1.68 0.98 2.88
hairred 1.78 1.16 2.75
age.cat[30,40) 0.98 0.53 1.79
age.cat[40,50) 0.98 0.55 1.75
age.cat[50,60) 1.17 0.65 2.11
age.cat[60,70) 0.98 0.55 1.77
age.cat[70,85) 1.13 0.61 2.08
sexF 1.00 0.79 1.26

Analysis of Deviance Table

Model 1: cc ~ age.cat + sex
Model 2: cc ~ hair + age.cat + sex
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1393 1790.7
2 1390 1775.2 3 15.434 0.001481 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Compare the estimates with the crude ones and assess the evidence against the null
hypothesis.

2.7.8 Relevelling

From the above you can see that subjects at each of the 3 levels light-brown, blonde, and red,
are at greater risk than subjects with dark hair, with similar odds ratios. This suggests
creating a new variable hair2 which has just two levels, dark and the other three. The
Relevel() function in Epi has been used for this in the house keeping script.

• Use effx() to compute the odds-ratio of melanoma between persons with red, blonde or
light brown hair versus those with dark hair.
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> effx(cc, type="binary", exposure=hair2, control=list(age.cat,sex), data=mel)

---------------------------------------------------------------------------
response : cc
type : binary
exposure : hair2
control vars : age.cat sex

hair2 is a factor with levels: dark / other
baseline is dark
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of hair2 on cc
controlled for age.cat sex

number of observations 1400

Effect 2.5% 97.5%
1.55 1.24 1.95

Test for no effects of exposure on 1 df: p-value= 0.000124

Reproduce these results by fitting an appropriate glm.

> mh2 <- glm(cc ~ hair2 + age.cat + sex, family="binomial",
+ data = subset(mel, !is.na(hair2)) )
> ci.exp(mh2 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.3894010 0.2199868 0.6892829
hair2other 1.5541887 1.2396159 1.9485894
age.cat[30,40) 0.9740838 0.5302331 1.7894756
age.cat[40,50) 0.9872390 0.5539667 1.7593852
age.cat[50,60) 1.1722458 0.6529651 2.1044926
age.cat[60,70) 0.9847738 0.5491367 1.7660074
age.cat[70,85) 1.1277140 0.6121944 2.0773447
sexF 1.0034944 0.7978073 1.2622108

Use also a likelihood ratio test to test for the effect of hair2.

> m1 <- glm(cc ~ age.cat + sex, data = subset(mel, !is.na(hair2)) )
> anova(m1, mh2,test="Chisq")

Analysis of Deviance Table

Model 1: cc ~ age.cat + sex
Model 2: cc ~ hair2 + age.cat + sex
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1393 313.17
2 1392 1775.93 1 -1462.8

2.7.9 Controlling for other variables

When you control the effect of an exposure for some variable you are asking a question about
what would the effect be if the variable is kept constant. For example, consider the effect of
freckles controlled for hair2. We first stratify by hair2 with
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> effx(cc, type="binary", exposure=freckles,
+ control=list(age.cat,sex), strata=hair2, data=mel)
---------------------------------------------------------------------------
response : cc
type : binary
exposure : freckles
control vars : age.cat sex
stratified by : hair2

freckles is a factor with levels: none / some / many
baseline is none
hair2 is a factor with levels: dark/other
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of freckles on cc
controlled for age.cat sex

stratified by hair2

number of observations 1396

Effect 2.5% 97.5%
strata dark level some vs none 1.61 1.11 2.34
strata other level some vs none 1.42 1.00 2.01
strata dark level many vs none 2.84 1.76 4.58
strata other level many vs none 3.15 2.06 4.80

Test for effect modification on 2 df: p-value= 0.757

The effect of freckles is still apparent in each of the two strata for hair colour. Use effx() to
control for hair2, too, in addition to age.cat and sex.

> effx(cc, type="binary", exposure=freckles,
+ control=list(age.cat,sex,hair2), data=mel)
---------------------------------------------------------------------------
response : cc
type : binary
exposure : freckles
control vars : age.cat sex hair2

freckles is a factor with levels: none / some / many
baseline is none
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of freckles on cc
controlled for age.cat sex hair2

number of observations 1396

Effect 2.5% 97.5%
some vs none 1.51 1.17 1.95
many vs none 3.02 2.19 4.15

Test for no effects of exposure on 2 df: p-value= 6.9e-11

It is tempting to control for variables without thinking about the question you are thereby
asking. This can lead to nonsense.



128 2.7 Logistic regression (GLM) SPE: Solutions

2.7.10 Stratification using glm()

We shall reproduce the output from

> effx(cc, type="binary", exposure=freckles,
+ control=list(age.cat,sex), strata=hair2,data=mel)
---------------------------------------------------------------------------
response : cc
type : binary
exposure : freckles
control vars : age.cat sex
stratified by : hair2

freckles is a factor with levels: none / some / many
baseline is none
hair2 is a factor with levels: dark/other
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of freckles on cc
controlled for age.cat sex

stratified by hair2

number of observations 1396

Effect 2.5% 97.5%
strata dark level some vs none 1.61 1.11 2.34
strata other level some vs none 1.42 1.00 2.01
strata dark level many vs none 2.84 1.76 4.58
strata other level many vs none 3.15 2.06 4.80

Test for effect modification on 2 df: p-value= 0.757

using glm(). To do this requires a nested model formula:

> mfas.h <- glm(cc ~ hair2/freckles + age.cat + sex, family="binomial", data=mel)
> ci.exp(mfas.h )

exp(Est.) 2.5% 97.5%
(Intercept) 0.3169581 0.1725855 0.5821023
hair2other 1.5639083 1.0920425 2.2396650
age.cat[30,40) 0.9286674 0.5004220 1.7233920
age.cat[40,50) 0.9573093 0.5328744 1.7198068
age.cat[50,60) 1.0464308 0.5776057 1.8957872
age.cat[60,70) 0.8495081 0.4692660 1.5378570
age.cat[70,85) 0.9351315 0.5020370 1.7418455
sexF 0.9012339 0.7114142 1.1417014
hair2dark:frecklessome 1.6123583 1.1106965 2.3406026
hair2other:frecklessome 1.4196216 1.0015163 2.0122743
hair2dark:frecklesmany 2.8378600 1.7567458 4.5842996
hair2other:frecklesmany 3.1469251 2.0628414 4.8007266

In amongst all the other effects you can see the two effects of freckles for dark hair (1.61 and
2.84) and the two effects of freckles for other hair (1.42 and 3.15).

2.7.11 Naevi

The distributions of nvsmall and nvlarge are very skew to the right. You can see this with
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> with(mel, stem(nvsmall))

The decimal point is at the |

0 | 00000000000000000000000000000000000000000000000000000000000000000000+1034
2 | 00000000000000000000000000000000000000000000000000000000000000000000+65
4 | 00000000000000000000000000000000000000000000000000000000000
6 | 00000000000000000000000000
8 | 00000000000000000000
10 | 0000000000
12 | 00
14 | 0000000
16 |
18 | 000
20 | 0
22 | 000
24 | 0
26 |
28 |
30 |
32 |
34 |
36 | 0
38 |
40 |
42 |
44 |
46 | 0

> with(mel, stem(nvlarge))

The decimal point is at the |

0 | 00000000000000000000000000000000000000000000000000000000000000000000+1183
1 | 00000000000000000000000000000000000000000000000000000000000000000000+15
2 | 000000000000000000
3 | 0000000
4 | 0000
5 | 000
6 |
7 |
8 |
9 | 0
10 |
11 |
12 | 0
13 |
14 | 0

Because of this it is wise to categorize them into a few classes

– small naevi into four: 0, 1, 2-4, and 5+;

– large naevi into three: 0, 1, and 2+.

This has been done in the house keeping script.

• Look at the joint frequency distribution of these new variables using with(mel, table(

)). Are they strongly associated?

> stat.table(list(nvsma4,nvlar3),contents=percent(nvlar3),data=mel)
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---------------------------------
---------nvlar3----------

nvsma4 [0,1) [1,2) [2,15)
---------------------------------
[0,1) 93.9 4.9 1.2
[1,2) 89.6 8.3 2.1
[2,5) 85.8 9.7 4.5
[5,50) 71.8 16.5 11.7
---------------------------------

> #High frequencies on the diagonal shows a strong association

• Compute the sex- and age-adjusted OR estimates (with 95% CIs) associated with the
number of small naevi first by using effx(), and then by fitting separate glms including sex,
age.cat and nvsma4 in the model formula.

> effx(cc,type="binary",exposure=nvsma4,control=list(age.cat,sex),data=mel)

---------------------------------------------------------------------------
response : cc
type : binary
exposure : nvsma4
control vars : age.cat sex

nvsma4 is a factor with levels: [0,1) / [1,2) / [2,5) / [5,50)
baseline is [0,1)
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of nvsma4 on cc
controlled for age.cat sex

number of observations 1393

Effect 2.5% 97.5%
[1,2) vs [0,1) 1.59 1.15 2.21
[2,5) vs [0,1) 2.47 1.77 3.43
[5,50) vs [0,1) 5.06 3.28 7.81

Test for no effects of exposure on 3 df: p-value= <2e-16

> mns <- glm(cc ~ nvsma4 + age.cat + sex, family="binomial",data=mel)
> round(ci.exp(mns), 2)

exp(Est.) 2.5% 97.5%
(Intercept) 0.36 0.20 0.64
nvsma4[1,2) 1.59 1.15 2.21
nvsma4[2,5) 2.47 1.77 3.43
nvsma4[5,50) 5.06 3.28 7.81
age.cat[30,40) 0.96 0.51 1.80
age.cat[40,50) 1.02 0.56 1.85
age.cat[50,60) 1.16 0.64 2.13
age.cat[60,70) 1.07 0.58 1.96
age.cat[70,85) 1.17 0.62 2.21
sexF 0.96 0.76 1.21

• Do the same with large naevi nvlar3.

> effx(cc, type="binary", exposure=nvlar3, control=list(age.cat,sex), data=mel)
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---------------------------------------------------------------------------
response : cc
type : binary
exposure : nvlar3
control vars : age.cat sex

nvlar3 is a factor with levels: [0,1) / [1,2) / [2,15)
baseline is [0,1)
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of nvlar3 on cc
controlled for age.cat sex

number of observations 1393

Effect 2.5% 97.5%
[1,2) vs [0,1) 1.82 1.19 2.78
[2,15) vs [0,1) 3.58 1.78 7.21

Test for no effects of exposure on 2 df: p-value= 4.81e-05

> mnl <- glm(cc ~ nvlar3 + age.cat + sex, family="binomial", data=mel)
> round(ci.exp(mnl), 2)

exp(Est.) 2.5% 97.5%
(Intercept) 0.49 0.28 0.85
nvlar3[1,2) 1.82 1.19 2.78
nvlar3[2,15) 3.58 1.78 7.21
age.cat[30,40) 0.90 0.49 1.66
age.cat[40,50) 0.92 0.52 1.63
age.cat[50,60) 1.07 0.60 1.91
age.cat[60,70) 0.89 0.50 1.60
age.cat[70,85) 1.00 0.54 1.84
sexF 1.03 0.82 1.29

• Now fit a glm containing age.cat, sex, nvsma4 and nvlar3. What is the interpretation
of the coefficients for nvsma4 and nvlar3?

> mnls <- glm(cc ~ nvsma4 + nvlar3 + age.cat + sex, family="binomial", data=mel)
> # Coeffs for nvsma4 are the effects of nvsma4 controlled for age.cat, sex, and nvlar3.
> # Similarly for the coefficients for nvlar3.

2.7.12 Treating freckles as a numeric exposure

The evidence for the effect of freckles is already convincing. However, to demonstrate how
it is done, we shall perform a linear trend test by treating freckles as a numeric exposure.

> mel$fscore<-as.numeric(mel$freckles)
> effx(cc, type="binary", exposure=fscore, control=list(age.cat,sex), data=mel)

---------------------------------------------------------------------------
response : cc
type : binary
exposure : fscore
control vars : age.cat sex

fscore is numeric
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effects are measured as odds ratios
---------------------------------------------------------------------------

effect of an increase of 1 unit in fscore on cc
controlled for age.cat sex

number of observations 1396

Effect 2.5% 97.5%
1.72 1.47 2.00

Test for no effects of exposure on 1 df: p-value= 6.2e-12

You can check for linearity of the log odds of being a case with fscore by comparing the
model containing freckles as a factor with the model containing freckles as numeric.

> m1 <- glm(cc ~ freckles + age.cat + sex, family="binomial", data=mel)
> m2 <- glm(cc ~ fscore + age.cat + sex, family="binomial", data=mel)
> anova(m2, m1, test="Chisq")
Analysis of Deviance Table

Model 1: cc ~ fscore + age.cat + sex
Model 2: cc ~ freckles + age.cat + sex
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1388 1738.6
2 1387 1737.1 1 1.5206 0.2175

There is no evidence against linearity (p = 0.22).
It is sometimes helpful to look at the linearity in more detail with

> m1 <- glm(cc ~ C(freckles, contr.cum) + age.cat + sex, family="binomial",data=mel)
> round(ci.exp(m1 ), 2)

exp(Est.) 2.5% 97.5%
(Intercept) 0.41 0.23 0.72
C(freckles, contr.cum)2 1.51 1.17 1.95
C(freckles, contr.cum)3 2.03 1.49 2.78
age.cat[30,40) 0.90 0.49 1.67
age.cat[40,50) 0.91 0.51 1.62
age.cat[50,60) 0.97 0.54 1.75
age.cat[60,70) 0.82 0.45 1.48
age.cat[70,85) 0.89 0.48 1.65
sexF 0.94 0.74 1.19

> m2 <- glm(cc ~ fscore + age.cat + sex, family="binomial",data=mel)
> round(ci.exp(m2), 2)

exp(Est.) 2.5% 97.5%
(Intercept) 0.23 0.12 0.42
fscore 1.72 1.47 2.00
age.cat[30,40) 0.90 0.49 1.67
age.cat[40,50) 0.91 0.51 1.63
age.cat[50,60) 0.97 0.54 1.75
age.cat[60,70) 0.81 0.45 1.47
age.cat[70,85) 0.89 0.48 1.66
sexF 0.94 0.74 1.18

The use of C(freckles, contr.cum) makes each odds ratio to compare the odds at that level
versus the previous level; not against the baseline (except for the 2nd level). If the log-odds
are linear then these odds ratios should be the same (and the same as the odds ratio for
fscore in m2.
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2.7.13 Graphical displays

The odds ratios (with CIs) can be graphically displayed using function plotEst() in Epi. It
uses the value of ci.lin() evaluated on the fitted model object. As the intercept and the
effects of age and sex are of no interest, we shall drop the corresponding rows (the 7 first ones)
from the matrix produced by ci.lin(), and the plot is based just on the 1st, 5th and the 6th
column of this matrix:

> m <- glm(cc ~ nvsma4 + nvlar3 + age.cat + sex, family="binomial",data=mel)
> plotEst( exp( ci.lin(m)[ 2:5, -(2:4)] ), xlog=T, vref=1 )

The xlog argument makes the OR axis logarithmic.
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2.8 Estimation of effects: simple and more complex

This exercise deals with analysis of metric or continuous response variables. We start with
simple estimation of effects of a binary, categorical or a numeric explanatory variable, the
exposure variable of interest. Then evaluation of potential modification confounding and/or
by other variables is considered by stratification by and adjustment or control for these
variables. Use of function effx() for such tasks is introduced together with functions lm()

and glm() that can be used for more general linear and generalized linear models. Finally,
more complex polynomial models for the effect of a numeric exposure variable are illustrated.

2.8.1 Response and explanatory variables

Identifying the response or outcome variable correctly is the key to analysis. The main types
are:

� Metric (a measurement taking many values, usually with units)

� Binary (two values coded 1/0)

� Failure (does the subject fail at end of follow-up, coded 1/0, and how long was
follow-up, measurement of time)

� Count (aggregated data on failures in a group)

All these response variable are numeric.
Variables on which the response may depend are called explanatory variables. They can be

categorical factors or numeric variables. A further important aspect of explanatory variables
is the role they will play in the analysis.

� Primary role: exposure.

� Secondary role: confounder and/or modifier.

The word effect is a general term referring to ways of comparing the values of the response
variable at different levels of an explanatory variable. The main measures of effect are:

� Differences in means for a metric response.

� Ratios of odds for a binary response.

� Ratios of rates for a failure or count response.

Other measures of effect include ratios of geometric means for positive-valued metric
outcomes, differences and ratios between proportions (risk difference and risk ratio), and
differences between failure rates.
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2.8.2 Data set births

We shall use the births data to illustrate different aspects in estimating effects of various
exposures on a metric response variable bweight = birth weight, recorded in grams.

1. Load the Epi package and the data set and look at its content

> library(Epi)
> data(births)
> str(births)

'data.frame': 500 obs. of 8 variables:
$ id : num 1 2 3 4 5 6 7 8 9 10 ...
$ bweight: num 2974 3270 2620 3751 3200 ...
$ lowbw : num 0 0 0 0 0 0 0 0 0 0 ...
$ gestwks: num 38.5 NA 38.2 39.8 38.9 ...
$ preterm: num 0 NA 0 0 0 0 0 0 0 0 ...
$ matage : num 34 30 35 31 33 33 29 37 36 39 ...
$ hyp : num 0 0 0 0 1 0 0 0 0 0 ...
$ sex : num 2 1 2 1 1 2 2 1 2 1 ...

2. Because all variables are numeric we need first to do a little housekeeping. Two of them
are directly converted into factors, and categorical versions are created of two
continuous variables by function cut().

> births$hyp <- factor(births$hyp, labels = c("normal", "hyper"))
> births$sex <- factor(births$sex, labels = c("M", "F"))
> births$agegrp <- cut(births$matage,
+ breaks = c(20, 25, 30, 35, 40, 45), right = FALSE)
> births$gest4 <- cut(births$gestwks,
+ breaks = c(20, 35, 37, 39, 45), right = FALSE)

3. Have a look at univariate summaries of the different variables in the data; especially the
location and dispersion of the distribution of bweight.

> summary(births)

id bweight lowbw gestwks preterm
Min. : 1.0 Min. : 628 Min. :0.00 Min. :24.69 Min. :0.0000
1st Qu.:125.8 1st Qu.:2862 1st Qu.:0.00 1st Qu.:37.94 1st Qu.:0.0000
Median :250.5 Median :3188 Median :0.00 Median :39.12 Median :0.0000
Mean :250.5 Mean :3137 Mean :0.12 Mean :38.72 Mean :0.1286
3rd Qu.:375.2 3rd Qu.:3551 3rd Qu.:0.00 3rd Qu.:40.09 3rd Qu.:0.0000
Max. :500.0 Max. :4553 Max. :1.00 Max. :43.16 Max. :1.0000

NA's :10 NA's :10
matage hyp sex agegrp gest4

Min. :23.00 normal:428 M:264 [20,25): 2 [20,35): 31
1st Qu.:31.00 hyper : 72 F:236 [25,30): 68 [35,37): 32
Median :34.00 [30,35):200 [37,39):167
Mean :34.03 [35,40):194 [39,45):260
3rd Qu.:37.00 [40,45): 36 NA's : 10
Max. :43.00

> with(births, sd(bweight) )

[1] 637.4515
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2.8.3 Simple estimation with effx(), lm() and glm()

We are ready to analyze the “effect” of sex on bweight. A binary exposure variable, like sex,
leads to an elementary two-group comparison of group means for a metric response.

4. Comparison of two groups is commonly done by the conventional t-test and the
associated confidence interval.

> with( births, t.test(bweight ~ sex, var.equal=T) )

Two Sample t-test

data: bweight by sex
t = 3.4895, df = 498, p-value = 0.0005269
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
86.11032 308.03170

sample estimates:
mean in group M mean in group F

3229.902 3032.831

The P -value refers to the test of the null hypothesis that there is no effect of sex on
birth weight (quite an uninteresting null hypothesis in itself!). However, t.test() does
not provide the point estimate for the effect of sex; only the test result and a confidence
interval.

5. The function effx() in Epi is intended to introduce the estimation of effects in
epidemiology, together with the related ideas of stratification and controlling, i.e.
adjustment for confounding, without the need for familiarity with statistical modelling.
It is in fact a wrapper of function glm() that fits generalized linear models. – Now, do
the same analysis with effx()

> effx(response=bweight, type="metric", exposure=sex, data=births)

---------------------------------------------------------------------------
response : bweight
type : metric
exposure : sex

sex is a factor with levels: M / F
baseline is M
effects are measured as differences in means
---------------------------------------------------------------------------

effect of sex on bweight
number of observations 500

Effect 2.5% 97.5%
-197.0 -308.0 -86.4

Test for no effects of exposure on 1 df: p-value= 0.000484

The estimated effect of sex on birth weight, measured as a difference in means between
girls and boys, is −197 g. Either the output from t.test() above or the command
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> stat.table(sex, mean(bweight), data=births)

--------------------
sex mean(bweight)
--------------------
M 3229.90
F 3032.83
--------------------

confirms this (3032.8− 3229.9 = −197.1).

6. The same task can easily be performed by lm() or by glm(). The main argument in
both is the model formula, the left hand side being the response variable and the right
hand side after ∼ defines the explanatory variables and their joint effects on the
response. Here the only explanatory variable is the binary factor sex. With glm() one
specifies the family, i.e. the assumed distribution of the response variable, but in case
you use lm(), this argument is not needed, because lm() fits only models for metric
responses assuming Gaussian distribution.

> m1 <- glm(bweight ~ sex, family=gaussian, data=births)
> summary(m1)

Call:
glm(formula = bweight ~ sex, family = gaussian, data = births)

Deviance Residuals:
Min 1Q Median 3Q Max

-2536.90 -267.40 70.67 371.12 1323.10

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3229.90 38.80 83.244 < 2e-16 ***
sexF -197.07 56.48 -3.489 0.000527 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 397442.7)

Null deviance: 202765853 on 499 degrees of freedom
Residual deviance: 197926455 on 498 degrees of freedom
AIC: 7869.3

Number of Fisher Scoring iterations: 2

Note the amount of output that summary() method produces. The point estimate plus
confidence limits can, though, be concisely obtained by ci.lin().

> round( ci.lin(m1)[ , c(1,5,6)] , 1)

Estimate 2.5% 97.5%
(Intercept) 3229.9 3153.9 3305.9
sexF -197.1 -307.8 -86.4

7. Now, use effx() to find the effect of hyp (maternal hypertension) on bweight.
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---------------------------------------------------------------------------
response : bweight
type : metric
exposure : hyp

hyp is a factor with levels: normal / hyper
baseline is normal
effects are measured as differences in means
---------------------------------------------------------------------------

effect of hyp on bweight
number of observations 500

Effect 2.5% 97.5%
-431 -585 -276

Test for no effects of exposure on 1 df: p-value= 4.9e-08

2.8.4 Factors on more than two levels

The variable gest4 became as the result of cutting gestwks into 4 groups with left-closed and
right-open boundaries [20,35) [35,37) [37,39) [39,45).

8. We shall find the effects of gest4 on the metric response bweight.

> effx(response=bweight,typ="metric",exposure=gest4,data=births)

---------------------------------------------------------------------------
response : bweight
type : metric
exposure : gest4

gest4 is a factor with levels: [20,35) / [35,37) / [37,39) / [39,45)
baseline is [20,35)
effects are measured as differences in means
---------------------------------------------------------------------------

effect of gest4 on bweight
number of observations 490

Effect 2.5% 97.5%
[35,37) vs [20,35) 857 620 1090
[37,39) vs [20,35) 1360 1180 1540
[39,45) vs [20,35) 1670 1490 1850

Test for no effects of exposure on 3 df: p-value= <2e-16

There are now 3 effect estimates:

[35,37) vs [20,35) 857

[37,39) vs [20,35) 1360

[39,45) vs [20,35) 1668

The command
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> stat.table(gest4,mean(bweight),data=births)

------------------------
gest4 mean(bweight)
------------------------
[20,35) 1733.74
[35,37) 2590.31
[37,39) 3093.77
[39,45) 3401.26
------------------------

confirms that the effect of agegrp (level 2 vs level 1) is 2590− 1733 = 857, etc.

9. Compute these estimates by lm() and find out how the coefficients are related to the
group means

> m2 <- lm(bweight ~ gest4, data = births)
> round( ci.lin(m2)[ , c(1,5,6)] , 1)

Estimate 2.5% 97.5%
(Intercept) 1733.7 1565.3 1902.1
gest4[35,37) 856.6 620.3 1092.9
gest4[37,39) 1360.0 1176.7 1543.4
gest4[39,45) 1667.5 1489.4 1845.7

2.8.5 Stratified effects and interaction or effect modification

We shall now examine whether and to what extent the effect of hyp on bweight varies by
gest4.

10. The following “interaction plot” shows how the mean bweight depends jointly on hyp

and gest4

> par(mfrow=c(1,1))
> with( births, interaction.plot(gest4, hyp, bweight) )
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It appears
that the mean difference in bweight between normotensive and hypertensive mothers is
inversely related to gestational age.

11. Let us get numerical values for the mean differences in the different gest4 categories:

> effx(bweight, type="metric", exposure=hyp, strata=gest4,data=births)

---------------------------------------------------------------------------
response : bweight
type : metric
exposure : hyp
stratified by : gest4

hyp is a factor with levels: normal / hyper
baseline is normal
gest4 is a factor with levels: [20,35)/[35,37)/[37,39)/[39,45)
effects are measured as differences in means
---------------------------------------------------------------------------

effect of hyp on bweight
stratified by gest4

number of observations 490

Effect 2.5% 97.5%
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strata [20,35) level hyper vs normal -673.0 -1040 -307.00
strata [35,37) level hyper vs normal -158.0 -510 195.00
strata [37,39) level hyper vs normal -180.0 -366 6.23
strata [39,45) level hyper vs normal -91.6 -298 114.00

Test for effect modification on 3 df: p-value= 0.0553

The estimated effects of hyp in the different strata defined by gest4 thus range from
about −100 g among those with ≥ 39 weeks of gestation to about −700 g among those
with < 35 weeks of gestation. The error margin especially around the latter estimate is
quite wide, though. The P -value 0.055 from the test for effect modification indicates
weak evidence against the null hypothesis of “no interaction between hyp and gest4”.
On the other hand, this test may well be not very sensitive given the small number of
preterm babies in these data.

12. Stratified estimation of effects can also be done by lm(), and you should get the same
results:

> m3 <- lm(bweight ~ gest4/hyp, data = births)
> round( ci.lin(m3)[ , c(1,5,6)], 1)

Estimate 2.5% 97.5%
(Intercept) 1929.1 1732.1 2126.2
gest4[35,37) 710.5 431.9 989.2
gest4[37,39) 1197.0 984.7 1409.3
gest4[39,45) 1479.9 1273.9 1685.8
gest4[20,35):hyphyper -673.0 -1038.8 -307.3
gest4[35,37):hyphyper -158.0 -510.5 194.5
gest4[37,39):hyphyper -180.1 -366.4 6.2
gest4[39,45):hyphyper -91.6 -297.5 114.4

13. An equivalent model with an explicit interaction term between gest4 and hyp is fitted
as follows

> m3I <- lm(bweight ~ gest4 + hyp + gest4:hyp, data = births)
> round( ci.lin(m3I)[ , c(1,5,6)], 1)

Estimate 2.5% 97.5%
(Intercept) 1929.1 1732.1 2126.2
gest4[35,37) 710.5 431.9 989.2
gest4[37,39) 1197.0 984.7 1409.3
gest4[39,45) 1479.9 1273.9 1685.8
hyphyper -673.0 -1038.8 -307.3
gest4[35,37):hyphyper 515.0 7.1 1023.0
gest4[37,39):hyphyper 492.9 82.5 903.4
gest4[39,45):hyphyper 581.5 161.7 1001.2

From this output you would find a familiar estimate −673 g for those < 35 gestational
weeks. The remaining coefficients are estimates of the interaction effects such that e.g.
515 = −158− (−673) g describes the contrast in the effect of hyp on bweight between
those 35 to < 37 weeks and those < 35 weeks of gestation.
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14. Perhaps a more appropriate reference level for the categorized gestational age would be
the highest one. Changing the reference level, here to be the 4th category, can be done
by Relevel() function in the Epi package, after which an equivalent interaction model
is fitted, now using a shorter expression for it in the model formula:

> births$gest4b <- Relevel( births$gest4, ref = 4)
> m3Ib <- lm(bweight ~ gest4b*hyp, data = births)
> round( ci.lin(m3Ib)[ , c(1,5,6)], 1)

Estimate 2.5% 97.5%
(Intercept) 3409.0 3349.1 3468.9
gest4b[20,35) -1479.9 -1685.8 -1273.9
gest4b[35,37) -769.3 -975.3 -563.4
gest4b[37,39) -282.9 -382.0 -183.8
hyphyper -91.6 -297.5 114.4
gest4b[20,35):hyphyper -581.5 -1001.2 -161.7
gest4b[35,37):hyphyper -66.4 -474.7 341.8
gest4b[37,39):hyphyper -88.5 -366.3 189.2

Notice now the coefficient −91.6 for hyp. It estimates the effect of hyp on bweight

among those with ≥ 39 weeks of gestation. The estimate −88.5 g = −180.1− (−91.6) g
describes the additional effect of hyp in the category 37 to 38 weeks of gestation upon
that in the reference class.

