History and Ecology of R

Martyn Plummer

International Agency for Research on Cancer

SPE 2018, Lyon

<ロ > 〈母 > 〈邑 > 〈邑 > 〉邑 りへの

Pre-history

Pre-history

Pre-history

Before there was R, there was S.

 Pre-history
 History
 Present
 Future?

The S language

Developed at AT&T Bell laboratories by Rick Becker, John Chambers, Doug Dunn, Paul Tukey, Graham Wilkinson.

Version 1	1976–1980	Honeywell GCOS, Fortran-based	
Version 2	1980–1988	Unix; Macros, Interface Language	
	1981–1986	QPE (Quantitative Programming Environment)	
	1984–	General outside licensing; books	
Version 3	1988-1998	C-based; S functions and objects	
	1991-	Statistical models;	
		informal classes and methods	
Version 4	1998	Formal class-method model;	
		connections; large objects	
	1991-	Interfaces to Java, Corba?	
Source: Stages in the Evolution of S http://ect.bell-labs.com/sl/S/history.html			

Pre-history

Pre-history

Thistory Tresent Tuture:

The "Blue Book" and the "White Book"

Key features of S version 3 outlined in two books:

- Becker, Chambers and Wilks, The New S Language: A Programming Environment for Statistical Analysis and Graphics (1988)
 - Functions and objects
- Chambers and Hastie (Eds), Statistical Models in S (1992)
 - Data frames, formulae

These books were later used as a prototype for R.

◆□ > ◆□ > ◆重 > ◆重 > ■ めの(

Programming with Data

"We wanted users to be able to begin in an interactive environment, where they did not consciously think of themselves as programming. Then as their needs became clearer and their sophistication increased, they should be able to slide gradually into programming." — John Chambers, Stages in the Evolution of S

This philosophy was later articulated explicitly in *Programming With Data* (Chambers, 1998) as a kind of mission statement for S *To turn ideas into software, quickly and faithfully*

Pre-history History Present Future

The "Green Book"

Key features of S version 4 were outlined in Chambers, *Programming with Data* (1998).

- S as a programming language
- Introduced formal classes and methods, which were later introduced into R by John Chambers himself.

S-PLUS

- AT&T was a regulated monopoly with limited ability to exploit creations of Bell Labs.
- S source code was supplied for free to universities
- After the break up of AT&T in 1984 it became possible for them to sell S.
- S-PLUS was a commercially available form of S licensed to Statistical Sciences (later Mathsoft, later Insightful) with added features:
 - GUI, survival analysis, non-linear mixed effects, Trellis graphics,

 Pre-history
 History
 Present
 Future

The Rise and Fall of S-PLUS

- 1988. Statistical Science releases first version of S-PLUS.
- 1993. Acquires exclusive license to distribute S. Merges with Mathsoft.
- 2001. Changes name to Insightful.
- 2004. Purchases S language for \$2 million.
- 2008. Insightful sold to TIBCO. S-PLUS incorporated into TIBCO Spotfire.

Pre-history History Present Future?

History

How R started, and how it turned into an S clone

Pre-history History Present Future

The Dawn of R

- Ross Ihaka and Robert Gentlemen at the University of Auckland
- An experimental statistical environment
- Scheme interpreter with S-like syntax
 - Replaced scalar type with vector-based types of S
 - Added lazy evaluation of function arguments
- Announced to s-news mailing list in August 1993.

A free software project

- June 1995. Martin Maechler (ETH, Zurich) persuades Ross and Robert to release R under GNU Public License (GPL)
- March 1996. Mailing list *r-testers* mailing list
 - Later split into three *r-announce*, *r-help*, and *r-devel*.
- Mid 1997. Creation of *core team* with access to central repository (CVS)
 - Doug Bates, Peter Dalgaard, Robert Gentleman, Kurt Hornik, Ross Ihaka, Friedrich Leisch, Thomas Lumley, Martin Maechler, Paul Murrell, Heiner Schwarte, Luke Tierney
- 1997. Adopted by the GNU Project as "GNU S".

Pre-history History Present Future

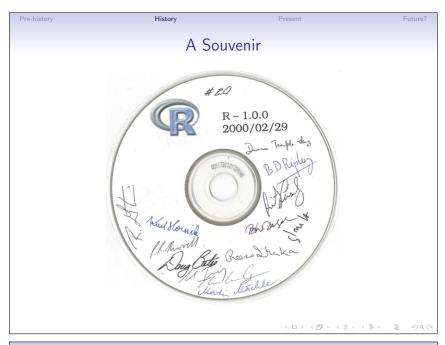
The draw of S

"Early on, the decision was made to use S-like syntax. Once that decision was made, the move toward being more and more like S has been irresistible"

- Ross Ihaka, R: Past and Future History (Interface '98)

R 1.0.0, a complete and stable implementation of S version 3, was released in 2000.

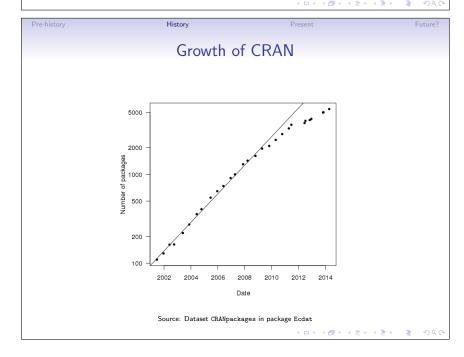
(D) (B) (E) (E) (O)



Pre-history History Present Future?

Packages

• Comprehensive R Archive Network (CRAN) started in 1997
• Quality assurance tools built into R
• Increasingly demanding with each new R release
• Recommended packages distributed with R
• Third-party packages included with R distribution
• Provide more complete functionality for the R environment
• Starting with release 1.3.0 (completely integrated in 1.6.0)



Pre-history History Present Future?

The present

The current era is characterized by

- A mature R community
- Large penetration of R in the commercial world ("data science", "analytics", "big data")
- Increasing interest in the R language from computer scientists.

Pre-history History Present Future?

Community

• useR! Annual conference

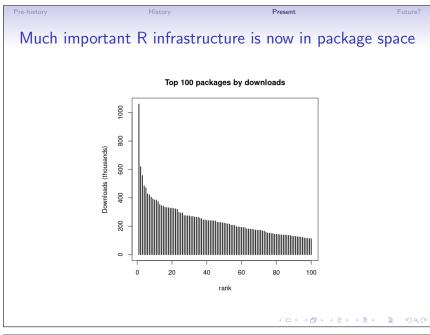
- Brisbane (2018), Toulouse (2019), Boston (2020)
- R Journal (http://journal.r-project.org)
 - Journal of record, peer-reviewed articles, indexed
 - Journal of Statistical Software (JSS) has many articles dedicated to R packages (http://jstatsoft.org)
- Migration to social media
 - Stack Exchange/Overflow, Github, Twitter (#rstats)
 - Follow @_R_Foundation on Twitter

Much important R infrastructure is now in package space

Top 20 packages by downloads

Stringi Rcpp devtools stringr rlang pillar ggplo12 tibble digest utf6 dplyr glue crayon cli data.table assertthat BH magritt R6 curl 0 200 400 600 800 1000

Downloads Jun 2018 (thousands)



Pre-history Present Futur

The tidyverse

- Many of the popular packages on CRAN were written by Hadley Wickham.
- These packages became known as the "hadleyverse" until Hadley himself rebranded them the "tidyverse" (www.tidyverse.org).
- All packages in the tidyverse have a common design philosophy and work together. Common features are:
 - Non-standard evaluation rules for function calls.
 - Use of the pipe operator %>% to pass data transparently from one function call to another.
- The CRAN meta-package tidyverse installs all of these packages.

(□ > (□ > (Ē > (Ē > (Ē > (Ē)

Pre-history History Present Future?

Commercial R

Several commercial organizations provide commercial versions of R including support, consulting, \dots

- Revolution Computing, later Revolution Analytics (2007–2014), purchased by Microsoft.
- RStudio (2010–)
- Mango Solutions (2002–)

Pre-history History Present Future?

Validation and Reliability

- R: Regulatory Compliance and Validation Issues guidance document by The R Foundation
- ValidR by Mango Solutions
- MRAN (https://mran.microsoft.com/), a time-stamped version of CRAN
 - Allows analysis to be re-run with exactly the same package versions at a later date.
 - Used by Microsoft R Open, Microsoft's distribution of R.

Pre-histor

History

Present

Future

Attack of the Clones (and forks)

Name	Implementation	Commercial	Open
		sponsor	source
pqR	C fork		Yes
CXXR	C++ fork	Google	Yes
ORBIT	C fork	Huawei	Yes
Renjin	Java	BeDataDriven	Yes
FastR	Java (Truffle/Graal)	Oracle	Yes
Riposte	C++	Tableau Research	Yes
TERR	C++	TIBCO	No

A number of projects have looked improving the efficiency of R, either by forking the original codebase or by re-implementing R.

Pre-histor

History

Present

Future?

The R Foundation for Statistical Computing

A non-profit organization working in the public interest, founded in 2002 in order to:

- Provide support for the R project and other innovations in statistical computing.
- Provide a reference point for individuals, institutions or commercial enterprises that want to support or interact with the R development community.
- Hold and administer the copyright of R software and documentation (This never happened)

In 2015, a group of organizations created a consortium to support the R ecosystem $\,$

Current members (May 2018)

R Foundation A statutory member of The R Consortium Platinum members IBM, Microsoft, Moore Foundation, RStudio Gold members TIBCO

Silver members Alteryx, DataCamp, Esri, Google, Mango Solutions, Oracle, ProCogia

The Future

"Prediction is very difficult, especially about the future"

– variously attributed to Niels Bohr, Piet Hein, Yogi Bera

Pre-history History Present Future?

Trends

We cannot make predictions, but some long-term trends are very visible:

- Average age of R Core Team?
- Younger R developers more closely associated with industry than academia
- R Consortium provides mechanism for substantial investment in R infrastructure

"R Consortium has invested more that \$650,000 USD in over 30 projects that impact the over 2 million R users worldwide" – R Consortium press release 29 May 2018.

Pre-history History Present Future?

R language versus R implementation

- R has no formal specification
- R language is defined by its implementation ("GNU R")
- Long-term future of R may depend on formal specification of the language, rather than current implementation.

4□ > 4□ > 4 = > 4 = > = 900

Pre-history History Present Future?

Simply start over and build something better

The \boldsymbol{x} in this function is randomly local or global

```
f = function() {
   if (runif(1) > .5)
      x = 10
   x
}
```

"In the light of this, I've come to the conclusion that rather than "fixing" R, it would be better and much more productive to simply start over and build something better" – Ross Ihaka, Christian Robert's blog, September 13, 2010

Pre-history History Present **Future?**

Back to the Future

Ross Ihaka and Duncan Temple Lang propose a new language built on top of common lisp with:

- Scalar types
- Type hinting
- Call-by-reference semantics
- Use of multi-cores and parallelism
- More strict license to protect work donated to the commons

Pre-history History Present Future?

Julia (www.julialang.org)

"In Julia, I can build a package that achieves good performance without the need to interface to code written in C, C++ or Fortran – in the sense that my package doesn't need to require compilation of code outside that provided by the language itself.

It is not surprising that the design of R is starting to show its age. Although R has only been around for 15-18 years, its syntax and much of the semantics are based on the design of "S3" which is 25–30 years old"

Doug Bates, message to R-SIG-mixed-models list,
 December 9 2013

Pre-history History Present

What does all of this mean for the course?

- R incorporates over 40 years of ideas in statistical computing from multiple contributors.
- There is usually more than one way to do something in R.
- Some of the peculiarities of the R language are there for historical reasons.
- The course does not cover some of the recent additions to the R ecosystem.



Pre-history History Present Future?

Resources

- Chambers J, Stages in the Evolution of S
- Becker, R, A Brief History of S
- Chambers R, Evolution of the S language
- Ihaka, R and Gentleman R, R: A language for Data Analysis and Graphics, *J Comp Graph Stat*, **5**, 299–314, 1996.
- Ihaka, R, R: Past and Future History, Interface 98.
- Ihaka, R, Temple Lang, D, Back to the Future: Lisp as a Base for a Statistical Computing System
- Fox, J, Aspects of the Social Organization and Trajectory of the R Project, R Journal, Vol 1/2, 5–13, 2009.

R: language and basic data management

Krista Fischer

Statistical Practice in Epidemiology, Lyon, 2018 (initial slides by P. Dalgaard)

Basics Objects in R Data frames and data manipulation Functions Graphics The workspace Additional topics

Language

- ▶ R is a programming language also on the command line
- ▶ (This means that there are *syntax rules*)

On the command line (or a line in a script) one could:

- Print an object by typing its name
- Evaluate an expression
- Call a function, giving the arguments in parentheses possibly empty
- ▶ Notice objects vs. objects()

Basics Objects in R Data frames and data manipulation Functions Graphics The workspace Additional topics

R expressions

```
x <- rnorm(10, mean=20, sd=5)

m <- mean(x)

sum((x - m)^2)
```

- Object names
- Explicit constants
- ► Arithmetic operators
- ► Function calls
- Assignment of results to names

```
Basics Objects in R Data frames and data manipulation Functions Graphics The workspace Additional topics

R expressions

x <- rnorm(10, mean=20, sd=5)
m <- mean(x)
sum((x - m)^2)

Dobject names
Explicit constants
Arithmetic operators
Function calls
Assignment of results to names
```

R expressions

```
x <- rnorm(10, mean=20, sd=5)

m <- mean(x)

sum((x - m)^2)
```

- Object names
- ► Explicit constants
- Arithmetic operators
- ► Function calls
- Assignment of results to names

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ト 恵 り へ ②
3/28

Basics Objects in R Data frames and data manipulation Functions Graphics The workspace Additional topics

R expressions

```
x <- rnorm(10, mean=20, sd=5)

m <- mean(x)

sum((x - m)^2)
```

- Object names
- Explicit constants
- ► Arithmetic operators
- ► Function calls
- Assignment of results to names

```
Basics Objects in R Data frames and data manipulation Functions Graphics The workspace Additional topics
```

R expressions

```
x <- rnorm(10, mean=20, sd=5)
m <- mean(x)
sum((x - m)^2)</pre>
```

- ▶ Object names
- ► Explicit constants
- Arithmetic operators
- ► Function calls
- Assignment of results to names

Basics Objects in R Data frames and data manipulation Functions Graphics The workspace Additional topics

R expressions

```
x <- rnorm(10, mean=20, sd=5)
m <- mean(x)
sum((x - m)^2)</pre>
```

- Object names
- ► Explicit constants
- Arithmetic operators
- ► Function calls
- Assignment of results to names

(ロ) 4레 (전) 4 전 (전) 4 전 (C) 3/28

Basics Objects in R Data frames and data manipulation Functions Graphics The workspace Additional topics

Objects

- ▶ The simplest object type is *vector*
- ▶ Modes: numeric, character, factor, ...
- Operations are vectorized: you can add entire vectors with a + b
- Recycling of objects: If the lengths don't match, the shorter vector is reused

```
Objects in R Data frames and data manipulation Functions Graphics
Example (numeric vectors)
   > a < -c(2, 8, 3, 1, 0, 7)
   > b <- c(3, 4, 1, 4, 5, 2)
   > a+b
   [1] 5 12 4 5 5 9
   > mean(a)
   [1] 3.5
   > m <- mean(a)
   > m
   [1] 3.5
   > a - m # notice recycling
   [1] -1.5 4.5 -0.5 -2.5 -3.5
   > z < -c(1, 2, 3)
   > a - z #recycling!
[1] 1 6 0 0 -2 4
                                                            5/28
```

Character vectors and factors

- ▶ The elements of character vectors are text strings that do not have any numeric value.
- ► Factors are used to describe groupings these are just integer codes plus a set of names, as labels for the levels
- In model specifications, a factor variable is treated as a classification rather than as a quantitative variable

Example:

```
> x<-c(1,3,3,2,1,3,1)
> fx<-factor(x,labels=c("bad","average","good"))</pre>
> fx
[1] bad
             good
                      good
                               average bad
                                                 good
 > levels(fx)
               "average" "good"
[1] "bad"
                                   ◆□ > ◆圏 > ◆園 > ◆園 >
```

Lists

- Lists are vectors where the elements can have different types - thus collections of any elements, gathered into one object
- Functions often return lists
- ▶ lst <- list(A=rnorm(5), B="hello")
- Special indexing:
- ▶ lst\$A
- lst[[1]] first element (NB: double brackets)
- Data frames are special type of lists

Matrices

A matrix is a rectangular collection of data. All columns of a matrix should be of the same type.

One can also construct a matrix from its columns using cbind, whereas joining two matrices with equal no of columns (with the same column names) can be done using rbind.

Basics Objects in R Data frames and data manipulation Functions Graphics The workspace Additional topics

Data frames

- ▶ Usually a dataset in R is stored in a form of a data frame.
- ► While reading in data from text files (using read.table(), read.csv()), a data frame is created.
- ► A data frame is similar to a matrix, but can have columns (variables) of different types.
- ► A variable can be extracted using dataframe\$variable (as data frames are lists)

```
> D<- data.frame(a=c(8,3,5),b=c("X","Z","Y"))
> D
    a b
1 8 X
2 3 Z
3 5 Y
> D$a
[1] 8 3 5
```

Basics Objects in R Data frames and data manipulation Functions Graphics The workspace Additional topics

Matrices or data frames?

- ► A (numeric or character) matrix can be converted to a data frame and vice versa (with as.data.frame(A) and as.matrix(B)).
- Most R functions for statistical analysis work with data frames, but in some cases it is useful to have a matrix (incl the occasions where you want to use some matrix algebra).
- If you need more dimensions than two, there is also array.

How to access variables in the data frame?

Different ways to tell R to use variable X from data frame D:

As mentioned, you can use the dataframe\$variable notation

summary (D\$X)

▶ Use the with function

with(D, summary(X))

Use the data argument (works for some functions only)

 $lm(Y \sim X, data=D)$

 Attach the dataframe – DISCOURAGED! (seems a convenient solution, but can actually make things more complicated, as it creates a temporary copy of the dataset)

attach(D)
summary(X)
detach()

Basics Objects in R Data frames and data manipulation Functions Graphics The workspace Additional topics

Data manipulation

To create a new variable bmi in the existing data frame students, use either of the two:

(notice: you need an assignment, to save the transformed object)

Basics Objects in R Data frames and data manipulation Functions Graphics The workspace Additional topic

Indexing – extracting elements from objects

Square brackets [] are used for indexing!

Examples:

- ► Elements of vectors: a[5] (5th element); a[5:7] (5th to 7th elements); a[-6] (all elements except the 6th)
- ► Logical index: a[a<3], a[b>2], a[is.na(b)]
 (elements of a corresponding to missing values of b)
- ▶ In a data frame or matrix two dimensions, two indexes:

```
students[5, 7], students[1:10, c(2,5)],
students[1, ], students[,3] (entire
row/column)
```

 4□→ 4∰→ 4½→ 4½→ ½

 13/28

```
Basics Objects in R Data frames and data manipulation Functions Graphics The workspace
Examples of indexing
   > x < -c(2,7,3,1,5,9,0)
   > x[c(1,5,7)]
   [1] 2 5 0
   > x[x<3]
   [1] 2 1 0
                        #quick look at a large data
   > NMRimp[1:2,1:4]
     sample.id XXL.VLDL.P XXL.VLDL.L XXL.VLDL.PL
        V18566
                1.46e-04
                            0.0313
                                           0.00331
                 9.00e-05
        V36115
                               0.0195
                                           0.00178
   > fgsa[is.na(fgsa$height),"age"]
     [1] 18 69 52 41 52 44 73 28 66 20 73 63 26
   # ages of those with missing height
   # equivalent: fgsa$age[is.na(fgsa$height)]
                                    14/28
```

Conditional assignment: ifelse

Syntax: ifelse (expression, A, B) Expression (with values TRUE or FALSE) is a vector, A and B are constants or vectors of the same length.

Examples:

```
> x<-c(1,2,7,3,NA)
> ifelse(x<3,1,2)
[1] 1 1 2 2 NA
> ifelse(is.na(x),0,x) #replace missing values by 0
[1] 1 2 7 3 0
> y<-c(3,6,1,7,8); z<-c(0,1,0,2,1)
> ifelse(z==0,x,y)
[1] 1 6 7 7 8
> ifelse(is.na(x),0,ifelse(x>3,3,x))
[1] 1 2 3 3 0
```

Basics Objects in R Data frames and data manipulation Functions Graphics The workspace Additional topics

Naming

 Elements of vectors, rows and columns of matrices and data frames can have names

```
> x <- c(boys=1.2, girls=1.1)
> x
boys girls
1.2    1.1
> x["boys"]
boys
1.2
> D[,"a"]  # works for matrices and data frames
[1] 8 3 5
```

You can extract and set names with names (x); for matrices and data frames also colnames (x) and rownames (x);

Classes, generic functions

- ► R objects have classes
- Functions can behave differently depending on the class of an object
- ► E.g. summary (x) or print (x) does different things if x is numeric, a factor, or a linear model fit

```
> summary(x) # a numeric vector
 Min. 1st Qu. Median
                       Mean 3rd Qu.
                                       Max.
   1
summary(fx) # a factor
  bad average good
```

Function calls

Round brackets () are used for function calls!

Lots of things you do with R involve calling functions (you have seen that already!).

For instance

mean(x, na.rm=TRUE)

The important parts of this are

- ► The name of the function
- Arguments: input to the function
- Sometimes, we have named arguments

Function calls

Round brackets () are used for function calls!

Lots of things you do with R involve calling functions (you have seen that already!).

For instance

mean(x, na.rm=TRUE)

The important parts of this are

- ► The name of the function
- Arguments: input to the function
- ▶ Sometimes, we have named arguments

√ 9 € 18/28

Function calls

Round brackets () are used for function calls!

Lots of things you do with R involve calling functions (you have seen that already!).

For instance

```
mean(x, na.rm=TRUE)
```

The important parts of this are

- ► The name of the function
- Arguments: input to the function
- ► Sometimes, we have named arguments

Basics Objects in R Data frames and data manipulation Functions Graphics The workspace Additional topics

Function calls

Round brackets () are used for function calls!

Lots of things you do with R involve calling functions (you have seen that already!).

For instance

mean(x, na.rm=TRUE)

The important parts of this are

- ▶ The name of the function
- Arguments: input to the function
- ▶ Sometimes, we have named arguments

Basics Objects in R Data frames and data manipulation Functions Graphics The workspace Additional topic

Function arguments

Examples:

```
rnorm(10, mean=m, sd=s)
hist(x, main="My histogram")
    mean(log(x + 1))
```

Items which may appear as arguments:

- Names of R objects
- Explicit constants
- ▶ Return values from another function call or expression
- Some arguments have their default values.
- ▶ Use help(function) or args(function) to see the arguments (and their order and default values) that can be given to any function.
- ► Quite often first argument is not named, but the others are named

Function arguments

Examples:

```
rnorm(10, mean=m, sd=s)
hist(x, main="My histogram")
    mean(log(x + 1))
```

Items which may appear as arguments:

- Names of R objects
- Explicit constants
- ► Return values from another function call or expression
- ▶ Some arguments have their default values.
- ► Use help (function) or args (function) to see the arguments (and their order and default values) that can be given to any function.
- Quite often first argument is not named, but the others are named

19/28

Function arguments

Examples:

```
rnorm(10, mean=m, sd=s)
hist(x, main="My histogram")
    mean(log(x + 1))
```

Items which may appear as arguments:

- Names of R objects
- Explicit constants
- ► Return values from another function call or expression
- ▶ Some arguments have their default values.
- ► Use help (function) or args (function) to see the arguments (and their order and default values) that can be given to any function.
- Quite often first argument is not named, but the others are named

→ ← 団 → ← 星 → → 星 → へ へ へ 19/28

Basics Objects in R Data frames and data manipulation Functions Graphics The workspace Additional topics

Function arguments

Examples:

```
rnorm(10, mean=m, sd=s)
hist(x, main="My histogram")
    mean(log(x + 1))
```

Items which may appear as arguments:

- Names of R objects
- Explicit constants
- ▶ Return values from another function call or expression
- Some arguments have their default values.
- ► Use help (function) or args (function) to see the arguments (and their order and default values) that can be given to any function.
- ► Quite often first argument is not named, but the others are named

Function arguments

Examples:

```
rnorm(10, mean=m, sd=s)
hist(x, main="My histogram")
      mean(log(x + 1))
```

Items which may appear as arguments:

- Names of R objects
- Explicit constants
- ► Return values from another function call or expression
- Some arguments have their default values.
- ▶ Use help(function) or args(function) to see the arguments (and their order and default values) that can be given to any function.
- Quite often first argument is not named, but the others are named

19/28

Function arguments

Examples:

```
rnorm(10, mean=m, sd=s)
hist(x, main="My histogram")
      mean(log(x + 1))
```

Items which may appear as arguments:

- Names of R objects
- Explicit constants
- ► Return values from another function call or expression
- Some arguments have their default values.
- ▶ Use help(function) or args(function) to see the arguments (and their order and default values) that can be given to any function.
- Quite often first argument is not named, but the others are named

19/28

Basics Objects in R Data frames and data manipulation Functions

Example

From R-help (help(t.test)):

```
t.test(x, y = NULL,
   alternative = c("two.sided", "less", "greater"),
   mu = 0, paired = FALSE, var.equal = FALSE,
   conf.level = 0.95, \ldots)
```

- ► The first argument (x) does not have a default you have to provide some data!
- ▶ The other arguments can be modified, if you need to.

 4□ → 4個 → 4 분 → 4 분 → 1 분 → 20/28

Example (cont.)

The following lines of code are equivalent:

```
t.test(a, b, alternative="less", paired=TRUE)
t.test(a, b, paired=TRUE, alt="less")
t.test(a, b, p=T, a="l") #not a good style!
```

Order does not matter for named arguments!

Partial keyword matching is possible ("alternative" or "alt" or "a")
(partial matching is possible)

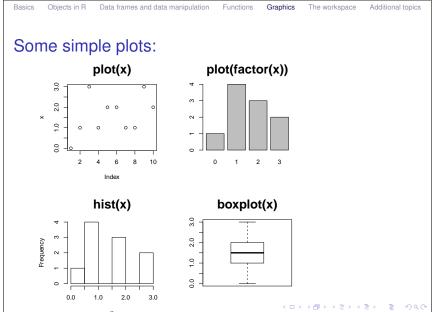
For a readable code, the use of explicit argument names is highly recommended!

Basics Objects in R Data frames and data manipulation Functions Graphics The workspace Additional topics

Basic graphics

The plot () function is a generic function, producing different plots for different types of arguments. For instance, plot (x) produces:

- a plot of observation index against the observations, when
 x is a numeric variable
- a bar plot of category frequencies, when x is a factor variable
- ▶ a time series plot (interconnected observations) when x is a time series
- \blacktriangleright a set of diagnostic plots, when x is a fitted regression model
- ▶ Similarly, the plot (x, y) produces a scatter plot, when x is a numeric variable and a bar plot of category frequencies, when x is a factor variable



The workspace

- The global environment contains R objects created on the command line.
- ► There is an additional search path of loaded packages and attached data frames.
- ▶ When you request an object by name, R looks first in the global environment, and if it doesn't find it there, it continues along the search path.
- ► The search path is maintained by library(), attach(), and detach()
- Notice that objects in the global environment may mask objects in packages and attached data frames

More on factors: the cut. Function

- The cut function converts a numerical variable into groups (a factor variable) according to a set of break points
- ▶ The intervals are left-open, right-closed by default (right=FALSE changes that)
- ... and that the lowest endpoint is not included by default (set include.lowest=TRUE if it bothers you)

Example > age <- c(35,20,21,50,46,23,30) > agegr<-cut(age, c(20,30,40,50))</pre>

```
> tábĺe(agegr)
       # the 20-year old is not included!
agegr
(20,30] (30,40] (40,50]
> agegr<-cut(age, c(20,30,40,50),right=FALSE)</pre>
> table(agegr)
agegr
        # the 50-year old is not included!
[20,30) [30,40) [40,50)
             2
> agegr<-cut(age, c(20,30,40,50),
                            include.lowest=TRUE)
> table(agegr)
agegr
[20,30] (30,40] (40,50]
```

Working with Dates

- Dates are usually read as character or factor variables
- ▶ If data are not in the default format (YYYY-MM-DD) you

▶ You can calculate differences between Date objects. The

4 日 5 | 4 間 5 | 4 間 5 | 4 間 5 27/28

The workspace

Working with Dates

- Dates are usually read as character or factor variables
- Use the as.Date function to convert them to objects of class "Date"
- ▶ If data are not in the default format (YYYY-MM-DD) you

▶ You can calculate differences between Date objects. The

←□ → ←□ → ← □ → ← □ → 27/28

Data frames and data manipulation

Working with Dates

- Dates are usually read as character or factor variables
- Use the as.Date function to convert them to objects of class "Date"
- ▶ If data are not in the default format (YYYY-MM-DD) you need to supply a format specification

```
> as.Date("11/3-1959", format="%d/%m-%Y")
[1] "1959-03-11"
```

You can calculate differences between Date objects. The

< □ > <避 > < 亘 > < 亘 > 27/28

Working with Dates

- ▶ Dates are usually read as character or factor variables
- Use the as.Date function to convert them to objects of class "Date"
- If data are not in the default format (YYYY-MM-DD) you need to supply a format specification

```
> as.Date("11/3-1959", format="%d/%m-%Y")
[1] "1959-03-11"
```

You can calculate differences between Date objects. The result is an object of class "difftime". To get the number of days between two dates, use

Basics Objects in R Data frames and data manipulation Functions Graphics The workspace Additional topics

Creating your own functions

A very simple example:

```
logit \leftarrow function(p) log(p/(1-p))
```

The function logit requires one argument p and produces the logit of p. Try logit (0.5), or logit (0.25), ...

More complex (but still simple):

```
simpsum <- function(x, dec=5) {
m <- mean(x, na.rm=TRUE)
s <- sd(x, na.rm=TRUE)
round(c(mean=m, sd=s), dec) }</pre>
```

The function simpsum requires one argument x, but the second argument dec (no of decimal points in the output) has a default value 5. Try simpsum(a), or simpsum(a, dec=2).

□ ▶ ◀♬ ▶ ◀ 볼 ▶ ◀ 볼 ▶ ◎ 및 ♥ Q (~ 28/28

Statistical Practice in Epidemiology

Poisson and Logistic Regression

Janne Pitkäniemi

(inherited from Esa Läärä)

1/28

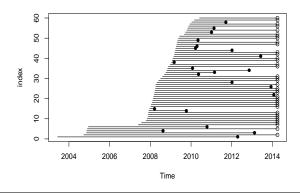
Points to be covered

- Incidence rates, rate ratios and rate differences from follow-up studies can be computed by fitting Poisson regression models.
- ► Odds ratios can be computed from binary data by fitting *Logistic regression models*.
- ▶ Odds-ratios can be estimated from case-control studies.
- ► Both models are special instances of Generalized linear models.
- ▶ There are various ways to do these tasks in R.

2 / 28

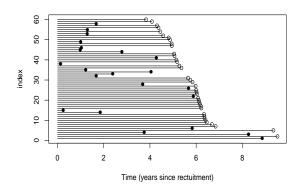
The Estonian Biobank cohort: survival among the elderly

Follow-up of 60 random individuals aged 75-103 at recruitment, until death (\bullet) or censoring (o) in April 2014 (linkage with the Estonian Causes of Death Registry).



The Estonian Biobank cohort: survival among the elderly

Follow-up time for 60 random individuals aged 75-103 at recruitment (time-scale: time in study).



4 / 28

Events, dates and risk time

- ► Mortality as the outcome:
 - d: indicator for **status** at exit:
 - 1: death observed
 - 0: censored alive
- Dates:

doe = date of Entry to follow-up,dox = date of eXit, end of follow-up.

▶ Follow-up time (years) computed as:

$$y = (dox - doe)/365.25$$

5 / 28

Crude overall rate computed in two ways

Total no. cases, person-years & rate (/1000 y):

$$>$$
 D $<-$ sum(d); Y $<-$ sum(y); R $<-$ D/(Y/1000) $>$ round(c(D=D, Y=Y, R=R), 2) D Y R 884.00 11678.24 75.70

Poisson regression model with only intercept ("1").

```
> m1 < - glm( d ~ 1, family=poisson, offset=log(y)) > coef(m1) (Intercept) -2.581025 > exp( coef(m1) )*1000 (Intercept)
```

Why do we get the same results?

75.69636

Constant hazard — Poisson model

Let $Y \sim exp(\lambda)$, then $f(y;\lambda) = \lambda e^{-\lambda y} I(y>0)$ Constant rate: $\lambda(y) = \frac{f(y;\lambda)}{S(y;\lambda)} = \lambda$ Observed data $\{(y_i,\delta_i); i=1,...,n\}$. The likelihood $L(\lambda) = \prod_{i=1}^n \lambda^{\delta_i} e^{-\lambda y_i}$ and

$$\begin{split} \log(L) &= \sum_{i=1}^n \left[\delta_i log(\lambda) - \lambda y_i \right] \\ \text{Solving the } score \ equations:} \quad \frac{\partial \log L(\lambda)}{\partial \lambda} = \sum \left[\frac{\delta_i}{\lambda} - y_i \right] \\ &= \frac{D}{\lambda} - Y = 0 \ \text{and} \ D - \lambda Y = 0 \\ &\to \text{maximum likelihood estimator (MLE) of } \lambda \end{split}$$

 $\widehat{\lambda} = \frac{D}{Y} = \frac{\text{number of cases}}{\text{total person-time}} = \text{ empirical rate!}$

7 / 28

offset term — Poisson model

- ► Previous model without offset: Intercept 6.784=log(884)
- We should use an offset if we suspect that the underlying population sizes (person-years) differ for each of the observed counts – For example varying person-years by tratment group, sex,age,...
- We need a term in the model that "scales" the likelihood, but does not depend on model parameters (include a term with reg. coef. fixed to 1) − offset term is log(y)

$$log(\frac{\mu}{y}) = \beta_0 + \beta_1 x_1$$

$$log(\mu) = 1 \times log(y) + \beta_0 + \beta_1 x_1$$

8 / 28

Comparing rates: The Thorotrast Study

- ► Cohort of seriously ill patients in Denmark on whom angiography of brain was performed.
- Exposure: contrast medium used in angiography,
 - 1. thor = thorotrast (with 232 Th), used 1935-50
 - 2. ctrl = other medium (?), used 1946-63
- Outcome of interest: death

doe = date of Entry to follow-up,dox = date of eXit, end of follow-up.

data(thoro) in the Epi package.

Comparing rates: thorotrast vs. control

```
Tabulating cases, person-years & rates by group
```

```
> stat.table( contrast,
                 list (N = count(),
                       D = sum(d),
                       Y = sum(y),
                    \mathsf{rate} \, = \, \mathsf{ratio} \big( \, \mathsf{d}, \mathsf{y}, \mathsf{1000} \big) \, \, \big) \, \, \big)
 contrast
  ctrl
                1236 797.00 30517.56 26.12
                  807 748.00 19243.85
  thor
Rate ratio, RR = 38.89/26.12 = 1.49,
Std. error of log-RR, SE = \sqrt{1/748 + 1/797} = 0.051,
Error factor, EF = \exp(1.96 \times 0.051) = 1.105,
95% confidence interval for RR:
(1.49/1.105, 1.49 \times 1.105) = (1.35, 1.64).
                                                                                  10 / 28
```

Rate ratio estimation with Poisson regression

- Include contrast as the explanatory variable (factor).
- Insert person years in units that you want rates in

```
> m2 <- glm( d ~ contrast, offset=log(y/1000),
                  family = poisson )
  > round( summary(m2)$coef, 4)[, 1:2]
               Estimate Std. Error
  (Intercept)
                 3.2626
                           0.0354
  contrast thor
                0.3977
                           0.0509
Rate ratio and CI?
  Call function ci.exp() in Epi
  > round( ci.exp( m2 ), 3 )
                exp(Est.) 2.5% 97.5%
  (Intercept)
                  26.116 24.364 27.994
  contrast thor
                   1.488 1.347 1.644
```

Rates in groups with Poisson regression

- ▶ Include contrast as the explanatory variable (factor).
- ▶ Remove the intercept (-1)
- ▶ Insert person-years in units that you want rates in

12 / 28

Rates in groups with Poisson regression

▶ You can have it all in one go:

```
> CM \leftarrow rbind(c(1,0), c(0,1), c(-1,1))
> rownames(CM) <- c("Ctrl","Thoro","Th vs.Ct")</pre>
> colnames(CM) <- names( coef(m3) )</pre>
         contrast ctrl contrast thor
Ctrl
Thoro
                    0
                                  1
Th vs. Ct
                                  1
> round( ci.exp( m3, ctr.mat=CM ),3 )
         exp(Est.) 2.5% 97.5%
Ctrl
            26.116 24.364 27.994
            38.870 36.181 41.757
Th vs. Ct
            1.488 1.347 1.644
```

13 / 28

Rate ratio estimation with Poisson regression

Response may also be specified as individual rates:
 d/y

```
weights = instead of offset = are needed.
```

14 / 28

Rate difference estimation with Poisson regression

► The approach with d/y enables additive rate models too:

Rates difference

As before you can have it all:

```
> m6 <- glm( d/(y/1000) ~ contrast -1,
+ family = poisson(link="identity"),
+ weights = y/1000)
> round(ci.exp(m6, ctr.mat=CM, Exp=F), 3)
         Estimate 2.5% 97.5%
Ctrl
           26.116 24.303 27.929
Thoro
           38.870 36.084 41.655
Th vs. Ct 12.753 9.430 16.077
> round( ci.exp( m3, ctr.mat=CM), 3 )
         exp(Est.) 2.5% 97.5%
            26.116 24.364 27.994
Ctrl
Thoro
            38.870 36.181 41.757
Th vs. Ct
             1.488 1.347 1.644
                                                        16 / 28
```

Binary data: Treatment success Y/N

85 diabetes-patients with foot-wounds:

- Dalterapin (Dal)
- ▶ Placebo (PI)

Treatment/Placebo given to diabetes patients, the design is propective and outcome is measured better/worse. Is the probability of outcome more than 15% – yes, then use the risk difference or risk ratio (RR)

	Treatment group		
	Dalterapin	Placebo	
Better	29	20	
Worse	14	22	
Total	43	42	

$$\hat{p}_{\mathsf{Dal}} = \frac{29}{43} = 67\%$$
 $\hat{p}_{\mathsf{Pl}} = \frac{20}{42} = 47\%$

17 / 28

The difference between the probabilities is the fraction of the patients that benefit from the treatment: $p_{Dal} - p_{Pl}$

```
> library(Epi)
> dlt <- rbind( c(29,14), c(20,22) )
> colnames( dlt ) <- c("Better","Worse")</pre>
> rownames( dlt ) <- c("Dal","Pl")</pre>
> kable(twoby2( dlt ),"latex")
2 by 2 table analysis:
    Better Worse
                   P(Better) 95% conf. interval
       29
                      0.6744
Dal
                               0.5226 0.7967
             14
       20
             22
                      0.4762
                               0.3316 0.6249
                                  95% conf. interval
            Relative Risk: 1.4163
                                    0.9694
                                             2.0692
        Sample Odds Ratio: 2.2786
                                             5.4907
                                    0.9456
Conditional MLE Odds Ratio: 2.2560
                                   0.8675 6.0405
    Probability difference: 0.1982
                                   -0.0110 0.3850
```

Exact P-value: 0.0808

Logistic regression for binary data

For grouped binary data, the response is a two-column matrix with columns (successes, failures).

```
 \begin{array}{lll} & trt & <- \ factor(c("Dal","Pl")) \\ & trt & <- \ relevel(\ trt,\ 2\ ) \\ & b1 <- \ glm(\ dlt\ \ \ trt,\ family=binomial\ ) \\ & round(\ ci.exp(\ b1\ ),\ 4\ ) \\ & & exp(Est.) & 2.5\% & 97.5\% \\ & (Intercept) & 0.9091 & 0.4962 & 1.6657 \\ & trtDal & 2.2786 & 0.9456 & 5.4907 \\ \end{array}
```

- ► The default parameters in logistic regression are **odds** (the intercept: 20/22 = 0.9090) and the **odds-ratio** ((29/14)/(20/22) = 2.28).
- ► This is not what you want, because odds ratio is biased estimate of the risk ratio.(recall if p>10% $\frac{p}{1-p} \not\approx p$)

19 / 28

Logistic regression for binary data - Risk ratio (Relative risk)

```
> library(Epi)
> library(xtable)
> dlt <- rbind( c(29,14), c(20,22) )
> diab<-expand.grid(dlt)
> colnames(diab)[1]<-"d"
> diab$out <- c("Better", "Better", "Worse", "Worse")
> diab$trt <- as.factor(c("Dal", "Pl", "Dal", "Pl"))
> diab$trtts<-rep(rowSums(dlt),2)
> diab$trt<-relevel( diab$trt, 2 )
> print(xtable(diab,digits=c(0,0,0,0,0)),include.rownames = F)
```

d	out	trt	totals
29	Better	Dal	43
20	Better	PΙ	42
14	Worse	Dal	43
22	Worse	PΙ	42

20 / 28

Logistic regression for binary data - risk ratio

```
> library(Epi)
> library(xtable)
> b2 <- glm(d/totals~trt,
+ weights=totals,
+ family=binomial(link="log"),
+ data=diab[c(1,2),])
> xtable(round(ci.exp(b2), digits=6))
```

	exp(Est.)	2.5%	97.5%
(Intercept)	0.48	0.35	0.65
trtDal	1.42	0.97	2.07

Diabetics with Dalterapin treatment are 1.4 times likely to get better than those treated with placebo

Logistic regression in case-control studies

▶ Model for disease occurrence in the target population:

$$\ln\left[\frac{\rho}{1-\rho}\right] = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

- $\ln\left[\frac{\rho}{1-\rho}\right] = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ Sampling fractions: P(inclusion in study | control) = $s_{\rm ctr}$ $P(inclusion in study | case) = s_{case}$
- ▶ Model for observed case-control data:

$$\begin{split} &\ln[\text{odds (case | incl.) }] = \ln\left[\frac{p}{1-p}\right] + \ln\left[\frac{s_{\text{cas}}}{s_{\text{ctr}}}\right] \\ &= \left(\ln\left[\frac{s_{\text{cas}}}{s_{\text{ctr}}}\right] + \beta_0\right) + \beta_1 x_1 + \beta_2 x_2 \end{split}$$

22 / 28

Logistic regression in case-control studies

Analysis of P(case|inclusion) - i.e. binary observations:

$$Y = \left\{ egin{array}{ll} 1 & \sim & \mathsf{case} \\ 0 & \sim & \mathsf{control} \end{array}
ight.$$

$$\mathsf{In}[\mathsf{odds} \ (\ \mathsf{case} \ | \ \mathsf{incl.}) \] = \left(\mathsf{In} \left\lceil \frac{\mathsf{s}_\mathsf{cas}}{\mathsf{s}_\mathsf{ctr}} \right\rceil + \beta_0 \right) + \beta_1 x_1 + \beta_2 x_2$$

- Effect of covariates is estimated correctly.
- Intercept is meaningless depends on s_{cas} and s_{ctr} that are often unknown.

23 / 28

Case-control study: Food-poisoning outbreak

- ► An outbreak of acute gastrointestinal illness (AGI) occurred in a psychiatric hospital in Dublin in 1996.
- ▶ Out of all 423 patients and staff members, 65 were affected during 27 to 31 August, 1996.
- ▶ 65 cases and 62 randomly selected control subjects were interviewed.
- Exposure of interest: chocolate mousse cake.
- ▶ 47 cases and 5 controls reported having eaten the cake.

Ref: http://www.eurosurveillance.org/ViewArticle.aspx? ArticleId=188 - here original numbers somewhat modified.