15. At this stage it is interesting to compare the results from the interaction models to those
from the corresponding main effects model, in which the effect of hyp is assumed not to
be modified by gest4:

> m3M <- lm(bweight ~ gest4 + hyp, data = births)
> round( ci.lin(m3M)[ , c(1,5,6)], 1)

Estimate 2.5% 97.5%
(Intercept) 1792.1 1621.6 1962.6
gest4[35,37) 861.0 627.0 1095.1
gest4[37,39) 1337.8 1155.7 1519.9
gest4[39,45) 1626.2 1447.9 1804.4
hyphyper -201.0 -322.9 -79.1

The estimate −201 g describing the overall effect of hyp is obtained as a weighted
average of the stratum-specific estimates obtained by effx() above. It is a meaningful
estimate adjusting for gest4 insofar as it is reasonable to assume that the effect of hyp
is not modified by gest4. This assumption or the “no interaction” null hypothesis can
formally be tested by a common deviance test.

> anova(m3I, m3M)

Analysis of Variance Table

Model 1: bweight ~ gest4 + hyp + gest4:hyp
Model 2: bweight ~ gest4 + hyp
Res.Df RSS Df Sum of Sq F Pr(>F)

1 482 107195493
2 485 108883306 -3 -1687813 2.5297 0.05659 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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The P -value is practically the same as before when the interaction was tested in effx().
However, in spite of obtaining a “non-significant” result from this test, the possibility of
a real interaction should not be ignored in this case.

16. Now, use effx() to stratify (i) the effect of hyp on bweight by sex and then (ii)
perform the stratified analysis using the two ways of fitting an interaction model with
lm.

---------------------------------------------------------------------------
response : bweight
type : metric
exposure : hyp
stratified by : sex

hyp is a factor with levels: normal / hyper
baseline is normal
sex is a factor with levels: M/F
effects are measured as differences in means
---------------------------------------------------------------------------

effect of hyp on bweight
stratified by sex

number of observations 500

Effect 2.5% 97.5%
strata M level hyper vs normal -496 -696 -297
strata F level hyper vs normal -380 -617 -142

Test for effect modification on 1 df: p-value= 0.462

Estimate 2.5% 97.5%
(Intercept) 3310.7 3230.1 3391.4
sexF -231.2 -347.2 -115.3
sexM:hyphyper -496.4 -696.1 -296.6
sexF:hyphyper -379.8 -617.4 -142.2

Estimate 2.5% 97.5%
(Intercept) 3310.7 3230.1 3391.4
sexF -231.2 -347.2 -115.3
hyphyper -496.4 -696.1 -296.6
sexF:hyphyper 116.6 -193.8 427.0

Look at the results. Is there evidence for the effect of hyp being modified by sex?

2.8.6 Controlling or adjusting for the effect of hyp for sex

The effect of hyp is controlled for – or adjusted for – sex by first looking at the estimated
effects of hyp in the two stata defined by sex, and then combining these effects if they seem
sufficiently similar. In this case the estimated effects were −496 and −380 which look quite
similar (and the P -value against “no interaction” was quite large, too), so we can perhaps
combine them, and control for sex.

17. The combining is done by declaring sex as a control variable:
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> effx(bweight, type="metric", exposure=hyp, control=sex, data=births)

---------------------------------------------------------------------------
response : bweight
type : metric
exposure : hyp
control vars : sex

hyp is a factor with levels: normal / hyper
baseline is normal
effects are measured as differences in means
---------------------------------------------------------------------------

effect of hyp on bweight
controlled for sex

number of observations 500

Effect 2.5% 97.5%
-448 -601 -295

Test for no effects of exposure on 1 df: p-value= 9.07e-09

18. The same is done with lm() as follows:

> m4 <- lm(bweight ~ sex + hyp, data = births)
> ci.lin(m4)[ , c(1,5,6)]

Estimate 2.5% 97.5%
(Intercept) 3302.8845 3225.0823 3380.6867
sexF -214.9931 -322.4614 -107.5249
hyphyper -448.0817 -600.8911 -295.2723

The estimated effect of hyp on bweight controlled for sex is thus −448 g. There can be
more than one control variable, e.g control=list(sex,agegrp).

Many people go straight ahead and control for variables which are likely to confound the
effect of exposure without bothering to stratify first, but usually it is useful to stratify
first.

2.8.7 Numeric exposures

If we wished to study the effect of gestation time on the baby’s birth weight then gestwks is a
numeric exposure.

19. Assuming that the relationship of the response with gestwks is roughly linear (for a
metric response) we can estimate the linear effect of gestwks, both with effx() and
with lm() as follows:

> effx(response=bweight, type="metric", exposure=gestwks,data=births)

---------------------------------------------------------------------------
response : bweight
type : metric
exposure : gestwks
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gestwks is numeric
effects are measured as differences in means
---------------------------------------------------------------------------

effect of an increase of 1 unit in gestwks on bweight
number of observations 490

Effect 2.5% 97.5%
197 180 214

Test for no effects of exposure on 1 df: p-value= <2e-16

> m5 <- lm(bweight ~ gestwks, data=births) ; ci.lin(m5)[ , c(1,5,6)]

Estimate 2.5% 97.5%
(Intercept) -4489.1398 -5157.2891 -3820.9905
gestwks 196.9726 179.7482 214.1971

We have fitted a simple linear regression model and obtained estimates of the two
regression coefficient: intercept and slope. The linear effect of gestwks is thus
estimated by the slope coefficient, which is 197 g per each additional week of gestation.

20. You cannot stratify by a numeric variable, but you can study the effects of a numeric
exposure stratified by (say) agegrp with

> effx(bweight, type="metric", exposure=gestwks, strata=agegrp, data=births)

---------------------------------------------------------------------------
response : bweight
type : metric
exposure : gestwks
stratified by : agegrp

gestwks is numeric
agegrp is a factor with levels: [20,25)/[25,30)/[30,35)/[35,40)/[40,45)
effects are measured as differences in means
---------------------------------------------------------------------------

effect of an increase of 1 unit in gestwks on bweight
stratified by agegrp

number of observations 490

Effect 2.5% 97.5%
strata [20,25) 85 -191 361
strata [25,30) 206 167 245
strata [30,35) 198 171 225
strata [35,40) 202 168 235
strata [40,45) 175 124 226

Test for effect modification on 4 df: p-value= 0.8

You can control/adjust for a numeric variable by putting it in the control list.
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2.8.8 Checking the assumptions of the linear model

At this stage it will be best to make some visual check concerning our model assumptions
using plot(). In particular, when the main argument for the generic function plot() is a
fitted lm object, it will provide you some common diagnostic graphs.

21. To check whether bweight goes up linearly with gestwks try

> with(births, plot(gestwks,bweight))
> abline(m5)
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22. Moreover, take a look at the basic diagnostic plots for the fitted model.

> par(mfrow=c(2,2))
> plot(m5)
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What can
you say about the agreement with data of the assumptions of the simple linear
regression model, like linearity of the systematic dependence, homoskedasticity and
normality of the error terms?

2.8.9 Third degree polynomial of gestwks

A common practice to assess possible deviations from linearity is to compare the fit of the
simple model with models having higher order polynomial terms. In perinatal epidemiology a
popular model for describing the relationship between gestational age and birth weight is a
3rd degree polynomial.

23. For fitting a third degree polynomial of gestwks we can update our previous simple
linear model by adding the quadratic and cubic terms of gestwks using the insulate
operator I()

> m6 <- update(m5, . ~ . + I(gestwks^2) + I(gestwks^3))
> round(ci.lin(m6)[, c(1,5,6)], 1)

Estimate 2.5% 97.5%
(Intercept) 42830.6 12412.2 73249.0
gestwks -4058.6 -6700.3 -1416.8
I(gestwks^2) 125.6 49.8 201.3
I(gestwks^3) -1.2 -1.9 -0.5
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The intercept and linear coefficients are really spectacular – but don’t make any sense!

24. A more elegant way of fitting polynomial models is to utilize orthogonal polynomials,
which are linear transformations of the original polynomial terms such that they are
mutually uncorrelated. However, they are scaled in such a way that the estimated
regression coefficients are also difficult to interpret, apart from the intercept term.

25. As function poly() creating orthogonal polynomials does not accepet missing values, we
shall only include babies whose value of gestwks is not missing. Let us also perform an
F test for the null hypothesis of simple linear effect against the 3rd degree polynomial
model

> births2 <- subset(births, !is.na(gestwks))
> m.ortpoly <- lm(bweight ~ poly(gestwks, 3), data= births2 )
> round(ci.lin(m.ortpoly)[, c(1,5,6)], 1)

Estimate 2.5% 97.5%
(Intercept) 3138.0 3098.7 3177.4
poly(gestwks, 3)1 10079.9 9208.9 10950.8
poly(gestwks, 3)2 -740.6 -1611.5 130.4
poly(gestwks, 3)3 -1478.5 -2349.4 -607.6

> anova(m5, m.ortpoly)

Analysis of Variance Table

Model 1: bweight ~ gestwks
Model 2: bweight ~ poly(gestwks, 3)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 488 98698698
2 486 95964282 2 2734416 6.9241 0.001084 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that the estimated intercept 3138 g has the same value as the mean birth weight
among all those babies who are included, i.e. whose gestational age was known.

There seems to be strong evidence against simple linear regression; addition of the
quadratic and the cubic term appears to have reduced the residual sum of squares
“highly significantly”.

26. Irrespective of whether the polynomial terms were orthogonalized or not, the fitted or
predicted values for the response variable remain the same. As the next step we shall
present graphically the fitted polynomial curve together with 95 % confidence limits for
the expected responses as well as 95 % prediction intervals for individual observations in
new data comprising gestational weeks from 24 to 45 in steps of 0.25 weeks.

> nd <- data.frame(gestwks = seq(24, 45, by = 0.25) )
> fit.poly <- predict( m.ortpoly, newdata=nd, interval="conf" )
> pred.poly <- predict( m.ortpoly, newdata=nd, interval="pred" )
> par(mfrow=c(1,1))
> with( births, plot( bweight ~ gestwks, xlim = c(23, 46), cex.axis= 1.5, cex.lab = 1.5 ) )
> matlines( nd$gestwks, fit.poly, lty=1, lwd=c(3,2,2), col=c('red','blue','blue') )
> matlines( nd$gestwks, pred.poly, lty=1, lwd=c(3,2,2), col=c('red','green','green') )
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The fitted
curve fits nicely within the range of observed values of the regressor. However, the tail
behaviour in polynomial models tends to be problematic.

We shall continue the analysis in the next practical, in which the apparently curved
effect of gestwks is modelled by a penalized spline. Also, key details in fitting linear
regression models and spline models are covered in the lecture of this afternoon.

2.8.10 Extra (if you have time): Frequency data

Data from very large studies are often summarized in the form of frequency data, which
records the frequency of all possible combinations of values of the variables in the study. Such
data are sometimes presented in the form of a contingency table, sometimes as a data frame
in which one variable is the frequency. As an example, consider the UCBAdmissions data,
which is one of the standard R data sets, and refers to the outcome of applications to 6
departments in the graduate school at Berkeley by gender.

27. Let us have a look at the data

> UCBAdmissions

, , Dept = A

Gender
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Admit Male Female
Admitted 512 89
Rejected 313 19

, , Dept = B

Gender
Admit Male Female
Admitted 353 17
Rejected 207 8

, , Dept = C

Gender
Admit Male Female
Admitted 120 202
Rejected 205 391

, , Dept = D

Gender
Admit Male Female
Admitted 138 131
Rejected 279 244

, , Dept = E

Gender
Admit Male Female
Admitted 53 94
Rejected 138 299

, , Dept = F

Gender
Admit Male Female
Admitted 22 24
Rejected 351 317

You can see that the data are in the form of a 2× 2× 6 contingency table for the three
variables Admit (admitted/rejected), Gender (male/female), and Dept (A/B/C/D/E/F).
Thus in department A 512 males were admitted while 312 were rejected, and so on. The
question of interest is whether there is any bias against admitting female applicants.

28. The next command coerces the contingency table to a data frame, and shows the first
10 lines.

> ucb <- as.data.frame(UCBAdmissions)
> head(ucb)

Admit Gender Dept Freq
1 Admitted Male A 512
2 Rejected Male A 313
3 Admitted Female A 89
4 Rejected Female A 19
5 Admitted Male B 353
6 Rejected Male B 207
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The relationship between the contingency table and the data frame should be clear.

29. Let us turn Admit into a numeric variable coded 1 for rejection, 0 for admission

> ucb$Admit <- as.numeric(ucb$Admit)-1

The effect of Gender on Admit is crudely estimated by

> effx(Admit,type="binary",exposure=Gender,weights=Freq,data=ucb)

---------------------------------------------------------------------------
response : Admit
type : binary
exposure : Gender

Gender is a factor with levels: Male / Female
baseline is Male
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of Gender on Admit
number of observations 24

Effect 2.5% 97.5%
1.84 1.62 2.09

Test for no effects of exposure on 1 df: p-value= <2e-16

The odds of rejection for female applicants thus appear to be 1.84 times the odds for
males (note the use of weights to take account of the frequencies). A crude analysis
therefore suggests there is a strong bias against admitting females.

30. Continue the analysis by stratifying the crude analysis by department - does this still
support a bias against females? What is the effect of gender controlled for department?

---------------------------------------------------------------------------
response : Admit
type : binary
exposure : Gender
stratified by : Dept

Gender is a factor with levels: Male / Female
baseline is Male
Dept is a factor with levels: A/B/C/D/E/F
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of Gender on Admit
stratified by Dept

number of observations 24

Effect 2.5% 97.5%
strata A level Female vs Male 0.349 0.209 0.584
strata B level Female vs Male 0.803 0.340 1.890
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strata C level Female vs Male 1.130 0.855 1.500
strata D level Female vs Male 0.921 0.686 1.240
strata E level Female vs Male 1.220 0.825 1.810
strata F level Female vs Male 0.828 0.455 1.510

Test for effect modification on 5 df: p-value= 0.00114

---------------------------------------------------------------------------
response : Admit
type : binary
exposure : Gender
control vars : Dept

Gender is a factor with levels: Male / Female
baseline is Male
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of Gender on Admit
controlled for Dept

number of observations 24

Effect 2.5% 97.5%
0.905 0.772 1.060

Test for no effects of exposure on 1 df: p-value= 0.216
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2.9 Estimation and reporting of curved effects

This exercise deals with modelling of curved effects of continuous explanatory variables both
on a metric response assuming the Gaussian distribution and on a count or rate outcome
based on the Poisson family.

In the first part we continue our analysis on gestational age on birth weight focussing on
fitting spline models, both unpenalized and a penalized one.

In the second part we analyse the testisDK data found in the Epi package. It contains the
numbers of cases of testis cancer and mid-year populations (person-years) in 1-year age groups
in Denmark during 1943–96. In this analysis we apply Poisson regression on the incidence
rates treating age and calendar time, first as categorical but then fitting a penalized spline
model.

2.9.1 Data births: Simple linear regression and 3rd degree
polynomial

Recall what was done in items 17 to 24 of the Exercise on simple estimation of effects, in
which a simple linear regression and a 3rd degree polynomial were fitted. The main results are
also shown on slides 6, 8, 9, and 20 of the lecture on linear models.

1. Make a basic scatter plot and draw the fitted line from a simple linear regression on it.

> library(Epi)
> data(births)
> par(mfrow=c(1,1))
> with(births, plot(gestwks, bweight))
> mlin <- lm(bweight ~ gestwks, data = births )
> abline(mlin)
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2. Repeat also the diagnostic plots of this simple model

> par(mfrow=c(2,2))
> plot(mlin)
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Some
deviation from the linear model is apparent.

2.9.2 Fitting a natural cubic spline

A popular approach for flexible modelling is based on natural regression splines, which have
more reasonable tail behaviour than polynomial regression.

3. By the following piece of code you can fit a natural cubic spline with 5 pre-specified
knots to be put at 28, 34, 38, 40 and 43 weeks of gestation, respectively, determining the
degree of smoothing.

> library(splines)
> mNs5 <- lm( bweight ~ Ns( gestwks,
+ knots = c(28,34,38,40,43)), data = births)
> round(ci.lin(mNs5)[ , c(1,5,6)], 1)

Estimate 2.5% 97.5%
(Intercept) 987.1 696.2 1278.1
Ns(gestwks, knots = c(28, 34, 38, 40, 43))1 1996.9 1678.0 2315.8
Ns(gestwks, knots = c(28, 34, 38, 40, 43))2 2234.2 2005.2 2463.2
Ns(gestwks, knots = c(28, 34, 38, 40, 43))3 3271.0 2618.1 3924.0
Ns(gestwks, knots = c(28, 34, 38, 40, 43))4 2265.8 1886.3 2645.3
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These regression coefficients are even less interpretable than those in the polynomial
model.

4. A graphical presentation of the fitted curve together with the confidence and prediction
intervals is more informative:

> nd <- data.frame(gestwks = seq(24, 45, by = 0.25) )
> fit.Ns5 <- predict( mNs5, newdata=nd, interval="conf" )
> pred.Ns5 <- predict( mNs5, newdata=nd, interval="pred" )
> par(mfrow=c(1,1))
> with(births, plot(bweight ~ gestwks, xlim=c(23, 46),cex.axis= 1.5,cex.lab = 1.5 ) )
> # matshade gives you semitransparent areas
> matshade( nd$gestwks, fit.Ns5, lwd=2, alpha=0.2 )
> matshade( nd$gestwks, pred.Ns5, lwd=2, alpha=0.2 )
> # matlines puts lines for the intervals
> matlines( nd$gestwks, fit.Ns5, lty=1, lwd=c(3,2,2), col=c('red','blue','blue') )
> matlines( nd$gestwks, pred.Ns5, lty=1, lwd=c(3,2,2), col=c('red','green','green') )
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Compare
this with the 3rd order curve previously fitted (see slide 20 of the lecture). In a natural
spline the curve is constrained to be linear beyond the extreme knots.

5. Take a look at the basic diagnostic plots from the spline model.
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> par(mfrow=c(2,2))
> plot(mNs5)
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How would
you interpret these plots?

The choice of the number of knots and their locations can be quite arbitrary, and the
results are often sensitive to these choices.

6. To illustrate arbitrariness and associated problems with specification of knots, you may
now fit another natural spline model like the one above but now with 10 knots at the
following sequence of points: seq(25, 43, by = 2). Display graphically the results

> mNs10 <- lm( bweight ~ Ns( gestwks, knots = seq(25, 43, by = 2)),
+ data = births)
> round(ci.lin(mNs10)[ , c(1,5,6)], 1)

Estimate 2.5% 97.5%
(Intercept) 799.9 48.7 1551.1
Ns(gestwks, knots = seq(25, 43, by = 2))1 692.5 -1453.2 2838.3
Ns(gestwks, knots = seq(25, 43, by = 2))2 467.2 -620.5 1554.9
Ns(gestwks, knots = seq(25, 43, by = 2))3 989.9 1.8 1978.0
Ns(gestwks, knots = seq(25, 43, by = 2))4 1608.1 762.9 2453.3
Ns(gestwks, knots = seq(25, 43, by = 2))5 1989.6 1202.3 2776.9
Ns(gestwks, knots = seq(25, 43, by = 2))6 2515.0 1745.8 3284.2
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Ns(gestwks, knots = seq(25, 43, by = 2))7 2796.4 2089.2 3503.7
Ns(gestwks, knots = seq(25, 43, by = 2))8 2508.1 796.7 4219.4
Ns(gestwks, knots = seq(25, 43, by = 2))9 3117.4 2204.7 4030.1

> fit.Ns10 <- predict( mNs10, newdata=nd, interval="conf" )
> pred.Ns10 <- predict( mNs10, newdata=nd, interval="pred" )
> par(mfrow=c(1,1))
> with( births, plot( bweight ~ gestwks, xlim = c(23, 46), cex.axis= 1.5, cex.lab = 1.5 ) )
> matshade( nd$gestwks, fit.Ns10, lwd=2, alpha=0.2 )
> matshade( nd$gestwks, pred.Ns10, lwd=2, alpha=0.2 )
> matlines( nd$gestwks, fit.Ns10, lty=1, lwd=c(3,2,2), col=c('red','blue','blue') )
> matlines( nd$gestwks, pred.Ns10, lty=1, lwd=c(3,2,2), col=c('red','green','green') )
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The
behaviour of the curve is really wild for small values of gestwks!

2.9.3 Penalized spline model

One way to go around the arbitrariness in the specification of knots is to fit a penalized spline
model, which imposes a “roughness penalty” on the curve. Even though a big number of knots
are initially allowed, the resulting fitted curve will be optimally smooth.

You cannot fit a penalized spline model with lm() or glm(), Instead, function gam() in
package mgcv can be used for this purpose.
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7. You must first install R package mgcv into your computer.

8. When calling gam(), the model formula contains expression ’s(X)’ for any explanatory
variable X, for which you wish to fit a smooth function

> library(mgcv)
> mPs <- gam( bweight ~ s(gestwks), data = births)
> summary(mPs)

Family: gaussian
Link function: identity

Formula:
bweight ~ s(gestwks)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3138.01 20.11 156 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(gestwks) 3.321 4.189 124.7 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.516 Deviance explained = 51.9%
GCV = 1.9995e+05 Scale est. = 1.9819e+05 n = 490

From the output given by summary() you find that the estimated intercept is here, too,
equal to the overall mean birth weight in the data. The estimated residual variance is
given by “Scale est.” or from subobject sig2 of the fitted gam object. Taking square
root you will obtain the estimated residual standard deviation: 445.2 g.

> mPs$sig2

[1] 198186

> sqrt(mPs$sig2)

[1] 445.1808

The degrees of freedom in this model are not computed as simply as in previous models,
and they typically are not integer-valued. However, the fitted spline seems to consume
only a little more degrees of freedom as the 3rd degree polynomial above.

9. As in previous models we shall plot the fitted curve together with 95 % confidence
intervals for the mean responses and 95 % prediction intervals for individual responses.
Obtaining these quantities from the fitted gam object requires a bit more work than with
lm objects
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> pr.Ps <- predict( mPs, newdata=nd, se.fit=TRUE)
> par(mfrow=c(1,1))
> with(births, plot(bweight ~ gestwks, xlim=c(24, 45), cex.axis=1.5, cex.lab=1.5) )
> matshade( nd$gestwks, cbind(pr.Ps$fit,
+ pr.Ps$fit - 2*pr.Ps$se.fit,
+ pr.Ps$fit + 2*pr.Ps$se.fit), lwd=2 )
> matshade( nd$gestwks, cbind(pr.Ps$fit,
+ pr.Ps$fit - 2*sqrt( pr.Ps$se.fit^2 + mPs$sig2),
+ pr.Ps$fit + 2*sqrt( pr.Ps$se.fit^2 + mPs$sig2)), lwd=2 )
> matlines( nd$gestwks, cbind(pr.Ps$fit,
+ pr.Ps$fit - 2*pr.Ps$se.fit,
+ pr.Ps$fit + 2*pr.Ps$se.fit),
+ lty=1, lwd=c(3,2,2), col=c('red','blue','blue') )
> matlines( nd$gestwks, cbind(pr.Ps$fit,
+ pr.Ps$fit - 2*sqrt( pr.Ps$se.fit^2 + mPs$sig2),
+ pr.Ps$fit + 2*sqrt( pr.Ps$se.fit^2 + mPs$sig2)),
+ lty=1, lwd=c(3,2,2), col=c('red','green','green') )
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The fitted
curve is indeed clearly more reasonable than the polynomial.

2.9.4 Testis cancer: Data input and housekeeping

We shall now switch to analyzing the incidence of testis cancer in Denmark during 1943–1998
by age and calendar time or period.
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10. Load the data and inspect its structure:

> library( Epi )
> data( testisDK )
> str( testisDK )

'data.frame': 4860 obs. of 4 variables:
$ A: num 0 1 2 3 4 5 6 7 8 9 ...
$ P: num 1943 1943 1943 1943 1943 ...
$ D: num 1 1 0 1 0 0 0 0 0 0 ...
$ Y: num 39650 36943 34588 33267 32614 ...

> summary( testisDK )

A P D Y
Min. : 0.0 Min. :1943 Min. : 0.000 Min. : 471.7
1st Qu.:22.0 1st Qu.:1956 1st Qu.: 0.000 1st Qu.:18482.2
Median :44.5 Median :1970 Median : 1.000 Median :28636.0
Mean :44.5 Mean :1970 Mean : 1.812 Mean :26239.8
3rd Qu.:67.0 3rd Qu.:1983 3rd Qu.: 2.000 3rd Qu.:36785.5
Max. :89.0 Max. :1996 Max. :17.000 Max. :47226.8

> head( testisDK )

A P D Y
1 0 1943 1 39649.50
2 1 1943 1 36942.83
3 2 1943 0 34588.33
4 3 1943 1 33267.00
5 4 1943 0 32614.00
6 5 1943 0 32020.33

11. There are nearly 5000 observations from 90 one-year age groups and 54 calendar years.
To get a clearer picture of what’s going one we do some housekeeping. The age range
will be limited to 15–79 years, and age and period are both categorised into 5-year
intervals – according to the time-honoured practice in epidemiology.