Outbreak: crude summary of data

- ► Target population information
 - ightharpoonup N = 423, size of the whole study population
 - ▶ D = 65, no. of cases of AGI
 - ightharpoonup B = 358, no. of non-cases
- Case-control data
 - ► C = 62, no. of controls, random sample from 358 non-cases
 - f = 62/358 = 0.173, sampling fraction of non-cases
 - ightharpoonup D1 = 47 cases exposed to chocolate mousse
 - ▶ D0 = 18 unexposed cases
 - ▶ C1 = 5 controls exposed to chocolate mousse
 - ► C0 = 57 unexposed controls

25 / 28

Outbreak: results of analysis

Overall incidence proportion (IP) of AGI in the population

```
> D <- 65; N <- 423; IP <- D/N
> round(IP, 3)
```

Analysis of case-control data

```
> D1 <- 47; D0 <- D - D1;
> C <- 62; C1 <- 5; C0 <- C - C1
```

Case-control ratios by exposure (not as useful as the following!)

```
> round( c( D1/C1, D0/C0 ), 2)
[1] 9.40 0.32
```

Exposure odds in cases and controls

```
> round( c( D1/D0, C1/C0 ), 2)
[1] 2.61 0.09
```

26 / 28

Outbreak: results of analysis

Estimation of the incidence odds ratio (IOR) = exposure odds ratio

```
> IOR <- (D1/D0)/(C1/C0)
> SE.logIOR <- sqrt(1/D1 + 1/D0 + 1/C1 + 1/C0 )
> CI.IOR <- IOR * exp( c(-1,1)*1.96*SE.logIOR )
> round( c(IOR, SE.logIOR, CI.IOR ), 2)

[1] 29.77 0.54 10.28 86.21
```

Same with glm model

Conclusion: What did we learn?

- ► Poisson regression models.
- ▶ In Poisson models the response can be either:
 - ► case indicator d with offset = log(y), or
 - ▶ rate d/y with weights = y.
- ▶ Both may be fitted on either grouped data, or individual records.
- ▶ Binary date can be modeled with odds.
- Case-control studies:
 Odds-ratios can be computed by logistic regression models, but Intercept from model is meaningless.

Linear and generalized linear models

Friday 15 June, 2018 **Esa Läärä**

Statistical Practice in Epidemiology with ${f R}$ 14 to 20 June, 2018 International Agency for Research on Cancer, Lyon, France

Outline

- ► Simple linear regression.
- Fitting a model and extracting results.
- ▶ Predictions and diagnostics.
- ► Categorical factors and contrast matrices.
- ▶ Main effects and interactions.
- ► Generalized linear models.
- ► Modelling curved effects.

Linear and generalized linear models

1/1

Variables in generalized linear models

- ▶ The **outcome** or **response** variable must be numeric.
- ▶ Main types of response variables are
 - Metric or continuous (a measurement with units)
 - Binary (two values coded 0/1)
 - Failure (does the subject fail at end of follow-up)
 - Count (aggregated failure data, number of cases)
- ▶ Explanatory variables or regressors can be
 - Numeric or quantitative variables
 - Categorical factors, represented by class indicators or contrast matrices.

Linear and generalized linear models

The births data in Epi

id: Identity number for mother and baby.

bweight: Birth weight of baby.

lowbw: Indicator for birth weight less than 2500 g.

gestwks: Gestation period in weeks.

preterm: Indicator for gestation period less than 37 weeks.

matage: Maternal age.

hyp: Indicator for maternal hypertension (0 = no, 1 = yes).

sex: Sex of baby (1 = male, 2 = female).

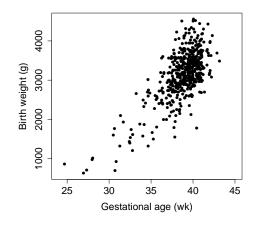
Declaring and transforming some variables as factors:

```
> library(Epi) ; data(births)
> births <- transform(births,
+ hyp = factor(hyp, labels=c("N", "H")),
+ sex = factor(sex, labels=c("M", "F")),
+ gest4 = cut(gestwks,breaks=c(20, 35, 37, 39, 45), right=FALSE) )
> births <- subset(births, !is.na(gestwks))</pre>
```

Linear and generalized linear models

3/1

Birth weight and gestational age



> with(births, plot(bweight ~ gestwks, xlim = c(24,45), pch = 16, cex.axis=1.5, + xlab= "Gestational age (wk)", ylab= "Birth weight (g)"))

Linear and generalized linear models

4/1

Metric response, numeric explanatory variable

Roughly linear relationship btw bweight and gestwks

- → Simple **linear regression model** fitted.
- > m <- lm(bweight ~ gestwks, data=births)
 - ▶ lm() is the function that fits linear regression models, assuming **Gaussian** distribution for **error** terms.
 - bweight ~ gestwks is the model formula
 - m is a model object belonging to class "lm".
- > coef(m) Printing the estimated regression coefficients

(Intercept) gestwks -4489.1 197.0

Interpretation of intercept and slope?

Linear and generalized linear models

Model object and extractor functions

Model object = **list** of different elements, each being separately accessible. – See str(m) for the full list.

Functions that extract results from the fitted model object

- ▶ summary(m) lots of output
- ▶ coef(m) beta-hats only (see above)
- ▶ ci.lin(m)[,c(1,5,6)] $-\widehat{\beta}_j$ s plus confidence limits Estimate 2.5% 97.5% (Intercept) -4489.1 -5157.3 -3821.0 gestwks 197.0 179.7 214.2

This function is in Epi package

▶ anova(m) - Analysis of Variance Table

Linear and generalized linear models

6/1

Other extractor functions, for example

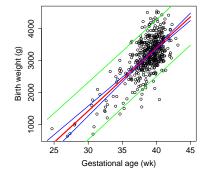
- ▶ fitted(m), resid(m), vcov(m), ...
- predict(m, newdata = ..., interval=...)
 - Predicted responses for desired combinations of new values of the regressors – newdata
 - Argument interval specifies whether confidence intervals for the *mean* response or prediction intervals for *individual* responses are returned.
- ▶ plot(m) produces various diagnostic plots based on residuals (raw or standardized)

Many of these are special **methods** for certain **generic functions**, aimed at acting on objects of class "lm".

Linear and generalized linear models

7/1

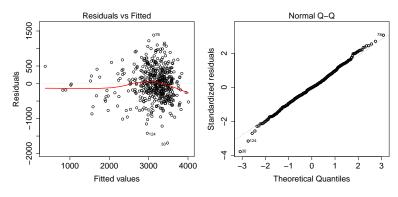
Fitted values, confidence & prediction intervals



```
> nd <- data.frame( gestwks = seq(24, 45, by = 0.25 ) )
> pr.c1 <- predict( m, newdata=nd, interval="conf" )
> pr.p1 <- predict( m, newdata=nd, interval="pred" )
> with(births, plot(bweight ~ gestwks, xlim = c(24,45), cex.axis=1.5, cex.lab = > matlines( nd$gestwks, pr.cl, lty=1, lwd=c(3,2,2), col=c('red','blue','blue'))
> matlines( nd$gestwks, pr.p1, lty=1, lwd=c(3,2,2), col=c('red','green','green'))
```

Linear and generalized linear models

A couple of diagnostic plots



- > par(mfrow=c(1,2)) > plot(m, 1:2, cex.lab = 1.5, cex.axis=1.5, cex.caption=1.5, lwd=2)
 - ► Some deviation from linearity?
 - ▶ Reasonable agreement with Gaussian error assumption?

Linear and generalized linear models

9/1

Factor as an explanatory variable

- ▶ How bweight depends on maternal hypertension?
 - > mh <- lm(bweight ~ hyp, data=births)

- ightharpoonup Removal of intercept ightarrow mean bweights by hyp:
 - > mh2 <- lm(bweight ~ -1 + hyp, data = births)
 > coef(mh2)
 hypN hypH
 3198.9 2768.2
- ► Interpretation: -430.7 = 2768.2 3198.9 = difference between level 2 *vs.* reference level 1 of hyp

Linear and generalized linear models

10/1

Additive model with both gestwks and hyp

► Joint effect of hyp and gestwks under additivity is modelled e.g. by updating a simpler model:

- ▶ The effect of hyp: H vs. N is attenuated (from -430.7 to -143.7).
- ► This suggests that much of the effect of hypertension on birth weight is mediated through a shorter gestation period among hypertensive mothers.

Linear and generalized linear models

Model with interaction of hyp and gestwks

- ▶ Or with shorter formula: bweight ~ hyp * gestwks 2.5% 97.5% Estimate (Intercept) -3960.8 -4758.0 -3163.6 -1332.7 -2841.0 hypH 175.7 gestwks 183.9 163.5 204.4 hypH:gestwks 31.4 -8.3 71.1
- Estimated slope: 183.9 g/wk in reference group N and 183.9 + 31.4 = 215.3 g/wk in hypertensive mothers.
- ⇔ For each additional week the difference in mean bweight between H and N group increases by 31.4 g.
- ▶ Interpretation of Intercept and "main effect" hypH?

Linear and generalized linear models

12/1

Model with interaction (cont'd)

More interpretable parametrization obtained if gestwks is **centered** at some reference value, using e.g. the **insulate** operator I() for explicit transformation of an original term.

- ▶ Main effect of hyp = -77.3 is the difference between H and N at gestwks = 40.
- ► Intercept = 3395.6 is the estimated mean bweight at the reference value 40 of gestwks in group N.

Linear and generalized linear models

13/ 1

Factors and contrasts in R

- ightharpoonup A categorical explanatory variable or **factor** with L **levels** will be represented by L-1 linearly independent columns in the **model matrix** of a linear model.
- ► These columns can be defined in various ways implying alternative **parametrizations** for the effect of the factor.
- ▶ Parametrization is defined by given type of **contrasts**.
- ▶ Default: **treatment** contrasts, in which 1st class is the **reference**, and regression coefficient β_k for class k is interpreted as $\beta_k = \mu_k \mu_1$
- ► Own parametrization may be tailored by function C(), with the pertinent **contrast matrix** as argument.
- ▶ Or, use ci.lin(mod, ctr.mat = CM) after fitting.

Linear and generalized linear models

Two factors: additive effects

► Factor *X* has 3 levels, *Z* has 2 levels – Model:

$$\mu = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \gamma_1 Z_1 + \gamma_2 Z_2$$

- ▶ X_1 (reference), X_2, X_3 are the indicators for X,
- $ightharpoonup Z_1$ (reference), Z_2 are the indicators for Z.
- Omitting X_1 and Z_1 the model for mean is:

$$\mu = \alpha + \beta_2 X_2 + \beta_3 X_3 + \gamma_2 Z_2$$

with predicted means μ_{ik} (j = 1, 2, 3; k = 1, 2):

$$Z = 1 Z = 2$$

$$1 \mu_{11} = \alpha \mu_{11} = \alpha + \gamma_2$$

$$X 2 \mu_{21} = \alpha + \beta_2 \mu_{22} = \alpha + \beta_2 + \gamma_2$$

$$3 \mu_{31} = \alpha + \beta_3 \mu_{32} = \alpha + \beta_3 + \gamma_2$$

Linear and generalized linear models

15/1

Two factors with interaction

▶ Effect of *Z* differs at different levels of *X*:

$$Z = 1 Z = 2$$

$$1 \mu_{11} = \alpha \mu_{12} = \alpha + \gamma_2$$

$$X 2 \mu_{21} = \alpha + \beta_2 \mu_{22} = \alpha + \beta_2 + \gamma_2 + \delta_{22}$$

$$3 \mu_{31} = \alpha + \beta_3 \mu_{32} = \alpha + \beta_3 + \gamma_2 + \delta_{32}$$

► How much the effect of Z (level 2 vs. 1) changes when the level of X is changed from 1 to 3:

$$\delta_{32} = (\mu_{32} - \mu_{31}) - (\mu_{12} - \mu_{11})$$

= $(\mu_{32} - \mu_{12}) - (\mu_{31} - \mu_{11}),$

= how much the effect of X (level 3 vs. 1) changes when the level of Z is changed from 1 to 2.

▶ See the exercise: interaction of hyp and gest4.

Linear and generalized linear models

16/1

Contrasts in R

► All contrasts can be implemented by supplying a suitable contrast function giving the contrast matrix e.g:

- ▶ In model formula factor name faktori can be replaced by expression like C(faktori, contr.cum).
- ► Function ci.lin() has an option for calculating Cl's for linear functions of the parameters of a fitted model mall when supplied by a relevant contrast matrix

> ci.lin(mall, ctr.mat = CM)[, c(1,5,6)]

 \rightarrow No need to specify contrasts in model formula!

Linear and generalized linear models

From linear to generalized linear models

- ▶ An alternative way of fitting our 1st Gaussian model:
 - > m <- glm(bweight ~ gestwks, family=gaussian, data=bir
- ► Function glm() fits generalized linear models (GLM).
- Requires specification of the
 - family i.e. the assumed "error" distribution for Y_i s,
 - ▶ **link** function a transformation of the expected Y_i .
- Covers common models for other types of response variables and distributions, too, e.g. logistic regression for binary responses and Poisson regression for counts.
- Fitting: method of maximum likelihood.
- ► Many extractor functions for a glm object similar to those for an lm object.

Linear and generalized linear models

18/1

More about numeric regressors

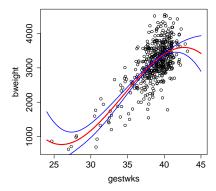
What if dependence of Y on X is non-linear?

- ▶ Categorize the values of *X* into a factor.
 - Continuous effects violently discretized by often arbitrary cutpoints. – Inefficient.
- ▶ Fit a low-degree (e.g. 2 to 4) **polynomial** of *X*.
 - Tail behaviour may be problematic.
- Use fractional polynomials.
 - Invariance problems. Only useful if X=0 is well-defined.
- Use a **spline** model: smooth function $s(X; \beta)$.
 - More flexible models that act locally.
 - Effect of X reported by graphing $\widehat{s}(X;\beta)$ & its CI
 - See Martyn's lecture

Linear and generalized linear models

19/ 1

Mean bweigth as 3rd order polynomial of gestwks

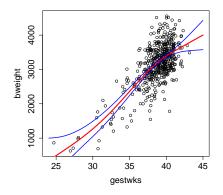


> mp3 <- update(m, . ~ . - gestwks + poly(gestwks, 3))</pre>

- ▶ The model is linear in parameters with 4 terms & 4 df.
- ▶ Otherwise good, but the tails do not behave well.

Linear and generalized linear models

Penalized spline model with cross-validation



- > library(mgcv)
 > mpen <- gam(bweight ~ s(gestwks), data = births)</pre>
 - Looks quite nice.
 - ▶ Model degrees of freedom ≈ 4.2 ; almost 4, as in the 3rd degree polynomial model

Linear and generalized linear models

21/1

What was covered

- ▶ A wide range of models from simple linear regression to
- ▶ R functions fitting linear and generalized models: lm() and glm().
- Parametrization of categorical explanatory factors; contrast matrices.
- Extracting results and predictions: ci.lin(), fitted(), predict(), ...
- ► Model diagnostics: resid(), plot.lm(),

Linear and generalized linear models

Everything You Ever Wanted to Know about Splines...

Martyn Plummer

Infection and Cancer Epidemiology Group, IARC

15 June 2018

Categorization and its discontents

Overview

Categorization and its discontents

Join the dots

Brownian motion

Smoothing splines

Conclusions

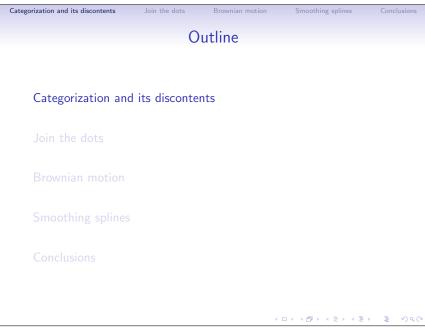
Conclusions

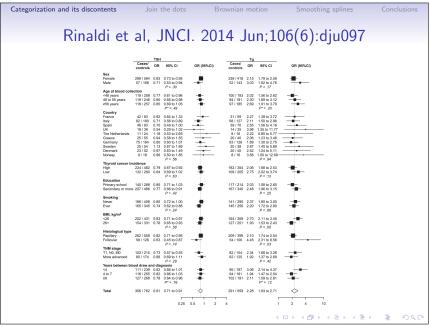
lintura divertica in

Introduction

- Splines are a flexible class of models that can be helpful for representing dose-response relationships in epidemiology
- In this course we will be using spline models extensively.
- However, spline models are widely misunderstood.
- The purpose of this lecture is to give a conceptual background on where spline models come from.

(D) (B) (E) (E) E 99(





Statisticians against categorization

Categorization and its discontents

- Greenland S (1995) Avoiding power loss associated with categorization and ordinal scores in dose-response and trend analysis, Epidemiology, 6, 450–454.
- Senn S (2005) Dichotomania: an obsessive compulsive disorder that is badly affecting the quality of analysis of pharmaceutical trials.
- Bennette C, and Vickers A, (2012), Against quantiles: categorization of continuous variables in epidemiologic research, and its discontents. BMC Medical Research Methodology 12:21

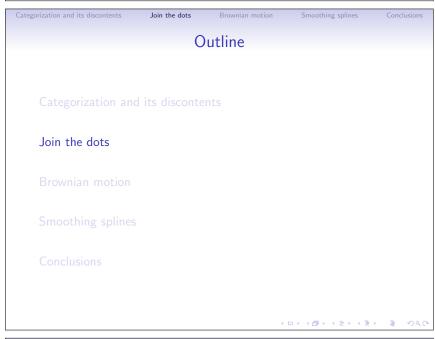
Epidemiologists against categorization

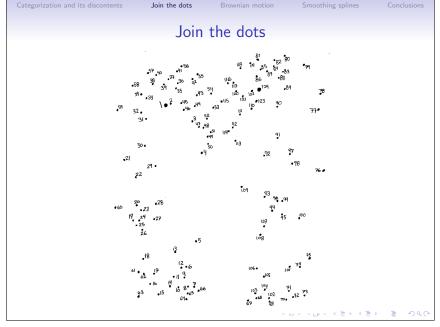
Rose, G. (1992) The Strategy of Preventive Medicine

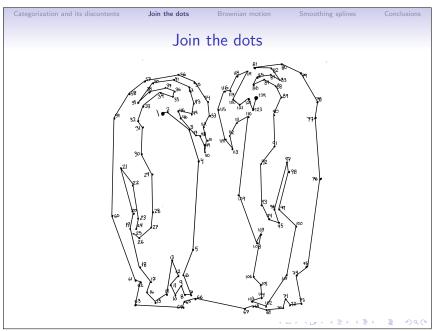
Categorization and its disc

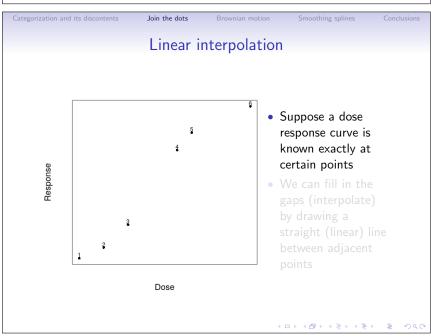
- Many diseases are not discrete. Instead there is an underlying continuum of increasing severity (e.g. hypertension).
- In medicine, we tend to conflate a clinical action (treat vs. do not treat) with the presence/absence of disease.
- Disease prevention efforts are best targeted at shifting the distribution of risk for the whole population instead of trying to identify and target a "high risk" group.

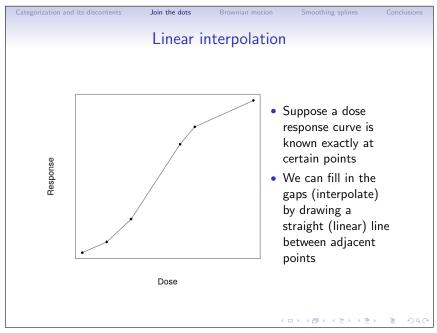
< □ > < □ > < □ > < 亘 > < 亘 > へ⊙ < つへで











Categorization and its discontents

Join the dots

Brownian motion

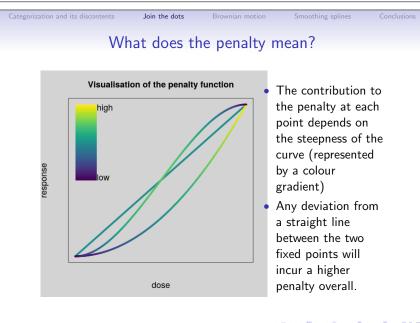
Smoothing

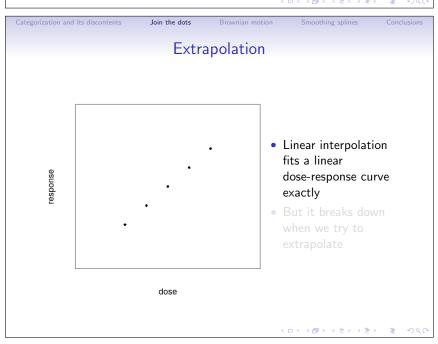
Why linear interpolation?

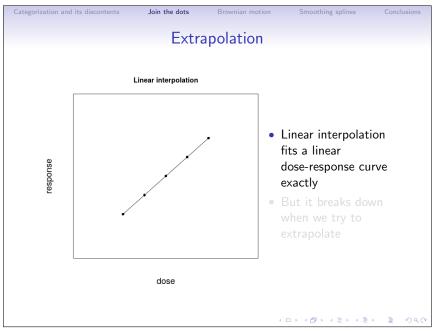
Out of all possible curves that go through the observed points, linear interpolation is the one that minimizes the penalty function

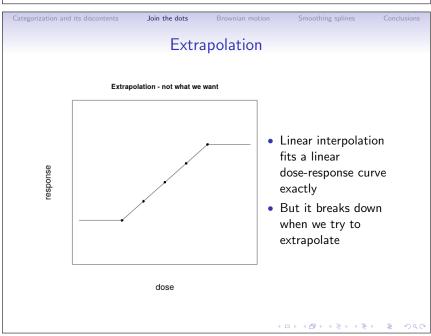
$$\int \left(\frac{\partial f}{\partial x}\right)^2 dx$$

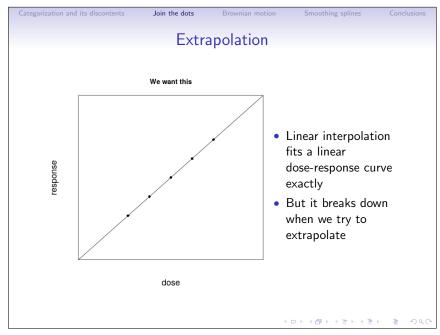
(ロ) (部) (意) (意) (意) の((











Why does linear interpolation break down?

• The penalty function

$$\int \left(\frac{\partial f}{\partial x}\right)^2 dx$$

penalizes the steepness of the curve

- Minimizing the penalty function gives us gives us the "flattest" curve that goes through the points.
 - In between two observations the flattest curve is a straight line.
 - Outside the range of the observations the flattest curve is completely flat.

Catagorization and its discontor

loin the det

wnian motion Smoothing splin

Conclusions

A roughness penalty

• If we want a fitted curve that extrapolates a linear trend then we want to minimize the curvature.

$$\int \left(\frac{\partial^2 f}{\partial x^2}\right)^2 dx$$

- Like the first penalty function but uses the second derivative of f (i.e. the curvature).
- This is a roughness penalty.

Categorization and its discontent

Join the dots

wnian motion Smoothing splin

Conclusio

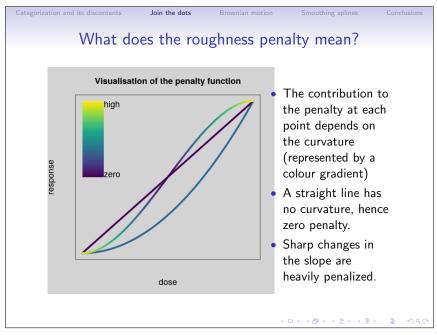
A roughness penalty

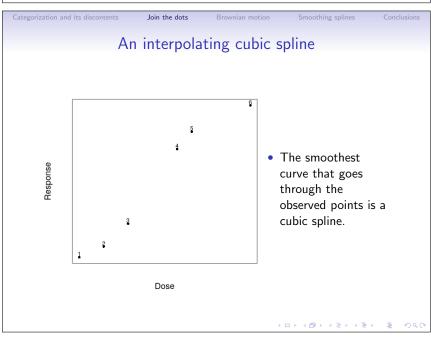
• If we want a fitted curve that extrapolates a linear trend then we want to minimize the curvature.

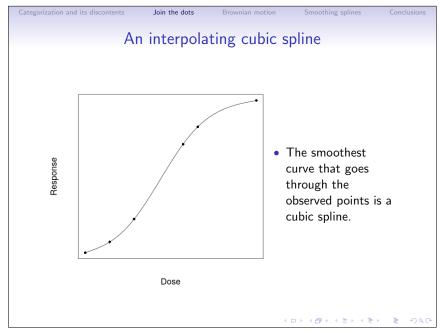
$$\int \left(\frac{\partial^2 f}{\partial x^2}\right)^2 dx$$

- Like the first penalty function but uses the second derivative of f (i.e. the curvature).
- This is a roughness penalty.

(D) (B) (E) (E) E 99(







Categorization and its discontent

Join the dots

Brownian mot

Smoothing spling

Conclusio

Properties of cubic splines

• A cubic spline consists of a sequence of curves of the form

$$f(x) = a + bx + cx^2 + dx^3$$

for some coefficients a, b, c, d, in between each observed point.

- The cubic curves are joined at the observed points (knots)
- The cubic curves match where they meet at the knots
 - Same value f(x)
 - Same slope $\partial f/\partial x$
 - Same curvature $\partial^2 f/\partial x^2$

Categorization and its discontents

lain sha dasa

Brownian motion

moothing splines

Conclusio

Outline

Categorization and its discontents

Join the dots

Brownian motion

Smoothing splines

Conclusions

Categorization and its discontents

Join the dots

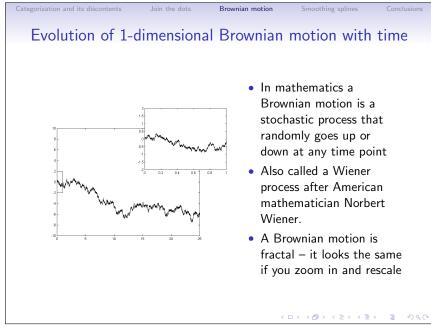
Brownian motion

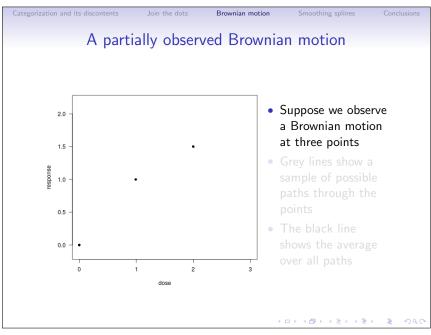
moothing splines

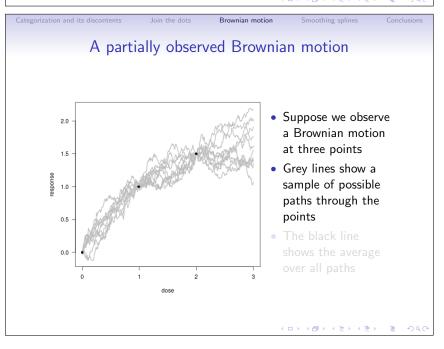
Conclus

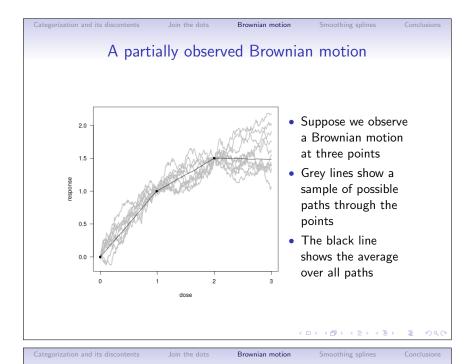
Brownian motion

- In 1827, botanist Robert Brown observed particles under the microscope moving randomly
- Theoretical explanation by Einstein (1905) in terms of water molecules
- Verified by Perrin (1908).
 Nobel prize in physics 1927.









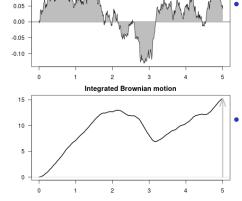
Statistical model for linear interpolation

• Suppose the curve f is generated by the underlying model

$$f(x) = \alpha + \sigma W(x)$$

where W (for Wiener process) is a Brownian motion

• Then given points $(x_1, f(x_1)) \dots (x_n, f(x_n))$ the expected value of f is the curve we get from linear interpolation.



- The value of an integrated Brownian motion is the area under the curve (AUC) of a Brownian motion up to that point.
- AUC goes down when the Brownian motion takes a negative value.

Categorization and its discontent

Brownian mot

Smoothing splines

Conclusion

Integrated Brownian motion with drift

Add a mean parameter and a linear trend (drift) to the integrated Brownian motion:

$$f(x) = \alpha + \beta x + \sigma \int_0^x W(z)dz$$

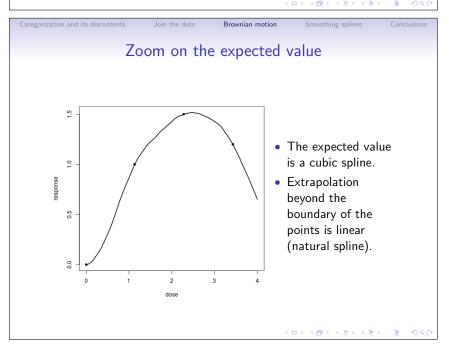
This more complex model is capable of modelling smooth curves.

<ロト 4回ト 4 差ト 4 差ト - 差 - 夕久

A partially observed integrated Brownian motion with drift

• Grey lines show a sample of possible paths through the points

• The black line shows the average over all paths



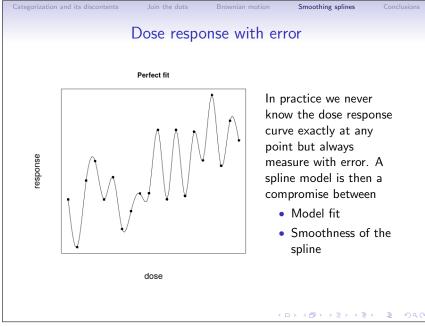
Categorization and its discontents	Join the dots	Brownian motion	Smoothing splines	Conclusions
	The smoot	thness parac	lox	
 A cubic natu through a se 	•	ne smoothest c	urve that goes	
 But the under 	erlying randon	n process $f(x)$	is nowhere smoo	oth.
` '	antly changin rownian motic		ed on the value o	of the

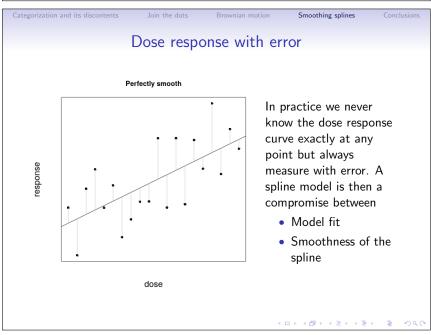
Brownian motion

The knot paradox

- There are no knots in the underlying model for a cubic natural spline.
- Knots are a result of the observation process.

Outline Smoothing splines





egorization and its discontents Join the dots Brownian motion Smoothing splines Conclu

Fitting a smoothing spline

Minimize

$$\sum_{i} (y_i - f(x_i))^2 + \lambda \int \left(\frac{\partial^2 f}{\partial x^2}\right)^2 dx$$

Or, more generally

Deviance $+\lambda*$ Roughness penalty

Size of tuning parameter λ determines compromise between model fit (small λ) and smoothness (large λ).

How to aboos the tuning negative)

How to choose the tuning parameter λ

This is a statistical problem. There are various statistical approaches:

- Restricted maximum likelihood (REML)
- Cross-validation
- Bayesian approach (with prior on smoothness)

At least the first two should be available in most software.

Categorization and its discontents

Outline

Categorization and its discontents

Join the dots

Brownian motion

Smoothing splines

Conclusions

Conclusions

Spline models done badly

- Choose number and placement of knots
- Create a spline bases
- Use spline basis as the design matrix in a generalized linear model.
- Without penalization, model will underfit (too few knots) or overfit (too many knots)
- Placement of knots may create artefacts in the dose-response relationship

Spline models done we

Spline models done well

- A knot for every observed value (remember: knots are a product of the observation process).
- Use penalization: find the right compromise between model fit and model complexity.
- In practice we can get a good approximation to this "ideal" model with fewer knots.
- This assumption should be tested

Categorization and its discontents

ala aha das

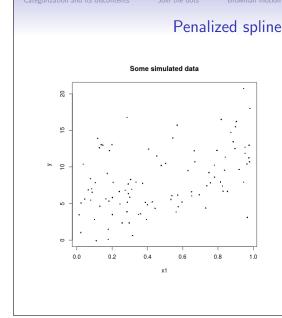
ownian motion

ines

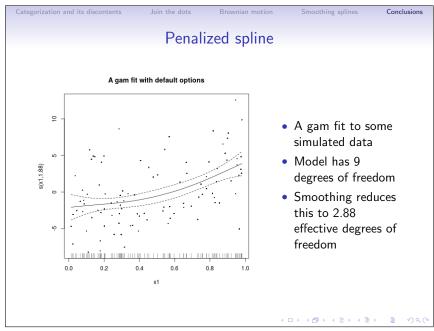
Conclusions

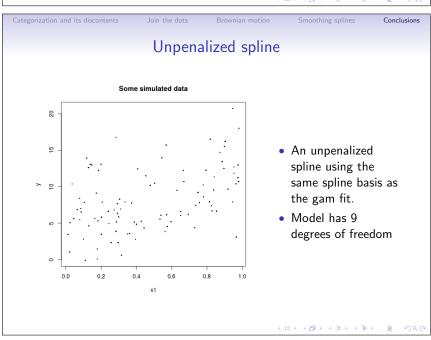
Spline models in R

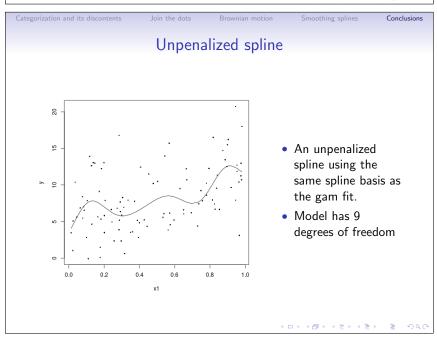
- Do not use the splines package.
- Use the gam function from the mgcv package to fit your spline models
- The gam function chooses number and placement of knots for you and estimates the size of the tuning parameter λ automatically.
- You can use the gam.check function to see if you have enough knots. Also re-fit the model explicitly setting a larger number of knots (e.g. double) to see if the fit changes.



- A gam fit to some simulated data
- Model has 9 degrees of freedom
- Smoothing reduces this to 2.88 effective degrees of freedom







Conclusions

- Epidemiologists like to turn continuous variables into categories.
- Statisticians do not like categorization because it loses information.
- Splines are a flexible class of models that avoid categorization but also avoid making strong assumptions about the shape of a dose-response relationship.
- Penalized regression splines are based on compromise between goodness-of-fit and smoothness.
- Most of the decisions in fitting a penalized regression spline can be made for you
 - Degree of smoothing
 - Number of knots
 - Placement of knots

More Advanced Graphics in R

Martyn Plummer

International Agency for Research on Cancer Lyon, France

SPE 2018, Lyon

4 D > 4 D > 4 B > 4 B > 9 Q (

evice handling

Base graphics

Lattice graphic

Grid graphics

Outline

Overview of graphics systems

Device handling

Base graphics

Lattice graphics

Grid graphics

Overview of graphics systems

Device handling

Base graphic

Lattice graphic

Grid graphics

Graphics Systems in R

R has several different graphics systems:

- ▶ Base graphics (the graphics package)
- ► Lattice graphics (the lattice package)
- Grid graphics (the grid package)
- ► Grammar of graphics (the ggplot2 package)

Why so many? Which one to use?

Base Graphics

- ▶ The oldest graphics system in R.
- ► Based on S graphics (Becker, Chambers and Wilks, *The New S Language, 1988*)
- ▶ Implemented in the base package graphics
 - Loaded automatically so always available
- ▶ Ink on paper model; once something is drawn "the ink is dry" and it cannot be erased or modified.

Overview of graphics systems

evice handling

Base graphics

Lattice graphic

Grid graphics

Lattice Graphics

- A high-level data visualization system with an emphasis on multivariate data
- ► An implementation of Trellis graphics, first described by William Cleveland in the book *Visualizing Data*, 1993.
- Implemented in the base package lattice.
- More fully described by the lattice package author Deepayan Sarkar in the book Lattice: Multivariate Data Visualization with R, 2008.

Overview of graphics systems

Device handling

Base graphic

Lattice graphic

Grid graphics

Grammar of Graphics

- Originally described by Leland Wilkinson in the book The Grammar of Graphics, 1999 and implemented in the statistical software nViZn (part of SPSS)
- Statistical graphics, like natural languages, can be broken down into components that must be combined according to certain rules.
- ► Provides a *pattern language* for graphics:
 - geometries, statistics, scales, coordinate systems, aesthetics, themes, ...
- ▶ Implemented in R in the CRAN package ggplot2
- Described more fully by the ggplot2 package author Hadley Wickham in the book ggplot2: Elegant Graphics for Data Analysis, 2009.

64

Overview of graphics systems Device handling

Grid Graphics

- A complete rewrite of the graphics system of R, independent of base graphics.
- Programming with graphics:
 - Grid graphics commands create graphical objects (Grobs)
 - Printing a Grob displays it on a graphics device
 - Functions can act on grobs to modify or combine them
- Implemented in the base package grid, and extended by CRAN packages gridExtra, gridDebug, ...
- Described by the package author Paul Murrell in the book R Graphics (2nd edition), 2011.

Overview of graphics systems

Putting It All Together

- Base graphics are the default, and are used almost exclusively in this course
- ▶ lattice and ggplot2 are alternate, high-level graphics packages
- grid provides alternate low-level graphics functions.
 - A domain-specific language for graphics within R
 - ▶ Underlies both lattice and ggplot
 - Experts only
- All graphics packages take time to learn...

Overview of graphics systems

Graphics Devices

Graphics devices are used by all graphics systems (base, lattice, ggplot2, grid).

- ▶ Plotting commands will draw on the current graphics device
- ► This default graphics device is a window on your screen:

On Windows windows()

On Unix/Linux x11()

On Mac OS X quartz()

It normally opens up automatically when you need it.

You can have several graphics devices open at the same time (but only one is current)

Device handling

Graphics Device in RStudio

RStudio has its own graphics device RStudioGD built into the graphical user interface

- You can see the contents in a temporary, larger window by clicking the zoom button.
- You can write the contents directly to a file with the export menu
- Sometimes small size of the RStudioGD causes problems. Open up a new device calling RStudioGD(). This will appear in its own window, free from the GUI.

Overview of graphics systems

Writing Graphs to Files

There are also non-interactive graphics devices that write to a file instead of the screen.

pdf produces Portable Document Format files win.metafile produces Windows metafiles that can be included in Microsoft Office documents (windows only)

postscript produces postscript files png, bmp, jpeg all produce bitmap graphics files

- ► Turn off a graphics device with dev.off(). Particularly important for non-interactive devices.
- Plots may look different in different devices

Overview of graphics systems

Types of Plotting Functions

- High level
 - Create a new page of plots with reasonable default appearance.
- Low level
 - Draw elements of a plot on an existing page:
 - Draw title, subtitle, axes, legend . . .
 - Add points, lines, text, math expressions ...
- Interactive
 - Querying mouse position (locator), highlighting points (identify)

Basic x-y Plots

- ▶ The plot function with one or two numeric arguments
- Scatterplot or line plot (or both) depending on type argument: "1" for lines, "p" for points (the default), "b" for both, plus quite a few more
- ► Also: formula interface, plot (y~x), with arguments similar to the modeling functions like lm

Overview of graphics systems

Device handling

ase graphics

Lattice graphic

Grid graphics

Customizing Plots

- Most plotting functions take optional parameters to change the appearance of the plot
 - ▶ e.g., xlab, ylab to add informative axis labels
- Most of these parameters can be supplied to the par() function, which changes the default behaviour of subsequent plotting functions
- Look them up via help (par)! Here are some of the more commonly used:
 - ▶ Point and line characteristics: pch, col, lty, lwd
 - Multiframe layout: mfrow, mfcol
 - ► Axes: xlim, ylim, xaxt, yaxt, log

Overview of graphics systems

Device handling

Base graphic

Lattice graphic

Grid graphics

Adding to Plots

- ▶ title() add a title above the plot
- ▶ points(), lines() adds points and (poly-)lines
- text() text strings at given coordinates
- abline () line given by coefficients (a and b) or by fitted linear model
- ► axis() adds an axis to one edge of the plot region. Allows some options not otherwise available.

4□ > 4酉 > 4 ≧ > 4 ≧ > ≧ 9 Q €

Approach to Customization

- Start with default plots
- Modify parameters (using par () settings or plotting arguments)
- Add more graphics elements. Notice that there are graphics parameters that turn things off, e.g. plot (x, y, xaxt="n") so that you can add completely customized axes with the axis function.
- Put all your plotting commands in a script or inside a function so you can start again

Overview of graphics systems Device handling Base graphics Lattice graphics Grid graphics

Demo 1

◆ロト ◆部ト ◆ 恵ト ◆ 恵ト ・ 恵 ・ 夕 Q (~) 17/30

Overview of graphics systems

Device handling

Base graphic

Lattice graphic

Grid graphics

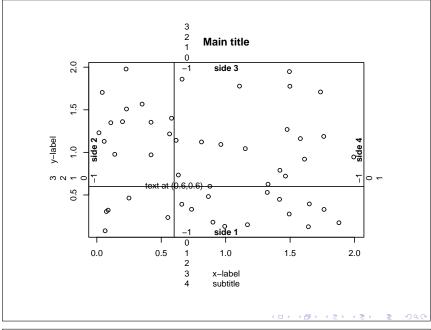
Margins

- ► R sometimes seems to leave too much empty space around plots (especially in multi-frame layouts).
- ► There is a good reason for it: You might want to put something there (titles, axes).
- ► This is controlled by the mar parameter. By default, it is c(5,4,4,2)+0.1
 - ► The units are *lines of text*, so depend on the setting of pointsize and cex
 - ► The sides are indexed in clockwise order, starting at the bottom (1=bottom, 2=left, 3=top, 4=right)
- ► The mtext function is designed to write in the margins of the plot
- There is also an outer margin settable via the oma parameter. Useful for adding overall titles etc. to multiframe plots

Demo 2

 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □

 19/30



Overview of graphics systems Device handling Base graphics Lattice graphics Grid graphics

The lattice package provides functions that produce similar plots to base graphics (with a different "look and feel")

base	lattice	
plot	xyplot	
hist	histogram	
boxplot	bwplot	
barplot	barchart	
heatmap, contour	levelplot	
dotchart	dotplot	

Lattice graphics can also be used to explore *multi-dimensional* data

 4 □ > 4 個 > 4 ឨ > 4 ឨ > 1 ឨ > 1 ឨ

 21/30

Panels

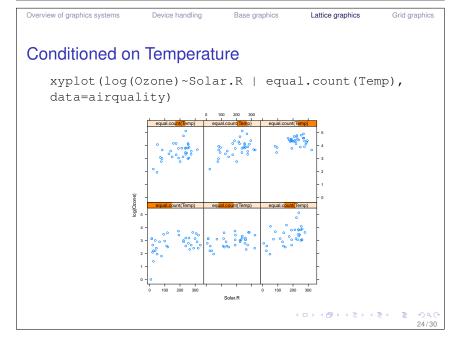
► Plotting functions in lattice consistently use a formula interface, e.g y~x to plot y against x

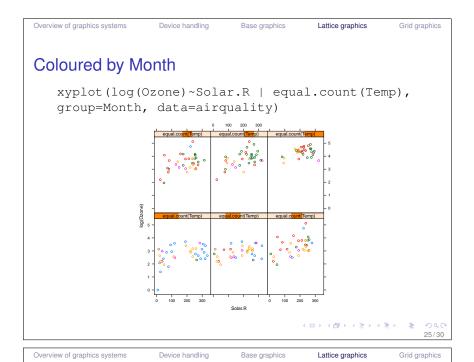
- ► The formula allows conditioning variables, e.g. y~x | g1*g2*...
- Conditioning variables create an array of panels,
 - One panel for each value of the conditioning variables
 - Continuous conditioning variables are divided into shingles (slightly overlapping ranges, named after the roof covering)
 - ▶ All panels have the same scales on the *x* and *y* axes.