> tdk <- subset(testisDK, A > 14 & A < 80)
> tdk$Age <- cut(tdk$A, br = 5*(3:16),
+ include.lowest=TRUE, right=FALSE)
> nAge <- length(levels(tdk$Age))
> tdk$Per <- cut(tdk$P, br = seq(1943, 1998, by = 5),
+ include.lowest=TRUE, right=FALSE)
> nPer <- length(levels(tdk$Per))

2.9.5 Some descriptive analysis

Computation and tabulation of incidence rates

12. Tabulate numbers of cases and person-years, and compute the incidence rates (per
100,000 y) in each 5 y × 5 y cell using stat.table()
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> tab <- stat.table( index = list(Age, Per),
+ contents = list(D = sum(D),
+ Y = sum(Y/1000),
+ rate = ratio(D, Y, 10^5) ),
+ margins = TRUE, data = tdk )
> print(tab, digits=c(sum=0, ratio=1))

------------------------------------------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------Per---------------------------------------------------------------------

Age [1943,1948) [1948,1953) [1953,1958) [1958,1963) [1963,1968) [1968,1973) [1973,1978) [1978,1983) [1983,1988) [1988,1993) [1993,1998] Total
------------------------------------------------------------------------------------------------------------------------------------------------------
[15,20) 10 7 13 13 15 33 35 37 49 51 41 304

774 744 794 973 1052 961 953 1011 1005 930 670 9866
1.3 0.9 1.6 1.3 1.4 3.4 3.7 3.7 4.9 5.5 6.1 3.1

[20,25) 30 31 46 49 55 85 110 140 151 150 112 959
813 745 722 771 960 1054 967 953 1020 1017 761 9783
3.7 4.2 6.4 6.4 5.7 8.1 11.4 14.7 14.8 14.7 14.7 9.8

[25,30) 55 62 63 82 87 103 153 201 214 268 194 1482
791 782 723 699 765 963 1056 961 956 1032 836 9562
7.0 7.9 8.7 11.7 11.4 10.7 14.5 20.9 22.4 26.0 23.2 15.5

[30,35) 56 66 82 88 103 124 164 207 209 258 251 1608
799 775 769 712 700 770 960 1045 955 957 821 9264
7.0 8.5 10.7 12.4 14.7 16.1 17.1 19.8 21.9 27.0 30.6 17.4

[35,40) 53 56 56 67 99 124 142 152 188 209 199 1345
769 783 760 760 712 702 767 952 1036 949 764 8954
6.9 7.2 7.4 8.8 13.9 17.7 18.5 16.0 18.2 22.0 26.1 15.0

[40,45) 35 47 65 64 67 85 103 119 121 155 126 987
694 754 768 750 757 710 697 758 940 1024 755 8606
5.0 6.2 8.5 8.5 8.9 12.0 14.8 15.7 12.9 15.1 16.7 11.5

[45,50) 29 30 37 54 45 64 63 66 92 86 96 662
622 677 738 753 738 746 698 682 743 923 818 8139
4.7 4.4 5.0 7.2 6.1 8.6 9.0 9.7 12.4 9.3 11.7 8.1

[50,55) 16 28 22 27 46 36 50 49 61 64 51 450
539 600 654 715 733 718 724 676 661 721 702 7443
3.0 4.7 3.4 3.8 6.3 5.0 6.9 7.3 9.2 8.9 7.3 6.0

[55,60) 6 14 16 25 26 29 28 43 42 34 45 308
471 513 571 623 681 698 684 686 641 628 545 6740
1.3 2.7 2.8 4.0 3.8 4.2 4.1 6.3 6.6 5.4 8.3 4.6

[60,65) 9 12 11 13 20 18 28 23 26 15 10 185
403 435 475 528 573 627 643 628 630 591 464 5997
2.2 2.8 2.3 2.5 3.5 2.9 4.4 3.7 4.1 2.5 2.2 3.1

[65,70) 13 9 10 13 8 8 21 24 15 13 16 150
328 358 386 420 463 501 548 563 549 553 421 5092
4.0 2.5 2.6 3.1 1.7 1.6 3.8 4.3 2.7 2.4 3.8 2.9

[70,75) 9 6 5 7 8 16 12 14 19 12 8 116
230 269 295 317 342 374 405 443 458 449 365 3947
3.9 2.2 1.7 2.2 2.3 4.3 3.0 3.2 4.1 2.7 2.2 2.9
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[75,80] 6 3 7 11 6 8 5 9 1 10 10 76
140 167 196 215 229 246 268 290 319 336 263 2670
4.3 1.8 3.6 5.1 2.6 3.2 1.9 3.1 0.3 3.0 3.8 2.8

Total 327 371 433 513 585 733 914 1084 1188 1325 1159 8632
7375 7601 7851 8236 8703 9070 9371 9649 9913 10109 8185 96064
4.4 4.9 5.5 6.2 6.7 8.1 9.8 11.2 12.0 13.1 14.2 9.0

------------------------------------------------------------------------------------------------------------------------------------------------------

Look at the incidence rates in the column margin and in the row margin. In which age
group is the marginal age-specific rate highest? Do the period-specific marginal rates
have any trend over time?

13. From the saved table object tab you can plot an age-incidence curve for each period
separately, after you have checked the structure of the table, so that you know the
relevant dimensions in it.

> str(tab)

'stat.table' num [1:3, 1:14, 1:12] 10 773.81 1.29 30 813.02 ...
- attr(*, "dimnames")=List of 3
..$ contents: Named chr [1:3] "D" "Y" "rate"
.. ..- attr(*, "names")= chr [1:3] "D" "Y" "rate"
..$ Age : chr [1:14] "[15,20)" "[20,25)" "[25,30)" "[30,35)" ...
..$ Per : chr [1:12] "[1943,1948)" "[1948,1953)" "[1953,1958)" "[1958,1963)" ...
- attr(*, "table.fun")= chr [1:3] "sum" "sum" "ratio"

> par(mfrow=c(1,1))
> plot( c(15,80), c(1,30), type='n', log='y', cex.lab = 1.5, cex.axis = 1.5,
+ xlab = "Age (years)", ylab = "Incidence rate (per 100000 y)")
> for (p in 1:nPer)
+ lines( seq(17.5, 77.5, by = 5), tab[3, 1:nAge, p], type = 'o', pch = 16 ,
+ lty = rep(1:6, 2)[p] )
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There is
also a function rateplot that does default plotting of rate tables (see the help page for
rateplot):

> par( mfrow=c(1,1) )
> rateplot( tab[3,1:nAge,1:nPer], "ap", ylim=c(1,30),
+ age = seq(15,75,5), per=seq(1943,1993,5),
+ col=heat.colors(16), ann=TRUE )
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Is there any
common pattern in the age-incidence curves across the periods?

2.9.6 Age and period as categorical factors

We shall first fit a Poisson regression model with log link on age and period model in the
traditional way, in which both factors are treated as categorical. The model is additive on the
log-rate scale. It is useful to scale the person-years to be expressed in 105 y.

14. > mCat <- glm( D ~ Age + Per, offset=log(Y/100000), family=poisson, data= tdk )
> round( ci.exp( mCat ), 2)

exp(Est.) 2.5% 97.5%
(Intercept) 1.47 1.26 1.72
Age[20,25) 3.13 2.75 3.56
Age[25,30) 4.90 4.33 5.54
Age[30,35) 5.50 4.87 6.22
Age[35,40) 4.78 4.22 5.42
Age[40,45) 3.66 3.22 4.16
Age[45,50) 2.60 2.27 2.97
Age[50,55) 1.94 1.68 2.25
Age[55,60) 1.47 1.25 1.72
Age[60,65) 0.98 0.82 1.18
Age[65,70) 0.92 0.76 1.12
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Age[70,75) 0.90 0.73 1.12
Age[75,80] 0.86 0.67 1.11
Per[1948,1953) 1.12 0.96 1.30
Per[1953,1958) 1.30 1.13 1.50
Per[1958,1963) 1.53 1.33 1.76
Per[1963,1968) 1.68 1.47 1.92
Per[1968,1973) 1.98 1.74 2.25
Per[1973,1978) 2.33 2.05 2.64
Per[1978,1983) 2.66 2.35 3.01
Per[1983,1988) 2.83 2.50 3.20
Per[1988,1993) 3.08 2.73 3.47
Per[1993,1998] 3.31 2.93 3.74

What do the estimated rate ratios tell about the age and period effects?

15. A graphical inspection of point estimates and confidence intervals can be obtained as
follows. In the beginning it is useful to define shorthands for the pertinent mid-age and
mid-period values of the different intervals

> aMid <- seq(17.5, 77.5, by = 5)
> pMid <- seq(1945, 1995, by = 5)
> par(mfrow=c(1,2))
> plot( c(15,80), c(0.6, 6), type='n', log='y', cex.lab = 1.5, cex.axis = 1.5,
+ xlab = "Age (years)", ylab = "Rate ratio")
> lines( aMid, c( 1, ci.exp(mCat)[2:13, 1] ), type = 'o', pch = 16 )
> segments( aMid[-1], ci.exp(mCat)[2:13, 2], aMid[-1], ci.exp(mCat)[2:13, 3] )
> plot( c(1943, 1998), c(0.6, 6), type='n', log='y', cex.lab = 1.5, cex.axis = 1.5,
+ xlab = "Calendar year", ylab = "Rate ratio")
> lines( pMid, c( 1, ci.exp(mCat)[14:23, 1] ), type = 'o', pch = 16 )
> segments( pMid[-1], ci.exp(mCat)[14:23, 2], pMid[-1], ci.exp(mCat)[14:23, 3] )
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16. In the fitted model the reference category for each factor was the first one. As age is the
dominating factor, it may be more informative to remove the intercept from the model.
As a consequence the age effects describe fitted rates at the reference level of the period
factor. For the latter one could choose the middle period 1968-72.

> tdk$Per70 <- Relevel(tdk$Per, ref = 6)
> mCat2 <- glm( D ~ -1 + Age +Per70, offset=log(Y/100000), family=poisson, data= tdk )
> round( ci.exp( mCat2 ), 2)

exp(Est.) 2.5% 97.5%
Age[15,20) 2.91 2.55 3.33
Age[20,25) 9.12 8.31 10.01
Age[25,30) 14.28 13.11 15.55
Age[30,35) 16.03 14.72 17.46
Age[35,40) 13.94 12.76 15.23
Age[40,45) 10.66 9.71 11.71
Age[45,50) 7.57 6.83 8.39
Age[50,55) 5.67 5.05 6.36
Age[55,60) 4.28 3.75 4.88
Age[60,65) 2.85 2.43 3.35
Age[65,70) 2.68 2.25 3.19
Age[70,75) 2.63 2.16 3.20
Age[75,80] 2.51 1.98 3.18
Per70[1943,1948) 0.51 0.44 0.58
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Per70[1948,1953) 0.57 0.50 0.64
Per70[1953,1958) 0.66 0.58 0.74
Per70[1958,1963) 0.77 0.69 0.87
Per70[1963,1968) 0.85 0.76 0.95
Per70[1973,1978) 1.18 1.07 1.30
Per70[1978,1983) 1.35 1.22 1.48
Per70[1983,1988) 1.43 1.30 1.57
Per70[1988,1993) 1.56 1.42 1.70
Per70[1993,1998] 1.67 1.53 1.84

We shall plot just the point estimates from the latter model

> par(mfrow=c(1,2))
> plot( c(15,80), c(2, 20), type='n', log='y', cex.lab = 1.5, cex.axis = 1.5,
+ xlab = "Age (years)", ylab = "Incidence rate (per 100000 y)")
> lines( aMid, c(ci.exp(mCat2)[1:13, 1] ), type = 'o', pch = 16 )
> plot( c(1943, 1998), c(0.4, 2), type='n', log='y', cex.lab = 1.5, cex.axis = 1.5,
+ xlab = "Calendar year - 1900", ylab = "Rate ratio")
> lines( pMid, c(ci.exp(mCat2)[14:18, 1], 1, ci.exp(mCat2)[19:23, 1]),
+ type = 'o', pch = 16 )
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2.9.7 Generalized additive model with penalized splines

It is obvious that the age effect on the log-rate scale is highly non-linear, but it is less clear
whether the true period effect deviates from linearity. Nevertheless, there are good indications
to try fitting smooth continuous functions for both.

17. As the next task we fit a generalized additive model for the log-rate on continuous age
and period applying penalized splines with default settings of function gam() in package
mgcv. In this fitting an “optimal” value for the penalty parameter is chosen based on an
AIC-like criterion known as UBRE.

> library(mgcv)
> mPen <- gam( D ~ s(A) + s(P), offset = log(Y/100000),
+ family = poisson, data = tdk)
> summary(mPen)

Family: poisson
Link function: log

Formula:
D ~ s(A) + s(P)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.70960 0.01793 95.33 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(A) 8.143 8.765 2560 <2e-16 ***
s(P) 3.046 3.790 1054 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.714 Deviance explained = 53.6%
UBRE = 0.082051 Scale est. = 1 n = 3510

The summary is quite brief, and the only estimated coefficient is the intercept, which
sets the baseline level for the log-rates, against which the relative age effects and period
effects will be contrasted. On the rate scale the baseline level (per 100000 y) is obtained
by exp(1.7096)

18. See also the default plot for the fitted curves (solid lines) describing the age and the
period effects which are interpreted as contrasts to the baseline level on the log-rate
scale.

> par(mfrow=c(1,2))
> plot(mPen, seWithMean=TRUE)
> abline(v = 1968, lty=3)
> abline(h = 0, lty=3)
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The dashed
lines describe the 95 % confidence band for the pertinent curve. One could get the
impression that year 1968 would be some kind of reference value for the period effect, as
it was in the categorical model previously fitted. This is not the case, however, because
gam() by default parametrizes the spline effects such that the reference level, at which
the spline effect is nominally zero, is the overall “grand mean” value of the log-rate in
the data. This corresponds to the principle of sum contrasts (contr.sum) for categorical
explanatory factors.

From the summary you will also find that the degrees of freedom value required for the
age effect is nearly the same as the default dimension k − 1 = 9 of the part of the model
matrix (or basis) initially allocated for each smooth function. (Here k refers to the
relevant argument that determines the basis dimension when specifying a smooth term
by s() in the model formula). On the other hand the period effect takes just about 3 df.

19. It is a good idea to do some diagnostic checking of the fitted model

> gam.check(mPen)

Method: UBRE Optimizer: outer newton
full convergence after 7 iterations.
Gradient range [-9.285084e-10,1.34693e-06]
(score 0.0820511 & scale 1).
Hessian positive definite, eigenvalue range [0.0002209238,0.0003823692].
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Model rank = 19 / 19

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value
s(A) 9.00 8.14 0.93 <2e-16 ***
s(P) 9.00 3.05 0.95 0.09 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The four diagnostic plots are analogous to some of those used in the context of linear
models for Gaussian responses, but not all of them may be as easy to interpret. – Pay
attention to the note given in the printed output about the value of k.

20. Let us refit the model but now with an increased k for age:

> mPen2 <- gam( D ~ s(A, k=20) + s(P), offset = log(Y/100000),
+ family = poisson, data = tdk)
> summary(mPen2)

Family: poisson
Link function: log

Formula:
D ~ s(A, k = 20) + s(P)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.70863 0.01795 95.17 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(A) 11.132 13.406 2553 <2e-16 ***
s(P) 3.045 3.788 1054 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.714 Deviance explained = 53.7%
UBRE = 0.081809 Scale est. = 1 n = 3510

> gam.check(mPen2)

Method: UBRE Optimizer: outer newton
full convergence after 6 iterations.
Gradient range [-3.378212e-12,4.09135e-09]
(score 0.08180917 & scale 1).
Hessian positive definite, eigenvalue range [0.00022158,0.0009322223].
Model rank = 29 / 29

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value
s(A) 19.00 11.13 0.93 0.005 **
s(P) 9.00 3.05 0.95 0.105
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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With this choice of k the df value for age became about 11, which is well below
k − 1 = 19. Let us plot the fitted curves from this fitting, too

> par(mfrow=c(1,2))
> plot(mPen2, seWithMean=TRUE)
> abline(v = 1968, lty=3)
> abline(h = 0, lty=3)
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There does
not seem to have happened any essential changes from the previously fitted curves, so
maybe 8 df could, after all, be quite enough for the age effect.

21. Graphical presentation of the effects can be improved from that supported by
plot.gam(). We can, for instance, present the age curve to describe the “mean”
incidence rates by age, averaged over the 54 years. For that purpose we need to merge
the intercept with the age effect. The period curve will be expressed in terms of rate
ratios in relation to the fitted baseline rate, as determined by the model intercept.

In order to produce these plots one needs to extract certain items from the fitted gam

object mPen2 and do some calculations. A source script named “plotPenSplines.R”
that does all of that can be found from the /R subdirectory on the course website.

> source("http://bendixcarstensen.com/SPE/R/plotPenSplines.R")
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One could continue the analysis of these data by fitting an age-cohort model as an alternative
to the age-period model, as well as an age-cohort-period model.
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2.11 Survival analysis: Oral cancer patients

2.11.1 Description of the data

File oralca2.txt, that you may access from a url address to be given in the practical,
contains data from 338 patients having an oral squamous cell carcinoma diagnosed and
treated in one tertiary level oncological clinic in Finland since 1985, followed-up for mortality
until 31 December 2008. The dataset contains the following variables:

sex = sex, a factor with categories 1 = "Female", 2 = "Male",
age = age (years) at the date of diagnosing the cancer,
stage = TNM stage of the tumour (factor): 1 = "I", ..., 4 = "IV", 5 = "unkn",
time = follow-up time (in years) since diagnosis until death or censoring,
event = event ending the follow-up (numeric):

0 = censoring alive, 1 = death from oral cancer, 2 = death from other causes.

2.11.2 Loading the packages and the data

22. Load the R packages Epi, and survival needed in this exercise.

> library(Epi)
> library(survival)

23. Read the datafile oralca2.txt from a website, whose precise address will be given in
the practical, into an R data frame named orca. Look at the head, structure and the
summary of the data frame. Using function table() count the numbers of censorings as
well as deaths from oral cancer and other causes, respectively, from the event variable.

> orca <- read.table("./data/oralca2.txt", header=T)
> head(orca) ; str(orca) ; summary(orca)

sex age stage time event
1 Male 65.42274 unkn 5.081 0
2 Female 83.08783 III 0.419 1
3 Male 52.59008 II 7.915 2
4 Male 77.08630 I 2.480 2
5 Male 80.33622 IV 2.500 1
6 Female 82.58132 IV 0.167 2

'data.frame': 338 obs. of 5 variables:
$ sex : Factor w/ 2 levels "Female","Male": 2 1 2 2 2 1 2 2 1 2 ...
$ age : num 65.4 83.1 52.6 77.1 80.3 ...
$ stage: Factor w/ 5 levels "I","II","III",..: 5 3 2 1 4 4 2 5 4 2 ...
$ time : num 5.081 0.419 7.915 2.48 2.5 ...
$ event: int 0 1 2 2 1 2 0 1 1 0 ...

sex age stage time event
Female:152 Min. :15.15 I :50 Min. : 0.085 Min. :0.0000
Male :186 1st Qu.:53.24 II :77 1st Qu.: 1.333 1st Qu.:0.0000

Median :64.86 III :72 Median : 3.869 Median :1.0000
Mean :63.51 IV :68 Mean : 5.662 Mean :0.9941
3rd Qu.:74.29 unkn:71 3rd Qu.: 8.417 3rd Qu.:2.0000
Max. :92.24 Max. :23.258 Max. :2.0000
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2.11.3 Total mortality: Kaplan–Meier analyses

1. We start our analysis of total mortality pooling the two causes of death into a single
outcome. First, construct a survival object orca$suob from the event variable and the
follow-up time using function Surv(). Look at the structure and summary of
orca$suob .

> orca$suob <- Surv(orca$time, 1*(orca$event > 0) )
> str(orca$suob)

'Surv' num [1:338, 1:2] 5.081+ 0.419 7.915 2.480 2.500 0.167 5.925+ 1.503 13.333 7.666+ ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:2] "time" "status"
- attr(*, "type")= chr "right"

> summary(orca$suob)

time status
Min. : 0.085 Min. :0.0000
1st Qu.: 1.333 1st Qu.:0.0000
Median : 3.869 Median :1.0000
Mean : 5.662 Mean :0.6775
3rd Qu.: 8.417 3rd Qu.:1.0000
Max. :23.258 Max. :1.0000

2. Create a survfit object s.all, which does the default calculations for a Kaplan–Meier
analysis of the overall (marginal) survival curve.

> s.all <- survfit(suob ~ 1, data=orca)

See the structure of this object and apply print() method on it, too. Look at the
results; what do you find?

> s.all

Call: survfit(formula = suob ~ 1, data = orca)

n events median 0.95LCL 0.95UCL
338.00 229.00 5.42 4.33 6.92

> str(s.all)

List of 13
$ n : int 338
$ time : num [1:251] 0.085 0.162 0.167 0.17 0.246 0.249 0.252 0.329 0.334 0.413 ...
$ n.risk : num [1:251] 338 336 334 330 328 327 326 323 322 321 ...
$ n.event : num [1:251] 2 2 4 2 1 1 3 1 1 1 ...
$ n.censor : num [1:251] 0 0 0 0 0 0 0 0 0 0 ...
$ surv : num [1:251] 0.994 0.988 0.976 0.97 0.967 ...
$ type : chr "right"
$ std.err : num [1:251] 0.0042 0.00595 0.00847 0.0095 0.00998 ...
$ lower : num [1:251] 0.986 0.977 0.96 0.953 0.949 ...
$ upper : num [1:251] 1 1 0.993 0.989 0.987 ...
$ conf.type: chr "log"
$ conf.int : num 0.95
$ call : language survfit(formula = suob ~ 1, data = orca)
- attr(*, "class")= chr "survfit"
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3. The summary method for a survfit object would return a lengthy life table. However,
the plot method with default arguments offers the Kaplan–Meier curve for a
conventional illustration of the survival experience in the whole patient group.
Alternatively, instead of graphing survival proportions, one can draw a curve describing
their complements: the cumulative mortality proportions. This curve is drawn together
with the survival curve as the result of the second command line below.

> plot(s.all)
> lines(s.all, fun = "event", mark.time=F, conf.int=F)
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The effect of option mark.time=F is to omit marking the times when censorings
occurred.

2.11.4 Total mortality by stage

Tumour stage is an important prognostic factor in cancer survival studies.

1. Plot separate cumulative mortality curves for the different stage groups marking them
with different colours, the order which you may define yourself. Also find the median
survival time for each stage.

> s.stg <- survfit(suob ~ stage, data= orca)
> col5 <- c("green", "blue", "black", "red", "gray")
> plot(s.stg, col= col5, fun="event", mark.time=F )
> s.stg
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Call: survfit(formula = suob ~ stage, data = orca)

n events median 0.95LCL 0.95UCL
stage=I 50 25 10.56 6.17 NA
stage=II 77 51 7.92 4.92 13.34
stage=III 72 51 7.41 3.92 9.90
stage=IV 68 57 2.00 1.08 4.82
stage=unkn 71 45 3.67 2.83 8.17

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2. Create now two parallel plots of which the first one describes the cumulative hazards
and the second one graphs the log-cumulative hazards against log-time for the different
stages. Compare the two presentations with each other and with the one in the previous
item.

> par(mfrow=c(1,2))
> plot(s.stg, col= col5, fun="cumhaz", main="cum. hazards" )
> plot(s.stg, col= col5, fun="cloglog", main = "cloglog: log cum.haz" )
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3. If the survival times were exponentially distributed in a given (sub)population the
corresponding cloglog-curve should follow an approximately linear pattern. Could this
be the case here in the different stages?

4. Also, if the survival distributions of the different subpopulations would obey the
proportional hazards model, the vertical distance between the cloglog-curves should be
approximately constant over the time axis. Do these curves indicate serious deviation
from the proportional hazards assumption?

5. In the lecture handouts (p. 34, 37) it was observed that the crude contrast between
males and females in total mortality appears unclear, but the age-adjustment in the Cox
model provided a more expected hazard ratio estimate. We shall examine the
confounding by age somewhat closer. First categorize the continuous age variable into,
say, three categories by function cut() using suitable breakpoints, like 55 and 75 years,
and cross-tabulate sex and age group:

> orca$agegr <- cut(orca$age, br=c(0,55,75, 95))
> stat.table( list( sex, agegr), list( count(), percent(agegr) ),
+ margins=T, data = orca )

-----------------------------------------
--------------agegr--------------

sex (0,55] (55,75] (75,95] Total
-----------------------------------------
Female 29 74 49 152

19.1 48.7 32.2 100.0

Male 71 86 29 186
38.2 46.2 15.6 100.0

Total 100 160 78 338
29.6 47.3 23.1 100.0

-----------------------------------------

Male patients are clearly younger than females in these data.

Now, plot Kaplan–Meier curves jointly classified by sex and age.
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> s.agrx <- survfit(suob ~ agegr + sex, data=orca)
> par(mfrow=c(1,1))
> plot(s.agrx, fun="event", mark.time=F, xlim = c(0,15),
+ col=rep(c("red", "blue"),3), lty=c(2,2, 1,1, 5,5))
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In each ageband the mortality curve for males is on a higher level than that for females.

2.11.5 Event-specific cumulative mortality curves

We move on to analysing cumulative mortalities for the two causes of death separately, first
overall and then by prognostic factors.

1. Use the survfit-function in survival package with option type="mstate".

> cif1 <- survfit( Surv( time, event, type="mstate") ~ 1,
+ data = orca)
> str(cif1)

List of 18
$ n : int 338
$ time : num [1:251] 0.085 0.162 0.167 0.17 0.246 0.249 0.252 0.329 0.334 0.413 ...
$ n.risk : int [1:251, 1:3] 0 0 0 0 0 0 0 0 0 0 ...
$ n.event : int [1:251, 1:3] 2 2 2 1 1 0 2 1 1 1 ...
$ n.censor : int [1:251] 0 0 0 0 0 0 0 0 0 0 ...
$ pstate : num [1:251, 1:3] 0.00592 0.01183 0.01775 0.02071 0.02367 ...
$ p0 : num [1:3(1d)] 0 0 1
..- attr(*, "dimnames")=List of 1
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.. ..$ : chr [1:3] "1" "2" ""
$ cumhaz : num [1:3, 1:3, 1:251] 0 0 0.00592 0 0 ...
$ std.err : num [1:251, 1:3] 0.00417 0.00588 0.00718 0.00775 0.00827 ...
$ sp0 : num [1:3] 0 0 0
$ transitions: 'table' int [1:3, 1:2] 0 0 122 0 0 107
..- attr(*, "dimnames")=List of 2
.. ..$ from: chr [1:3] "1" "2" ""
.. ..$ to : chr [1:2] "1" "2"
$ lower : num [1:251, 1:3] 0.00149 0.00447 0.00803 0.00995 0.01193 ...
$ upper : num [1:251, 1:3] 0.0236 0.0313 0.0392 0.0431 0.0469 ...
$ conf.type : chr "log"
$ conf.int : num 0.95
$ states : chr [1:3] "1" "2" ""
$ type : chr "mright"
$ call : language survfit(formula = Surv(time, event, type = "mstate") ~ 1, data = orca)
- attr(*, "class")= chr [1:2] "survfitms" "survfit"

2. One could apply here the plot method of the survfit object to plot the cumulative
incidences for each cause. However, we suggest that you use instead a simple function
plotCIF() found in the Epi package. The main arguments are

data = data frame created by function survfit(), (2.1)

event = indicator for the event: values 1 or 2. (2.2)

Other arguments are like in the ordinary plot() function.

3. Draw two parallel plots describing the overall cumulative incidence curves for both
causes of death

> par(mfrow=c(1,2))
> plotCIF(cif1, 1, main = "Cancer death")
> plotCIF(cif1, 2, main= "Other deaths")
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4. Compute the estimated cumulative incidences by stage for both causes of death. Now
you have to add variable stage to survfit-function.