□ > < □ > < □ > < □ > < □ > < □ > < □ >
 ≥
 22/30

Ozone Concentration by Solar Radiation

xyplot (log (Ozone) ~Solar.R, data=airquality)





Customizing Panels

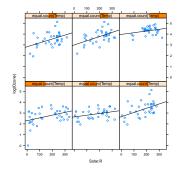
- What goes inside each panel of a Lattice plot is controlled by a panel function
- ► There are many standard functions: panel.xyplot, panel.lmline, etc.
- ➤ You can write your own panel functions, most often by combining standard ones

```
mypanel <- function(x,y,...) {
   panel.xyplot(x,y,...) #Scatter plot
   panel.lmline(x,y,type="l") #Regression line
}</pre>
```

With Custom Panel

Overview of graphics systems

xyplot(log(Ozone)~Solar.R | equal.count(Temp),
panel=mypanel, data=airquality)



Each panel shows a scatter plot (panel.xyplot) and a regression line (panel.lmline)

71

A Few Words on Grid Graphics

- ► Experts only, but . . .
- ▶ Recall that lattice and ggplot2 both use grid
- ▶ The key concepts you need are grobs and viewports

Overview of graphics systems

evice handling

Base graphics

Lattice graphics

Grid graphics

Grobs: Graphical Objects

- ► Grobs are created by plotting functions in grid, lattice, ggplot2
- Grobs are only displayed when they are printed
- Grobs can be modified or combined before being displayed
- ► The ggplot2 package uses the + operator to combine grobs representing different elements of the plot

Overview of graphics systems

Device handling

Base graphic

Lattice graphic

Grid graphics

Viewports

- ► The plotting region is divided into viewports
- Grobs are displayed inside a viewport
- ► The panels in lattice graphics are examples of viewports, but in general
 - Viewports can be different sizes (inches, centimetres, lines of text, or relative units)
 - Each viewport may have its own coordinate systems

Statistical Practice in Epidemiology 2018

Survival analysis with competing risks

Janne Pitkäniemi (EL)

1/33

Points to be covered

- 1. Survival or time to event data & censoring.
- 2. Competing risks: event-specific cumulative incidences & hazards.
- 3. Kaplan-Meier and Aalen-Johansen estimators.
- 4. Regression modelling of hazards: Cox model.
- 5. Packages survival, mstate, (cmprisk).
- 6. Functions Surv(), survfit(), plot.survfit(),
 coxph().

2/33

Survival time – time to event

Time spent (lex.dur) in a given **state** (lex.Cst) from its beginning till a certain *endpoint* or *outcome* **event** (lex.Xst) or *transition* occurs, changing the state to another.

Examples of such times and outcome events:

- lacktriangledown lifetime: birth ightarrow death,
- ▶ duration of marriage: wedding → divorce,
- healthy exposure time: start of exposure → onset of disease,
- ▶ clinical survival time: diagnosis of a disease → death.

Ex. Survival of 338 oral cancer patients

Important variables:

- time = duration of patientship from diagnosis (entry) till death (death) or censoring (Alive), (lex.Cst is (Alive))
- event = indicator for the outcome and its observation at the end of follow-up (exit):
 - 0 = censoring,
 - $1 = \mathsf{death}\ \mathsf{from}\ \mathsf{oral}\ \mathsf{cancer}$

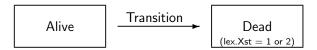
Special features:

- ► Two possible endpoints
- ► Censoring incomplete observation of the survival time.

4 / 33

Set-up of classical survival analysis

- ► Two-state model: only one type of event changes the initial state.
- Major applications: analysis of lifetimes since birth and of survival times since diagnosis of a disease until death from any cause.



► Censoring: Death and final lifetime not observed for some subjects due to emigration or closing the follow-up while they are still alive

5 / 33

Distribution concepts: hazard function

The **hazard rate** or **intensity** function $\lambda(t)$

$$\lambda(t) = P(t < T \le t + \Delta | T > t)/\Delta$$
, forsmall Δ

pprox the conditional probability that the event occurs in a short interval $(t, t + \Delta]$, given that it does not occur before t, divided by interval length.

In other words, during a short interval

risk of event \approx hazard \times interval length

Distribution concepts: survival and cumulative hazard functions

Survival function

$$S(t) = P(T > t),$$

= probability of avoiding the event at least up to t (the event occurs only after t).

The **cumulative hazard** (or integrated intensity):

$$\Lambda(t) = \int_0^t \lambda(u) du$$

Connections between the functions:

$$S(t) = \exp\{-\Lambda(t)\}\$$

7 / 33

Observed data on survival times

For individuals i = 1, ..., n let

 T_i = time to outcome event,

 U_i = time to censoring.

Censoring is assumed **noninformative**, *i.e.* independent from occurrence of events.

We observe

 $y_i = \min\{T_i, U_i\}$, *i.e.* the exit time, and

 $\delta_i = 1_{\{T_i < U_i\}}$, indicator (1/0) for the outcome event occurring first, before censoring.

Censoring must properly be taken into account in the statistical analysis.

8 / 33

Approaches for analysing survival time

▶ Parametric model (like Weibull, gamma, etc.) on hazard rate $\lambda(t) \rightarrow$ Likelihood:

$$L = \prod_{i=1}^n \lambda(y_i)^{\delta_i} S(y_i)$$

- ▶ Piecewise constant rate model on $\lambda(t)$ see Bendix's lecture on time-splitting (Poisson likelihood).
- Non-parametric methods, like Kaplan–Meier (KM) estimator of survival curve S(t) and Cox proportional hazards model on $\lambda(t)$.

R package survival

Tools for analysis with one outcome event.

- ▶ Surv(time, event) → sobj creates a **survival object** sobj assuming that all start at 0, containing pairs (y_i, δ_i) ,
- ► Surv(entry, exit, event) -> sobj2 creates a survival object from entry and exit times,
- survfit(sobj ~ x) -> sfo
 creates a survfit object sfo containing KM or other
 non-parametric estimates (also from a fitted Cox model),
- plot(sfo) plot method for survival curves and related graphs,
- coxph(sobj ~ x1 + x2)
 fits a Cox model with covariates x1 and x2.
- survreg() parametric survival models.

10 / 33

```
Ex. Oral cancer data (cont'd)
```

```
> orca$suob <- Surv(orca$time, 1*(orca$event > 0) )
> orca$suob[1:7]  # + indicates censored observation
[1] 5.081+ 0.419 7.915 2.480 2.500 0.167 5.925+
> km1 <- survfit( suob ~ 1, data = orca)
> km1
                # brief summary
Call: survfit(formula = suob ~ 1, data = orca)
     n events median 0.95LCL 0.95UCL
338.00 229.00
                5.42 4.33 6.92
> summary(km1)
                  # detailed KM-estimate
Call: survfit(formula = suob ~ 1, data = orca)
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
                   2 0.9941 0.00417
  0.162
           336
                        0.9882 0.00588
                                             0.9767
                                                           1.000
  0.167
           334
                        0.9763 0.00827
                                             0.9603
                                                           0.993
  0.170
           330
                        0.9704 0.00922
                                             0.9525
                                                           0.989
  0.246
           328
                        0.9675 0.00965
                                             0.9487
                                                           0.987
  0.249
          327
                        0.9645 0.01007
                                             0.9450
                                                           0.984
  0.252
           326
                        0.9556 0.01120
                                             0.9339
                                                           0.978
  0.329
           323
                        0.9527 0.01155
                                             0.9303
                                                           0.976
  0.334
           322
                        0.9497 0.01189
                                             0.9267
                                                           0.973
  0.413
           321
                        0.9467 0.01221
                                             0.9231
                                                           0.971
```

0.9020

0.957

11/33

Oral cancer: Kaplan-Meier estimates

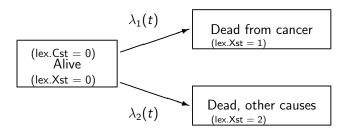
0.9290 0.01397

0.419

Estimated survival (95% CI) and CDF OTHER Male With the state of the

Competing risks model: causes of death

- ► Often the interest is focused on the risk or hazard of dying from one specific cause.
- That cause may eventually not be realized, because a competing cause of death hits first.



Generalizes to several competing causes.

13 / 33

Competing events & competing risks

In many epidemiological and clinical contexts there are competing events that may occur before the target event and remove the person from the population at risk for the event, e.g.

- target event: occurrence of endometrial cancer, competing events: hysterectomy or death.
- target event: relapse of a disease (ending the state of remission), competing event: death while still in remission.
- target event: divorce, competing event: death of either spouse.

14/33

Event-specific quantities

Cumulative incidence function (CIF) or

$$F_c(t) = P(T \le t \text{ and } C = c), \quad c = 1, 2,$$

From these one can recover

- ► $F(t) = \sum_{c} F_c(t)$, CDF of event-free survival time T, *i.e.* cumulative risk of any event by t.
- ► S(t) = 1 F(t), event-free survival function, *i.e.* probability of avoiding all events by t, but $S(t) \neq F_1(t) + F_2(t)$

Event-specific quantities (cont'd)

Event- or cause-specific hazard function

$$egin{aligned} \lambda_c(t) &= \lim_{\Delta o 0} rac{P(t < T \le t + \Delta ext{ and } C = c \mid T > t)}{\Delta} \ &= rac{f_c(t)}{1 - F(t)} \end{aligned}$$

CIF = risk of event c over risk period [0, t] in the presence of competing risks, also obtained

$$F_c(t) = \int_0^t \lambda_c(v) S(v) dv, \quad c = 1, 2,$$

More on the technical definitions of relevant quantities: http://bendixcarstensen.com/AdvCoh/papers/fundamentals.pdf

16 / 33

Warning of "net risk" and "cause-specific survival"

➤ The "net risk" of outcome c by time t, assuming hypothetical elimination of competing risks, is often defined as

$$F_1^*(t) = 1 - S_1^*(t) = 1 - \exp\{-\Lambda_1(t)\} \neq S(t)$$

- ▶ In clinical survival studies, function $S_1^*(t)$ is often called "cause-specific survival", or "net survival"
- ▶ Yet, these *-functions, $F_1^*(t)$ and $S_1^*(t)$, lack proper probability interpretation when competing risks exist.
- ► Hence, their use should be viewed critically (Andersen & Keiding, *Stat Med*, 2012)

17 / 33

Analysis with competing events

Let U_i = censoring time, T_i = time to first event, and C_i = variable for event 1 or 2. We observe

- $ightharpoonup y_i = \min\{T_i, U_i\}, i.e.$ the exit time, and
- ▶ $\delta_{ic} = 1_{\{T_i < U_i \& C_i = c\}}$, indicator (1/0) for event c being first observed, c = 1, 2.

Non-parametric estimation of CIF

- Let t₁ < t₂ < · · · < t_K be the K distinct time points at which any outcome event was observed, Let also S̃(t) be KM estimator for overall S(t).
- ► **Aalen-Johansen estimator** (AJ) for the cumulative incidence function *F*(*t*) should be used

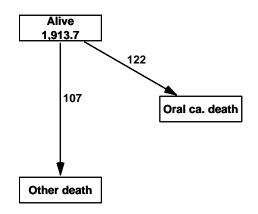
R tools for competing risks analysis

- survfit(Surv(...,type="mstate")) in Survival-package can be fitted for any transition of a multistate model and to obtain A-J estimates.
- ▶ Package cmprsk cuminc(ftime, fstatus, ...) computes CIF-estimates, and can be compared in more than two samples. plot.cuminc() plots them.
- ▶ Package Epi Lexis tools for multistate analyses Will be advertised by Bendix!

19 / 33

Box diagram for transitions

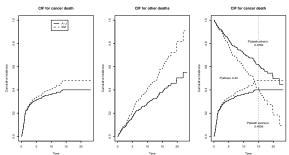
 $\tt NOTE:$ entry.status has been set to "Alive" for all. $\tt NOTE:$ entry is assumed to be 0 on the stime timescale.



20 / 33

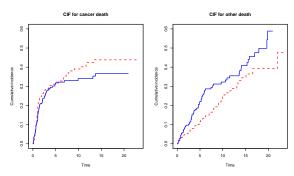
Ex. Survival from oral cancer

- ▶ AJ-estimates of CIFs (solid) for both causes.
- ▶ Naive KM-estimates of CIF (dashed) > AJ-estimates
- CIF curves may also be stacked (right).



NB. The sum of the naive KM-estimates of CIF exceeds 100% at 13 years!

Ex. CIFs by cause in men and women



CIF for cancer higher in women (chance?) but for other causes higher in men (no surprise).

22 / 33

Regression models for time-to-event data

Regression models for hazards can be defined e.g. for

(a) hazards, multiplicatively:

$$\lambda_i(t) = \lambda_0(t; \alpha) r(\eta_i),$$
 where

 $\lambda_0(t; \alpha)$ = baseline hazard and $r(\eta_i)$ = relative rate function, typically $\exp(\eta_i)$

(b) hazards, additively:

$$\lambda_i(t) = \lambda_0(t; \alpha) + \eta_i$$
.

23 / 33

Relative hazards model or Cox model

In model (b), the baseline hazard $\lambda_0(t,\alpha)$ may be given a parametric form (e.g. Weibull) or a piecewise constant rate (exponential) structure.

Often a parameter-free form $\lambda_0(t)$ is assumed. Then

$$\lambda_i(t) = \lambda_0(t) \exp(\eta_1),$$

specifies the **Cox model** or the **semiparametric proportional hazards model**.

 $\eta_{\it i}=\beta_1 x_{\it i1}+\cdots+\beta_{\it p} x_{\it ip}$ not depending on time.

Generalizations: **time-dependent** covariates $x_{ij}(t)$

PH model: interpretation of parameters

Present the model explicitly in terms of x's and β 's.

$$\lambda_i(t) = \lambda_0(t) \exp(\beta_1 x_{i1} + \dots + \beta_p x_{ip})$$

Consider two individuals, i and i', having the same values of all other covariates except the j^{th} one.

The ratio of hazards is constant:

$$\frac{\lambda_i(t)}{\lambda_{i'}(t)} = \frac{\exp(\eta_i)}{\exp(\eta_{i'})} = \exp\{\beta_j(x_{ij} - x_{i'j})\}.$$

Thus $e^{\beta_j} = HR_j =$ **hazard ratio** or relative rate associated with a unit change in covariate X_j .

25 / 33

Ex. Total mortality of oral ca. patients

Fitting Cox models with sex and sex + age.

```
> cm0 <- coxph( suob ~ sex, data = orca)
> summary( cm0)
        coef exp(coef) se(coef)
                                    z Pr(>|z|)
sexMale 0.126
                  1.134
                            0.134 0.94
        exp(coef) exp(-coef) lower .95 upper .95
sexMale
                       0.882
> cm1 <- coxph( suob ~ sex + age, data = orca)</pre>
> summary(cm1)
        exp(coef) exp(-coef) lower .95 upper .95
             1.49
                        0.669
                                   1.14
                                              1.96
sexMale
             1.04
                        0.960
                                   1.03
                                              1.05
```

The M/F contrast visible only after age-adjustment.

26 / 33

Predictions from the Cox model

► Individual survival *times* cannot be predicted but ind'I survival *curves* can. PH model implies:

$$S_i(t) = [S_0(t)]^{\exp(\beta_1 x_{i1} + \dots + \beta_p x_{ip})}$$

- ▶ Having estimated β by partial likelihood, the baseline $S_0(t)$ is estimated by Breslow method
- ► From these, a survival curve for an individual with given covariate values is predicted.
- ▶ In R: pred <- survfit(mod, newdata=...) and plot(pred), where mod is the fitted coxph object, and newdata specifies the covariate values. newdata is always needed for predictions.

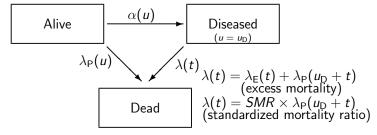
Modelling with competing risks

Main options, providing answers to different questions.

- (a) Cox model for event-specific hazards $\lambda_c(t) = f_c(t)/[1-F(t)]$, when e.g. the interest is in the biological effect of the prognostic factors on the fatality of the very disease that often leads to the relevant outcome.
- (b) **Fine–Gray model** for the hazard of the subdistribution $\gamma_c(t) = f_c(t)/[1 F_c(t)]$ when we want to assess the impact of the factors on the overall cumulative incidence of event c.
 - Function crr() in package cmprsk.

28 / 33

Competing risks model: excess hazard of death



where

- $ightharpoonup \lambda_{P}(u)$ is the hazard of dying from any cause among disease-free members
- $\lambda_{E}(t)$ is the excess hazard of dying from the disease among diseased cohort members

29 / 33

Rectal cancer

Ex. rectal cancers in females in Finland 2008-2012. Calculate observed mortality, excess mortality and relative mortality.

- > library(popEpi) # R-package for population-based cancer analys
- > library(Epi)
- > library(survival)
- > data("sire")
- > head(sire)

	sex	bi_date	dg_date	ex_date	status	dg_age
1:	1	1952-05-27	1994-02-03	2012-12-31	0	41.68877
2:	1	1959-04-04	1996-09-20	2012-12-31	0	37.46378
3:	1	1958-06-15	1994-05-30	2012-12-31	0	35.95616
4:	1	1957-05-10	1997-09-04	2012-12-31	0	40.32055
5:	1	1957-01-20	1996-09-24	2012-12-31	0	39.67745
6:	1	1962-05-25	1997-05-17	2012-12-31	0	34.97808

```
Rectal cancer
```

```
> data(sire)
  ## split data
  fotcut <- c(0,3/12,6/12,1,2,3,4,5)
   lex.split <- lexpand(sire, birth = bi_date, entry = dg_date,</pre>
                         exit = ex_date,
                        status=status %in% 1:2,
                         breaks = list(fot=fotcut),
                         pophaz=popmort, # population mortality
                         pp=F, # weights for survival estimation
                         aggre = list(fot))
> head(lex.split)
                              d.exp from0to0 from0to1
    fot
            pyrs at.risk
1: 0.00 1946.997
                    8227 71.43614
                                         105
                                                  717
2: 0.25 1779.831
                    7405 61.05649
                                         103
                                                  431
3: 0.50 3215.778
                    6871 105.11004
                                         190
                                                  633
4: 1.00 5459.795
                                                  791
                    6048 174.61314
                                         340
5: 2.00 4501.971
                    4917 145.38757
                                         294
                                                  492
6: 3.00 3825.438
                    4131 128.43103
                                         281
                                                  322
                                                             31/33
```

Rectal cancer - mortality models

Modeling mortality by splitted follow-up time since cancer diagnosis (fot)

Estimate excess mortality $\lambda_E(t)$ (link function d.exp)

```
> excess.mort <- relpois_ag(formula = fromOto1 ~ -1 + fot,
+ data = lex.split,
+ d.exp = d.exp,
+ offset = log(pyrs))
```

Estimate relative mortality (offset=log(d.exp))

> relative.mort <- glm(formula = from0to1 ~ -1 + as.factor(fot),
+ family=poisson(link="log"),
+ data=lex.split,
+ offset=log(d.exp))</pre>

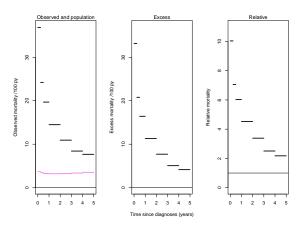
Estimate observed mortality (offset=log(pyrs))

- > obs.mort <- glm(formula = fromOto1 ~ -1 + as.factor(fot),
 + family=poisson(link="log"),</pre>
- + data=lex.split,
- + offset=log(pyrs))

32 / 33

Rectal cancer mortality

Observed, expected, excess and relative mortality



Representation of follow-up

Bendix Carstensen Steno Diabetes Center Copenhagen

 $Gentofte,\ Denmark$

http://BendixCarstensen.com

IARC, Lyon,

June 2018

http://BendixCarstensen.com/SPE

From /home/bendix/teach/SPE/git/SPE/lectures/time-rep/time-rep.tex

Sunday 17th June, 2018, 23:24

1/41

Representation of follow-up

Bendix Carstensen

Representation of follow-up

IARC, Lyon,

June 2018

 $\verb|http://BendixCarstensen.com/SPE|$

time-split

Follow-up and rates

▶ In follow-up studies we estimate rates from:

Representation of follow-up (time-split)

- ▶ In follow-up studies we estimate rates from:
 - lacksquare D events, deaths

Representation of follow-up (time-split)

2/ 41

Follow-up and rates

- ▶ In follow-up studies we estimate rates from:
 - D events, deathsY person-years

Representation of follow-up (time-split)

Follow-up and rates

- ▶ In follow-up studies we estimate rates from:
 - ▶ D events, deaths
 - Y person-years $\hat{\lambda} = D/Y \text{ rates}$

sentation of follow-up (time-split)

- ▶ In follow-up studies we estimate rates from:
 - lacksquare D events, deaths
 - ightharpoonup Y person-years
 - $\quad \quad \hat{\lambda} = D/Y \text{ rates}$
 - ▶ ... empirical counterpart of intensity estimate

Representation of follow-up (time-split)

2/ 41

Follow-up and rates

- ▶ In follow-up studies we estimate rates from:
 - lacksquare D events, deaths
 - ► Y person-years ► $\hat{\lambda} = D/Y$ rates

 - ... empirical counterpart of intensity estimate
- ▶ Rates differ between persons.

Representation of follow-up (time-split)

Follow-up and rates

- ▶ In follow-up studies we estimate rates from:
 - ▶ *D* events, deaths
 - Y person-years $\hat{\lambda} = D/Y \text{ rates}$

 - ... empirical counterpart of intensity estimate
- ▶ Rates differ between persons.
- ▶ Rates differ within persons:

ntation of follow-up (time-split)

- ▶ In follow-up studies we estimate rates from:
 - ▶ *D* events, deaths
 - ▶ *Y* person-years
 - $\quad \quad \hat{\lambda} = D/Y \text{ rates}$
 - ▶ ... empirical counterpart of intensity estimate
- ▶ Rates differ between persons.
- ▶ Rates differ within persons:
 - ▶ By age

Representation of follow-up (time-split)

2/ 41

Follow-up and rates

- ▶ In follow-up studies we estimate rates from:
 - ▶ *D* events, deaths
 - Y person-years $\hat{\lambda} = D/Y$ rates

 - ... empirical counterpart of intensity estimate
- ▶ Rates differ between persons.
- ► Rates differ within persons:
 - By age
 - ▶ By calendar time

entation of follow-up (time-split)

Follow-up and rates

- ▶ In follow-up studies we estimate rates from:
 - ▶ *D* events, deaths
 - ▶ *Y* person-years
 - $\hat{\lambda} = D/Y$ rates
 - ▶ ... empirical counterpart of intensity estimate
- ▶ Rates differ between persons.
- ▶ Rates differ within persons:
 - ► By age
 - ▶ By calendar time
 - ▶ By disease duration

ntation of follow-up (time-split)

- ▶ In follow-up studies we estimate rates from:
 - ▶ *D* events, deaths
 - ightharpoonup Y person-years
 - $\hat{\lambda} = D/Y$ rates
 - $\,\blacktriangleright\,$. . . empirical counterpart of intensity estimate
- ▶ Rates differ between persons.
- ▶ Rates differ within persons:
 - ▶ By age
 - ► By calendar time
 - ▶ By disease duration
 - **.** . .

Representation of follow-up (time-split)

2/ 41

Follow-up and rates

- ▶ In follow-up studies we estimate rates from:
 - ▶ *D* events, deaths
 - ightharpoonup Y person-years
 - $\quad \quad \hat{\lambda} = D/Y \text{ rates}$
 - ... empirical counterpart of intensity estimate
- ▶ Rates differ between persons.
- ▶ Rates differ within persons:
 - By age
 - ▶ By calendar time
 - By disease duration
 - •
- Multiple timescales.

Representation of follow-up (time-split)

2/ 41

Follow-up and rates

- ▶ In follow-up studies we estimate rates from:
 - ▶ *D* events, deaths
 - ▶ *Y* person-years
 - $\hat{\lambda} = D/Y$ rates
 - $\,\blacktriangleright\,$. . . empirical counterpart of intensity estimate
- Rates differ between persons.
- ▶ Rates differ within persons:
 - ▶ By age
 - ▶ By calendar time
 - ► By disease duration
 - •
- Multiple timescales.
- Multiple states (little boxes later)

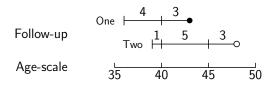
Representation of follow-up (time-split)

Examples: stratification by age

If follow-up is rather short, age at entry is OK for age-stratification.

If follow-up is long, use stratification by categories of **current age**, both for:

No. of events, D, and Risk time, Y.



Representation of follow-up (time-split)

3/ 41

Examples: stratification by age

If follow-up is rather short, age at entry is OK for age-stratification.

If follow-up is long, use stratification by categories of **current age**, both for:

No. of events, D, and Risk time, Y.

Follow-up One
$$4$$
 3 1 5 3 One 4 45 50 Age-scale 35 40 45 50

— assuming a constant rate λ throughout.

Representation of follow-up (time-split)

3/4

Representation of follow-up data

A cohort or follow-up study records:

Events and Risk time.

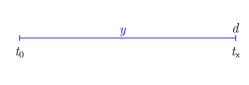
The outcome is thus **bivariate**: (d, y)

Follow-up **data** for each individual must therefore have (at least) three variables:

Date of entry entry date variable
Date of exit exit date variable
Status at exit fail indicator (0/1)

Specific for each type of outcome.

Representation of follow-up (time-split)



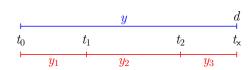
log-Likelihood

 $P(d \text{ at } t_{\mathsf{x}}| \mathsf{entry}\ t_0)$

 $d\log(\lambda) - \lambda y$

Representation of follow-up (time-split)

5/ 41



Probability

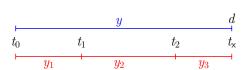
log-Likelihood

 $P(d \text{ at } t_x|\text{entry } t_0)$

 $d\log(\lambda) - \lambda y$

Representation of follow-up (time-split)

5/ 41



Probability

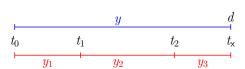
log-Likelihood

$$P(d \text{ at } t_{\!\!\!\!\times}|\text{entry } t_0)$$

 $d\log(\lambda) - \lambda y$

$$= P(\mathsf{surv}\ t_0 \to t_1 | \mathsf{entry}\ t_0)$$

Representation of follow-up (time-split



log-Likelihood

$$P(d \text{ at } t_x|\text{entry } t_0)$$

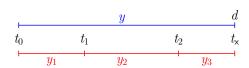
$$d\log(\lambda) - \lambda y$$

$$= P(\mathsf{surv}\ t_0 \to t_1 | \mathsf{entry}\ t_0)$$

$$\times P(\mathsf{surv}\ t_1 \to t_2 | \mathsf{entry}\ t_1)$$

Representation of follow-up (time-split

5/ 41



Probability

log-Likelihood

$$P(d \text{ at } t_{\mathsf{x}}| \mathsf{entry}\ t_0)$$

$$d\log(\lambda) - \lambda y$$

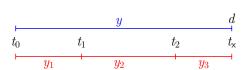
$$= P(\mathsf{surv}\ t_0 \to t_1 | \mathsf{entry}\ t_0)$$

$$imes \mathrm{P}(\mathsf{surv}\ t_1 o t_2 | \mathsf{entry}\ t_1)$$

$$imes P(d ext{ at } t_{\mathsf{x}} | ext{entry } t_2)$$

Representation of follow-up (time-split)

5/ 41



Probability

log-Likelihood

$$P(d \text{ at } t_x|\text{entry } t_0)$$

$$d\log(\lambda) - \lambda y$$

$$= P(\mathsf{surv}\ t_0 \to t_1 | \mathsf{entry}\ t_0)$$

$$=0\log(\lambda)-\lambda y_1$$

$$\times P(\mathsf{surv}\ t_1 \to t_2 | \mathsf{entry}\ t_1)$$

$$+0\log(\lambda) - \lambda y_2$$

$$\times P(d \text{ at } t_{\mathsf{x}}| \mathsf{entry}\ t_2)$$

$$+d\log(\lambda) - \lambda y_3$$

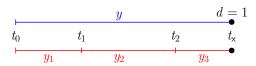
Representation of follow-up (time-split)

log-Likelihood

$$\begin{split} & P(\mathsf{surv}\ t_0 \to t_\mathsf{x} | \mathsf{entry}\ t_0) & 0 \log(\lambda) - \lambda y \\ & = P(\mathsf{surv}\ t_0 \to t_1 | \mathsf{entry}\ t_0) & = 0 \log(\lambda) - \lambda y_1 \\ & \times P(\mathsf{surv}\ t_1 \to t_2 | \mathsf{entry}\ t_1) & + 0 \log(\lambda) - \lambda y_2 \\ & \times P(\mathsf{surv}\ t_2 \to t_\mathsf{x} | \mathsf{entry}\ t_2) & + 0 \log(\lambda) - \lambda y_3 \end{split}$$

Representation of follow-up (time-split

6/ 41



Probability

log-Likelihood

$$\begin{split} & \text{P}(\mathsf{event} \; \mathsf{at} \; t_\mathsf{x} | \mathsf{entry} \; t_0) & 1 \log(\lambda) - \lambda y \\ & = P(\mathsf{surv} \; t_0 \to t_1 | \mathsf{entry} \; t_0) & = 0 \log(\lambda) - \lambda y_1 \\ & \times P(\mathsf{surv} \; t_1 \to t_2 | \mathsf{entry} \; t_1) & + 0 \log(\lambda) - \lambda y_2 \\ & \times P(\mathsf{event} \; \mathsf{at} \; t_\mathsf{x} | \mathsf{entry} \; t_2) & + 1 \log(\lambda) - \lambda y_3 \end{split}$$

Representation of follow-up (time-split)

7/ 41

Probability

log-Likelihood

 $P(d \text{ at } t_{x}|\text{entry } t_{0})$

 $d\log(\lambda) - \lambda y$

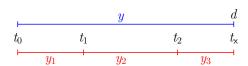
Representation of follow-up (time-split)

log-Likelihood

$$\begin{split} & P(d \text{ at } t_{\mathsf{x}}|\mathsf{entry}\ t_0) & d \log(\lambda) - \lambda y \\ & = P(\mathsf{surv}\ t_0 \to t_1|\mathsf{entry}\ t_0) & = 0 \log(\lambda) - \lambda y_1 \\ & \times P(\mathsf{surv}\ t_1 \to t_2|\mathsf{entry}\ t_1) & + 0 \log(\lambda) - \lambda y_2 \\ & \times P(d \text{ at } t_{\mathsf{x}}|\mathsf{entry}\ t_2) & + d \log(\lambda) - \lambda y_3 \end{split}$$

Representation of follow-up (time-split)

8/ 41



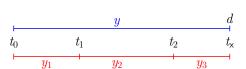
Probability

log-Likelihood

$$\begin{split} & P(d \text{ at } t_{\bowtie}|\text{entry } t_0) & d \log(\lambda) - \lambda y \\ &= P(\text{surv } t_0 \rightarrow t_1|\text{entry } t_0) &= 0 \log(\lambda_1) - \lambda_1 y_1 \\ &\times P(\text{surv } t_1 \rightarrow t_2|\text{entry } t_1) &+ 0 \log(\lambda_2) - \lambda_2 y_2 \\ &\times P(d \text{ at } t_{\bowtie}|\text{entry } t_2) &+ d \log(\lambda_3) - \lambda_3 y_3 \end{split}$$

Representation of follow-up (time-split

9/ 41



Probability

log-Likelihood

$$\begin{split} & \text{P}(d \text{ at } t_{\bowtie}|\text{entry } t_0) & d \log(\lambda) - \lambda y \\ & = \text{P}(\text{surv } t_0 \rightarrow t_1|\text{entry } t_0) & = 0 \log(\lambda_1) - \lambda_1 y_1 \\ & \times \text{P}(\text{surv } t_1 \rightarrow t_2|\text{entry } t_1) & + 0 \log(\lambda_2) - \lambda_2 y_2 \\ & \times \text{P}(d \text{ at } t_{\bowtie}|\text{entry } t_2) & + d \log(\lambda_3) - \lambda_3 y_3 \end{split}$$

— allows different rates (λ_i) in each interval

Representation of follow-up (time-split)

If we want to compute ${\cal D}$ and ${\cal Y}$ in intervals on some timescale we must decide on:

Representation of follow-up (time-split)

10/ 41

Dividing time into bands:

If we want to compute ${\cal D}$ and ${\cal Y}$ in intervals on some timescale we must decide on:

Origin: The date where the time scale is 0:

Representation of follow-up (time-split)

10/ 41

Dividing time into bands:

If we want to compute ${\cal D}$ and ${\cal Y}$ in intervals on some timescale we must decide on:

Origin: The date where the time scale is 0:

▶ Age — 0 at date of birth

Representation of follow-up (time-split)

If we want to compute ${\cal D}$ and ${\cal Y}$ in intervals on some timescale we must decide on:

Origin: The date where the time scale is 0:

- ▶ Age 0 at date of birth
- lacksquare Disease duration 0 at date of diagnosis

Representation of follow-up (time-split)

10/ 41

Dividing time into bands:

If we want to compute ${\cal D}$ and ${\cal Y}$ in intervals on some timescale we must decide on:

Origin: The date where the time scale is 0:

- ► Age 0 at date of birth
- ▶ Disease duration 0 at date of diagnosis
- ▶ Occupation exposure 0 at date of hire

Representation of follow-up (time-split)

10/ 41

Dividing time into bands:

If we want to compute ${\cal D}$ and ${\cal Y}$ in intervals on some timescale we must decide on:

Origin: The date where the time scale is 0:

- ▶ Age 0 at date of birth
- ▶ Disease duration 0 at date of diagnosis
- ▶ Occupation exposure 0 at date of hire

Representation of follow-up (time-split)

If we want to compute ${\cal D}$ and ${\cal Y}$ in intervals on some timescale we must decide on:

Origin: The date where the time scale is 0:

- ▶ Age 0 at date of birth
- ▶ Disease duration 0 at date of diagnosis
- ▶ Occupation exposure 0 at date of hire

Intervals: How should it be subdivided:

▶ 1-year classes? 5-year classes?

Representation of follow-up (time-split)

10/ 41

Dividing time into bands:

If we want to compute ${\cal D}$ and ${\cal Y}$ in intervals on some timescale we must decide on:

Origin: The date where the time scale is 0:

- ▶ Age 0 at date of birth
- ▶ Disease duration 0 at date of diagnosis
- ▶ Occupation exposure 0 at date of hire

Intervals: How should it be subdivided:

- ▶ 1-year classes? 5-year classes?
- ► Equal length?

Representation of follow-up (time-split)

10/ 41

Dividing time into bands:

If we want to compute ${\cal D}$ and ${\cal Y}$ in intervals on some timescale we must decide on:

Origin: The date where the time scale is 0:

- ▶ Age 0 at date of birth
- ▶ Disease duration 0 at date of diagnosis
- ▶ Occupation exposure 0 at date of hire

Intervals: How should it be subdivided:

- ▶ 1-year classes? 5-year classes?
- ► Equal length?

Representation of follow-up (time-split)

If we want to compute ${\cal D}$ and ${\cal Y}$ in intervals on some timescale we must decide on:

Origin: The date where the time scale is 0:

- ▶ Age 0 at date of birth
- lacksquare Disease duration 0 at date of diagnosis
- ▶ Occupation exposure 0 at date of hire

Intervals: How should it be subdivided:

- ▶ 1-year classes? 5-year classes?
- ► Equal length?

Aim: Separate rate in each interval

Representation of follow-up (time-split)

10/ 41

Example: cohort with 3 persons:

```
Id Bdate Entry Exit St
1 14/07/1952 04/08/1965 27/06/1997 1
2 01/04/1954 08/09/1972 23/05/1995 0
3 10/06/1987 23/12/1991 24/07/1998 1
```

Representation of follow-up (time-split)

11/ 41

Example: cohort with 3 persons:

```
Id Bdate Entry Exit St
1 14/07/1952 04/08/1965 27/06/1997 1
2 01/04/1954 08/09/1972 23/05/1995 0
3 10/06/1987 23/12/1991 24/07/1998 1
```

▶ Age bands: 10-years intervals of current age.

Representation of follow-up (time-split)

Example: cohort with 3 persons:

```
Id Bdate Entry Exit St
1 14/07/1952 04/08/1965 27/06/1997 1
2 01/04/1954 08/09/1972 23/05/1995 0
3 10/06/1987 23/12/1991 24/07/1998 1
```

- ▶ Age bands: 10-years intervals of current age.
- ▶ Split *Y* for every subject accordingly

Representation of follow-up (time-split)

11/ 41

Example: cohort with 3 persons:

```
Id Bdate Entry Exit St
1 14/07/1952 04/08/1965 27/06/1997 1
2 01/04/1954 08/09/1972 23/05/1995 0
3 10/06/1987 23/12/1991 24/07/1998 1
```

- ▶ Age bands: 10-years intervals of current age.
- lacksquare Split Y for every subject accordingly
- ▶ Treat each segment as a separate unit of observation.

Representation of follow-up (time-split)

11/ 41

Example: cohort with 3 persons:

```
Id Bdate Entry Exit St
1 14/07/1952 04/08/1965 27/06/1997 1
2 01/04/1954 08/09/1972 23/05/1995 0
3 10/06/1987 23/12/1991 24/07/1998 1
```

- ▶ Age bands: 10-years intervals of current age.
- ▶ Split Y for every subject accordingly
- ▶ Treat each segment as a separate unit of observation.
- ▶ Keep track of exit status in each interval.

Representation of follow-up (time-split)

Splitting the follow up

	subj. 1	subj. 2	subj. 3
Age at Entry: Age at eXit: Status at exit:	13.06	18.44	4.54
	44.95	41.14	11.12
	Dead	Alive	Dead
Y	31.89	22.70	6.58
D	1	0	1

Representation of follow-up (time-split)

12/ 41

	subj	subj. 1 subj. 2		subj. 3		\sum		
Age	Y	D	Y	D	Y	D	Y	D
0-	0.00	0	0.00	0	5.46	0	5.46	0
10-	6.94	0	1.56	0	1.12	1	8.62	1
20-	10.00	0	10.00	0	0.00	0	20.00	0
30-	10.00	0	10.00	0	0.00	0	20.00	0
40-	4.95	1	1.14	0	0.00	0	6.09	1
\sum_{i}	31.89	1	22.70	0	6.58	1	60.17	2

Representation of follow-up (time-split)

13/ 41

Splitting the follow-up

id	Bdate	Entry	Exit	St	risk	int
1	14/07/1952	03/08/1965	14/07/1972	0	6.9432	10
1	14/07/1952	14/07/1972	14/07/1982	0	10.0000	20
1	14/07/1952	14/07/1982	14/07/1992	0	10.0000	30
1	14/07/1952	14/07/1992	27/06/1997	1	4.9528	40
2	01/04/1954	08/09/1972	01/04/1974	0	1.5606	10
2	01/04/1954	01/04/1974	31/03/1984	0	10.0000	20
2	01/04/1954	31/03/1984	01/04/1994	0	10.0000	30
2	01/04/1954	01/04/1994	23/05/1995	0	1.1417	40
3	10/06/1987	23/12/1991	09/06/1997	0	5.4634	0
3	10/06/1987	09/06/1997	24/07/1998	1	1.1211	10

Keeping track of calendar time too?

Representation of follow-up (time-split)

Timescales

A timescale is a variable that varies deterministically within each person during follow-up:

Representation of follow-up (time-split)

15/ 41

Timescales

- A timescale is a variable that varies deterministically within each person during follow-up:
 - Age

entation of follow-up (time-split)

15/ 41

Timescales

- A timescale is a variable that varies deterministically within each person during follow-up:

 - AgeCalendar time

ntation of follow-up (time-split)

Timescales

- A timescale is a variable that varies deterministically within each person during follow-up:

 - AgeCalendar time
 - ▶ Time since treatment

Representation of follow-up (time-split)

15/ 41

Timescales

- A timescale is a variable that varies deterministically within each person during follow-up:
 - Age
 - Calendar time
 - ▶ Time since treatment
 - ▶ Time since relapse

entation of follow-up (time-split)

15/ 41

Timescales

- A timescale is a variable that varies deterministically within each person during follow-up:
 - Age
 - Calendar time
 - ▶ Time since treatment
 - ► Time since relapse
- ▶ All timescales advance at the same pace (1 year per year ...)

ntation of follow-up (time-split)

Timescales

- A timescale is a variable that varies deterministically within each person during follow-up:

 - AgeCalendar time
 - ► Time since treatment
 - ► Time since relapse
- ▶ All timescales advance at the same pace (1 year per year ...)
- ▶ Note: Cumulative exposure is **not** a timescale.

Representation of follow-up (time-split)

15/ 41

Follow-up on several timescales

▶ The risk-time is the same on all timescales

Representation of follow-up (time-split)

16/ 41

Follow-up on several timescales

- ▶ The risk-time is the same on all timescales
- ▶ Only need the entry point on each time scale:

entation of follow-up (time-split)

Follow-up on several timescales

- ▶ The risk-time is the same on all timescales
- ▶ Only need the entry point on each time scale:
 - ► Age at entry.

Representation of follow-up (time-split)

16/ 41

Follow-up on several timescales

- ▶ The risk-time is the same on all timescales
- ▶ Only need the entry point on each time scale:
 - ► Age at entry.
 - Date of entry.

Representation of follow-up (time-split)

16/ 41

Follow-up on several timescales

- ▶ The risk-time is the same on all timescales
- ▶ Only need the entry point on each time scale:
 - Age at entry.
 - ▶ Date of entry.
 - ► Time since treatment at entry.
 - if time of treatment is the entry, this is 0 for all.

Representation of follow-up (time-split)

Follow-up on several timescales

- ▶ The risk-time is the same on all timescales
- ▶ Only need the entry point on each time scale:
 - Age at entry.
 - Date of entry.
 - ▶ Time since treatment at entry.
 - if time of treatment is the entry, this is 0 for all.
- ▶ Response variable in analysis of rates:

(d, y) (event, duration)

Representation of follow-up (time-split)

16/ 41

Follow-up on several timescales

- ▶ The risk-time is the same on all timescales
- ▶ Only need the entry point on each time scale:
 - Age at entry.
 - ▶ Date of entry.
 - ▶ Time since treatment at entry.
 - if time of treatment is the entry, this is 0 for all.
- ► Response variable in analysis of rates:

(d, y) (event, duration)

► Covariates in analysis of rates:

Representation of follow-up (time-split)

16/41

Follow-up on several timescales

- ▶ The risk-time is the same on all timescales
- ▶ Only need the entry point on each time scale:
 - Age at entry.
 - Date of entry.
 - ► Time since treatment at entry.
 - if time of treatment is the entry, this is 0 for all.
- ▶ Response variable in analysis of rates:

(d, y) (event, duration)

- ► Covariates in analysis of rates:
 - ► timescales

Representation of follow-up (time-split)

Follow-up on several timescales

- ▶ The risk-time is the same on all timescales
- ▶ Only need the entry point on each time scale:
 - ► Age at entry.
 - Date of entry.
 - ► Time since treatment at entry.
 - if time of treatment is the entry, this is 0 for all.
- ▶ Response variable in analysis of rates:

(d, y) (event, duration)

- ► Covariates in analysis of rates:
 - timescales
 - other (fixed) measurements

Representation of follow-up (time-split)

16/ 41

Follow-up on several timescales

- ▶ The risk-time is the same on all timescales
- ▶ Only need the entry point on each time scale:
 - ► Age at entry.
 - Date of entry.
 - ▶ Time since treatment at entry.
 - if time of treatment is the entry, this is 0 for all.
- Response variable in analysis of rates:

(d, y) (event, duration)

- ► Covariates in analysis of rates:
 - timescales
 - other (fixed) measurements
- ...do not confuse duration and timescale!

Representation of follow-up (time-split)

16/ 41

Follow-up data in Epi — Lexis objects

```
> thoro[1:6,1:8]
```

Representation of follow-up (time-split)

Follow-up data in Epi — Lexis objects

Timescales of interest:

- Age
- ▶ Calendar time
- ▶ Time since injection

Representation of follow-up (time-split)

17/ 41

Definition of Lexis object

Representation of follow-up (time-split)

18/ 41

Definition of Lexis object

entry is defined on three timescales,

Representation of follow-up (time-split)

Definition of Lexis object

entry is defined on three timescales,
but exit is only needed on one timescale:

Representation of follow-up (time-split)

18/ 41

Definition of Lexis object

entry is defined on **three** timescales, but exit is only needed on **one** timescale: Follow-up time is the same on all timescales:

Representation of follow-up (time-split)

18/ 41

Definition of Lexis object

entry is defined on three timescales,

but exit is only needed on **one** timescale:

Follow-up time is the same on all timescales:

 ${\tt exitdat - injecdat}$

Representation of follow-up (time-split)

Definition of Lexis object

entry is defined on three timescales,
but exit is only needed on one timescale:

Follow-up time is the same on all timescales:

exitdat - injecdat

One element of entry and exit must have same name (per).