See the structure of the resulting object, in which you should observe strata variable
containing the stage grouping variable. Plot the pertinent curves in two parallel graphs.
Cut the y-axis for a more efficient graphical presentation

> col5 <- c("green", "blue", "black", "red", "gray")
> cif2 <- survfit( Surv( time, event, type="mstate") ~ stage,
+ data = orca)
> str(cif2)

List of 19
$ n : int [1:5] 50 77 72 68 71
$ time : num [1:307] 0.17 0.498 0.665 0.832 1.166 ...
$ n.risk : int [1:307, 1:3] 0 0 0 0 0 0 0 0 0 0 ...
$ n.event : int [1:307, 1:3] 0 1 1 0 1 1 0 1 1 0 ...
$ n.censor : int [1:307] 0 0 0 0 0 0 1 0 0 0 ...
$ pstate : num [1:307, 1:3] 0 0.02 0.04 0.04 0.06 ...
$ p0 : num [1:5, 1:3] 0 0 0 0 0 0 0 0 0 0 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:5] "stage=I" "stage=II" "stage=III" "stage=IV" ...
.. ..$ : chr [1:3] "1" "2" ""
$ transitions: 'table' int [1:3, 1:2] 0 0 122 0 0 107
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..- attr(*, "dimnames")=List of 2

.. ..$ from: chr [1:3] "1" "2" ""

.. ..$ to : chr [1:2] "1" "2"
$ strata : Named int [1:5] 49 75 62 58 63
..- attr(*, "names")= chr [1:5] "stage=I" "stage=II" "stage=III" "stage=IV" ...
$ std.err : num [1:307, 1:3] 0 0.0198 0.0277 0.0277 0.0336 ...
$ sp0 : num [1:5, 1:3] 0 0 0 0 0 0 0 0 0 0 ...
$ cumhaz : num [1:3, 1:3, 1:307] 0 0 0 0 0 0.02 0 0 -0.02 0 ...
$ lower : num [1:307, 1:3] NA 0.00287 0.01029 0.01029 0.02003 ...
$ upper : num [1:307, 1:3] NA 0.139 0.156 0.156 0.18 ...
$ conf.type : chr "log"
$ conf.int : num 0.95
$ states : chr [1:3] "1" "2" ""
$ type : chr "mright"
$ call : language survfit(formula = Surv(time, event, type = "mstate") ~ stage, data = orca)
- attr(*, "class")= chr [1:2] "survfitms" "survfit"

> par(mfrow=c(1,2))
> plotCIF(cif2, 1, main = "Cancer death by stage",
+ col = col5, ylim = c(0, 0.7) )
> plotCIF(cif2, 2, main= "Other deaths by stage",
+ col=col5, ylim = c(0, 0.7) )
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Compare the two plots. What would you conclude about the effect of stage on the two
causes of death
?

5. Using another function stackedCIF() in Epi you can put the two cumulative incidence
curves in one graph but stacked upon one another such that the lower curve is for the
cancer deaths and the upper curve is for total mortality, and the vertical difference
between the two curves describes the cumulative mortality from other causes. You can
also add some colours for the different zones:

> par(mfrow=c(1,1))
> stackedCIF(cif1,colour = c("gray70", "gray85"))
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2.11.6 Regression modelling of overall mortality.

1. Fit the semiparametric proportional hazards regression model, a.k.a. the Cox model, on
all deaths including sex, age and stage as covariates. Use function coxph() in package
survival. It is often useful to center and scale continuous covariates like age here. The
estimated rate ratios and their confidence intervals can also here be displayed by
applying ci.lin() on the fitted model object.

> options(show.signif.stars = F)
> m1 <- coxph(suob ~ sex + I((age-65)/10) + stage, data= orca)
> summary( m1 )

Call:
coxph(formula = suob ~ sex + I((age - 65)/10) + stage, data = orca)

n= 338, number of events= 229

coef exp(coef) se(coef) z Pr(>|z|)
sexMale 0.35139 1.42104 0.14139 2.485 0.012947
I((age - 65)/10) 0.41603 1.51593 0.05641 7.375 1.65e-13
stageII 0.03492 1.03554 0.24667 0.142 0.887421
stageIII 0.34545 1.41262 0.24568 1.406 0.159708
stageIV 0.88542 2.42399 0.24273 3.648 0.000265
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stageunkn 0.58441 1.79393 0.25125 2.326 0.020016

exp(coef) exp(-coef) lower .95 upper .95
sexMale 1.421 0.7037 1.0771 1.875
I((age - 65)/10) 1.516 0.6597 1.3573 1.693
stageII 1.036 0.9657 0.6386 1.679
stageIII 1.413 0.7079 0.8728 2.286
stageIV 2.424 0.4125 1.5063 3.901
stageunkn 1.794 0.5574 1.0963 2.935

Concordance= 0.674 (se = 0.021 )
Rsquare= 0.226 (max possible= 0.999 )
Likelihood ratio test= 86.76 on 6 df, p=<2e-16
Wald test = 80.5 on 6 df, p=3e-15
Score (logrank) test = 82.86 on 6 df, p=9e-16

> round( ci.exp(m1 ), 4 )

exp(Est.) 2.5% 97.5%
sexMale 1.4210 1.0771 1.8748
I((age - 65)/10) 1.5159 1.3573 1.6932
stageII 1.0355 0.6386 1.6793
stageIII 1.4126 0.8728 2.2864
stageIV 2.4240 1.5063 3.9007
stageunkn 1.7939 1.0963 2.9354

Look at the results. What are the main findings?

2. Check whether the data are sufficiently consistent with the assumption of proportional
hazards with respect to each of the variables separately as well as globally, using the
cox.zph() function.

> cox.zph(m1)

rho chisq p
sexMale -0.00137 0.000439 0.983
I((age - 65)/10) 0.07539 1.393597 0.238
stageII -0.04208 0.411652 0.521
stageIII -0.06915 1.083755 0.298
stageIV -0.10044 2.301780 0.129
stageunkn -0.09663 2.082042 0.149
GLOBAL NA 4.895492 0.557

3. No evidence against proportionality assumption could apparently be found. Moreover,
no difference can be observed between stages I and II in the estimates. On the other
hand, the group with stage unknown is a complex mixture of patients from various true
stages. Therefore, it may be prudent to exclude these subjects from the data and to
pool the first two stage groups into one. After that fit a model in the reduced data with
the new stage variable.

> orca2 <- subset(orca, stage != "unkn")
> orca2$st3 <- Relevel( orca2$stage, list(1:2, 3, 4:5) )
> levels(orca2$st3) = c("I-II", "III", "IV")
> m2 <- update(m1, . ~ . - stage + st3, data=orca2 )
> round( ci.exp(m2 ), 4)
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exp(Est.) 2.5% 97.5%
sexMale 1.3284 0.9763 1.8074
I((age - 65)/10) 1.4637 1.2959 1.6534
st3III 1.3657 0.9547 1.9536
st3IV 2.3900 1.6841 3.3919

4. Plot the predicted cumulative mortality curves by stage, jointly stratified by sex and
age, focusing only on 40 and 80 year old patients, respectively, based on the fitted model
m2. You need to create a new artificial data frame containing the desired values for the
covariates.

> newd <- data.frame( sex = c( rep("Male", 6), rep("Female", 6) ),
+ age = rep( c( rep(40, 3), rep(80, 3) ), 2 ),
+ st3 = rep( levels(orca2$st3), 4) )
> newd

sex age st3
1 Male 40 I-II
2 Male 40 III
3 Male 40 IV
4 Male 80 I-II
5 Male 80 III
6 Male 80 IV
7 Female 40 I-II
8 Female 40 III
9 Female 40 IV
10 Female 80 I-II
11 Female 80 III
12 Female 80 IV

> col3 <- c("green", "black", "red")
> par(mfrow=c(1,2))
> plot( survfit(m2, newdata= subset(newd, sex=="Male" & age==40)),
+ col=col3, fun="event", mark.time=F)
> lines( survfit(m2, newdata= subset(newd, sex=="Female" & age==40)),
+ col= col3, fun="event", lty = 2, mark.time=F)
> plot( survfit(m2, newdata= subset(newd, sex=="Male" & age==80)),
+ ylim = c(0,1), col= col3, fun="event", mark.time=F)
> lines( survfit(m2, newdata= subset(newd, sex=="Female" & age==80)),
+ col=col3, fun="event", lty=2, mark.time=F)
>

2.11.7 Modelling event-specific hazards and hazards of the
subdistribution

1. Fit the Cox model for the cause-specific hazard of cancer deaths with the same
covariates as above. In this case only cancer deaths are counted as events and deaths
from other causes are included into censorings.

> m2haz1 <- coxph( Surv( time, event==1) ~ sex + I((age-65)/10) + st3 , data=orca2 )
> round( ci.exp(m2haz1 ), 4)

exp(Est.) 2.5% 97.5%
sexMale 1.0171 0.6644 1.5569
I((age - 65)/10) 1.4261 1.2038 1.6893
st3III 1.5140 0.9012 2.5434
st3IV 3.1813 1.9853 5.0978
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> cox.zph(m2haz1)

rho chisq p
sexMale 0.0651 0.405 0.5246
I((age - 65)/10) 0.2355 6.001 0.0143
st3III -0.1120 1.174 0.2785
st3IV -0.1858 3.163 0.0753
GLOBAL NA 9.352 0.0529

Compare the results with those of model m2. What are the major differences?

2. Fit a similar model for deaths from other causes and compare the results.

> m2haz2 <- coxph( Surv( time, event==2) ~ sex + I((age-65)/10) + st3 , data=orca2 )
> round( ci.exp(m2haz2 ), 4)

exp(Est.) 2.5% 97.5%
sexMale 1.8103 1.1528 2.8431
I((age - 65)/10) 1.4876 1.2491 1.7715
st3III 1.2300 0.7488 2.0206
st3IV 1.6407 0.9522 2.8270

> cox.zph(m2haz2)

rho chisq p
sexMale -0.04954 0.22019 0.639
I((age - 65)/10) 0.03484 0.10107 0.751
st3III 0.01369 0.01639 0.898
st3IV -0.00411 0.00149 0.969
GLOBAL NA 0.45596 0.978

3. Finally, fit the Fine–Gray model for the hazard of the subdistribution for cancer deaths
with the same covariates as above. For this you have to first load package cmprsk,
containing the necessary function crr(), and attach the data frame.

> library(cmprsk)
> attach(orca2)
> m2fg1 <- crr(time, event, cov1 = model.matrix(m2), failcode=1)
> summary(m2fg1, Exp=T)

Competing Risks Regression

Call:
crr(ftime = time, fstatus = event, cov1 = model.matrix(m2), failcode = 1)

coef exp(coef) se(coef) z p-value
sexMale -0.0808 0.922 0.2118 -0.381 7.0e-01
I((age - 65)/10) 0.2791 1.322 0.0918 3.039 2.4e-03
st3III 0.3739 1.453 0.2588 1.445 1.5e-01
st3IV 1.0346 2.814 0.2327 4.446 8.8e-06

exp(coef) exp(-coef) 2.5% 97.5%
sexMale 0.922 1.084 0.609 1.40
I((age - 65)/10) 1.322 0.756 1.104 1.58
st3III 1.453 0.688 0.875 2.41
st3IV 2.814 0.355 1.783 4.44

Num. cases = 267
Pseudo Log-likelihood = -493
Pseudo likelihood ratio test = 32.1 on 4 df,
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Compare the results with those of model m2 and m2haz1.

4. Fit a similar model for deaths from other causes and compare the results.

> m2fg2 <- crr(time, event, cov1 = model.matrix(m2), failcode=2)
> summary(m2fg2, Exp=T)

Competing Risks Regression

Call:
crr(ftime = time, fstatus = event, cov1 = model.matrix(m2), failcode = 2)

coef exp(coef) se(coef) z p-value
sexMale 0.558 1.748 0.2264 2.467 0.014
I((age - 65)/10) 0.187 1.205 0.0775 2.412 0.016
st3III 0.086 1.090 0.2428 0.354 0.720
st3IV -0.225 0.799 0.2795 -0.803 0.420

exp(coef) exp(-coef) 2.5% 97.5%
sexMale 1.748 0.572 1.122 2.72
I((age - 65)/10) 1.205 0.830 1.036 1.40
st3III 1.090 0.918 0.677 1.75
st3IV 0.799 1.252 0.462 1.38

Num. cases = 267
Pseudo Log-likelihood = -438
Pseudo likelihood ratio test = 9.43 on 4 df,

2.11.8 Analysis of relative survival

1. Load package popEpi for the estimation of relative survival. Use the (simulated) female
Finnish breast cancer patients diagnosed between 1993-2012, called sibr.

> library(popEpi)
> head(sibr)

sex bi_date dg_date ex_date status dg_age
1: 1 1932-08-20 2009-06-12 2012-12-31 0 76.80996
2: 1 1950-02-19 2002-03-08 2012-12-31 0 52.04658
3: 1 1915-06-11 2002-05-26 2003-01-30 1 86.95616
4: 1 1936-02-11 2012-10-12 2012-12-31 0 76.66667
5: 1 1934-12-05 1993-06-21 2012-12-31 0 58.54247
6: 1 1956-01-09 2002-08-15 2012-12-31 0 46.59732

2. Prepare the data by using lexpand command in the popEpi package, define follow-up
time intervals, (calendar time) period that you are interested and where are the
population mortality figures. Calculate 5-year observed survival (2008-2012) using
period method by Ederer II (default)

> ## pretend some are male
> set.seed(1L)
> sire$sex <- rbinom(nrow(sire), 1, 0.01)
> BL <- list(fot = seq(0, 5, 1/12))
> x <- lexpand(sire,
+ birth = bi_date,
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+ entry = dg_date,
+ exit = ex_date,
+ status = status,
+ breaks = BL,
+ pophaz = popmort,
+ aggre = list(sex, fot))

3. Calculate 5-year relative survival (2008-2012) using period method by Ederer II
(default)

> st.e2 <- survtab_ag(fot ~ sex, data = x,
+ surv.type = "surv.rel",
+ pyrs = "pyrs", n.cens = "from0to0",
+ d = c("from0to1", "from0to2"))
> plot(st.e2, y = "r.e2", col = c("black", "red"),lwd=4)
>
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2.11.9 Lexis object with multi-state set-up

Before entering to analyses of cause-specific mortality it might be instructive to apply some
Lexis tools to illustrate the competing-risks set-up. More detailed explanation of these tools
will be given by Bendix in this afternoon.
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1. Form a Lexis object from the data frame and print a summary of it. We shall name the
main (and only) time axis in this object as stime.

> orca.lex <- Lexis(exit = list(stime = time),
+ exit.status = factor(event,
+ labels = c("Alive", "Oral ca. death", "Other death")),
+ data = orca)

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the stime timescale.

> summary(orca.lex)

Transitions:
To

From Alive Oral ca. death Other death Records: Events: Risk time:
Alive 109 122 107 338 229 1913.67

Transitions:
To

From Persons:
Alive 338

2. Draw a box diagram of the two-state set-up of competing transitions. Run first the
following command line

boxes( orca.lex )

Now, move the cursor to the point in the graphics window, at which you wish to put the
box for “Alive”, and click. Next, move the cursor to the point at which you wish to have
the box for “Oral ca. death”, and click. Finally, do the same with the box for “Other
death”. If you are not happy with the outcome, run the command line again and repeat
the necessary mouse moves and clicks.

2.11.10 Poisson regression as an alternative to Cox model

It can be shown that the Cox model with an unspecified form for the baseline hazard λ0(t) is
mathematically equivalent to the following kind of Poisson regression model. Time is treated
as a categorical factor with a dense division of the time axis into disjoint intervals or
timebands such that only one outcome event occurs in each timeband. The model formula
contains this time factor plus the desired explanatory terms.

A sufficient division of time axis is obtained by first setting the break points between
adjacent timebands to be those time points at which an outcome event has been observed to
occur. Then, the pertinent lexis object is created and after that it will be split according to
those breakpoints. Finally, the Poisson regression model is fitted on the splitted lexis object
using function glm() with appropriate specifications.

We shall now demonstrate the numerical equivalence of the Cox model m2haz1 for oral
cancer mortality that was fitted above, and the corresponding Poisson regression.

1. First we form the necessary lexis object by just taking the relevant subset of the
already available orca.lex object. Upon that the three-level stage factor st3 is created
as above.
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> orca2.lex <- subset(orca.lex, stage != "unkn" )
> orca2.lex$st3 <- Relevel( orca2$stage, list(1:2, 3, 4:5) )
> levels(orca2.lex$st3) = c("I-II", "III", "IV")

Then, the break points of time axis are taken from the sorted event times, and the
lexis object is split by those breakpoints. The timeband factor is defined according to
the splitted survival times stored in variable stime.

> cuts <- sort(orca2$time[orca2$event==1])
> orca2.spl <- splitLexis( orca2.lex, br = cuts, time.scale="stime" )
> orca2.spl$timeband <- as.factor(orca2.spl$stime)

As a result we now have an expanded lexis object in which each subject has several
rows; as many rows as there are such timebands during which he/she is still at risk. The
outcome status lex.Xst has value 0 in all those timebands, over which the subject stays
alive, but assumes the value 1 or 2 at his/her last interval ending at the time of death. –
See now the structure of the splitted object.

> str(orca2.spl)

Classes ‘Lexis’ and 'data.frame': 12637 obs. of 14 variables:
$ lex.id : int 2 2 2 2 2 2 3 3 3 3 ...
$ stime : num 0 0.085 0.162 0.252 0.329 0.413 0 0.085 0.162 0.252 ...
$ lex.dur : num 0.085 0.077 0.09 0.077 0.084 0.006 0.085 0.077 0.09 0.077 ...
$ lex.Cst : Factor w/ 3 levels "Alive","Oral ca. death",..: 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst : Factor w/ 3 levels "Alive","Oral ca. death",..: 1 1 1 1 1 2 1 1 1 1 ...
$ sex : Factor w/ 2 levels "Female","Male": 1 1 1 1 1 1 2 2 2 2 ...
$ age : num 83.1 83.1 83.1 83.1 83.1 ...
$ stage : Factor w/ 5 levels "I","II","III",..: 3 3 3 3 3 3 2 2 2 2 ...
$ time : num 0.419 0.419 0.419 0.419 0.419 ...
$ event : int 1 1 1 1 1 1 2 2 2 2 ...
$ suob : 'Surv' num [1:12637, 1:2] 0.419 0.419 0.419 0.419 0.419 0.419 7.915 7.915 7.915 7.915 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr "time" "status"
..- attr(*, "type")= chr "right"
$ agegr : Factor w/ 3 levels "(0,55]","(55,75]",..: 3 3 3 3 3 3 1 1 1 1 ...
$ st3 : Factor w/ 3 levels "I-II","III","IV": 2 2 2 2 2 2 1 1 1 1 ...
$ timeband: Factor w/ 72 levels "0","0.085","0.162",..: 1 2 3 4 5 6 1 2 3 4 ...
- attr(*, "breaks")=List of 1
..$ stime: num 0.085 0.162 0.252 0.329 0.413 0.419 0.496 0.498 0.504 0.58 ...
- attr(*, "time.scales")= chr "stime"
- attr(*, "time.since")= chr ""

> orca2.spl[ 1:20, ]

lex.id stime lex.dur lex.Cst lex.Xst sex age stage time
1 2 0.000 0.085 Alive Alive Female 83.08783 III 0.419
2 2 0.085 0.077 Alive Alive Female 83.08783 III 0.419
3 2 0.162 0.090 Alive Alive Female 83.08783 III 0.419
4 2 0.252 0.077 Alive Alive Female 83.08783 III 0.419
5 2 0.329 0.084 Alive Alive Female 83.08783 III 0.419
6 2 0.413 0.006 Alive Oral ca. death Female 83.08783 III 0.419
7 3 0.000 0.085 Alive Alive Male 52.59008 II 7.915
8 3 0.085 0.077 Alive Alive Male 52.59008 II 7.915
9 3 0.162 0.090 Alive Alive Male 52.59008 II 7.915
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10 3 0.252 0.077 Alive Alive Male 52.59008 II 7.915
11 3 0.329 0.084 Alive Alive Male 52.59008 II 7.915
12 3 0.413 0.006 Alive Alive Male 52.59008 II 7.915
13 3 0.419 0.077 Alive Alive Male 52.59008 II 7.915
14 3 0.496 0.002 Alive Alive Male 52.59008 II 7.915
15 3 0.498 0.006 Alive Alive Male 52.59008 II 7.915
16 3 0.504 0.076 Alive Alive Male 52.59008 II 7.915
17 3 0.580 0.003 Alive Alive Male 52.59008 II 7.915
18 3 0.583 0.003 Alive Alive Male 52.59008 II 7.915
19 3 0.586 0.003 Alive Alive Male 52.59008 II 7.915
20 3 0.589 0.076 Alive Alive Male 52.59008 II 7.915

event suob agegr st3 timeband
1 1 0.419 (75,95] III 0
2 1 0.419 (75,95] III 0.085
3 1 0.419 (75,95] III 0.162
4 1 0.419 (75,95] III 0.252
5 1 0.419 (75,95] III 0.329
6 1 0.419 (75,95] III 0.413
7 2 7.915 (0,55] I-II 0
8 2 7.915 (0,55] I-II 0.085
9 2 7.915 (0,55] I-II 0.162
10 2 7.915 (0,55] I-II 0.252
11 2 7.915 (0,55] I-II 0.329
12 2 7.915 (0,55] I-II 0.413
13 2 7.915 (0,55] I-II 0.419
14 2 7.915 (0,55] I-II 0.496
15 2 7.915 (0,55] I-II 0.498
16 2 7.915 (0,55] I-II 0.504
17 2 7.915 (0,55] I-II 0.58
18 2 7.915 (0,55] I-II 0.583
19 2 7.915 (0,55] I-II 0.586
20 2 7.915 (0,55] I-II 0.589

2. We are ready to fit the desired Poisson model for oral cancer death as the outcome. The
splitted person-years are contained in lex.dur, and the explanatory variables are the
same as in model m2haz1. – This fitting may take some time . . .

> m2pois1 <- glm( 1*(lex.Xst=="Oral ca. death") ~
+ -1 + timeband + sex + I((age-65)/10) + st3,
+ family=poisson, offset = log(lex.dur), data = orca2.spl)

We shall display the estimation results graphically for the baseline hazard (per 1000
person-years) and numerically for the rate ratios associated with the covariates. Before
doing that it is useful to count the length ntb of the block occupied by baseline hazard
in the whole vector of estimated parameters. However, owing to how the splitting to
timebands was done, the last regression coefficient is necessarily zero and better be
omitted when displaying the results. Also, as each timeband is quantitatively named
accoding to its leftmost point, it is good to compute the midpoint values tbmid for the
timebands

> tb <- as.numeric(levels(orca2.spl$timeband)) ; ntb <- length(tb)
> tbmid <- (tb[-ntb] + tb[-1])/2 # midpoints of the intervals
> round( ci.exp(m2pois1 ), 3)
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exp(Est.) 2.5% 97.5%
timeband0 0.049 0.012 0.205
timeband0.085 0.027 0.004 0.200
timeband0.162 0.024 0.003 0.177
timeband0.252 0.029 0.004 0.211
timeband0.329 0.027 0.004 0.195
timeband0.413 1.486 0.521 4.239
timeband0.419 0.030 0.004 0.220
timeband0.496 2.317 0.552 9.724
timeband0.498 0.390 0.053 2.865
timeband0.504 0.031 0.004 0.228
timeband0.58 0.787 0.107 5.785
timeband0.583 0.792 0.108 5.821
timeband0.586 0.797 0.108 5.856
timeband0.589 0.063 0.015 0.265
timeband0.665 0.402 0.055 2.957
timeband0.671 0.032 0.004 0.235
timeband0.747 0.824 0.112 6.052
timeband0.75 0.413 0.056 3.033
timeband0.756 0.067 0.016 0.283
timeband0.83 1.281 0.174 9.408
timeband0.832 0.063 0.015 0.264
timeband0.914 1.772 0.423 7.425
timeband0.917 0.066 0.016 0.276
timeband0.999 0.100 0.031 0.329
timeband1.081 6.554 2.874 14.946
timeband1.084 0.108 0.033 0.355
timeband1.166 0.998 0.136 7.311
timeband1.169 0.074 0.018 0.308
timeband1.251 0.038 0.005 0.275
timeband1.333 1.051 0.144 7.687
timeband1.336 0.082 0.020 0.343
timeband1.413 1.300 0.312 5.421
timeband1.418 1.113 0.152 8.146
timeband1.421 0.021 0.003 0.154
timeband1.58 0.016 0.004 0.069
timeband1.999 0.052 0.007 0.382
timeband2.067 0.036 0.005 0.266
timeband2.166 1.811 0.248 13.237
timeband2.168 1.216 0.166 8.891
timeband2.171 0.023 0.003 0.168
timeband2.33 0.043 0.006 0.317
timeband2.415 0.088 0.021 0.367
timeband2.5 0.024 0.003 0.178
timeband2.661 0.044 0.006 0.318
timeband2.752 0.016 0.002 0.120
timeband2.998 0.013 0.002 0.092
timeband3.329 0.705 0.097 5.148
timeband3.335 0.026 0.004 0.189
timeband3.502 0.055 0.008 0.402
timeband3.581 0.729 0.100 5.323
timeband3.587 0.018 0.003 0.134
timeband3.833 0.014 0.002 0.101
timeband4.17 0.030 0.004 0.215
timeband4.331 0.009 0.001 0.063
timeband4.914 0.034 0.005 0.245
timeband5.079 0.014 0.002 0.105
timeband5.503 0.007 0.001 0.049
timeband6.587 0.049 0.007 0.354
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timeband6.749 0.050 0.007 0.364
timeband6.913 2.867 0.394 20.860
timeband6.916 0.022 0.003 0.158
timeband7.329 0.023 0.003 0.168
timeband7.748 0.044 0.006 0.321
timeband7.984 0.010 0.001 0.074
timeband9.084 0.015 0.002 0.111
timeband9.919 0.030 0.004 0.220
timeband10.42 0.013 0.002 0.097
timeband11.671 0.237 0.033 1.734
timeband11.748 0.014 0.002 0.105
timeband13.166 0.134 0.018 0.979
timeband13.333 0.061 0.008 0.445
timeband13.755 0.000 0.000 Inf
sexMale 1.015 0.663 1.554
I((age - 65)/10) 1.423 1.201 1.685
st3III 1.509 0.898 2.535
st3IV 3.178 1.983 5.093

> par(mfrow=c(1,1))
> plot( tbmid, 1000*exp(coef(m2pois1)[1:(ntb-1)]),
+ ylim=c(5,3000), log = "xy", type = "l")
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Compare the regression coefficients and their error margins to those model m2haz1. Do
you find any differences? How does the estimated baseline hazard look like?
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3. The estimated baseline looks quite ragged when based on 71 separate parameters. A
smoothed estimate may be obtained by spline modelling using the tools contained in
package splines (see the practical of Saturday 25 May afternoon). With the following
code you will be able to fit a reasonable spline model for the baseline hazard and draw
the estimated curve (together with a band of the 95% confidence limits about the fitted
values). From the same model you should also obtain quite familiar results for the rate
ratios of interest.

> library(splines)
> m2pspli <- update(m2pois1, . ~ ns(stime, df = 6, intercept = F) +
+ sex + I((age-65)/10) + st3)
> round( ci.exp( m2pspli ), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.028 0.008 0.101
ns(stime, df = 6, intercept = F)1 6.505 1.776 23.823
ns(stime, df = 6, intercept = F)2 2.678 0.560 12.803
ns(stime, df = 6, intercept = F)3 0.976 0.227 4.187
ns(stime, df = 6, intercept = F)4 0.423 0.105 1.699
ns(stime, df = 6, intercept = F)5 1.567 0.082 29.939
ns(stime, df = 6, intercept = F)6 0.434 0.121 1.558
sexMale 1.021 0.667 1.563
I((age - 65)/10) 1.431 1.208 1.696
st3III 1.514 0.901 2.543
st3IV 3.185 1.988 5.104

> news <- data.frame( stime = seq(0,25, length=301), lex.dur = 1000, sex = "Female",
+ age = 65, st3 = "I-II")
> blhaz <- predict(m2pspli, newdata = news, se.fit = T, type = "link")
> blh95 <- cbind(blhaz$fit, blhaz$se.fit) %*% ci.mat()
> par(mfrow=c(1,1))
> matplot( news$stime, exp(blh95), type = "l", lty = c(1,1,1), lwd = c(2,1,1) ,
+ col = rep("black", 3), log = "xy", ylim = c(5,3000) )
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2.12 Time-splitting, time-scales and SMR

This exercise is about mortaity among Danish Diabetes patients. It is based on the dataset
DMlate, a random sample of 10,000 patients from the Danish Diabetes Register (scrambeled
dates), all with date of diagnosis after 1994.