Representation of follow-up (time-split)

18/ 41

The looks of a Lexis object

Representation of follow-up (time-split)

19/ 41

The looks of a Lexis object

```
> thL[1:4,1:9]
           per tfi lex.dur lex.Cst lex.Xst lex.id
   age
1 22.18 1938.79 0 37.99
2 49.54 1945.77 0 18.59
                             0 1
0 1
                                        1
3 68.20 1955.18 0 1.40
4 20.80 1957.61 0 34.52
                      1.40
                                0
                                                 3
                                          0
> summary( thL )
Transitions:
    To
From 0
            1 Records: Events: Risk time: Persons:
   0 504 1964
                 2468
                         1964
                                  51934.08
                                                  2468
```

Representation of follow-up (time-split)

The looks of a Lexis object

Representation of follow-up (time-split)

19/ 41

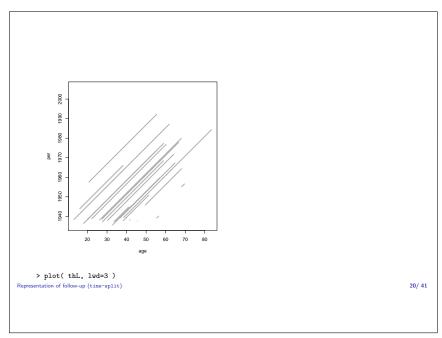
The looks of a Lexis object

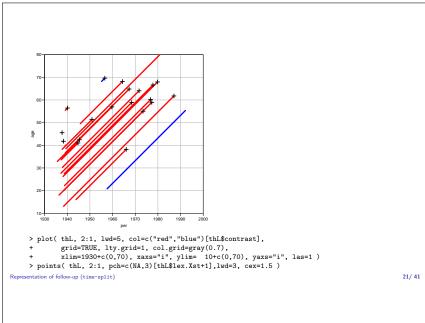
Representation of follow-up (time-split)

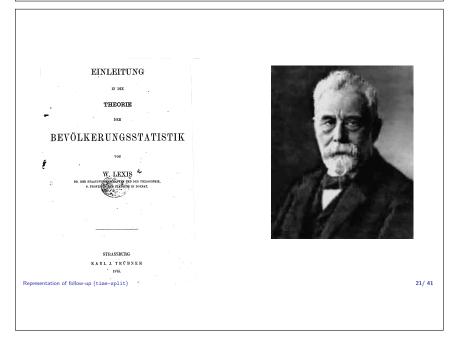
19/ 41

The looks of a Lexis object

Representation of follow-up (time-split)







Splitting follow-up time

```
> spl1 <- splitLexis( thL, breaks=seq(0,100,20),
                                 time.scale="age" )
> round(spl1,1)
age per tfi lex.dur lex.Cst lex.Xst 1 22.2 1938.8 0.0 17.8 0 0 2 40.0 1956.6 17.8 20.0 0
                                                        id sex birthdat contrast injecdat vo
                                                         1
                                                                   1916.6
                                                                                         1938.8
                                                   0
                                                                   1916.6
                                                                                         1938.8
3 60.0 1976.6 37.8
                                                                                         1938.8
4 49.5 1945.8 0.0
5 60.0 1956.2 10.5
                                                                   1896.2
1896.2
                           10.5
                                                   0
                                                      640
                                                             2
                                                                                         1945.8
                                                                                         1945.8
                                         0
                                                   1 640
                            8.1
6 68.2 1955.2 0.0
7 20.8 1957.6 0.0
                            1.4
                                         0
                                                   1 3425
                                                                   1887.0
                                                                                         1955.2
                           19.2
                                                   0 4017
                                                                   1936.8
                                                                                         1957.6
8 40.0 1976.8 19.2
                           15.3
                                                   0 4017
                                                                   1936.8
                                                                                         1957.6
```

Representation of follow-up (time-split)

22/ 41

Splitting follow-up time

```
> spl1 <- splitLexis( thL, breaks=seq(0,100,20),
                                time.scale="age" )
> round(spl1,1)
age per tfi lex.dur lex.Cst lex.Xst 1 22.2 1938.8 0.0 17.8 0 0 2 40.0 1956.6 17.8 20.0 0 0
                                                      id sex birthdat contrast injecdat vo
                                                                1916.6
1916.6
                                                                                      1938.8
                                                                                      1938.8
3 60.0 1976.6 37.8
4 49.5 1945.8 0.0
                          10.5
                                       0
                                                 0 640
                                                                1896.2
                                                                                      1945.8
5 60.0 1956.2 10.5
                                       0
                                                1 640
                                                           2
                                                                1896.2
                                                                                      1945.8
                           8.1
6 68.2 1955.2 0.0
7 20.8 1957.6 0.0
                                                                                      1955.2
                          19.2
                                       0
                                                 0 4017
                                                                1936.8
                                                                                      1957.6
8 40.0 1976.8 19.2
                          15.3
                                                 0 4017
                                                                1936.8
                                                                                      1957.6
```

Representation of follow-up (time-split)

22/ 41

Splitting follow-up time

```
> spl1 <- splitLexis( thL, breaks=seq(0,100,20),
                                time.scale="age" )
> round(spl1,1)
age per tfi lex.dur lex.Cst lex.Xst 1 22.2 1938.8 0.0 17.8 0 0 2 40.0 1956.6 17.8 20.0 0
                                                      id sex birthdat contrast injecdat vo
                                                       1
                                                                 1916.6
                                                                                       1938.8
                                                                                       1938.8
                                                                 1916.6
3 60.0 1976.6 37.8
                           0.2
                                                                 1916.6
                                                                                       1938.8
                                                 0 640
4 49.5 1945.8 0.0
5 60.0 1956.2 10.5
                          10.5
                                                                 1896.2
1896.2
                                                                                       1945.8
1945.8
                                                    640
                           8.1
6 68.2 1955.2 0.0
                                                 1 3425
                                                                 1887.0
                                                                                       1955.2
7 20.8 1957.6 0.0
                          19.2
                                                 0 4017
                                                                 1936.8
                                                                                       1957.6
8 40.0 1976.8 19.2
                                                                                       1957.6
                          15.3
                                                 0 4017
                                                                 1936.8
```

...

Representation of follow-up (time-split)

Splitting follow-up time

```
> spl1 <- splitLexis( thL, breaks=seq(0,100,20),
                              time.scale="age" )
> round(spl1,1)
age per tfi lex.dur lex.Cst lex.Xst 1 22.2 1938.8 0.0 17.8 0 0 2 40.0 1956.6 17.8 20.0 0
                                                   id sex birthdat contrast injecdat vo
                                                    1
                                                             1916.6
                                                                                  1938.8
                                                             1916.6
                                                                                  1938.8
3 60.0 1976.6 37.8
                                                                                  1938.8
                                                             1896.2
1896.2
4 49.5 1945.8 0.0
                         10.5
                                              0
                                                 640
                                                                                  1945.8
5 60.0 1956.2 10.5
                                                                                  1945.8
                                     0
                                              1 640
                          8.1
6 68.2 1955.2 0.0
                                              1 3425
                                                                                  1955.2
7 20.8 1957.6 0.0
                                              0 4017
                                                             1936.8
                                                                                  1957.6
8 40.0 1976.8 19.2
                         15.3
                                              0 4017
                                                             1936.8
                                                                                  1957.6
```

Representation of follow-up (time-split)

22/ 41

Splitting follow-up time

```
> spl1 <- splitLexis( thL, breaks=seq(0,100,20),
                               time.scale="age" )
> round(spl1,1)
age per tfi lex.dur lex.Cst lex.Xst 1 22.2 1938.8 0.0 17.8 0 0 2 40.0 1956.6 17.8 20.0 0
                                                    id sex birthdat contrast injecdat vo
                                                     1
1
                                                               1916.6
                                                                               1
                                                                                    1938.8
                                                0
                                                               1916.6
                                                                                    1938.8
3 60.0 1976.6 37.8
                                                               1916.6
                                                                                    1938.8
4 49.5 1945.8 0.0
                          10.5
                                      0
                                                0 640
                                                               1896.2
                                                                                    1945.8
5 60.0 1956.2 10.5
                                      0
                                                1 640
                                                          2
                                                               1896.2
                                                                                    1945.8
                          8.1
6 68.2 1955.2 0.0
7 20.8 1957.6 0.0
                                                1 3425
                                                               1887.0
                                                                                    1955.2
                          19.2
                                                0 4017
                                                               1936.8
                                                                                    1957.6
8 40.0 1976.8 19.2
                         15.3
                                                0 4017
                                                               1936.8
                                                                                    1957.6
```

Representation of follow-up (time-split)

22/ 41

Split on another timescale

```
> spl2 <- splitLexis( spl1, time.scale="tfi",
                              breaks=c(0,1,5,20,100) )
> round( spl2, 1 )
                   per tfi lex.dur lex.Cst lex.Xst
                                                         id sex birthdat contrast inje
           age
        1 22.2 1938.8 0.0
                                1.0
                                            0
                                                     Ω
                                                          1
                                                              2
                                                                   1916.6
        1 23.2 1939.8
                                 4.0
                                            0
                                                                   1916.6
                        1.0
                                                     0
        1 27.2 1943.8
        1 40.0 1956.6 17.8
                                 2.2
                                            0
                                                     0
                                                              2
                                                                   1916.6
                                17.8
                                                                                       19
19
19
        1 42.2 1958.8 20.0
                                            0
                                                     0
                                                          1
                                                                   1916.6
        1 60.0 1976.6 37.8
                                 0.2
                                                                   1916.6
        2 49.5 1945.8
                        0.0
                                 1.0
                                                        640
                                                              2
                                                                   1896.2
8
        2 50.5 1946.8
                        1.0
                                 4.0
                                            0
                                                     0
                                                        640
                                                                   1896.2
                                                                                       19
19
        2 54.5 1950.8
                        5.0
                                 5.5
                                            0
                                                     0
                                                        640
                                                                   1896.2
        2 60.0 1956.2 10.5
                                                        640
11
        3 68.2 1955.2
                        0.0
                                 1.0
                                                     0 3425
                                                                   1887.0
        3 69.2 1956.2
4 20.8 1957.6
12
                        1.0
                                 0.4
                                            0
                                                     1 3425
                                                                   1887.0
                                 1.0
13
                                                     0 4017
                                                                   1936.8
14
        4 21.8 1958.6
                                 4.0
                                                     0 4017
                                                                   1936.8
                                                                                  2
        4 25.8 1962.6 5.0
4 40.0 1976.8 19.2
                                14.2
0.8
15
                                            0
                                                     0 4017
                                                              2
                                                                   1936.8
                                                                                  2
                                                                                       1
                                                     0 4017
16
                                            0
                                                                   1936.8
   n of follow4up40me8sp1977.6 20.0
                                                     0 4017
                                                                   1936.8
```

```
Split on another timescale
   > spl2 <- splitLexis( spl1, time.scale="tfi";
                                breaks=c(0,1,5,20,100) )
   > round( spl2, 1 )
                     per tfi lex.dur lex.Cst lex.Xst
                                                         id sex birthdat contrast injo
      lex.id age
           1 22.2 1938.8 0.0
                                 1.0
                                            0
                                                                   1916.6
            1 23.2 1939.8 1.0
                                   4.0
                                             0
                                                                   1916.6
           1 27.2 1943.8
                          5.0
                                  12.8
                                                                   1916.6
           1 40.0 1956.6 17.8
                                   2.2
                                                                   1916.6
           1 42.2 1958.8 20.0
                                  17.8
                                             0
                                                      0
                                                                   1916.6
            1 60.0 1976.6 37.8
                                   0.2
                                             0
                                                                   1916.6
           2 49.5 1945.8
                                   1.0
                                                        640
                                                                   1896.2
           2 50.5 1946.8
                          1.0
                                   4.0
                                             0
                                                      0
                                                        640
                                                               2
                                                                   1896.2
           2 54.5 1950.8
                                                     0 640
   9
                          5.0
                                   5.5
                                             0
                                                                   1896.2
           2 60.0 1956.2 10.5
                                             0
   10
                                   8.1
                                                        640
                                                                   1896.2
           3 68.2 1955.2
                          0.0
                                   1.0
                                                      0 3425
                                                                   1887.0
           3 69.2 1956.2
4 20.8 1957.6
   12
                          1.0
                                   0.4
                                             0
                                                     1 3425
                                                                   1887.0
   13
                          0.0
                                   1.0
                                             0
                                                      0 4017
                                                                   1936.8
                                                                   1936.8
   14
           4 21.8 1958.6
                                   4.0
                                                      0 4017
   15
           4 25.8 1962.6 5.0
                                  14.2
                                             0
                                                      0 4017
                                                               2
                                                                   1936.8
                                                                                  2
           4 40.0 1976.8 19.2
                                                      0 4017
                                   0.8
   16
                                             0
                                                                   1936.8
   ed: Ition of follow 4 up 4 Q ne 8 sp 1 9 7 7 . 6 20 . 0
                                  14.5
                                                      0 4017
                                                                   1936.8
```

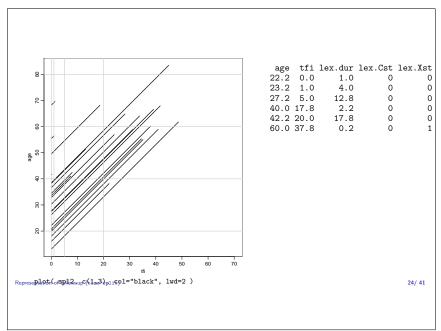
```
Split on another timescale
    > spl2 <- splitLexis( spl1, time.scale="tfi"
                                 breaks=c(0,1,5,20,100))
   > round( spl2, 1 )
      lex.id age per tfi
1 22.2 1938.8 0.0
1 23.2 1939.8 1.0
                      per tfi lex.dur lex.Cst lex.Xst
                                                           id sex birthdat contrast inje
                                1.0
4.0
                                                               2
                                               0
                                                       0
                                                                     1916.6
                                               0
                                                       0
                                                                     1916.6
                                                            1
            1 27.2 1943.8
                           5.0
                                   12.8
                                                       0
                                                                     1916.6
            1 40.0 1956.6 17.8
                                   2.2
17.8
                                                                     1916.6
           1 42.2 1958.8 20.0
                                                                 2
                                                                                        19
   5
                                               0
                                                       0
                                                            1
                                                                     1916.6
            1 60.0 1976.6 37.8
                                    0.2
                                               0
                                                                     1916.6
            2 49.5 1945.8
                                    1.0
                                                                     1896.2
   8
            2 50.5 1946.8
                           1.0
                                    4.0
                                               0
                                                       0
                                                          640
                                                                 2
                                                                     1896.2
                                                                 2
   9
            2 54.5 1950.8
                           5.0
                                    5.5
                                               0
                                                       0 640
                                                                     1896.2
                                                                                        19
   10
            2 60.0 1956.2 10.5
                                    8.1
                                               0
                                                       1 640
                                                                     1896.2
            3 68.2 1955.2
3 69.2 1956.2
    11
                           0.0
                                    1.0
                                               0
                                                       0 3425
                                                                     1887.0
                                                                                    2
                                                                                        19
   12
                           1.0
                                    0.4
                                               0
                                                       1 3425
                                                                 1
                                                                     1887.0
            4 20.8 1957.6
                                                       0 4017
                                                                     1936.8
   13
                           0.0
                                    1.0
                                               0
            4 21.8 1958.6
                                                       0 4017
                                                                     1936.8
    15
            4 25.8 1962.6 5.0
                                   14.2
                                               0
                                                       0 4017
                                                                 2
                                                                     1936.8
                                                                                    2
                                                                                    2
            4 40.0 1976.8 19.2
                                    0.8
                                                       0 4017
                                                                 2
                                                                     1936.8
   16
                                              0
                                                       0 4017
       on of follow4up40me8sp1977.6 20.0
                                                                     1936.8
```

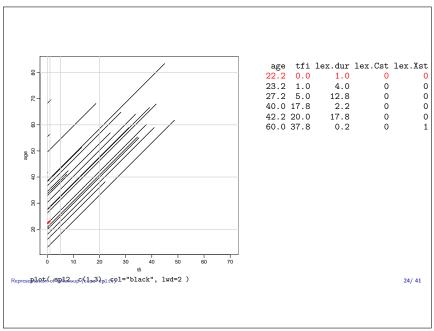
```
Split on another timescale
   > spl2 <- splitLexis( spl1, time.scale="tfi",
                               breaks=c(0,1,5,20,100) )
   > round( spl2, 1 )
                     per tfi lex.dur lex.Cst lex.Xst
                                                         id sex birthdat contrast inje
      lex.id
              age
           1 22.2 1938.8 0.0
                                 1.0
                                                            2
                                             0
                                                     0
                                                          1
                                                                  1916.6
            1 23.2 1939.8
                                             0
                          1.0
                                   4.0
                                                     0
                                                                  1916.6
             27.2 1943.8
           1 40.0 1956.6 17.8
                                  2.2
                                             0
                                                     0
                                                          1
                                                              2
                                                                  1916.6
                                  17.8
           1 42.2 1958.8 20.0
                                             0
                                                     0
                                                          1
                                                                  1916.6
           1 60.0 1976.6 37.8
                                  0.2
                                                                  1916.6
                                             0
   6
           2 49.5 1945.8
                          0.0
                                  1.0
                                             0
                                                       640
                                                              2
                                                                  1896.2
                                                                                     19
   8
           2 50.5 1946.8
                          1.0
                                   4.0
                                             0
                                                     0
                                                        640
                                                              2
                                                                  1896.2
           2 54.5 1950.8
                                                     0 640
                          5.0
                                   5.5
                                             0
                                                                  1896.2
           2 60.0 1956.2 10.5
                                                       640
                                                              2
   11
           3 68.2 1955.2
                          0.0
                                   1.0
                                             0
                                                     0 3425
                                                                  1887.0
   12
           3 69.2 1956.2
                          1.0
                                   0.4
                                             0
                                                     1 3425
                                                                  1887.0
            4 20.8 1957.6
                                  1.0
   13
                          0.0
                                             0
                                                     0 4017
                                                                  1936.8
           4 21.8 1958.6
                          1.0
                                   4.0
                                             0
                                                     0 4017
                                                              2
                                                                  1936.8
                                                                                 2
           4 25.8 1962.6 5.0
4 40.0 1976.8 19.2
                                 14.2
0.8
   15
                                             0
                                                     0 4017
                                                              2
                                                                  1936.8
                                                                                 2
                                                     0 4017
   16
                                             0
                                                                  1936.8
       on of follow4up40me8sp1977.6 20.0
                                                     0 4017
                                                                  1936.8
```

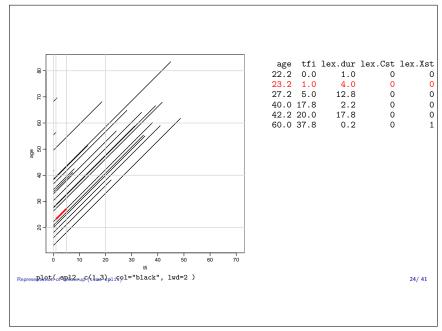
```
Split on another timescale
    > spl2 <- splitLexis( spl1, time.scale="tfi";
                                breaks=c(0,1,5,20,100) )
   > round( spl2, 1 )
                      per tfi lex.dur lex.Cst lex.Xst
                                                          id sex birthdat contrast inje
              age
           1 22.2 1938.8 0.0
                                 1.0
                                             0
                                                      0
                                                           1
                                                              2
                                                                   1916.6
            1 23.2 1939.8
                          1.0
                                   4.0
                                              0
                                                      0
                                                                    1916.6
            1 27.2 1943.8
                           5.0
                                  12.8
                                                                    1916.6
            1 40.0 1956.6 17.8
                                   2.2
                                              0
                                                               2
                                                                    1916.6
            1 42.2 1958.8 20.0
                                   17.8
                                              0
                                                      0
                                                           1
                                                               2
                                                                    1916.6
                                                                                      19
            1 60.0 1976.6 37.8
                                                               2
   6
                                   0.2
                                              0
                                                                    1916.6
            2 49.5 1945.8
                                   1.0
                                                        640
                                                                    1896.2
            2 50.5 1946.8
                                    4.0
                                                      0
                                                         640
            2 54.5 1950.8
                                                      0 640
                           5.0
                                   5.5
                                              0
                                                                    1896.2
            2 60.0 1956.2 10.5
                                   8.1
   10
    11
            3 68.2 1955.2
                           0.0
                                   1.0
                                              0
                                                      0 3425
                                                                    1887.0
           3 69.2 1956.2
4 20.8 1957.6
    12
                          1.0
                                   0.4
                                              0
                                                      1 3425
                                                                    1887.0
    13
                           0.0
                                   1.0
                                              0
                                                      0 4017
                                                                    1936.8
    14
            4 21.8 1958.6
                                    4.0
                                                      0 4017
                                                                    1936.8
                                                               2
    15
            4 25.8 1962.6 5.0
                                  14.2
                                              0
                                                      0 4017
                                                                    1936.8
                                                                                  2
            4 40.0 1976.8 19.2
                                                      0 4017
                                   0.8
   16
                                              0
                                                                    1936.8
   ed: Ition of follow 4 up 4 Q ne 8 sp 1 9 7 7 . 6 20 . 0
                                  14.5
                                                      0 4017
                                                                    1936.8
```

```
Split on another timescale
    > spl2 <- splitLexis( spl1, time.scale="tfi"
                                 breaks=c(0,1,5,20,100))
   > round( spl2, 1 )
           id age per tfi
1 22.2 1938.8 0.0
1 23.2 1939.8 1.0
                      per tfi lex.dur lex.Cst lex.Xst
      lex.id
                                                           id sex birthdat contrast inje
                                  1.0
                                                               2
                                               0
                                                       0
                                                                     1916.6
                                               0
                                                       0
                                                                     1916.6
                                                            1
            1 27.2 1943.8
                           5.0
                                   12.8
                                                                     1916.6
                                   2.2
17.8
            1 40.0 1956.6 17.8
                                               0
                                                                2
                                                                     1916.6
                                                                                        19
            1 42.2 1958.8 20.0
   5
                                               0
                                                       0
                                                            1
                                                                     1916.6
            1 60.0 1976.6 37.8
                                    0.2
                                                                     1916.6
   6
                                               0
            2 49.5 1945.8
                                    1.0
                                                          640
   8
            2 50.5 1946.8
                           1.0
                                    4.0
                                               0
                                                       0
                                                          640
                                                                2
                                                                     1896.2
                                                                2
   9
            2 54.5 1950.8
                           5.0
                                    5.5
                                               0
                                                       0
                                                          640
                                                                     1896.2
                                                                                        19
   10
            2 60.0 1956.2 10.5
                                    8.1
                                               0
                                                                     1896.2
            3 68.2 1955.2
3 69.2 1956.2
                                                                     1887.0
                           0.0
                                    1.0
                                                       0 3425
    12
                           1.0
                                    0.4
                                               0
                                                       1 3425
                                                                     1887.0
            4 20.8 1957.6
   13
                           0.0
                                    1.0
                                               0
                                                       0 4017
                                                                     1936.8
            4 21.8 1958.6
                                                       0 4017
                                                                     1936.8
    15
            4 25.8 1962.6 5.0
                                   14.2
                                               0
                                                       0 4017
                                                                2
                                                                     1936.8
                                                                                    2
                                                                                    2
            4 40.0 1976.8 19.2
                                    0.8
                                                       0 4017
                                                                     1936.8
   16
                                               0
       of follow4up40me8sp1977.6 20.0
                                                       0 4017
                                                                     1936.8
```