1. First, we load the Epi package (and two other packages we will need later) and the
dataset, and take a look at it:

options( width=90 )
library( Epi )
library( popEpi )
library( mgcv )
data( DMlate )
str( DMlate )

'data.frame': 10000 obs. of 7 variables:
$ sex : Factor w/ 2 levels "M","F": 2 1 2 2 1 2 1 1 2 1 ...
$ dobth: num 1940 1939 1918 1965 1933 ...
$ dodm : num 1999 2003 2005 2009 2009 ...
$ dodth: num NA NA NA NA NA ...
$ dooad: num NA 2007 NA NA NA ...
$ doins: num NA NA NA NA NA NA NA NA NA NA ...
$ dox : num 2010 2010 2010 2010 2010 ...

head( DMlate )

sex dobth dodm dodth dooad doins dox
50185 F 1940.256 1998.917 NA NA NA 2009.997
307563 M 1939.218 2003.309 NA 2007.446 NA 2009.997
294104 F 1918.301 2004.552 NA NA NA 2009.997
336439 F 1965.225 2009.261 NA NA NA 2009.997
245651 M 1932.877 2008.653 NA NA NA 2009.997
216824 F 1927.870 2007.886 2009.923 NA NA 2009.923

summary( DMlate )

sex dobth dodm dodth dooad doins
M:5185 Min. :1898 Min. :1995 Min. :1995 Min. :1995 Min. :1995
F:4815 1st Qu.:1930 1st Qu.:2000 1st Qu.:2002 1st Qu.:2001 1st Qu.:2001

Median :1941 Median :2004 Median :2005 Median :2004 Median :2005
Mean :1942 Mean :2003 Mean :2005 Mean :2004 Mean :2004
3rd Qu.:1951 3rd Qu.:2007 3rd Qu.:2008 3rd Qu.:2007 3rd Qu.:2007
Max. :2008 Max. :2010 Max. :2010 Max. :2010 Max. :2010

NA's :7497 NA's :4503 NA's :8209
dox

Min. :1995
1st Qu.:2010
Median :2010
Mean :2009
3rd Qu.:2010
Max. :2010

2. We then set up the dataset as a Lexis object with age, calendar time and duration of
diabetes as timescales, and date of death as event.

In the dataset we have a date of exit dox which is either the day of censoring or the date
of death:
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with( DMlate, table( dead=!is.na(dodth),
same=(dodth==dox), exclude=NULL ) )

same
dead TRUE <NA>
FALSE 0 7497
TRUE 2503 0

So we can set up the Lexis object by specifying the timescales and the exit status via
!is.na(dodth):

LL <- Lexis( entry = list( A = dodm-dobth,
P = dodm,

dur = 0 ),
exit = list( P = dox ),

exit.status = factor( !is.na(dodth),
labels=c("Alive","Dead") ),

data = DMlate )

NOTE: entry.status has been set to "Alive" for all.

Note that we made sure the the first level of exit.status is “Alive”, because the
default is to use the first level as entry status when entry.status is not given as
argument to Lexis.

The 4 persons are persons that have identical date of diabetes and date of death; they
can be found by using keep.dropped=TRUE:

LL <- Lexis( entry = list( A = dodm-dobth,
P = dodm,

dur = 0 ),
exit = list( P = dox ),

exit.status = factor( !is.na(dodth),
labels=c("Alive","Dead") ),

data = DMlate,
keep.dropped = TRUE )

NOTE: entry.status has been set to "Alive" for all.

The dropped persons are:

attr( LL, 'dropped' )

sex dobth dodm dodth dooad doins dox
173047 M 1917.863 1999.457 1999.457 NA NA 1999.457
361856 F 1936.067 1996.984 1996.984 NA NA 1996.984
245324 M 1917.877 1999.906 1999.906 NA NA 1999.906
318694 F 1919.060 2006.794 2006.794 NA NA 2006.794

We can get an overview of the data by using the summary function on the object:

summary( LL )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 7497 2499 9996 2499 54273.27 9996
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head( LL )

A P dur lex.dur lex.Cst lex.Xst lex.id sex dobth dodm
50185 58.66119 1998.917 0 11.0800821 Alive Alive 1 F 1940.256 1998.917
307563 64.09035 2003.309 0 6.6885695 Alive Alive 2 M 1939.218 2003.309
294104 86.25051 2004.552 0 5.4455852 Alive Alive 3 F 1918.301 2004.552
336439 44.03559 2009.261 0 0.7364819 Alive Alive 4 F 1965.225 2009.261
245651 75.77550 2008.653 0 1.3442847 Alive Alive 5 M 1932.877 2008.653
216824 80.01643 2007.886 0 2.0369610 Alive Dead 6 F 1927.870 2007.886

dodth dooad doins dox
50185 NA NA NA 2009.997
307563 NA 2007.446 NA 2009.997
294104 NA NA NA 2009.997
336439 NA NA NA 2009.997
245651 NA NA NA 2009.997
216824 2009.923 NA NA 2009.923

3. A crude picture of the mortality by sex can be obtained by the stat.table function:

stat.table( sex,
list( D=sum( lex.Xst=="Dead" ),

Y=sum( lex.dur ),
rate=ratio( lex.Xst=="Dead", lex.dur, 1000 ) ),

margins=TRUE,
data=LL )

---------------------------------
sex D Y rate
---------------------------------
M 1343.00 27614.21 48.63
F 1156.00 26659.05 43.36

Total 2499.00 54273.27 46.04
---------------------------------

So not surprising, we see that men have a higher mortality than women, here apparently
only some 10%.

4. When we want to assess how mortality depends on age, calendar time and duration or
to comapre with population mortality, we would in principle split the follow-up along all
three time scales, but in practice it is sufficient to split it along one of the time-scales
and then just use the value of each of the time-scales at the left endpoint of the intervals
for analysis and for matching with population mortality. Note however that this requires
that time-scales are treated as quantitative variables in the modeling.

We note that the total follow-up time was some 54,000 person-years, so if we split the
follow-up in 6-month intervals we should get a bit more than 110,000 records. Note that
in the popEpi package there is a function with the same functionality, which is faster
(particularly for large datasets) and has a somewhat smarter syntax — it returns a
data.table:

system.time( SL <- splitLexis( LL, breaks=seq(0,125,1/2), time.scale="A" ) )

user system elapsed
2.144 0.056 2.199
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summary( SL ) ; class( SL )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 115974 2499 118473 2499 54273.27 9996

[1] "Lexis" "data.frame"

system.time( SL <- splitMulti( LL, A=seq(0,125,1/2) ) )

user system elapsed
1.404 0.100 1.500

summary( SL ) ; class( SL )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 115974 2499 118473 2499 54273.27 9996

[1] "Lexis" "data.table" "data.frame"

summary( LL )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 7497 2499 9996 2499 54273.27 9996

We see that the number of records have increased, but the number of persons, events
and person-years is still the same as in LL. Thus, the amount of follow-up information is
still the same; it is just distributed over more records, and hence allowing more detailed
analyses.

SMR

The SMR is the Standardized Mortality Ratio, which is the mortality rate-ratio between the
diabetes patients and the general population. In real studies we would subtract the deaths
and the person-years among the diabetes patients from those of the general population, but
since we do not have access to these, we make the comparison to the general population at
large, i.e. also including the diabetes patients.

We now want to include the population mortality rates as a fixed variable in the split
dataset; for each record in the split dataset we attach the value of the population mortality
for the relevant sex, and and calendar time.

This can be achieved in two ways: Either we just use the current split of follow-up time and
allocate the population mortality rates for some suitably chosen (mid-)point of the follow-up
in each, or we make a second split by date, so that follow-up in the diabetes patients is in the
same classification of age and data as the population mortality table.

5. Using the former approach we shall include as an extra variable the population
mortality as available from the data set M.dk.

First create the variables in the diabetes dataset that we need for matching with the age
and period classification of the population mortality data, that is age, date (and sex) at
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the midpoint of each of the intervals (or rater at a point 3 months after the left endpoint
of the interval — recall we split the follow-up in 6 month intervals).

We need to have variables of the same type when we merge, so we must transform the
sex variable in M.dk to a factor, and must for each follow-up interval in the SL data have
an age and a period variable that can be used in merging with the population data.

str( SL )

Classes ‘Lexis’, ‘data.table’ and 'data.frame': 118473 obs. of 14 variables:
$ lex.id : int 1 1 1 1 1 1 1 1 1 1 ...
$ A : num 58.7 59 59.5 60 60.5 ...
$ P : num 1999 1999 2000 2000 2001 ...
$ dur : num 0 0.339 0.839 1.339 1.839 ...
$ lex.dur: num 0.339 0.5 0.5 0.5 0.5 ...
$ lex.Cst: Factor w/ 2 levels "Alive","Dead": 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst: Factor w/ 2 levels "Alive","Dead": 1 1 1 1 1 1 1 1 1 1 ...
$ sex : Factor w/ 2 levels "M","F": 2 2 2 2 2 2 2 2 2 2 ...
$ dobth : num 1940 1940 1940 1940 1940 ...
$ dodm : num 1999 1999 1999 1999 1999 ...
$ dodth : num NA NA NA NA NA NA NA NA NA NA ...
$ dooad : num NA NA NA NA NA NA NA NA NA NA ...
$ doins : num NA NA NA NA NA NA NA NA NA NA ...
$ dox : num 2010 2010 2010 2010 2010 ...
- attr(*, ".internal.selfref")=<externalptr>
- attr(*, "time.scales")= chr "A" "P" "dur"
- attr(*, "time.since")= chr "" "" ""
- attr(*, "breaks")=List of 3
..$ A : num 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 ...
..$ P : NULL
..$ dur: NULL

SL$Am <- floor( SL$A+0.25 )
SL$Pm <- floor( SL$P+0.25 )
data( M.dk )
str( M.dk )

'data.frame': 7800 obs. of 6 variables:
$ A : num 0 0 0 0 0 0 0 0 0 0 ...
$ sex : num 1 2 1 2 1 2 1 2 1 2 ...
$ P : num 1974 1974 1975 1975 1976 ...
$ D : num 459 303 435 311 405 258 332 205 312 233 ...
$ Y : num 35963 34383 36099 34652 34965 ...
$ rate: num 12.76 8.81 12.05 8.97 11.58 ...
- attr(*, "Contents")= chr "Number of deaths and risk time in Denmark"

M.dk <- transform( M.dk, Am = A,
Pm = P,
sex = factor( sex, labels=c("M","F") ) )

str( M.dk )

'data.frame': 7800 obs. of 8 variables:
$ A : num 0 0 0 0 0 0 0 0 0 0 ...
$ sex : Factor w/ 2 levels "M","F": 1 2 1 2 1 2 1 2 1 2 ...
$ P : num 1974 1974 1975 1975 1976 ...
$ D : num 459 303 435 311 405 258 332 205 312 233 ...
$ Y : num 35963 34383 36099 34652 34965 ...
$ rate: num 12.76 8.81 12.05 8.97 11.58 ...
$ Am : num 0 0 0 0 0 0 0 0 0 0 ...
$ Pm : num 1974 1974 1975 1975 1976 ...
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We then match the rates from M.dk into SL — sex, Am and Pm are the common
variables, and therefore the match is on these variables:

SLr <- merge( SL, M.dk[,c("sex","Am","Pm","rate")] )
dim( SL )

[1] 118473 16

dim( SLr )

[1] 118454 17

This merge only takes rows that have information from both data sets, hence the
slightly fewer rows in SLr than in SL — there are a few record in SL with age and period
values that do not exist in the population mortality data.

6. We compute the expected number of deaths as the person-time multiplied by the
corresponding population rate recalling that the rate is given in units of deaths per 1000
PY, whereas lex.dur is in units of 1 PY:

SLr$E <- SLr$lex.dur * SLr$rate / 1000
stat.table( sex,

list( D = sum(lex.Xst=="Dead"),
Y = sum(lex.dur),
E = sum(E),

SMR = ratio(lex.Xst=="Dead",E) ),
data = SLr,
margin = TRUE )

-----------------------------------------
sex D Y E SMR
-----------------------------------------
M 1342.00 27611.40 796.11 1.69
F 1153.00 26654.52 747.77 1.54

Total 2495.00 54265.91 1543.88 1.62
-----------------------------------------

stat.table( list( sex, Age = floor(pmax(A,39)/10)*10 ),
list( D = sum(lex.Xst=="Dead"),

Y = sum(lex.dur),
E = sum(E),

SMR = ratio(lex.Xst=="Dead",E) ),
margin = TRUE,
data = SLr )

----------------------------------------------------------------------------
---------------------------------Age---------------------------------

sex 30 40 50 60 70 80 90 Total
----------------------------------------------------------------------------
M 6.00 32.00 119.00 275.00 486.00 348.00 76.00 1342.00

2129.67 3034.15 6273.51 7940.22 5842.90 2165.80 225.14 27611.40
1.94 9.47 48.48 142.38 275.67 254.92 63.26 796.11
3.09 3.38 2.45 1.93 1.76 1.37 1.20 1.69

F 5.00 15.00 62.00 157.00 331.00 423.00 160.00 1153.00
2576.33 2742.03 4491.68 6112.30 6383.09 3786.78 562.31 26654.52

1.24 5.01 22.00 74.00 204.44 318.81 122.26 747.77
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4.02 2.99 2.82 2.12 1.62 1.33 1.31 1.54

Total 11.00 47.00 181.00 432.00 817.00 771.00 236.00 2495.00
4706.00 5776.18 10765.19 14052.52 12225.99 5952.59 787.46 54265.91

3.18 14.48 70.47 216.39 480.11 573.73 185.51 1543.88
3.45 3.25 2.57 2.00 1.70 1.34 1.27 1.62

----------------------------------------------------------------------------

We see that the SMR is pretty much the same for women and men, but also that there
is a steep decrease in SMR by age.

7. We can fit a poisson model with sex as the explanatory variable and log-expected as
offset to derive the SMR (and c.i.).

Some of the population mortality rates are 0, so we must exclude those records from the
analysis.

msmr <- glm( (lex.Xst=="Dead") ~ sex - 1 + offset(log(E)),
family = poisson,
data = subset(SLr,E>0) )

ci.exp( msmr )

exp(Est.) 2.5% 97.5%
sexM 1.685699 1.597881 1.778344
sexF 1.541922 1.455442 1.633540

These are the same SMRs as just coomputed by stat.table, but now with confidence
intervals.

We can assess the ratios of SMRs between men and women by using the ctr.mat

argument:

round( ci.exp( msmr, ctr.mat=rbind(M=c(1,0),W=c(0,1),'M/F'=c(1,-1)) ), 2 )

exp(Est.) 2.5% 97.5%
M 1.69 1.60 1.78
W 1.54 1.46 1.63
M/F 1.09 1.01 1.18

Age-specific mortality

8. We now use this dataset to estimate models with age-specific mortality curves for men
and women separately, using splines (the function gam, using s from the mgcv package).

r.m <- gam( (lex.Xst=="Dead") ~ s(A,k=20) + offset( log(lex.dur) ),
family = poisson,
data = subset( SL, sex=="M" ) )

r.f <- update( r.m, data = subset( SL, sex=="F" ) )
gam.check( r.m )
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Method: UBRE Optimizer: outer newton
full convergence after 3 iterations.
Gradient range [7.812553e-10,7.812553e-10]
(score -0.8040744 & scale 1).
Hessian positive definite, eigenvalue range [1.064907e-05,1.064907e-05].
Model rank = 20 / 20

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value
s(A) 19.00 4.66 0.9 0.06 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

gam.check( r.f )

Method: UBRE Optimizer: outer newton
full convergence after 1 iteration.
Gradient range [-5.035753e-08,-5.035753e-08]
(score -0.8232311 & scale 1).
Hessian positive definite, eigenvalue range [2.005875e-05,2.005875e-05].
Model rank = 20 / 20

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value
s(A) 19.0 2.6 0.91 0.06 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Here we are modeling the follow-up (events ((lex.Xst=="Dead")) and person-years
(lex.dur) ) as a non-linear function of age — represented by the penalized spline
function s.

9. From these objects we could get the estimated log-rates by using predict, by supplying
a data frame of values for the variables used as predictors in the model. These will be
values of age — the ages where we want to see the predicted rates and lex.dur.

The default predict.gam function is a bit clunky as it gives the prediction and the
standard errors of these in two different elements of a list, so in Epi there is a wrapper
function ci.pred that uses this and computes predicted rates and confidence limits for
these, which is usually what is needed.

Note that interms of prediction lex.dur is a covariate too; by setting this to 1000
throughout the data frame nd we get the rates in units of deaths per 1000 PY1

nd <- data.frame( A = seq(20,90,0.5),
lex.dur = 1000)

p.m <- ci.pred( r.m, newdata = nd )
p.f <- ci.pred( r.f, newdata = nd )
str( p.m )

1Note however this is only the case if the offset is specified in the model formula. If the offset is specified as
an argument (offset = log(lex.dur)), then the value of lex.dur in the dataframe will be ignored (equivaent
of setting lex.dur to 1 in the newdata argument to ci.pred.)
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num [1:141, 1:3] 1.32 1.37 1.42 1.47 1.52 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:141] "1" "2" "3" "4" ...
..$ : chr [1:3] "Estimate" "2.5%" "97.5%"

10. We can then plot the predicted rates for men and women together using matplot:

matplot( nd$A, cbind(p.m,p.f),
type="l", col=rep(c("blue","red"),each=3), lwd=c(3,1,1), lty=1,
log="y", xlab="Age", ylab="Mortality of DM ptt per 1000 PY")

An alternative is to use matshade that gives confidence limist as shaded areas

matshade( nd$A, cbind(p.m,p.f), plot=TRUE,
col=c("blue","red"), lty=1,
log="y", xlab="Age", ylab="Mortality of DM ptt per 1000 PY")
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Figure 2.1: Age-specific mortality rates for Danish diabetes patients as estimated from a gam

model with only age. Blue: men, red: women.

Not surprisingly, the uncertainty on the rates is largest among the youngest where the
no. of deths is smallest.
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Period and duration effects

11. We model the mortality rates among diabetes patients also including current date and
duration of diabetes. Note that we for later prediction purposes put the offset in the
model formula.

Mcr <- gam( (lex.Xst=="Dead") ~ s( A, bs="cr", k=10 ) +
s( P, bs="cr", k=10 ) +
s( dur, bs="cr", k=10 ) + offset(log(lex.dur)),

family = poisson,
data = subset( SL, sex=="M" ) )

summary( Mcr )

Family: poisson
Link function: log

Formula:
(lex.Xst == "Dead") ~ s(A, bs = "cr", k = 10) + s(P, bs = "cr",

k = 10) + s(dur, bs = "cr", k = 10) + offset(log(lex.dur))

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.54074 0.04938 -71.7 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(A) 3.645 4.517 1013.20 < 2e-16 ***
s(P) 1.024 1.047 17.58 3.40e-05 ***
s(dur) 7.586 8.384 74.46 1.87e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = -0.0255 Deviance explained = 9.87%
UBRE = -0.8054 Scale est. = 1 n = 60347

Fcr <- update( Mcr, data = subset( SL, sex=="F" ) )
summary( Fcr )

Family: poisson
Link function: log

Formula:
(lex.Xst == "Dead") ~ s(A, bs = "cr", k = 10) + s(P, bs = "cr",

k = 10) + s(dur, bs = "cr", k = 10) + offset(log(lex.dur))

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.78479 0.05808 -65.17 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(A) 2.668 3.368 988.51 < 2e-16 ***
s(P) 1.887 2.370 20.04 0.000123 ***
s(dur) 5.972 6.971 38.95 2.17e-06 ***
---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = -0.0229 Deviance explained = 11.1%
UBRE = -0.82405 Scale est. = 1 n = 58126

gam.check( Mcr )

Method: UBRE Optimizer: outer newton
full convergence after 3 iterations.
Gradient range [-7.482164e-07,2.324779e-07]
(score -0.805401 & scale 1).
Hessian positive definite, eigenvalue range [7.229476e-07,1.904546e-05].
Model rank = 28 / 28

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value
s(A) 9.00 3.65 0.89 0.025 *
s(P) 9.00 1.02 0.94 0.770
s(dur) 9.00 7.59 0.90 0.065 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

gam.check( Fcr )

Method: UBRE Optimizer: outer newton
full convergence after 3 iterations.
Gradient range [-1.401872e-08,1.022359e-08]
(score -0.8240482 & scale 1).
Hessian positive definite, eigenvalue range [1.061413e-05,2.307556e-05].
Model rank = 28 / 28

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value
s(A) 9.00 2.67 0.91 0.61
s(P) 9.00 1.89 0.92 0.80
s(dur) 9.00 5.97 0.90 0.24

For the male rates the edf (effective degrees of freedom) is quite close to the k, but as
wee shall see no need to more detailed modeling.

12. We can now plot the estimated effects for men and women:

par( mfrow=c(2,3) )
plot( Mcr, ylim=c(-3,3), col="blue" )
plot( Fcr, ylim=c(-3,3), col="red" )

13. Not surprisingly, these models fit substantially better than the model with only age as
we can see from this comparison:

anova( Mcr, r.m, test="Chisq" )



IARC, 2018 2.12 Time-splitting, time-scales and SMR 207

0 20 40 60 80 100

−3

−2

−1

0

1

2

3

A

s(
A

,3
.6

5)

1995 2000 2005 2010

−3

−2

−1

0

1

2

3

P

s(
P,

1.
02

)

0 5 10 15

−3

−2

−1

0

1

2

3

dur

s(
du

r,7
.5

9)

0 20 40 60 80 100

−3

−2

−1

0

1

2

3

A

s(
A

,2
.6

7)

1995 2000 2005 2010

−3

−2

−1

0

1

2

3

P

s(
P,

1.
89

)

0 5 10 15

−3

−2

−1

0

1

2

3

dur

s(
du

r,5
.9

7)

Figure 2.2: Plot of the estimated smooth terms for men (top) and women (bottom). Clearly it
seems that the duration effects are somewhat over-modeled.

Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ s(A, bs = "cr", k = 10) + s(P, bs = "cr",
k = 10) + s(dur, bs = "cr", k = 10) + offset(log(lex.dur))

Model 2: (lex.Xst == "Dead") ~ s(A, k = 20) + offset(log(lex.dur))
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 60332 11717
2 60340 11812 -8.0243 -95.25 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

anova( Fcr, r.f, test="Chisq" )
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Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ s(A, bs = "cr", k = 10) + s(P, bs = "cr",
k = 10) + s(dur, bs = "cr", k = 10) + offset(log(lex.dur))

Model 2: (lex.Xst == "Dead") ~ s(A, k = 20) + offset(log(lex.dur))
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 58112 10204
2 58122 10268 -9.3754 -63.35 4.457e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

14. Since the fitted model has three time-scales: current age, current date and current
duration of diabetes, so the effects that we see from the plot.gam are not really
interpretable; they are (as in any kind of multiple regressions) to be interpreted as “all
else equal” which they are not; the three time scales advance simultaneously at the same
pace.

The reporting would therefore more naturally be only on one time scale, showing the
mortality for persons diagnosed in different ages in a given year.

This is most easily done using the ci.pred function with the newdata= argument. So a
person diagnosed in age 50 in 1995 will have a mortality measured in cases per 1000 PY
as:

pts <- seq(0,17,0.5)
nd <- data.frame( A = 50+pts,

P = 1995+pts,
dur = pts,

lex.dur = 1000 )
head( cbind( nd$A, ci.pred( Mcr, newdata=nd ) ) )

Estimate 2.5% 97.5%
1 50.0 29.75863 22.91500 38.64611
2 50.5 19.60333 15.38960 24.97079
3 51.0 15.71777 12.31882 20.05455
4 51.5 15.61142 12.22464 19.93650
5 52.0 16.18933 12.79950 20.47693
6 52.5 16.47410 12.94888 20.95904

Note, that we used + offset(log(lex.dur)) as the offset specification in the model,
the value of lex.dur in nd will be honoured and prediction be made for the scale
chosen, in the model specification; so in this case as events per 1000 PY (since lex.dur

is in units of single person-years).

Since there is no duration beyond 18 years in the dataset we only make predictions for
12 years of duration, and do it for persons diagnosed in 1995 and 2005 — the latter is
quite dubious too because we are extrapolating calendar time trends way beyond data.

We form matrices of predictions with confidence intervals, that we will plot in the same
frame:

pts <- seq(0,12,0.1)
plot( NA, xlim = c(50,85), ylim = c(5,400), log="y",

xlab="Age", ylab="Mortality rate for DM patients" )
for( ip in c(1995,2005) )
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for( ia in c(50,60,70) )
{

nd <- data.frame( A=ia+pts,
P=ip+pts,

dur= pts,
lex.dur=1000 )

matshade( nd$A, ci.pred( Mcr, nd ), col="blue" )
matshade( nd$A, ci.pred( Fcr, nd ), col="red" )

}
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Figure 2.3: Mortality rates for diabetes patients diagnosed 1995 and 2005 in ages 50, 60 and
70; as estimated by penalized splines. Men blue, women red.

15. From figure 2.3 it seems that the duration effect is dramatically over-modeled, so we
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refit constraining the d.f. to 5 (note that this choice is essentially an arbitray choice)
and redo the whole thing again:

Mcr <- gam( (lex.Xst=="Dead") ~ s( A, bs="cr", k=10 ) +
s( P, bs="cr", k=10 ) +
s( dur, bs="cr", k=5 ) +
offset( log(lex.dur) ),

family = poisson,
data = subset(SL,sex=="M") )

Fcr <- update( Mcr,
data = subset(SL,sex=="F") )

gam.check( Mcr )

Method: UBRE Optimizer: outer newton
full convergence after 4 iterations.
Gradient range [-2.87389e-07,5.520003e-08]
(score -0.805213 & scale 1).
Hessian positive definite, eigenvalue range [2.83738e-07,1.060935e-05].
Model rank = 23 / 23

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value
s(A) 9.00 3.70 0.91 0.30
s(P) 9.00 1.01 0.92 0.73
s(dur) 4.00 3.93 0.91 0.37

gam.check( Fcr )

Method: UBRE Optimizer: outer newton
full convergence after 3 iterations.
Gradient range [1.704809e-09,4.79408e-08]
(score -0.8240014 & scale 1).
Hessian positive definite, eigenvalue range [4.823934e-06,1.936723e-05].
Model rank = 23 / 23

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value
s(A) 9.00 2.65 0.92 0.53
s(P) 9.00 1.92 0.89 0.02 *
s(dur) 4.00 3.81 0.93 0.91
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Thus it seems that k=5 is a bit under modeling the duration effect.

We also add the rate-ratio between men and women using the ci.ratio function:

plot( NA, xlim = c(50,80), ylim = c(0.9,100), log="y",
xlab="Age", ylab="Mortality rate for DM patients" )

abline( v = c(50,55,60,65,70), col=gray(0.8) )
# for( ip in c(1995,2005) )
ip <- 2005
for( ia in c(50,55,60,65,70) )

{
nd <- data.frame( A=ia+pts,
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P=ip+pts,
dur= pts,

lex.dur=1000 )
matshade( nd$A, rm <- ci.pred( Mcr, nd ), col="blue", lwd=2 )
matshade( nd$A, rf <- ci.pred( Fcr, nd ), col="red" , lwd=2 )
matshade( nd$A, ci.ratio( rm, rf ), lwd=2 )

}
abline( h=1, lty="55" )
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Figure 2.4: Mortality rates for diabetes patients diagnosed 1995 and 2005 in ages 50, 55, 60,
65 and 70; as estimated by penalized splines. Note that we did this for year of diagnosis 2005
alone, but for a longer duration period. Men blue, women red, M/W rate ratio gray.

From figure ?? we see that there is an incraesed mortality in the first few years afer
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diagnosis (this is a clinical artifact) and little indication that age at diagnosis has any
effect. (This can of course be tried explicitly).

Moreover it is pretty clear that the M/W mortality rate ratio is constant across age and
duration.

2.12.1 SMR modeling

16. We can treat SMR exactly as mortality rates by including the log expected numbers
instead of the log person-years as offset, again using separate models for men and
women.

We exclude those records where no deaths in the population occur (that is where the
rate is 0) — you could say that this correspond to parts of the data where no follow-up
on the population mortality scale is available. The rest is essentially just a repeat of the
analyses for mortality rates:

SLr <- subset( SLr, E>0 )
Msmr <- gam( (lex.Xst=="Dead") ~ s( A, bs="cr", k=10 ) +

s( P, bs="cr", k=10 ) +
s( dur, bs="cr", k=5 ),

offset = log( E ),
family = poisson,
data = subset( SLr, sex=="M" ) )

Fsmr <- update( Msmr,
data = subset( SLr, sex=="F" ) )

summary( Msmr )

Family: poisson
Link function: log

Formula:
(lex.Xst == "Dead") ~ s(A, bs = "cr", k = 10) + s(P, bs = "cr",

k = 10) + s(dur, bs = "cr", k = 5)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.77299 0.04089 18.91 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(A) 1.022 1.044 58.357 2.82e-14 ***
s(P) 1.009 1.019 1.972 0.163
s(dur) 3.925 3.996 55.820 3.17e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = -0.0259 Deviance explained = 0.992%
UBRE = -0.80531 Scale est. = 1 n = 60333

summary( Fsmr )

Family: poisson
Link function: log
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Formula:
(lex.Xst == "Dead") ~ s(A, bs = "cr", k = 10) + s(P, bs = "cr",

k = 10) + s(dur, bs = "cr", k = 5)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.75404 0.05384 14.01 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(A) 1.699 2.149 56.274 3.95e-12 ***
s(P) 1.837 2.306 7.508 0.0375 *
s(dur) 3.818 3.977 35.807 1.57e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = -0.0228 Deviance explained = 0.947%
UBRE = -0.82414 Scale est. = 1 n = 58099

par( mfrow=c(2,3) )
plot( Msmr, ylim=c(-1,2), col="blue" )
plot( Fsmr, ylim=c(-1,2), col="red" )
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Figure 2.5: Estimated effects of age, calendar time and duration on SMR — top men, bottom
women

17. We then compute the predicted SMRs from the models for men and women diagnosed
in ages 50, 60 and 70 in 1995 and 2005, respectively, and show them in plots side by
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side. We are going to make this type of plot for other models (well, pairs, for men and
women) so we wrap it in a function:

plot( NA, xlim = c(50,80), ylim = c(0.8,5), log="y",
xlab="Age", ylab="SMR relative to total population" )

abline( v = c(50,55,60,65,70), col=gray(0.8) )
# for( ip in c(1995,2005) )
ip <- 2005
for( ia in c(50,55,60,65,70) )

{
nd <- data.frame( A=ia+pts,

P=ip+pts,
dur= pts,
E=1 )

matshade( nd$A, rm <- ci.pred( Msmr, nd ), col="blue", lwd=2 )
matshade( nd$A, rf <- ci.pred( Fsmr, nd ), col="red" , lwd=2 )
matshade( nd$A, ci.ratio( rm, rf ), lwd=2, col=gray(0.5) )

}
abline( h=1, lty="55" )
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Figure 2.6: Mortality rates for diabetes patients diagnosed 1995 and 2005 in ages 50, 60 and
70; as estimated by penalized splines. Men blue, women red.

From figure 2.6 we see that like for mortality there is a clear peak at diagnosis and
flattening after approximately 2 years. But also that the duration is possibly
over-modeled. Finally there is no indication that the SMR is different for men and
women.

18. It would be natural to simplify the model to one with a non-linear effect of duration and
linear effects of age at diagnosis and calendar time, and moreover to squeeze the number
of d.f. for the non-linear smooth term for duration:
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Asmr <- gam( (lex.Xst=="Dead") ~ sex +
sex:I(A-60) +
sex:I(P-2000) +
s( dur, k=5 ) +
offset( log(E) ),

family = poisson,
data = SLr )

summary( Asmr )

Family: poisson
Link function: log

Formula:
(lex.Xst == "Dead") ~ sex + sex:I(A - 60) + sex:I(P - 2000) +

s(dur, k = 5) + offset(log(E))

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.868923 0.055576 15.635 < 2e-16 ***
sexF 0.035465 0.085183 0.416 0.6772
sexM:I(A - 60) -0.018857 0.002421 -7.789 6.73e-15 ***
sexF:I(A - 60) -0.019701 0.002696 -7.306 2.74e-13 ***
sexM:I(P - 2000) -0.013296 0.007936 -1.675 0.0939 .
sexF:I(P - 2000) -0.018563 0.008499 -2.184 0.0289 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(dur) 3.856 3.987 60.13 1.57e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = -0.0242 Deviance explained = 0.865%
UBRE = -0.8144 Scale est. = 1 n = 118432

gam.check( Asmr )

Method: UBRE Optimizer: outer newton
full convergence after 4 iterations.
Gradient range [6.36467e-07,6.36467e-07]
(score -0.8143976 & scale 1).
Hessian positive definite, eigenvalue range [3.017067e-06,3.017067e-06].
Model rank = 10 / 10

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value
s(dur) 4.00 3.86 0.92 0.52

round( ( ci.exp(Asmr,subset="sex")-1 )*100, 1 )

exp(Est.) 2.5% 97.5%
sexF 3.6 -12.3 22.4
sexM:I(A - 60) -1.9 -2.3 -1.4
sexF:I(A - 60) -2.0 -2.5 -1.4
sexM:I(P - 2000) -1.3 -2.8 0.2
sexF:I(P - 2000) -1.8 -3.5 -0.2
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Thus the decrease in SMR per year of age is about 2% / year for both sexes and 1.3%
per calendar year for men, but 1.8% per year for women.

The estimate of sex indicates that the SMR for 60 year old women in 2000 at duration 0
of DM is about 3.6% larger than that of men, but nowhere near significantly so.

19. We can use the previous code to show the predicted mortality under this model.

plot( NA, xlim = c(50,80), ylim = c(0.8,5), log="y",
xlab="Age", ylab="SMR relative to total population" )

abline( v = c(50,55,60,65,70), col=gray(0.8) )
# for( ip in c(1995,2005) )
ip <- 2005
for( ia in c(50,55,60,65,70) )

{
nd <- data.frame( A=ia+pts,

P=ip+pts,
dur= pts,
E=1 )

matshade( nd$A, rm <- ci.pred( Asmr, cbind(nd,sex="M") ), col="blue", lwd=2 )
matshade( nd$A, rf <- ci.pred( Asmr, cbind(nd,sex="F") ), col="red" , lwd=2 )
matshade( nd$A, ci.ratio( rm, rf ), lwd=2, col=gray(0.5) )

}
abline( h=1, lty="55" )
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Figure 2.7: Mortality rates for diabetes patients diagnosed 1995 and 2005 in ages 50, 60 and
70; as estimated by penalized splines. Men blue, women red.

We see that there is absolutely no indication of difference between men and women, but
also that the estimated effect of duraion is not exactly credible.
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20. If we deem the curves non-credible, we may resort to a brutal parametric assumption
without any penalization of curvature involved. If we choose a natural spline for the
duration with knots at 0,1,3,6 years we get a model with 3 parameters, try:

dim( Ns(SLr$dur, knots=c(0,1,4,8) ) )

[1] 118432 3

Now fit the same model as above using this:

SMRglm <- glm( (lex.Xst=="Dead") ~ I(A-60) +
I(P-2000) +
Ns( dur, knots=c(0,1,4,8) ) +
offset( log(E) ),

family = poisson,
data = SLr )

Then we can plot again:

plot( NA, xlim = c(50,80), ylim = c(0.8,5), log="y",
xlab="Age", ylab="SMR relative to total population" )

abline( v = c(50,55,60,65,70), col=gray(0.8) )
# for( ip in c(1995,2005) )
ip <- 2005
for( ia in c(50,55,60,65,70) )

{
nd <- data.frame( A=ia+pts,

P=ip+pts,
dur= pts,
E=1 )

matshade( nd$A, ci.pred( SMRglm, nd ), lwd=2 )
}

abline( h=1, lty="55" )

Form figure 2.8 it appears that the SMR drops by a factor 2 during the first 2 years,
increases a bit and after that decreases by age. But the general pattern is that after som
5 years the SMR no longer depend on the age at diagnosis — but the evidence for this is
pretty thin.
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Figure 2.8: Mortality rates for diabetes patients diagnosed 1995 and 2005 in ages 50, 60 and
70; as estimated by penalized splines, no difference between men and women assumed



IARC, 2018 2.13 Causal inference 219

2.13 Causal inference

2.13.1 Proper adjustment for confounding in regression models

The first exercise of this session will ask you to simulate some data according to pre-specified
causal structure (don’t take the particular example too seriously) and see how you should
adjust the analysis to obtain correct estimates of the causal effects.

Suppose one is interested in the effect of beer-drinking on body weight. Let’s assume that
in addition to the potential effect of beer on weight, the following is true in reality:

� Men drink more beer than women

� Men have higher body weight than women

� People with higher body weight tend to have higher blood pressure

� Beer-drinking increases blood pressure

The task is to simulate a dataset in accordance with this model, and subsequently analyse
it to see, whether the results would allow us to conclude the true association structure.

1. Sketch a causal graph (not necessarily with R) to see, how should one generate the data

2. Suppose the actual effect sizes are following:

� The probability of beer-drinking is 0.2 for females and 0.7 for males

� Men weigh on average 10kg more than women

� One kg difference in body weight corresponds in average to 0.5mmHg difference in
(systolic) blood pressures

� Beer-drinking increases blood pressure by 10mmHg in average.

� Beer-drinking has no effect on body weight

If you do want to draw the graph in R

> library(Epi)
> par( mar=c(0,0,0,0), cex=2)
> plot( NA, bty="n",xlim= c(40,100), ylim=c(0,80), xaxt="n", yaxt="n",
+ xlab="", ylab="" ) # create an empty plot with coordinates
> b<-0; w=12
> bb <- tbox( "beer", 44, 40, w,w, col.txt="red" ,col.border=b)
> ww <- tbox( "weight", 90, 40, w,w, col.txt="red" ,col.border=b)
> ss <- tbox( "sex", 67, 70, w,w, col.txt="blue" ,col.border=b)
> bp <- tbox( "BP", 67, 10, w,w, col.txt="blue" ,col.border=b)
> text( boxarr( bb, ww , col="red", lwd=3 ,gap= 4), "?", col="red", adj=c(0,-0.5) )
> boxarr( bb, bp , col="blue", lwd=3 )
> boxarr( ww, bp , col="blue", lwd=3 )
> boxarr( ss, bb , col="blue", lwd=3 )
> boxarr( ss, ww , col="blue", lwd=3 )

Following the algorithm from the lecture: remove BP and the corresponding arrows – it
is not an ancestor of the exposure or outcome. Beer and weight are separated if sex is
removed – thus one needs to adjust the analysis for sex

The R commands to generate the data are:



220 2.13 Causal inference SPE: Solutions

> set.seed(02062017)
> bdat= data.frame(sex = c(rep(0,500),rep(1,500)) )
> # a data frame with 500 females, 500 males
> bdat$beer <- rbinom(1000,1,0.2+0.5*bdat$sex)
> bdat$weight <- 60 + 10*bdat$sex + rnorm(1000,0,7)
> bdat$bp <- 110 + 0.5*bdat$weight + 10*bdat$beer + rnorm(1000,0,10)

3. Now fit the following models for body weight as dependent variable and beer-drinking as
independent variable. Look, what is the estimated effect size:

(a) Unadjusted (just simple linear regression)

(b) Adjusted for sex

(c) Adjusted for sex and blood pressure

> library( Epi )
> m1a<-lm(weight~beer, data=bdat)
> m2a<-lm(weight~beer+sex, data=bdat)
> m3a<-lm(weight~beer+sex+bp, data=bdat)
> ci.lin(m1a)
> ci.lin(m2a)
> ci.lin(m3a)

4. What would be the conclusions on the effect of beer on weight, based on the three
models? Do they agree? Which (if any) of the models gives an unbiased estimate of the
actual causal effect of interest?

5. How can the answer be seen from the graph?

6. Now change the data-generation algorithm so, that in fact beer-drinking does increase
the body weight by 2kg. Look, what are the conclusions in the above models now. Thus
the data is generated as before, but the weight variable is computed as:

> bdat$weight <- 60 + 10*bdat$sex + 2*bdat$beer + rnorm(1000,0,7)

> bdat$bp <- 110 +0.5*bdat$weight + 10*bdat$beer+ rnorm(1000,0,10) #
> m1b<-lm(weight~beer,data=bdat)
> m2b<-lm(weight~beer+sex,data=bdat)
> m3b<-lm(weight~beer+sex+bp,data=bdat)
> ci.lin(m1b)
> ci.lin(m2b) # the correct model
> ci.lin(m3b)

7. Suppose one is interested in the effect of beer-drinking on blood pressure instead, and is
fitting a) an unadjusted model for blood pressure, with beer as an only covariate; b) a
model with beer, weight and sex as covariates. Would either a) or b) give an unbiased
estimate for the effect? (You may double-check whether the simulated data is consistent
with your answer).

> m1bp<-lm(bp~beer,data=bdat)
> m2bp<-lm(bp~beer+weight+sex,data=bdat)
> m3b<-lm(weight~beer+sex+bp,data=bdat)
> ci.lin(m1bp)
> ci.lin(m2bp) # the correct model



IARC, 2018 2.13 Causal inference 221

2.13.2 Instrumental variables estimation, Mendelian
randomization and assumptions

In the lecture slides it was shown that in a model for blood glucose level (associated with the
risk of diabetes), both BMI and FTO genotype were significant. Seeing such result in a real
dataset may misleadingly be interpreted as an evidence of a direct effect of FTO genotype on
glucose. Conduct a simulation study to verify that one may see a significant genotype effect
on outcome in such model if in fact the assumptions for Instrumental Variables estimation
(Mendelian Randomization) are valid – genotype has a direct effect on the exposure only,
whereas exposure-outcome association is confounded.

1. Start by generating the genotype variable as Binomial(2,p), with p = 0.2:

> n <- 10000
> mrdat <- data.frame(G = rbinom(n,2,0.2))
> table(mrdat$G)

2. Also generate the confounder variable U

> mrdat$U <- rnorm(n)

3. Generate a continuous (normally distributed) exposure variable BMI so that it depends
on G and U . Check with linear regression, whether there is enough power to get
significant parameter estimates. For instance:

> mrdat$BMI <- with(mrdat, 25 + 0.7*G + 2*U + rnorm(n) )

4. Finally generate Y (”Blood glucose level”) so that it depends on BMI and U (but not
on G).

> mrdat$Y <- with(mrdat, 3 + 0.1*BMI - 1.5*U + rnorm(n,0,0.5) )

5. Verify, that simple regression model for Y , with BMI as a covariate, results in a biased
estimate of the causal effect (parameter estimate is different from what was generated)

> mxy<-lm(Y ~ BMI, data=mrdat)
> ci.lin(mxy)

How different is the estimate from 0.1?

6. Estimate a regression model for Y with two covariates, G and BMI. Do you see a
significant effect of G? Could you explain analytically, why one may see a significant
parameter estimate for G there?

> mxyg<-lm(Y ~ G + BMI, data=mrdat)
> ci.lin(mxyg)
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7. Find an IV (instrumental variables) estimate, using G as an instrument, by following
the algorithm in the lecture notes (use two linear models and find a ratio of the
parameter estimates). Does the estimate get closer to the generated effect size?

> mgx<-lm(BMI ~ G, data=mrdat)
> ci.lin(mgx) # check the instrument effect
> bgx<-mgx$coef[2] # save the 2nd coefficient (coef of G)
> mgy<-lm(Y ~ G, data=mrdat)
> ci.lin(mgy)
> bgy<-mgy$coef[2]
> causeff <- bgy/bgx
> causeff # closer to 0.1?

8. A proper simulation study would require the analysis to be run several times, to see the
extent of variability in the parameter estimates. A simple way to do it here would be
using a for-loop. Modify the code as follows (exactly the same commands as executed
so far, adding a few lines of code to the beginning and to the end):

> n <- 10000
> # initializing simulations:
> # 30 simulations (change it, if you want more):
> nsim<-30
> mr<-rep(NA,nsim) # empty vector for the outcome parameters
> for (i in 1:nsim) { # start the loop
+ ### Exactly the same commands as before:
+ mrdat <- data.frame(G = rbinom(n,2,0.2))
+ mrdat$U <- rnorm(n)
+ mrdat$BMI <- with(mrdat, 25 + 0.7*G + 2*U + rnorm(n) )
+ mrdat$Y <- with(mrdat, 3 + 0.1*BMI - 1.5*U + rnorm(n,0,0.5) )
+ mgx<-lm(BMI ~ G, data=mrdat)
+ bgx<-mgx$coef[2]
+ mgy<-lm(Y ~ G, data=mrdat)
+ bgy<-mgy$coef[2]
+ # Save the i'th parameter estimate:
+ mr[i]<-bgy/bgx
+ } # end the loop

Now look at the distribution of the parameter estimate:

> summary(mr)

9. (optional) Change the code of simulations so that the assumptions are violated: add a
weak direct effect of the genotype G to the equation that generates Y :

> mrdat$Y <- with(mrdat, 3 + 0.1*BMI - 1.5*U + 0.05*G + rnorm(n,0,0.5) )

Repeat the simulation study to see, what is the bias in the average estimated causal
effect of BMI on Y .

10. (optional) Using library sem and function tsls, obtain a two-stage least squares
estimate for the causal effect. Do you get the same estimate as before?

> library(sem)
> summary(tsls(Y ~ BMI, ~G, data=mrdat))
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Why are simulation exercises useful for causal inference?

If we simulate the data, we know the data-generating mechanism and the “true” causal effects.
So this is a way to check, whether an analysis approach will lead to estimates that correspond
to what is generated. One could expect to see similar phenomena in real data analysis, if the
data-generation mechanism is similar to what was used in simulations.
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2.14 Nested case-control study and case-cohort study:

Risk factors of coronary heart disease

In this exercise we shall apply both the nested case-control (NCC) design and the case-cohort
(CC) design in sampling control subjects from a defined cohort or closed study population.
The case group comprises those cohort members who die from coronary heart disease (CHD)
during a > 20 years follow-up of the cohort. The risk factors of interest are cigarette smoking,
systolic blood pressure, and total cholesterol level.

Our study population is an occupational cohort comprising 1501 men working in blue-collar
jobs in one Nordic country. Eligible subjects had no history of coronary heart disease when
recruited to the study in the early 1990s. Smoking habits and many other items were inquired
at baseline by a questionnaire, and blood pressure was measured by a research nurse, the
values being written down on the questionnaire. Serum samples were also taken from the
cohort members at the same time and were stored in a freezer. For some reason, the data in
the questionnaires were not entered to any computer file, but the questionnaires were kept in
a safe storehouse for further purposes. Also, no biochemical analyses were initially performed
for the sera collected from the participants. However, dates of birth and dates of entry to the
study were recorded in an electronic file.

In 2010 the study was suddenly reactivated by those investigators of the original team who
were still alive then. As the first step mortality follow-up of the cohort members was executed
by record linkage to the national population register, from which the dates of death and
emigration were obtained. Another linkage was performed with the national register of causes
of death in order to get the deaths from coronary heard disease identified. As a result a data
file occoh.txt was completed containing the following variables:

id = identification number,
birth = date of birth,
entry = date of recruitment and baseline measurements,
exit = date of exit from mortality follow-up,

death = indicator for vital status at the end of follow-up,
= 1, if dead from any cause, and = 0, if alive,

chdeath = indicator for death from coronary heart disease,
= 1, if “yes”, and 0, if “no”.

This exercise is divided into five main parts:

(1) Description of the study base or the follow-up experience of the whole cohort,
identification of the cases and illustrating the risk sets.

(2) Nested case-control study within the cohort: (i) selection of controls by risk set or
time-matched sampling using function ccwc() in package Epi, (ii) collection of exposure
data for cases and controls from the pertinent data base of the whole cohort to the
case-control data set using function merge(), and (iii) analysis of case-control data
using function clogit() in package survival(),

(3) Case-cohort study within the cohort: (i) selection of a subcohort by simple random
sampling from the cohort, (ii) fitting the Cox model to the data by weighted partial
likelihood using function coxph() in package survival() with appropriate weighting
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and correction of estimated covariance matrix for the model coefficients; also using
function cch() in package survival() for the same task.

(4) Comparison of results from all previous analyses, also with those from a full cohort
design.

(5) Further tasks and homework.

2.14.1 Reading the cohort data, illustrating the study base and
risk sets

11. Load the packages Epi and survival. Read in the cohort data file and name the
resulting data frame as oc. See its structure and print the univariate summaries.

> library(Epi)
> library(survival)
> url <- "http://bendixcarstensen.com/SPE/data"
> oc <- read.table( paste(url, "occoh.txt", sep = "/"), header=TRUE)
> str(oc)

'data.frame': 1501 obs. of 6 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ birth : Factor w/ 1349 levels "1929-08-01","1929-12-23",..: 811 230 537 566 266 336 913 790 769 33 ...
$ entry : Factor w/ 302 levels "1990-08-14","1990-08-15",..: 1 1 1 1 1 1 2 2 2 2 ...
$ exit : Factor w/ 290 levels "1992-02-25","1992-04-06",..: 290 290 290 290 203 229 227 218 290 290 ...
$ death : int 0 0 0 0 1 1 1 1 0 0 ...
$ chdeath: int 0 0 0 0 0 0 0 1 0 0 ...

> summary(oc)

id birth entry exit
Min. : 1 1931-02-19: 3 1990-08-18: 12 2009-12-31:1205
1st Qu.: 376 1931-08-24: 3 1991-04-10: 12 2000-01-23: 2
Median : 751 1933-02-28: 3 1991-04-24: 11 2000-10-04: 2
Mean : 751 1939-04-25: 3 1991-12-18: 11 2001-10-13: 2
3rd Qu.:1126 1941-07-01: 3 1990-11-07: 10 2008-02-09: 2
Max. :1501 1943-04-16: 3 1991-03-30: 10 2008-03-23: 2

(Other) :1483 (Other) :1435 (Other) : 286
death chdeath

Min. :0.0000 Min. :0.00000
1st Qu.:0.0000 1st Qu.:0.00000
Median :0.0000 Median :0.00000
Mean :0.1972 Mean :0.07995
3rd Qu.:0.0000 3rd Qu.:0.00000
Max. :1.0000 Max. :1.00000

12. It is convenient to change all the dates into fractional calendar years

> oc$ybirth <- cal.yr(oc$birth)
> oc$yentry <- cal.yr(oc$entry)
> oc$yexit <- cal.yr(oc$exit)

We shall also compute the age at entry and at exit, respectively, as age will be the main
time scale in our analyses.
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> oc$agentry <- oc$yentry - oc$ybirth
> oc$agexit <- oc$yexit - oc$ybirth

13. As the next step we shall create a lexis object from the data frame along the calendar
period and age axes, and as the outcome event we specify the coronary death.

> oc.lex <- Lexis( entry = list( per = yentry,
+ age = yentry - ybirth ),
+ exit = list( per = yexit),
+ exit.status = chdeath,
+ id = id, data = oc)

NOTE: entry.status has been set to 0 for all.

> str(oc.lex)

Classes ‘Lexis’ and 'data.frame': 1501 obs. of 17 variables:
$ per : 'cal.yr' num 1991 1991 1991 1991 1991 ...
$ age : 'cal.yr' num 47.5 56.1 51.4 51.1 55.5 ...
$ lex.dur: 'cal.yr' num 19.4 19.4 19.4 19.4 15.6 ...
$ lex.Cst: num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.Xst: int 0 0 0 0 0 0 0 1 0 0 ...
$ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ birth : Factor w/ 1349 levels "1929-08-01","1929-12-23",..: 811 230 537 566 266 336 913 790 769 33 ...
$ entry : Factor w/ 302 levels "1990-08-14","1990-08-15",..: 1 1 1 1 1 1 2 2 2 2 ...
$ exit : Factor w/ 290 levels "1992-02-25","1992-04-06",..: 290 290 290 290 203 229 227 218 290 290 ...
$ death : int 0 0 0 0 1 1 1 1 0 0 ...
$ chdeath: int 0 0 0 0 0 0 0 1 0 0 ...
$ ybirth : 'cal.yr' num 1943 1935 1939 1940 1935 ...
$ yentry : 'cal.yr' num 1991 1991 1991 1991 1991 ...
$ yexit : 'cal.yr' num 2010 2010 2010 2010 2006 ...
$ agentry: 'cal.yr' num 47.5 56.1 51.4 51.1 55.5 ...
$ agexit : 'cal.yr' num 66.9 75.5 70.8 70.5 71.1 ...
- attr(*, "time.scales")= chr "per" "age"
- attr(*, "time.since")= chr "" ""
- attr(*, "breaks")=List of 2
..$ per: NULL
..$ age: NULL

> summary(oc.lex)

Transitions:
To

From 0 1 Records: Events: Risk time: Persons:
0 1381 120 1501 120 25280.91 1501

14. At this stage it is informative to examine a graphical presentation of the follow-up lines
and outcome cases in a conventional Lexis diagram. To rationalize your work we have
created a separate source file plots-caco-ex.R to do the graphics for this tas as well as
for some forthcoming ones. The source source file is found in the same folder where the
data sets are. – Load the source file and have a look at the content of the first function
in it

> source( paste(url,"plots-caco-ex.R", sep = "/") )
> plot1
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function ()
{

plot(oc.lex, grid = list(seq(1990, 2010, 5), seq(35, 85,
5)), xlim = c(1990, 2010), ylim = c(35, 85), lty.grid = 1,
xaxs = "i", yaxs = "i", xlab = "Calendar year", ylab = "Age (years)")

points(oc.lex, pch = c(NA, 16)[oc.lex$lex.Xst + 1], cex = 0.5)
}

Function plot1() makes the graph required here. No arguments are needed when
calling the function

> plot1()
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15. As age is here the main time axis, we shall illustrate the study base or the follow-up lines
and outcome events along the age scale, being ordered by age at exit. Function plot2()

in the same source file does the work. Vertical lines at those ages when new coronary
deaths occur are drawn to identify the pertinent risk sets. For that purpose it is useful
first to sort the data frame and the lexis object jointly by age at exit & age at entry,
and to give a new ID number according to that order.
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> oc.ord <- cbind(ID = 1:1501, oc[ order( oc$agexit, oc$agentry), ] )
> oc.lexord <- Lexis( entry = list( age = agentry ),
+ exit = list( age = agexit),
+ exit.status = chdeath,
+ id = ID, data = oc.ord)

NOTE: entry.status has been set to 0 for all.

> plot2

function ()
{

plot(oc.lexord, time.scale = "age", xlim = c(40, 80), xlab = "Age (years)")
points(oc.lexord, time.scale = "age", pch = c(NA, 16)[oc.lexord$lex.Xst +

1], cex = 0.5)
with(subset(oc.lexord, lex.Xst == 1), abline(v = agexit,

lty = 3, lwd = 0.5))
}

> plot2()
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Using function plot3() in the same source file we now zoom the graphical illustration of
the risk sets into event times occurring between 50 to 58 years.
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> plot3

function ()
{

plot(oc.lexord, time.scale = "age", ylim = c(5, 65), xlim = c(50,
58), xlab = "Age (years)")

points(oc.lexord, time.scale = "age", pch = c(NA, 16)[oc.lexord$lex.Xst +
1], cex = 0.5)

with(subset(oc.lexord, lex.Xst == 1), abline(v = agexit,
lty = 3, lwd = 0.5))

}

> plot3()
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2.14.2 Nested case-control study

We shall now employ the strategy of risk-set sampling or time-matched sampling of controls,
i.e. we are conducting a nested case-control study within the cohort.

16. The risk sets are defined according to the age at diagnosis of the case. Further matching
is applied for age at entry by 1-year agebands. For this purpose we first generate a
categorical variable agen2 for age at entry
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> oc.lex$agen2 <- cut(oc.lex$agentry, br = seq(40, 62, 1) )

Matched sampling from risk sets may be carried out using function ccwc() found in the
Epi package. Its main arguments are the times of entry and exit which specify the
time at risk along the main time scale (here age), and the outcome variable to be given
in the fail argument. The number of controls per case is set to be two, and the
additional matching factor is given. – After setting the RNG seed (with your own
number), make a call of this function and see the structure of the resulting data frame
cactrl containing the cases and the chosen individual controls.

> set.seed(9863157)
> cactrl <-
+ ccwc(entry=agentry, exit=agexit, fail=chdeath,
+ controls = 2, match= agen2,
+ include = list(id, agentry),
+ data=oc.lex, silent=FALSE)

Sampling risk sets: ........................................................................................................................

> str(cactrl)

'data.frame': 360 obs. of 7 variables:
$ Set : num 1 1 1 2 2 2 3 3 3 4 ...
$ Map : num 8 1155 614 95 204 ...
$ Time : num 63.9 63.9 63.9 66.7 66.7 ...
$ Fail : num 1 0 0 1 0 0 1 0 0 1 ...
$ agen2 : Factor w/ 22 levels "(40,41]","(41,42]",..: 8 8 8 8 8 8 8 8 8 8 ...
$ id : int 8 1155 614 95 204 292 115 351 526 504 ...
$ agentry: num 47.7 47 47.4 47.5 47.6 ...

Check the meaning of the four first columns of the case-control data frame from the help
page of function ccwc().

17. Now we shall start collecting data on the risk factors for the cases and their matched
controls, including determination of the total cholesterol levels from the frozen sera! The
storehouse of the risk factor measurements for the whole cohort is file
occoh-Xdata.txt. It contains values of the following variables.

id = identification number, the same as in occoh.txt,
smok = cigarette smoking with categories,

1: “never”, 2: “former”, 3: “1-14/d”, 4: “15+/d”,
sbp = systolic blood pressure (mmHg),

tchol = total cholesterol level (mmol/l).

> ocX <- read.table( paste(url, "occoh-Xdata.txt", sep = "/"), header=TRUE)
> str(ocX)

'data.frame': 1501 obs. of 6 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ birth: Factor w/ 1349 levels "1929-08-01","1929-12-23",..: 811 230 537 566 266 336 913 790 769 33 ...
$ entry: Factor w/ 302 levels "1990-08-14","1990-08-15",..: 1 1 1 1 1 1 2 2 2 2 ...
$ smok : int 4 3 3 1 2 2 1 2 1 1 ...
$ sbp : int 130 128 157 102 138 119 155 154 164 124 ...
$ tchol: num 7.56 6.55 8.13 5.93 7.92 5.9 7.28 7.43 5.34 6.24 ...
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18. In the next step we collect the values of the risk factors for our cases and controls by
merging the case-control data frame and the storehouse file. In this operation we use the
id variable in both files as the key to link each individual case and control with his own
data on risk factors.

> oc.ncc <- merge(cactrl, ocX[, c("id", "smok", "tchol", "sbp")],
+ by = "id")
> str(oc.ncc)

'data.frame': 360 obs. of 10 variables:
$ id : int 2 4 8 13 15 37 41 42 43 47 ...
$ Set : num 16 93 1 25 50 5 5 9 18 96 ...
$ Map : num 2 4 8 13 15 37 41 42 43 47 ...
$ Time : num 59 63.7 63.9 70.2 60.8 ...
$ Fail : num 0 0 1 0 0 0 1 1 1 0 ...
$ agen2 : Factor w/ 22 levels "(40,41]","(41,42]",..: 17 12 8 15 19 1 1 17 15 21 ...
$ agentry: num 56.1 51.1 47.7 54.9 59 ...
$ smok : int 3 1 2 2 2 3 4 2 3 1 ...
$ tchol : num 6.55 5.93 7.43 5.28 6.03 5.15 6.09 5.41 5.72 6.22 ...
$ sbp : int 128 102 154 153 147 116 125 156 128 154 ...

19. We shall treat smoking as categorical and total cholesterol and systolic blood pressure as
quantitative risk factors, but the values of the latter will be divided by 10 to get more
interpretable effect estimates.

Convert the smoking variable into a factor.

> oc.ncc$smok <- factor(oc.ncc$smok,
+ labels = c("never", "ex", "1-14/d", ">14/d"))

20. It is useful to start the analysis of case-control data by simple tabulations by the
categorized risk factors. Crude estimates of the rate ratios associated with them, in
which matching is ignored, can be obtained as instructed in Janne’s lecture on Poisson
and logistic models on Saturday 23 May. We shall focus on smoking

> stat.table( index = list( smok, Fail ),
+ contents = list( count(), percent(smok) ),
+ margins = T, data = oc.ncc )

---------------------------------
----------Fail-----------

smok 0 1 Total
---------------------------------
never 89 31 120

37.1 25.8 33.3

ex 44 19 63
18.3 15.8 17.5

1-14/d 73 42 115
30.4 35.0 31.9

>14/d 34 28 62
14.2 23.3 17.2
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Total 240 120 360
100.0 100.0 100.0

---------------------------------

> smok.crncc <- glm( Fail ~ smok, family=binomial, data = oc.ncc)
> round(ci.exp(smok.crncc), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.348 0.231 0.524
smokex 1.240 0.631 2.437
smok1-14/d 1.652 0.946 2.885
smok>14/d 2.364 1.239 4.511

21. A proper analysis takes into account matching that was employed in the selection of
controls for each case from the pertinent risk set further restricted to subjects who were
about the same age at entry as the case was. Also, adjustment for the other risk factors
is desirable. In this analysis function clogit() in survival package is utilized. It is in
fact a wrapper of function coxph().

> m.clogit <- clogit( Fail ~ smok + I(sbp/10) + tchol +
+ strata(Set), data = oc.ncc )
> summary(m.clogit)

Call:
coxph(formula = Surv(rep(1, 360L), Fail) ~ smok + I(sbp/10) +

tchol + strata(Set), data = oc.ncc, method = "exact")

n= 360, number of events= 120

coef exp(coef) se(coef) z Pr(>|z|)
smokex 0.06792 1.07028 0.34415 0.197 0.84355
smok1-14/d 0.47116 1.60185 0.30430 1.548 0.12154
smok>14/d 0.92657 2.52584 0.33378 2.776 0.00550 **
I(sbp/10) 0.15898 1.17231 0.05544 2.868 0.00413 **
tchol 0.35010 1.41921 0.11182 3.131 0.00174 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95
smokex 1.070 0.9343 0.5452 2.101
smok1-14/d 1.602 0.6243 0.8823 2.908
smok>14/d 2.526 0.3959 1.3131 4.859
I(sbp/10) 1.172 0.8530 1.0516 1.307
tchol 1.419 0.7046 1.1399 1.767

Rsquare= 0.069 (max possible= 0.519 )
Likelihood ratio test= 25.78 on 5 df, p=1e-04
Wald test = 22.03 on 5 df, p=5e-04
Score (logrank) test = 24.34 on 5 df, p=2e-04

> round(ci.exp(m.clogit), 3)

exp(Est.) 2.5% 97.5%
smokex 1.070 0.545 2.101
smok1-14/d 1.602 0.882 2.908
smok>14/d 2.526 1.313 4.859
I(sbp/10) 1.172 1.052 1.307
tchol 1.419 1.140 1.767
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Compare these with the crude estimates obtained above.

2.14.3 Case-cohort study

Now we start applying the second major outcome-selective sampling strategy for collecting
exposure data from a big study population

22. The subcohort is selected as a simple random sample (n = 260) from the whole cohort.
The id-numbers of the individuals that are selected will be stored in vector subcids,
and subcind is an indicator for inclusion to the subcohort.

> N <- 1501; n <- 260
> set.seed(1579863)
> subcids <- sample(N, n )
> oc.lex$subcind <- 1*(oc.lex$id %in% subcids)

23. We form the data frame oc.cc to be used in the subsequent analysis selecting the union
of the subcohort members and the case group from the data frame of the full cohort.
After that we collect the data of the risk factors from the data storehouse for the
subjects in the case-cohort data

> oc.cc <- subset( oc.lex, subcind==1 | chdeath ==1)
> oc.cc <- merge( oc.cc, ocX[, c("id", "smok", "tchol", "sbp")],
+ by ="id")
> str(oc.cc)

Classes ‘Lexis’ and 'data.frame': 355 obs. of 22 variables:
$ id : int 6 8 18 27 28 37 40 41 42 43 ...
$ per : num 1991 1991 1991 1991 1991 ...
$ age : num 54.4 47.7 50.1 49.3 58.4 ...
$ lex.dur: num 16.8 16.2 19.4 19.4 19.4 ...
$ lex.Cst: num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.Xst: int 0 1 0 0 0 0 0 1 1 1 ...
$ lex.id : int 6 8 18 27 28 37 40 41 42 43 ...
$ birth : Factor w/ 1349 levels "1929-08-01","1929-12-23",..: 336 790 639 680 101 1285 1010 1290 186 349 ...
$ entry : Factor w/ 302 levels "1990-08-14","1990-08-15",..: 1 2 3 4 4 6 6 6 6 6 ...
$ exit : Factor w/ 290 levels "1992-02-25","1992-04-06",..: 229 218 290 290 290 290 25 285 167 159 ...
$ death : int 1 1 0 0 0 0 1 1 1 1 ...
$ chdeath: int 0 1 0 0 0 0 0 1 1 1 ...
$ ybirth : num 1936 1943 1941 1941 1932 ...
$ yentry : num 1991 1991 1991 1991 1991 ...
$ yexit : num 2007 2007 2010 2010 2010 ...
$ agentry: num 54.4 47.7 50.1 49.3 58.4 ...
$ agexit : num 71.3 63.9 69.5 68.7 77.8 ...
$ agen2 : Factor w/ 22 levels "(40,41]","(41,42]",..: 15 8 11 10 19 1 6 1 17 15 ...
$ subcind: num 1 0 1 1 1 1 1 1 1 0 ...
$ smok : int 2 2 1 4 1 3 4 4 2 3 ...
$ tchol : num 5.9 7.43 3.34 8.31 4.56 5.15 5.88 6.09 5.41 5.72 ...
$ sbp : int 119 154 130 140 230 116 141 125 156 128 ...
- attr(*, "breaks")=List of 2
..$ per: NULL
..$ age: NULL
- attr(*, "time.scales")= chr "per" "age"
- attr(*, "time.since")= chr "" ""
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24. Function plot4() in the same source file creates a graphical illustration of the lifelines
contained in the case-cohort data. Lines for the subcohort non-cases are grey without
bullet at exit, those for subcohort cases are blue with blue bullet at exit, and for cases
outside the subcohort the lines are black and dotted with black bullets at exit.

> plot4

function ()
{

plot(subset(oc.lexord, chdeath == 0 & id %in% subcids), time.scale = "age",
xlim = c(40, 80), xlab = "Age (years)")

lines(subset(oc.lexord, chdeath == 1 & id %in% subcids),
time.scale = "age", lwd = 0.5, col = "blue")

points(subset(oc.lexord, chdeath == 1 & id %in% subcids),
time.scale = "age", pch = 16, col = "blue", cex = 0.5)

lines(subset(oc.lexord, chdeath == 1 & !(id %in% subcids)),
time.scale = "age", lty = 3, lwd = 0.5, col = "black")

points(subset(oc.lexord, chdeath == 1 & !(id %in% subcids)),
time.scale = "age", pch = 16, col = "black", cex = 0.5)

}

> plot4()
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25. Define the categorical smoking variable again.

> oc.cc$smok <- factor(oc.cc$smok,
+ labels = c("never", "ex", "1-14/d", ">14/d"))

A crude estimate of the hazard ratio for the various smoking categories k vs.
non-smokers (k = 1) can be obtained by tabulating cases (Dk) and person-years (yk) in
the subcohort by smoking and then computing the relevant exposure odds ratio for each
category:

HRcrude
k =

Dk/D1

yk/y1

> sm.cc <- stat.table( index = smok,
+ contents = list( Cases = sum(lex.Xst), Pyrs = sum(lex.dur) ),
+ margins = T, data = oc.cc)
> print(sm.cc, digits = c(sum=0, ratio=1))

-------------------------
smok Cases Pyrs
-------------------------
never 31 1824
ex 19 1107
1-14/d 42 1463
>14/d 28 916

Total 120 5310
-------------------------

> HRcc <- (sm.cc[ 1, -5]/sm.cc[ 1, 1])/(sm.cc[ 2, -5]/sm.cc[2, 1])
> round(HRcc, 3)

never ex 1-14/d >14/d
1.000 1.010 1.689 1.798

26. To estimate jointly the rate ratios associated with the categorized risk factors we now fit
the pertinent Cox model applying the method of weighted partial likelihood as presented
by Ling & Ying (1993) and Barlow (1994). The weights for all cases and non-cases in
the subcohort are first computed and added to the data frame.

> N.nonc <- N-sum(oc.lex$chdeath) # non-cases in whole cohort
> n.nonc <- sum(oc.cc$subcind * (1-oc.cc$chdeath)) # non-cases in subcohort
> wn <- N.nonc/n.nonc # weight for non-cases in subcohort
> c(N.nonc, n.nonc, wn)

[1] 1381.000000 235.000000 5.876596

> oc.cc$w <- ifelse(oc.cc$subcind==1 & oc.cc$chdeath==0, wn, 1)

Next, the Cox model is fitted by the method of weighted partial likelihood using
coxph(), such that the robust covariance matrix will be used as the source of standard
errors for the coefficients.
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> oc.cc$surob <- with(oc.cc, Surv(agentry, agexit, chdeath) )
> cc.we <- coxph( surob ~ smok + I(sbp/10) + tchol, robust = TRUE,
+ weight = w, data = oc.cc)
> summary(cc.we)

Call:
coxph(formula = surob ~ smok + I(sbp/10) + tchol, data = oc.cc,

weights = w, robust = TRUE)

n= 355, number of events= 120

coef exp(coef) se(coef) robust se z Pr(>|z|)
smokex -0.08862 0.91519 0.29229 0.35196 -0.252 0.80120
smok1-14/d 0.52294 1.68697 0.23852 0.30705 1.703 0.08855 .
smok>14/d 0.95799 2.60644 0.26625 0.34746 2.757 0.00583 **
I(sbp/10) 0.11754 1.12472 0.04025 0.05615 2.093 0.03632 *
tchol 0.31095 1.36471 0.07488 0.09890 3.144 0.00167 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95
smokex 0.9152 1.0927 0.4591 1.824
smok1-14/d 1.6870 0.5928 0.9242 3.079
smok>14/d 2.6064 0.3837 1.3191 5.150
I(sbp/10) 1.1247 0.8891 1.0075 1.256
tchol 1.3647 0.7328 1.1242 1.657

Concordance= 0.673 (se = 0.029 )
Rsquare= 0.1 (max possible= 0.988 )
Likelihood ratio test= 37.28 on 5 df, p=5e-07
Wald test = 19.86 on 5 df, p=0.001
Score (logrank) test = 38.89 on 5 df, p=2e-07, Robust = 19.31 p=0.002

(Note: the likelihood ratio and score tests assume independence of
observations within a cluster, the Wald and robust score tests do not).

> round( ci.exp(cc.we), 3)

exp(Est.) 2.5% 97.5%
smokex 0.915 0.459 1.824
smok1-14/d 1.687 0.924 3.079
smok>14/d 2.606 1.319 5.150
I(sbp/10) 1.125 1.008 1.256
tchol 1.365 1.124 1.657

The covariance matrix for the coefficients may also be computed by the dfbeta-method.
After that a comparison is made between standard errors from the naive, robust and
dfbeta covariance matrix, respectively. You will see that the naive SEs are essentially
smaller than those obtained by the robust and the dfbeta method, respectively.

> dfbw <- resid(cc.we, type='dfbeta')
> covdfb.we <- cc.we$naive.var +
+ (n.nonc*(N.nonc-n.nonc)/N.nonc)*var(dfbw[ oc.cc$chdeath==0, ] )
> cbind( sqrt(diag(cc.we$naive.var)), sqrt(diag(cc.we$var)),
+ sqrt(diag(covdfb.we)) )
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[,1] [,2] [,3]
[1,] 0.29228810 0.35196386 0.35264298
[2,] 0.23852023 0.30704672 0.30196106
[3,] 0.26624784 0.34746199 0.34506911
[4,] 0.04025171 0.05615061 0.05147001
[5,] 0.07487715 0.09890058 0.10029199

27. The same analysis can also be done using function cch() in package survival with
method = "LinYing" as follows:

> cch.LY <- cch( surob ~ smok + I(sbp/10) + tchol, stratum=NULL,
+ subcoh = ~subcind, id = ~id, cohort.size = N, data = oc.cc,
+ method ="LinYing" )
> summary(cch.LY)

Case-cohort analysis,x$method, LinYing
with subcohort of 260 from cohort of 1501

Call: cch(formula = surob ~ smok + I(sbp/10) + tchol, data = oc.cc,
subcoh = ~subcind, id = ~id, stratum = NULL, cohort.size = N,
method = "LinYing")

Coefficients:
Coef HR (95% CI) p

smokex -0.089 0.915 0.459 1.825 0.801
smok1-14/d 0.523 1.687 0.934 3.047 0.083
smok>14/d 0.958 2.607 1.326 5.123 0.005
I(sbp/10) 0.118 1.125 1.017 1.244 0.022
tchol 0.311 1.365 1.121 1.661 0.002

28. The summary() method for the cch() object does not print the standard errors for the
coefficients. The following comparison demonstrates numerically that the method of Lin
& Ying is the same as weighted partial likelihood coupled with dfbeta covariance
matrix.

> cbind( coef( cc.we), coef(cch.LY) )

[,1] [,2]
smokex -0.08862081 -0.0888895
smok1-14/d 0.52293602 0.5229370
smok>14/d 0.95798562 0.9580133
I(sbp/10) 0.11753848 0.1175287
tchol 0.31094520 0.3109491

> round( cbind( sqrt(diag(cc.we$naive.var)), sqrt(diag(cc.we$var)),
+ sqrt(diag(covdfb.we)), sqrt(diag(cch.LY$var)) ), 3)

[,1] [,2] [,3] [,4]
smokex 0.292 0.352 0.353 0.352
smok1-14/d 0.239 0.307 0.302 0.302
smok>14/d 0.266 0.347 0.345 0.345
I(sbp/10) 0.040 0.056 0.051 0.051
tchol 0.075 0.099 0.100 0.100
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2.14.4 Full cohort analysis and comparisons

Finally, suppose the investigators could afford to collect the data of risk factors from the
storehouse for the whole cohort.

29. Let us form the data frame corresponding to the full cohort design and convert again
smoking to be categorical.

> oc.full <- merge( oc.lex, ocX[, c("id", "smok", "tchol", "sbp")],
+ by.x = "id", by.y = "id")
> oc.full$smok <- factor(oc.full$smok,
+ labels = c("never", "ex", "1-14/d", ">14/d"))

Juts for comparison with the corresponding analysis in case-cohort data perform a
similar crude estimation of hazard ratios associated with smoking.

> sm.coh <- stat.table( index = smok,
+ contents = list( Cases = sum(lex.Xst), Pyrs = sum(lex.dur) ),
+ margins = T, data = oc.full)
> print(sm.coh, digits = c(sum=0, ratio=1))

-------------------------
smok Cases Pyrs
-------------------------
never 31 10363
ex 19 4879
1-14/d 42 6246
>14/d 28 3793

Total 120 25281
-------------------------

> HRcoh <- (sm.coh[ 1, -5]/sm.coh[ 1, 1])/(sm.coh[ 2, -5]/sm.coh[2, 1])
> round(HRcoh, 3)

never ex 1-14/d >14/d
1.000 1.302 2.248 2.468

30. Fit now the Cox model to the full cohort, and there is no need to employ extra tricks
upon the ordinary coxph() fit.

> cox.coh <- coxph( Surv(agentry, agexit, chdeath) ~
+ smok + I(sbp/10) + tchol, data = oc.full)
> summary(cox.coh)

Call:
coxph(formula = Surv(agentry, agexit, chdeath) ~ smok + I(sbp/10) +

tchol, data = oc.full)

n= 1501, number of events= 120

coef exp(coef) se(coef) z Pr(>|z|)
smokex 0.10955 1.11577 0.29240 0.375 0.707922
smok1-14/d 0.72567 2.06612 0.23704 3.061 0.002203 **
smok>14/d 0.95054 2.58711 0.26198 3.628 0.000285 ***
I(sbp/10) 0.14372 1.15456 0.04096 3.509 0.000450 ***
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tchol 0.26517 1.30366 0.07089 3.740 0.000184 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95
smokex 1.116 0.8962 0.629 1.979
smok1-14/d 2.066 0.4840 1.298 3.288
smok>14/d 2.587 0.3865 1.548 4.323
I(sbp/10) 1.155 0.8661 1.065 1.251
tchol 1.304 0.7671 1.135 1.498

Concordance= 0.681 (se = 0.029 )
Rsquare= 0.027 (max possible= 0.653 )
Likelihood ratio test= 41.16 on 5 df, p=9e-08
Wald test = 42.05 on 5 df, p=6e-08
Score (logrank) test = 43.29 on 5 df, p=3e-08

31. Lastly, a comparison of the point estimates and standard errors between the different
designs, including variants of analysis for the case-cohort design, can be performed.

> betas <- round(cbind( coef(cox.coh),
+ coef(m.clogit),
+ coef(cc.we), coef(cch.LY) ), 3)
> colnames(betas) <- c("coh", "ncc", "cc.we", "cch.LY")
> betas

coh ncc cc.we cch.LY
smokex 0.110 0.068 -0.089 -0.089
smok1-14/d 0.726 0.471 0.523 0.523
smok>14/d 0.951 0.927 0.958 0.958
I(sbp/10) 0.144 0.159 0.118 0.118
tchol 0.265 0.350 0.311 0.311

> SEs <- round(cbind( sqrt(diag(cox.coh$var)),
+ sqrt(diag(m.clogit$var)), sqrt(diag(cc.we$naive.var)),
+ sqrt(diag(cc.we$var)), sqrt(diag(covdfb.we)),
+ sqrt(diag(cch.LY$var)) ), 3)
> colnames(SEs) <- c("coh", "ncc", "ccwe-nai",
+ "ccwe-rob", "ccwe-dfb", "cch-LY")
> SEs

coh ncc ccwe-nai ccwe-rob ccwe-dfb cch-LY
smokex 0.292 0.344 0.292 0.352 0.353 0.352
smok1-14/d 0.237 0.304 0.239 0.307 0.302 0.302
smok>14/d 0.262 0.334 0.266 0.347 0.345 0.345
I(sbp/10) 0.041 0.055 0.040 0.056 0.051 0.051
tchol 0.071 0.112 0.075 0.099 0.100 0.100

You will notice that the point estimates of the coefficients obtained from the full cohort,
nested case-control, and case-cohort analyses, respectively, are somewhat variable.

However, the standard errors across the NCC and different proper CC analyses are
relatively similar. Those from a naive covariance matrix of a CC analysis, though, are
practically equal to the SEs from the full cohort analysis, reflecting the fact that the
naive analysis implicitly assumes there being as much information available as there is
with full cohort data.



240 2.14 Nested case-control study and case-cohort study:
Risk factors of coronary heart disease SPE: Solutions

2.14.5 Further exercises and homework

32. If you have time, you could run both the NCC study and CC study again but now with
a larger control group or subcohort; for example 4 controls per case in NCC and n = 520
as the subcohort size in CC. Remember resetting the seed first. Pay attention in the
results to how much closer will be the point estimates and the proper SEs to those
obtained from the full cohort design.

33. Instead of simple linear terms for sbp and tchol you could try to fit spline models to
describe their effects.

34. A popular alternative to weighted partial likelihood in the analysis of case-cohort data is
the pseudo-likelihood method (Prentice 1986), which is based on “late entry” to follow-up
of the case subjects not belonging to the subcohort. A longer way of applying this
approach, which you could try at home after the course, would first require
manipulation of the oc.cc data frame, as outlined on slide 34. Then coxph() would be
called like in model object cc.we above but now with weights = 1. Similar corrections
on the covariance matrix are needed, too. However, a shorter way is provided by
function cch() which you can apply directly to the case-cohort data oc.cc as before
but now with method = "Prentice". – Try this and compare the results with those
obtained by weighted partial likelihood in models cc.we and cch.LY.

35. Yet another computational solution for maximizing weighted partial likelihood is
provided by a combination of functions twophase() and svycoxph() of the survey

package. The approach is illustrated with an example in a vignette “Two-phase designs
in epidemiology” by Thomas Lumley (see
http://cran.r-project.org/web/packages/survey/vignettes/epi.pdf, p. 4–7). –
You can try this at home and check that you would obtain similar results as with
models cc.we and cch.LY.
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2.15 Time-dependent variables and multiple states

2.15.1 The renal failure dataset

1. The dataset is in Stata-format, so we read the dataset using read.dta from the
foreign package (which is part of the standard R-distribution):

library( Epi )
library( foreign )
clear()
renal <- read.dta( "http://BendixCarstensen.com/SPE/data/renal.dta" )
# renal <- read.dta( "./data/renal.dta" )
renal$sex <- factor( renal$sex, labels=c("M","F") )
head( renal )

id sex dob doe dor dox event
1 17 M 1967.944 1996.013 NA 1997.094 2
2 26 F 1959.306 1989.535 1989.814 1996.136 1
3 27 F 1962.014 1987.846 NA 1993.239 3
4 33 M 1950.747 1995.243 1995.717 2003.993 0
5 42 F 1961.296 1987.884 1996.650 2003.955 0
6 46 F 1952.374 1983.419 NA 1991.484 2

2. We use the Lexis function to declare the data as survival data with age, calendar time
and time since entry into the study as timescales. Note that any coding of event > 0 will
be labeled “ESRD”, i.e. renal death (death of kidney (transplant or dialysis), or person).

Note that you must make sure that the “alive” state (here NRA) is the first, as Lexis

assumes that everyone starts in this state (unless of course entry.status is specified):

Lr <- Lexis( entry = list( per = doe,
age = doe-dob,
tfi = 0 ),

exit = list( per = dox ),
exit.status = factor( event>0, labels=c("NRA","ESRD") ),

data = renal )

NOTE: entry.status has been set to "NRA" for all.

str( Lr )

Classes ‘Lexis’ and 'data.frame': 125 obs. of 14 variables:
$ per : num 1996 1990 1988 1995 1988 ...
$ age : num 28.1 30.2 25.8 44.5 26.6 ...
$ tfi : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.dur: num 1.08 6.6 5.39 8.75 16.07 ...
$ lex.Cst: Factor w/ 2 levels "NRA","ESRD": 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst: Factor w/ 2 levels "NRA","ESRD": 2 2 2 1 1 2 2 1 2 1 ...
$ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ id : num 17 26 27 33 42 46 47 55 62 64 ...
$ sex : Factor w/ 2 levels "M","F": 1 2 2 1 2 2 1 1 2 1 ...
$ dob : num 1968 1959 1962 1951 1961 ...
$ doe : num 1996 1990 1988 1995 1988 ...
$ dor : num NA 1990 NA 1996 1997 ...
$ dox : num 1997 1996 1993 2004 2004 ...
$ event : num 2 1 3 0 0 2 1 0 2 0 ...
- attr(*, "time.scales")= chr "per" "age" "tfi"
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- attr(*, "time.since")= chr "" "" ""
- attr(*, "breaks")=List of 3
..$ per: NULL
..$ age: NULL
..$ tfi: NULL

summary( Lr )

Transitions:
To

From NRA ESRD Records: Events: Risk time: Persons:
NRA 48 77 125 77 1084.67 125

3. We can visualize the follow-up in a Lexis-diagram, using the plot method for Lexis
objects.

plot( Lr, col="black", lwd=3 )
subset( Lr, age<0 )

per age tfi lex.dur lex.Cst lex.Xst lex.id id sex dob doe dor
88 1989.343 -38.81143 0 3.495893 NRA ESRD 88 586 M 2028.155 1989.343 NA

dox event
88 1992.839 1

The result is the left hand plot in figure 2.9, and we see a person entering at a negative
age, clearly because he is born way out in the future.

4. So we correct the data and make the correct plot, as seen in the right hand plot in figure
2.9:

Lr <- transform( Lr, dob = ifelse( dob>2000, dob-100, dob ),
age = ifelse( dob>2000, age+100, age ) )

subset( Lr, id==586 )

per age tfi lex.dur lex.Cst lex.Xst lex.id id sex dob doe dor
88 1989.343 61.18857 0 3.495893 NRA ESRD 88 586 M 1928.155 1989.343 NA

dox event
88 1992.839 1

plot( Lr, col="black", lwd=3 )

5. We can produce a slightly more fancy Lexis diagram. Note that we have a x-axis of 40
years, and a y-axis of 80 years, so when specifying the output file adjust the total width
of the plot so that the use mai mai to specify the margins of the plot leaves a plotting
area twice as high as wide. The mai argument to par gives the margins in inches, so the
total size of the horizontal and vertical margins is 1 inch, to which we add 80/5 in the
height, and 40/5 in the horizontal direction, each giving exactly 5 years per inch in
physical size.

pdf( "./graph/renal-Lexis-fancy.pdf", height=80/5+1, width=40/5+1 )
par( mai=c(3,3,1,1)/4, mgp=c(3,1,0)/1.6 )
plot( Lr, 1:2, col=c("blue","red")[Lr$sex], lwd=3, grid=0:20*5,

xlab="Calendar time", ylab="Age",
xlim=c(1970,2010), ylim=c(0,80), xaxs="i", yaxs="i", las=1 )

dev.off()
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Figure 2.9: Default Lexis diagram before and after correction of the obvious data outlier.
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6. We now do a Cox-regression analysis with the variables sex and age at entry into the
study, using time since entry to the study as time scale.

library( survival )
mc <- coxph( Surv( lex.dur, lex.Xst=="ESRD" ) ~

I(age/10) + sex, data=Lr )
summary( mc )

Call:
coxph(formula = Surv(lex.dur, lex.Xst == "ESRD") ~ I(age/10) +

sex, data = Lr)

n= 125, number of events= 77

coef exp(coef) se(coef) z Pr(>|z|)
I(age/10) 0.5514 1.7357 0.1402 3.932 8.43e-05 ***
sexF -0.1817 0.8338 0.2727 -0.666 0.505
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95
I(age/10) 1.7357 0.5761 1.3186 2.285
sexF 0.8338 1.1993 0.4886 1.423

Concordance= 0.612 (se = 0.036 )
Rsquare= 0.121 (max possible= 0.994 )
Likelihood ratio test= 16.07 on 2 df, p=3e-04
Wald test = 16.38 on 2 df, p=3e-04
Score (logrank) test = 16.77 on 2 df, p=2e-04

The hazard ratio between males and females is 1.19 (0.70–2.04) (the inverse of the c.i.
for female vs male) and between two persons who differ 10 years in age at entry it is
1.74 (1.32–2.29).
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Figure 2.10: The more fancy version of the Lexis diagram for the renal data.

7. The main focus of the paper was to assess whether the occurrence of remission (return to
a lower level of albumin excretion, an indication of kidney recovery) influences mortality.

“Remission” is a time-dependent variable which is initially 0, but takes the value 1 when
remission occurs. This is accomplished using the cutLexis function on the Lexis

object, where we introduce a remission state “Rem”. We declare the “NRA” state as a
precursor state, i.e. a state that is less severe than “Rem” in the sense that a person
who see a remission will stay in the “Rem” state unless he goes to the “ESRD” state.
The statement to do this is:

Lc <- cutLexis( Lr, cut = Lr$dor, # where to cut follow up
timescale = "per", # what timescale are we referring to
new.state = "Rem", # name of the new state

split.state = TRUE, # different states sepending on previous
precursor.states = "NRA" ) # which states are less severe

summary( Lc )

Transitions:
To
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From NRA Rem ESRD ESRD(Rem) Records: Events: Risk time: Persons:
NRA 24 29 69 0 122 98 824.77 122
Rem 0 24 0 8 32 8 259.90 32
Sum 24 53 69 8 154 106 1084.67 125

Note that we have two different ESRD states depending on whether the person was in
remission or not at the time of ESRD.

To illustrate how the cutting of follow-up has worked we can list the records for select
persons before and after the split:

subset( Lr, lex.id %in% c(2:4,21) )[,c(1:9,12)]

per age tfi lex.dur lex.Cst lex.Xst lex.id id sex dor
2 1989.535 30.22895 0 6.60061602 NRA ESRD 2 26 F 1989.814
3 1987.846 25.83196 0 5.39322382 NRA ESRD 3 27 F NA
4 1995.243 44.49589 0 8.74982888 NRA NRA 4 33 M 1995.717
21 1992.952 32.35626 0 0.07905544 NRA NRA 21 152 F NA

subset( Lc, lex.id %in% c(2:4,21) )[,c(1:9,12)]

per age tfi lex.dur lex.Cst lex.Xst lex.id id sex dor
2 1989.535 30.22895 0.0000000 0.27891855 NRA Rem 2 26 F 1989.814
127 1989.814 30.50787 0.2789185 6.32169747 Rem ESRD(Rem) 2 26 F 1989.814
3 1987.846 25.83196 0.0000000 5.39322382 NRA ESRD 3 27 F NA
4 1995.243 44.49589 0.0000000 0.47330595 NRA Rem 4 33 M 1995.717
129 1995.717 44.96920 0.4733060 8.27652293 Rem Rem 4 33 M 1995.717
21 1992.952 32.35626 0.0000000 0.07905544 NRA NRA 21 152 F NA

8. We can show how the states are connected and the number of transitions between them
by using boxes. This is an interactive command that requires you to click in the graph
window

Alternatively you can let R try to place the boxes for you, and even compute rates (in
this case in units of events per 100 PY):

# boxes( Lc, boxpos=TRUE, scale.R=100, show.BE=TRUE, hm=1.5, wm=1.5 )
boxes( Relevel(Lc,c(1,2,4,3)),

boxpos=TRUE, scale.R=100, show.BE=TRUE, hm=1.5, wm=1.5 )

9. We can make a Lexis diagram where different coloring is used for different segments of
the follow-up. The plot.Lexis function draws a line for each record in the dataset, so
we can just index the coloring by lex.Cst and lex.Xst as appropriate — indexing by a
factor corresponds to indexing by the index number of the factor levels, so you must be
know which order the factor levels are in.

par( mai=c(3,3,1,1)/4, mgp=c(3,1,0)/1.6 )
plot( Lc, col=c("red","limegreen")[Lc$lex.Cst],

xlab="Calendar time", ylab="Age",
lwd=3, grid=0:20*5, xlim=c(1970,2010), ylim=c(0,80), xaxs="i", yaxs="i", las=1 )

points( Lc, pch=c(NA,NA,16,16)[Lc$lex.Xst],
col=c("red","limegreen","transparent")[Lc$lex.Cst])

points( Lc, pch=c(NA,NA,1,1)[Lc$lex.Xst],
col="black", lwd=2 )
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Figure 2.11: States and transitions between them.
The numbers in each box are the person-years and the number of persons starting (left) and
ending (right) their follow-up in each state; the numbers on the arrows are the number of
transitions and the overall transition rates (in per 100 PY, by the scale.R=100).

10. We now make Cox-regression of mortality (i.e. endpoint “ESRD”) with sex, age at entry
and remission as explanatory variables, using time since entry as timescale.

We include lex.Cst as time-dependent variable, and indicate that each record
represents follow-up from tfi to tfi+lex.dur.

( EP <- levels(Lc)[3:4] )

[1] "ESRD" "ESRD(Rem)"

m1 <- coxph( Surv( tfi, # from
tfi+lex.dur, # to
lex.Xst %in% EP ) ~ # event

sex + I((doe-dob-50)/10) + # fixed covariates
(lex.Cst=="Rem"), # time-dependent variable
data = Lc )

summary( m1 )

Call:
coxph(formula = Surv(tfi, tfi + lex.dur, lex.Xst %in% EP) ~ sex +

I((doe - dob - 50)/10) + (lex.Cst == "Rem"), data = Lc)
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Figure 2.12: Lexis diagram for the split data, where time after remission is shown in green.

n= 154, number of events= 77

coef exp(coef) se(coef) z Pr(>|z|)
sexF -0.05534 0.94616 0.27500 -0.201 0.840517
I((doe - dob - 50)/10) 0.52190 1.68522 0.13655 3.822 0.000132 ***
lex.Cst == "Rem"TRUE -1.26241 0.28297 0.38483 -3.280 0.001036 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95
sexF 0.9462 1.0569 0.5519 1.6220
I((doe - dob - 50)/10) 1.6852 0.5934 1.2895 2.2024
lex.Cst == "Rem"TRUE 0.2830 3.5339 0.1331 0.6016

Concordance= 0.664 (se = 0.036 )
Rsquare= 0.179 (max possible= 0.984 )
Likelihood ratio test= 30.31 on 3 df, p=1e-06
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Wald test = 27.07 on 3 df, p=6e-06
Score (logrank) test = 29.41 on 3 df, p=2e-06

We see that the rate of ESRD is less than a third among those who obtain remission —
0.28 (0.13–0.60), showing that we can be pretty sure that the rate is at least halved.

11. The assumption in this model about the two rates of remission is that they are
proportional as functions of time since remission. This could be tested quickly with the
cox.zph function:

cox.zph( m1 )

rho chisq p
sexF 0.1172 1.010 0.315
I((doe - dob - 50)/10) 0.0512 0.221 0.638
lex.Cst == "Rem"TRUE 0.0982 0.667 0.414
GLOBAL NA 1.974 0.578

. . . which shows no sign of interaction between remission state and time since entry to
the study. Possibly because of the limited amount of data.

2.15.2 Splitting the follow-up time

12. We split the follow-up time every month after entry, and verify that the number of
events and risk time is the same as before and after the split:

sLc <- splitLexis( Lc, "tfi", breaks=seq(0,30,1/12) )
summary( Lc, scale=100 )

Transitions:
To

From NRA Rem ESRD ESRD(Rem) Records: Events: Risk time: Persons:
NRA 24 29 69 0 122 98 8.25 122
Rem 0 24 0 8 32 8 2.60 32
Sum 24 53 69 8 154 106 10.85 125

summary(sLc, scale=100 )

Transitions:
To

From NRA Rem ESRD ESRD(Rem) Records: Events: Risk time: Persons:
NRA 9854 29 69 0 9952 98 8.25 122
Rem 0 3139 0 8 3147 8 2.60 32
Sum 9854 3168 69 8 13099 106 10.85 125

Thus both the cutting and splitting preserves the number of ESRD events and the
person-years. The cut added the “Rem” events, but these were preserved by the splitting.

13. Now we fit the Poisson-model corresponding to the Cox-model we fitted previously. The
function ns() produces a model matrix corresponding to a piece-wise cubic function,
modeling the baseline hazard explicitly (think of the ns terms as the baseline hazard
that is not visible in the Cox-model)
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library( splines )
mp <- glm( lex.Xst %in% EP ~ Ns( tfi, knots=c(0,2,5,10) ) +

sex + I((doe-dob-40)/10) + I(lex.Cst=="Rem"),
offset = log(lex.dur),
family = poisson,
data = sLc )

ci.exp( mp )

exp(Est.) 2.5% 97.5%
(Intercept) 0.01664432 0.003956765 0.07001509
Ns(tfi, knots = c(0, 2, 5, 10))1 5.18917654 1.949220473 13.81452410
Ns(tfi, knots = c(0, 2, 5, 10))2 34.20004192 1.764901998 662.72397483
Ns(tfi, knots = c(0, 2, 5, 10))3 4.43318269 2.179992749 9.01521750
sexF 0.91751162 0.536258807 1.56981584
I((doe - dob - 40)/10) 1.70082390 1.300814311 2.22383927
I(lex.Cst == "Rem")TRUE 0.27927558 0.131397003 0.59358165

We see that the effects are pretty much the same as from the Cox-model.

14. We may instead use the gam function from the mgcv package:

library( mgcv )
mx <- gam( (lex.Xst %in% EP) ~ s( tfi, k=10 ) +

sex + I((doe-dob-40)/10) + I(lex.Cst=="Rem") +
offset( log(lex.dur) ),
family = poisson,
data = sLc )

ci.exp( mp, subset=c("Cst","doe","sex") )

exp(Est.) 2.5% 97.5%
I(lex.Cst == "Rem")TRUE 0.2792756 0.1313970 0.5935816
I((doe - dob - 40)/10) 1.7008239 1.3008143 2.2238393
sexF 0.9175116 0.5362588 1.5698158

ci.exp( mx, subset=c("Cst","doe","sex") )

exp(Est.) 2.5% 97.5%
I(lex.Cst == "Rem")TRUE 0.2784664 0.1309448 0.5921846
I((doe - dob - 40)/10) 1.6992068 1.2995225 2.2218191
sexF 0.9309991 0.5435510 1.5946240

We see that there is virtually no difference between the two approaches in terms of the
regression parameters.

15. We extract the regression parameters from the models using ci.exp and compare with
the estimates from the Cox-model:

ci.exp( mx, subset=c("sex","dob","Cst"), pval=TRUE )

exp(Est.) 2.5% 97.5% P
sexF 0.9309991 0.5435510 1.5946240 0.7945537031
I((doe - dob - 40)/10) 1.6992068 1.2995225 2.2218191 0.0001066911
I(lex.Cst == "Rem")TRUE 0.2784664 0.1309448 0.5921846 0.0008970954

ci.exp( m1 )

exp(Est.) 2.5% 97.5%
sexF 0.9461646 0.5519334 1.621985
I((doe - dob - 50)/10) 1.6852196 1.2895097 2.202360
lex.Cst == "Rem"TRUE 0.2829710 0.1330996 0.601599
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round( ci.exp( mp, subset=c("sex","dob","Cst") ) / ci.exp( m1 ), 3 )

exp(Est.) 2.5% 97.5%
sexF 0.970 0.972 0.968
I((doe - dob - 40)/10) 1.009 1.009 1.010
I(lex.Cst == "Rem")TRUE 0.987 0.987 0.987

Thus we see that it has an absolute minimal influence on the regression parameters to
impose the assumption of smoothly varying rates or not.

16. The model has the same assumptions as the Cox-model about proportionality of rates,
but there is an additional assumption that the hazard is a smooth function of time since
entry. It seems to be a sensible assumption (well, restriction) to put on the rates that
they vary smoothly by time. No such restriction is made in the Cox model. The gam

model optimizes the shape of the smoother by general cross-validation:

plot( mx )
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Figure 2.13: Estimated non-linear effect of tfi as estimated by gam.

17. However, termplot does not give you the absolute level of the underlying rates because
it bypasses the intercept. If we want this we can predict the rates as a function of the
covariates:
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nd <- data.frame( tfi = seq(0,20,.1),
sex = "M",
doe = 1990,
dob = 1940,

lex.Cst = "NRA",
lex.dur = 100 )

str( nd )

'data.frame': 201 obs. of 6 variables:
$ tfi : num 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ...
$ sex : Factor w/ 1 level "M": 1 1 1 1 1 1 1 1 1 1 ...
$ doe : num 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 ...
$ dob : num 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 ...
$ lex.Cst: Factor w/ 1 level "NRA": 1 1 1 1 1 1 1 1 1 1 ...
$ lex.dur: num 100 100 100 100 100 100 100 100 100 100 ...

matshade( nd$tfi, cbind( ci.pred( mp, newdata=nd ),
ci.pred( mx, newdata=nd ) ), plot=TRUE,

type="l", lwd=3:4, col=c("black","forestgreen"),
log="y", xlab="Time since entry (years)",

ylab="ESRD rate (per 100 PY) for 50 year man" )
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Figure 2.14: Rates of ESRD by time since NRA for a man aged 50 at start of NRA. The green
line is the curve fitted by gam, the black the one fitted by an ordinary glm using Ns with knots
at 0, 2, 5 and 10 years.
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18. Apart from the baseline timescale, time since NRA, the time since remission might be of
interest in describing the mortality rate. However this is only relevant for persons who
actually have a remission, but there is only 28 persons in this group and 8 events — this
can be read of the plot with the little boxes, figure 2.11.

The variable we want to have in the model is current date (per) minus date of remission
(dor): per-dor), but only positive values of it. This can be fixed by using pmax(), but
we must also deal with all those who have missing values, so construct a variable which
is 0 for persons in “NRA” and time since remission for persons in “Rem”:

sLc <- transform( sLc, tfr = pmax( (per-dor)/10, 0, na.rm=TRUE ) )

19. We can now expand the model with this variable:

mPx <- gam( lex.Xst %in% EP ~ s( tfi, k=10 ) +
factor(sex) + I((doe-dob-40)/10) +
I(lex.Cst=="Rem") + tfr +
offset( log(lex.dur/100) ),

family = poisson,
data = sLc )

round( ci.exp( mPx ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 9.173 6.919 12.162
factor(sex)F 0.927 0.539 1.592
I((doe - dob - 40)/10) 1.701 1.301 2.224
I(lex.Cst == "Rem")TRUE 0.302 0.093 0.981
tfr 0.884 0.212 3.693
s(tfi).1 2.403 0.569 10.149
s(tfi).2 7.876 0.121 511.580
s(tfi).3 0.491 0.135 1.784
s(tfi).4 0.623 0.052 7.524
s(tfi).5 1.551 0.410 5.867
s(tfi).6 0.450 0.054 3.762
s(tfi).7 1.829 0.477 7.016
s(tfi).8 12.544 0.009 17964.281
s(tfi).9 1.881 0.278 12.746

We see that the rate of ESRD decreases about 12% per year in remission, but not
significantly so — in fact we cannot exclude large effects of time since remission in
either direction, at least 3 fold in either direction is perfectly compatible with data.
There is no information on this question in the data.

2.15.3 Prediction in a multistate model

If we want to make proper statements about the survival and disease probabilities we must
know not only how the occurrence of remission influences the rate of death/ESRD, but we
must also model the occurrence rate of remission itself.

20. The rates of ESRD were modelled by a Poisson model with effects of age and time since
NRA — in the models mp and mx. But if we want to model whole process we must also
model the remission rates transition from “NRA” to “Rem”, but the number of events is
rather small (see figure 2.11), so we restrict covariates in this model to only time since
NRA and sex. Note that only the records that relate to the “NRA” state can be used:
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mr <- gam( lex.Xst=="Rem" ~ s( tfi, k=10 ) + sex,
offset = log(lex.dur),
family = poisson,
data = subset( sLc, lex.Cst=="NRA" ) )

ci.exp( mr, pval=TRUE )

exp(Est.) 2.5% 97.5% P
(Intercept) 0.02466228 0.0148675 0.04090991 1.255532e-46
sexF 2.60593044 1.2549319 5.41134814 1.019750e-02
s(tfi).1 1.00280757 0.9164889 1.09725609 9.513196e-01
s(tfi).2 0.99788151 0.8528556 1.16756868 9.788845e-01
s(tfi).3 0.99899866 0.9390756 1.06274547 9.746765e-01
s(tfi).4 0.99893713 0.9142049 1.09152270 9.812395e-01
s(tfi).5 0.99911474 0.9418672 1.05984177 9.765307e-01
s(tfi).6 0.99897084 0.9255211 1.07824963 9.789171e-01
s(tfi).7 1.00094972 0.9438566 1.06149638 9.747279e-01
s(tfi).8 0.99688411 0.7535273 1.31883465 9.825635e-01
s(tfi).9 0.94804631 0.6368367 1.41133790 7.927002e-01

We see that there is a clear effect of sex; women have a remission rate 2.6 times higher
than for men, both when using glm and ns and gam with s.

21. In order to use the function simLexis we must have as input to this the initial status of
the persons whose life-course we shall simulate, and the transition rates in suitable form:

� Suppose we want predictions for men aged 50 at NRA. The input is in the form of
a Lexis object (where lex.dur and lex.Xst will be ignored). Note that in order
to carry over the time.scales and the time.since attributes, we construct the
input object using subset to select columns, and NULL to select rows (see the
example in the help file for simLexis):

inL <- subset( sLc, select=1:11 )[NULL,]
str( inL )

Classes ‘Lexis’ and 'data.frame': 0 obs. of 11 variables:
$ lex.id : int
$ per : num
$ age : num
$ tfi : num
$ lex.dur: num
$ lex.Cst: Factor w/ 4 levels "NRA","Rem","ESRD",..:
$ lex.Xst: Factor w/ 4 levels "NRA","Rem","ESRD",..:
$ id : num
$ sex : Factor w/ 2 levels "M","F":
$ dob : num
$ doe : num
- attr(*, "time.scales")= chr "per" "age" "tfi"
- attr(*, "time.since")= chr "" "" ""
- attr(*, "breaks")=List of 3
..$ per: NULL
..$ age: NULL
..$ tfi: num 0 0.0833 0.1667 0.25 0.3333 ...

timeScales(inL)

[1] "per" "age" "tfi"

inL[1,"lex.id"] <- 1
inL[1,"per"] <- 2000
inL[1,"age"] <- 50
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inL[1,"tfi"] <- 0
inL[1,"lex.Cst"] <- "NRA"
inL[1,"lex.Xst"] <- NA
inL[1,"lex.dur"] <- NA
inL[1,"sex"] <- "M"
inL[1,"doe"] <- 2000
inL[1,"dob"] <- 1950
inL <- rbind( inL, inL )
inL[2,"sex"] <- "F"
inL

lex.id per age tfi lex.dur lex.Cst lex.Xst id sex dob doe
1 1 2000 50 0 NA NRA <NA> NA M 1950 2000
2 1 2000 50 0 NA NRA <NA> NA F 1950 2000

str( inL )

Classes ‘Lexis’ and 'data.frame': 2 obs. of 11 variables:
$ lex.id : num 1 1
$ per : num 2000 2000
$ age : num 50 50
$ tfi : num 0 0
$ lex.dur: num NA NA
$ lex.Cst: Factor w/ 4 levels "NRA","Rem","ESRD",..: 1 1
$ lex.Xst: Factor w/ 4 levels "NRA","Rem","ESRD",..: NA NA
$ id : num NA NA
$ sex : Factor w/ 2 levels "M","F": 1 2
$ dob : num 1950 1950
$ doe : num 2000 2000
- attr(*, "breaks")=List of 3
..$ per: NULL
..$ age: NULL
..$ tfi: num 0 0.0833 0.1667 0.25 0.3333 ...
- attr(*, "time.scales")= chr "per" "age" "tfi"
- attr(*, "time.since")= chr "" "" ""

� The other input for the simulation is the transitions, which is a list with an
element for each transient state (that is “NRA” and “Rem”), each of which is again
a list with names equal to the states that can be reached from the transient state.
The content of the list will be glm objects, in this case the models we just fitted,
describing the transition rates:

Tr <- list( "NRA" = list( "Rem" = mr,
"ESRD" = mx ),

"Rem" = list( "ESRD(Rem)" = mx ) )

22. Now generate the life course of 5,000 persons (of each sex), and look at the summary.
The system.time command is just to tell you how long it took, you may want to start
with 100 just to see how long that takes.

system.time( sM <- simLexis( Tr, inL, N=5000 ) )

user system elapsed
52.232 0.288 52.533

# save( sM, file="sM.Rda" )
# load( file="sM.Rda" )
summary( sM, by="sex" )
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$M

Transitions:
To

From NRA Rem ESRD ESRD(Rem) Records: Events: Risk time: Persons:
NRA 3 2518 2479 0 5000 4997 19307.64 5000
Rem 0 639 0 1879 2518 1879 25608.42 2518
Sum 3 3157 2479 1879 7518 6876 44916.06 5000

$F

Transitions:
To

From NRA Rem ESRD ESRD(Rem) Records: Events: Risk time: Persons:
NRA 0 3962 1038 0 5000 5000 11681.17 5000
Rem 0 1051 0 2911 3962 2911 44584.89 3962
Sum 0 5013 1038 2911 8962 7911 56266.06 5000

The many ESRD-events in the resulting data set is attributable to the fact that we
simulate for a very long follow-up time.

23. Now we want to count how many persons are present in each state at each time for the
first 10 years after entry (which is at age 50). This can be done by using nState:

nStm <- nState( subset(sM,sex=="M"), at=seq(0,10,0.1), from=50, time.scale="age" )
nStf <- nState( subset(sM,sex=="F"), at=seq(0,10,0.1), from=50, time.scale="age" )
head( nStf )

State
when NRA Rem ESRD ESRD(Rem)
50 5000 0 0 0
50.1 4821 164 15 0
50.2 4642 321 37 0
50.3 4465 475 59 1
50.4 4304 619 75 2
50.5 4141 757 97 5

We see that we get a count of persons in each state at time points 0,0.1,0.2,. . . years
after 50 on the age time scale.

24. Once we have the counts of persons in each state at the designated time points, we
compute the cumulative fraction over the states, arranged in order given by perm:

ppm <- pState( nStm, perm=c(2,1,3,4) )
ppf <- pState( nStf, perm=c(2,1,3,4) )
head( ppf )

State
when Rem NRA ESRD ESRD(Rem)
50 0.0000 1.0000 1.0000 1
50.1 0.0328 0.9970 1.0000 1
50.2 0.0642 0.9926 1.0000 1
50.3 0.0950 0.9880 0.9998 1
50.4 0.1238 0.9846 0.9996 1
50.5 0.1514 0.9796 0.9990 1

tail( ppf )
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State
when Rem NRA ESRD ESRD(Rem)
59.5 0.5484 0.5576 0.7612 1
59.6 0.5462 0.5550 0.7586 1
59.7 0.5434 0.5516 0.7556 1
59.8 0.5406 0.5484 0.7526 1
59.9 0.5388 0.5458 0.7500 1
60 0.5354 0.5420 0.7464 1

25. Then we plot the cumulative probabilities using the plot method for pState objects:

plot( ppf )
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Figure 2.15: The default plot for a pState object, bottom to top: Alive remission, alive no
remission, dead no remission, dead remission.

26. Now try to improve the plot so that it is easier to read, and easier to compare men and
women:

par( mfrow=c(1,2), mar=c(3,1.5,1,1), oma=c(0,2,0,0), las=1 )
plot( ppm, col=c("limegreen","red","#991111","forestgreen") )
mtext( "Probability", side=2, las=0, outer=T, line=0.5 )
lines( as.numeric(rownames(ppm)), ppm[,"NRA"], lwd=4 )
text( 59.5, 0.95, "Men", adj=1, col="white", font=2, cex=1.2 )
axis( side=4, at=0:10/10 )
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axis( side=4, at=0:20/20 , labels=NA, tck=-0.02 )
axis( side=4, at=1:99/100, labels=NA, tck=-0.01 )
plot( ppf, col=c("limegreen","red","#991111","forestgreen"),

xlim=c(60,50), yaxt="n", ylab="" )
lines( as.numeric(rownames(ppf)), ppf[,"NRA"], lwd=4 )
text( 59.5, 0.95, "Women", adj=0, col="white", font=2, cex=1.2 )
axis( side=2, at=0:10/10 , labels=NA )
axis( side=2, at=0:20/20 , labels=NA, tck=-0.02 )
axis( side=2, at=1:99/100, labels=NA, tck=-0.01 )
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Figure 2.16: Predicted state occupancy for men and women entering at age 50. The green areas
are remission, the red without remission; the black line is the survival curve.

We see that the probability that a 50-year old man with NRA sees a remission from
NRA during the next 10 years is about 25% whereas the same for a woman is about
50%. Also it is apparent that no new remissions occur after about 5 years since NRA —
mainly because only persons with remission are alive after 5 years.
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