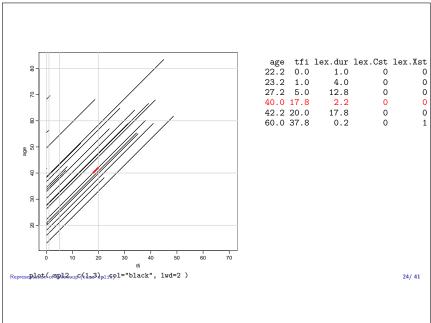
```
Split on another timescale
   > spl2 <- splitLexis( spl1, time.scale="tfi",
                               breaks=c(0,1,5,20,100) )
   > round( spl2, 1 )
                     per tfi lex.dur lex.Cst lex.Xst
                                                        id sex birthdat contrast inje
              age
           1 22.2 1938.8 0.0
                                1.0
                                                            2
                                            0
                                                     Ω
                                                         1
                                                                 1916.6
                                                                                1
           1 23.2 1939.8
                          1.0
                                  4.0
                                            0
                                                                  1916.6
                                                     0
           1 27.2 1943.8
                                 12.8
           1 40.0 1956.6 17.8
                                  2.2
                                            0
                                                     0
                                                         1
                                                             2
                                                                  1916.6
                                                                                1
                                 17.8
   5
           1 42.2 1958.8 20.0
                                            0
                                                     0
                                                         1
                                                             2
                                                                  1916.6
                                                                                    19
           1 60.0 1976.6 37.8
                                  0.2
                                            0
                                                                  1916.6
   6
           2 49.5 1945.8
                          0.0
                                  1.0
                                            0
                                                     0
                                                       640
                                                             2
                                                                  1896.2
   8
           2 50.5 1946.8
                          1.0
                                   4.0
                                            0
                                                     0
                                                       640
                                                             2
                                                                  1896.2
                                                                                    19
19
           2 54.5 1950.8
                                                     0
                          5.0
                                  5.5
                                            0
                                                       640
                                                                  1896.2
           2 60.0 1956.2 10.5
                                                      640
                                                             2
                                                                  1896.2
   11
           3 68.2 1955.2
                          0.0
                                  1.0
                                            0
                                                     0 3425
                                                                  1887.0
   12
           3 69.2 1956.2
                          1.0
                                  0.4
                                            0
                                                     1 3425
                                                                  1887.0
           4 20.8 1957.6
                                  1.0
                                                     0 4017
   13
                                                                  1936.8
           4 21.8 1958.6
                                   4.0
                                                     0 4017
                                                                  1936.8
   15
           4 25.8 1962.6 5.0
                                 14.2
                                                     0 4017
                                                                  1936.8
           4 40.0 1976.8 19.2
   16
                                  0.8
                                                     0 4017
                                                                  1936.8
    147tion of followAup4Qme8sp1977.6 20.0
                                                     0 4017
```

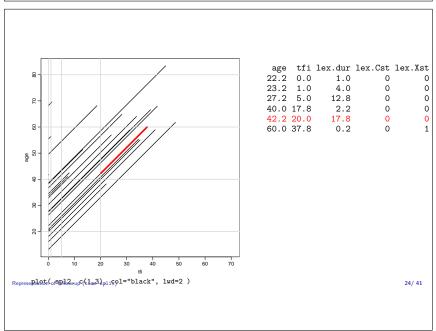


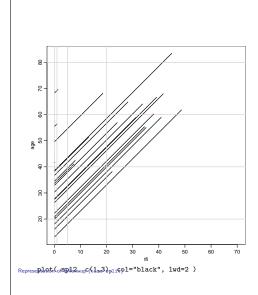












age	tfi	lex.dur	lex.Cst	lex.Xst
22.2	0.0	1.0	0	0
23.2	1.0	4.0	0	0
27.2	5.0	12.8	0	0
40.0	17.8	2.2	0	0
42.2	20.0	17.8	0	0
60.0	37.8	0.2	0	1

24/ 41

Likelihood for a constant rate

► This setup is for a situation where it is assumed that rates are constant in each of the intervals.

Representation of follow-up (time-split)

25/ 41

Likelihood for a constant rate

- ► This setup is for a situation where it is assumed that rates are constant in each of the intervals.
- ► Each observation in the dataset contributes a term to the likelihood.

Representation of follow-up (time-split)

Likelihood for a constant rate

- ► This setup is for a situation where it is assumed that rates are constant in each of the intervals.
- ► Each observation in the dataset contributes a term to the likelihood.
- ► Each term looks like a contribution from a Possion variate (albeit with values only 0 or 1)

Representation of follow-up (time-split)

25/ 41

Likelihood for a constant rate

- ► This setup is for a situation where it is assumed that rates are constant in each of the intervals.
- Each observation in the dataset contributes a term to the likelihood.
- ► Each term looks like a contribution from a Possion variate (albeit with values only 0 or 1)
- ▶ Rates can vary along several timescales simultaneously.

Representation of follow-up (time-split)

25/ 41

Likelihood for a constant rate

- ► This setup is for a situation where it is assumed that rates are constant in each of the intervals.
- ► Each observation in the dataset contributes a term to the likelihood.
- ► Each term looks like a contribution from a Possion variate (albeit with values only 0 or 1)
- ▶ Rates can vary along several timescales simultaneously.
- ► Models can include fixed covariates, as well as the timescales (the left end-points of the intervals) as continuous variables.

Representation of follow-up (time-split)

Likelihood for a constant rate

- ► This setup is for a situation where it is assumed that rates are constant in each of the intervals.
- ► Each observation in the dataset contributes a term to the likelihood.
- ► Each term looks like a contribution from a Possion variate (albeit with values only 0 or 1)
- ▶ Rates can vary along several timescales simultaneously.
- ► Models can include fixed covariates, as well as the timescales (the left end-points of the intervals) as continuous variables.
- ▶ The latter is where we will need splines.

Representation of follow-up (time-split)

25/ 41

The Poisson likelihood for split data

▶ Split records (one per **p**erson-**i**nterval (p, i)):

$$\sum_{p,i} (d_{pi}\log(\lambda) - \lambda y_{pi}) = D\log(\lambda) - \lambda Y$$

Representation of follow-up (time-split)

26/ 41

The Poisson likelihood for split data

▶ Split records (one per **p**erson-**i**nterval (p, i)):

$$\sum_{p,i} (d_{pi}\log(\lambda) - \lambda y_{pi}) = D\log(\lambda) - \lambda Y$$

Assuming that the death indicator $(d_{pi} \in \{0,1\})$ is Poisson, a model with with offset $\log(y_{pi})$ will give the same result.

Representation of follow-up (time-split)

The Poisson likelihood for split data

▶ Split records (one per **p**erson-**i**nterval (p, i)):

$$\sum_{p,i} (d_{pi}\log(\lambda) - \lambda y_{pi}) = D\log(\lambda) - \lambda Y$$

- Assuming that the death indicator $(d_{pi} \in \{0,1\})$ is Poisson, a model with with offset $\log(y_{pi})$ will give the same result.
- If we assume that rates are constant we get the simple expression with $(D,\,Y)$

Representation of follow-up (time-split)

26/ 41

The Poisson likelihood for split data

▶ Split records (one per **p**erson-**i**nterval (p, i)):

$$\sum_{p,i} (d_{pi}\log(\lambda) - \lambda y_{pi}) = D\log(\lambda) - \lambda Y$$

- Assuming that the death indicator $(d_{pi} \in \{0,1\})$ is Poisson, a model with with offset $\log(y_{pi})$ will give the same result.
- If we assume that rates are constant we get the simple expression with $(D,\,Y)$
- ... but the split data allows models that assume different rates for different (d_{pi}, y_{pi}) , so rates can vary **within** a person's follow-up.

Representation of follow-up (time-split)

26/ 41

Where is (d_{pi}, y_{pi}) in the split data?

```
> spl1 <- splitLexis( thL , breaks=seq(0,100,20) , time.scale="age" )
> spl2 <- splitLexis( spl1, breaks=c(0,1,5,20,100), time.scale="tfi" )
> options( digits=5 )
> spl2[1:10,1:11]
                 age per tfi
22.182 1938.8 0.000
                                                       lex.dur lex.Cst lex.Xst id sex birthdat contrast 1.00000 0 0 1 2 1916.6 1
                 23.182 1939.8
                                           1.000
                                                        4.00000
                                                                                               0
                                                                                                                   1916.6
                 27.182 1943.8 5.000
40.000 1956.6 17.818
                                           5.000 12.81793
                                                                                                                   1916.6
              1 42.182 1958.8 20.000 17.81793
1 60.000 1976.6 37.818 0.17796
                                                                                                                   1916.6
             2 16.063 1943.9
2 17.063 1944.9
                                          0.000
                                                                                                                  1927.8
1927.8
                                                        1,00000
                                                        2.93703
             2 20.000 1947.8 3.937 1.06297
2 21.063 1948.9 5.000 15.00000
```

— and what are covariates for the rates?

Representation of follow-up (time-split)

Analysis of results

▶ d_{pi} — events in the variable: lex.Xst: In the model as response: lex.Xst==1

Representation of follow-up (time-split)

28/ 41

Analysis of results

- ▶ d_{pi} events in the variable: lex.Xst: In the model as response: lex.Xst==1
- ▶ y_{pi} risk time: lex.dur (duration): In the model as offset $\log(y)$, $\log(\text{lex.dur})$.

Representation of follow-up (time-split)

28/41

Analysis of results

- ▶ d_{pi} events in the variable: lex.Xst: In the model as response: lex.Xst==1
- y_{pi} risk time: lex.dur (duration): In the model as offset $\log(y)$, $\log(\text{lex.dur})$.
- ► Covariates are:

Representation of follow-up (time-split)

Analysis of results

- ▶ d_{pi} events in the variable: lex.Xst: In the model as response: lex.Xst==1
- ▶ y_{pi} risk time: lex.dur (duration): In the model as offset $\log(y)$, $\log(\text{lex.dur})$.
- ► Covariates are:
 - timescales (age, period, time in study)

Representation of follow-up (time-split)

28/ 41

Analysis of results

- ▶ d_{pi} events in the variable: lex.Xst: In the model as response: lex.Xst==1
- ▶ y_{pi} risk time: lex.dur (duration): In the model as offset $\log(y)$, $\log(\text{lex.dur})$.
- Covariates are:
 - ▶ timescales (age, period, time in study)
 - other variables for this person (constant or assumed constant in each interval).

Representation of follow-up (time-split)

28/ 41

Analysis of results

- ▶ d_{pi} events in the variable: lex.Xst: In the model as response: lex.Xst==1
- ▶ y_{pi} risk time: lex.dur (duration): In the model as offset $\log(y)$, $\log(\text{lex.dur})$.
- ► Covariates are:
 - timescales (age, period, time in study)
 - other variables for this person (constant or assumed constant in each interval).
- ▶ Model rates using the covariates in glm:
 - no difference between time-scales and other covariates.

Representation of follow-up (time-split)

Fitting a simple model

Representation of follow-up (time-split)

29/ 41

30/ 41

Fitting a simple model

SMR

Bendix Carstensen

Representation of follow-up

IARC, Lyon,

June 2018

http://BendixCarstensen.com/SPE

SMR

Cohorts where all are exposed

When there is no comparison group we may ask: Do mortality rates in cohort differ from those of an **external** population, for example:

Rates from:

Occupational cohorts

compared with reference rates obtained from:

SMR (SMR) 31/41

Cohorts where all are exposed

When there is no comparison group we may ask: Do mortality rates in cohort differ from those of an **external** population, for example:

Rates from:

- Occupational cohorts
- Patient cohorts

compared with reference rates obtained from:

SMR (SMR) 31/41

Cohorts where all are exposed

When there is no comparison group we may ask: Do mortality rates in cohort differ from those of an **external** population, for example:

Rates from:

- Occupational cohorts
- Patient cohorts

compared with reference rates obtained from:

▶ Population statistics (mortality rates)

SMR (SMR) 31/ 41

Cohorts where all are exposed

When there is no comparison group we may ask: Do mortality rates in cohort differ from those of an **external** population, for example:

Rates from:

- Occupational cohorts
- Patient cohorts

compared with reference rates obtained from:

- Population statistics (mortality rates)
- ► Hospital registers (disease rates)

SMR (SMR)

31/ 41

Cohort rates vs. population rates: RSR

▶ Additive: $\lambda(a) = \delta(a) + \lambda_P(a)$

SMR (SMR)

32/ 41

Cohort rates vs. population rates: RSR

- ▶ Additive: $\lambda(a) = \delta(a) + \lambda_P(a)$
- Note that the survival (since $a = a_0$, say) is:

$$S(a) = \exp\left(-\int_{a_0}^a \delta(a) + \lambda_P(a) \, da\right)$$
$$= \exp\left(-\int_{a_0}^a \delta(a) \, da\right) \times S_P(a)$$
$$\Rightarrow r(a) = S(a)/S_P(a) = \exp\left(-\int_{a_0}^a \delta(a) \, da\right)$$

SMR (SMR)

Cohort rates vs. population rates: RSR

- Additive: $\lambda(a) = \delta(a) + \lambda_P(a)$
- Note that the survival (since $a=a_0$, say) is:

$$S(a) = \exp\left(-\int_{a_0}^a \delta(a) + \lambda_P(a) \, da\right)$$
$$= \exp\left(-\int_{a_0}^a \delta(a) \, da\right) \times S_P(a)$$
$$\Rightarrow r(a) = S(a)/S_P(a) = \exp\left(-\int_{a_0}^a \delta(a) \, da\right)$$

► Additive model for rates ⇔ Relative survival model.

SMR (SMR) 32/ 41

Cohort rates vs. population rates: SMR

• Multiplicative: $\lambda(a) = \theta \lambda_P(a)$

SMR (SMR) 33/41

Cohort rates vs. population rates: SMR

- ▶ Multiplicative: $\lambda(a) = \theta \lambda_P(a)$
- ► Cohort rates proportional to reference rates: $\lambda(a) = \theta \times \lambda_P(a) \theta$ the same in all age-bands.

SMR (SMR) 33/41

Cohort rates vs. population rates: SMR

- Multiplicative: $\lambda(a) = \theta \lambda_P(a)$
- ▶ Cohort rates proportional to reference rates: $\lambda(a) = \theta \times \lambda_P(a)$ θ the same in all age-bands.
- $ightharpoonup D_a$ deaths during Y_a person-years an age-band a gives the likelihood:

$$D_a \log(\lambda(a)) - \lambda(a) Y_a = D_a \log(\theta \lambda_P(a)) - \theta \lambda_P(a) Y_a$$

=
$$D_a \log(\theta) + D_a \log(\lambda_P(a)) - \theta(\lambda_P(a) Y_a)$$

SMR (SMR) 33/ 41

Cohort rates vs. population rates: SMR

- ▶ Multiplicative: $\lambda(a) = \theta \lambda_P(a)$
- ▶ Cohort rates proportional to reference rates: $\lambda(a) = \theta \times \lambda_P(a)$ θ the same in all age-bands.
- $lackbox{D}_a$ deaths during Y_a person-years an age-band a gives the likelihood:

$$D_a \log(\lambda(a)) - \lambda(a) Y_a = D_a \log(\theta \lambda_P(a)) - \theta \lambda_P(a) Y_a$$

=
$$D_a \log(\theta) + D_a \log(\lambda_P(a)) - \theta(\lambda_P(a) Y_a)$$

▶ The constant $D_a \log(\lambda_P(a))$ does not involve θ , and so can be dropped.

SMR (SMR) 33/ 41

 $\lambda_P(a) Y_a = E_a$ is the "expected" number of cases in age a, so the log-likelihood contribution from age a is:

$$D_a \log(\theta) - \theta(\lambda_P(a) Y_a) = D_a \log(\theta) - \theta(E_a)$$

SMR (SMR) 34/ 41

 $\lambda_P(a) Y_a = E_a$ is the "expected" number of cases in age a, so the log-likelihood contribution from age a is:

$$D_a \log(\theta) - \theta(\lambda_P(a) Y_a) = D_a \log(\theta) - \theta(E_a)$$

▶ **Note:** $\lambda_P(a)$ is known for all values of a.

SMR (SMR) 34/ 41

 $\lambda_P(a) Y_a = E_a$ is the "expected" number of cases in age a, so the log-likelihood contribution from age a is:

$$D_a \log(\theta) - \theta(\lambda_P(a) Y_a) = D_a \log(\theta) - \theta(E_a)$$

- ▶ **Note:** $\lambda_P(a)$ is known for all values of a.
- The log-likelihood is similar to the log-likelihood for a rate, except that person-years Y is replaced by expected numbers, E, so:

$$\hat{\theta} = \frac{D}{\lambda_P Y} = \frac{D}{E} = \frac{\text{Observed}}{\text{Expected}} = \text{SMR}$$

SMR (SMR) 34/ 41

 $\lambda_P(a) Y_a = E_a$ is the "expected" number of cases in age a, so the log-likelihood contribution from age a is:

$$D_a \log(\theta) - \theta(\lambda_P(a) Y_a) = D_a \log(\theta) - \theta(E_a)$$

- ▶ **Note:** $\lambda_P(a)$ is known for all values of a.
- The log-likelihood is similar to the log-likelihood for a rate, except that person-years Y is replaced by expected numbers, E, so:

$$\hat{\theta} = \frac{D}{\lambda_P Y} = \frac{D}{E} = \frac{\text{Observed}}{\text{Expected}} = \text{SMR}$$

► SMR is the maximum likelihood estimator of the relative mortality in the cohort.

SMR (SMR) 34/ 41

Modelling the SMR in practise

► As for the rates, the SMR can be modelled using individual data.

SMR (SMR)

35/ 41

Modelling the SMR in practise

- As for the rates, the SMR can be modelled using individual data.
- ▶ Response is d_i , the event indicator (lex.Xst).

SMR (SMR)

35/ 41

Modelling the SMR in practise

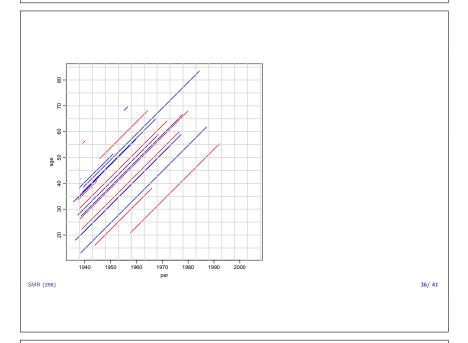
- As for the rates, the SMR can be modelled using individual
- ▶ Response is d_i , the event indicator (lex.Xst).
- ▶ log-offset is the expected value for each piece of follow-up, $e_i = y_i \times \lambda_P$ (lex.dur * rate)

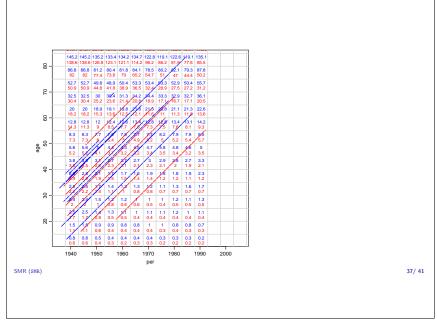
SMR (SMR)

Modelling the SMR in practise

- As for the rates, the SMR can be modelled using individual data
- ▶ Response is d_i , the event indicator (lex.Xst).
- ▶ log-offset is the expected value for each piece of follow-up, $e_i = y_i \times \lambda_P$ (lex.dur * rate)
- λ_P is the population rate corresponding to the age, period and sex of the follow-up period y_i .

SMR (SMR) 35/41





Split the data to fit with population data

```
> tha <- splitLexis(thL, time.scale="age", breaks=seq(0,90,5) )
> thap <- splitLexis(tha, time.scale="per", breaks=seq(1938,2038,5) )
> dim( thap )

[1] 23094 21

SMR (SMR) 38/41
```

Split the data to fit with population data

```
> tha <- splitLexis(thL, time.scale="age", breaks=seq(0,90,5) )
> thap <- splitLexis(tha, time.scale="per", breaks=seq(1938,2038,5) )
> dim( thap )

[1] 23094 21

Create variables to fit with the population data

> thap$agr <- timeBand( thap, "age", "left" )
> thap$cal <- timeBand( thap, "per", "left")
> round( thap[1:5,c("lex.id", "age", "agr", "per", "cal", "lex.dur", "lex.Xst", "sex")],

lex.id age agr per cal lex.dur lex.Xst sex
1 1 22.18 20 1938.79 1938 2.82 0 2
2 1 25.00 25 1941.61 1938 1.39 0 2
3 1 26.39 25 1943.00 1943 3.61 0 2
4 1 30.00 30 1946.61 1943 1.39 0 2
5 1 31.39 30 1948.00 1948 3.61 0 2
```

```
> data( gmortDK )
> gmortDK[1:6,1:6]

agr per sex risk dt rt
1 0 38 1 996019 14079 14.135
2 5 38 1 802334 726 0.905
3 10 38 1 753017 600 0.797
4 15 38 1 773393 1167 1.509
5 20 38 1 813882 2031 2.495
6 25 38 1 789990 1862 2.357

> gmortDK$cal <- gmortDK$per+1900
> #
> thapx <- merge( thap, gmortDK[,c("agr","cal","sex","rt")] )
> #
> thapx$E <- thapx$lex.dur * thapx$rt / 1000</pre>
SMR (SMR)
```

Nested case-control studies and case-cohort studies

Tuesday, 19 June, 2018
Esa Läärä & Martyn Plummer

Statistical Practice in Epidemiology with R International Agency for Research on Cancer Lyon, France, 14 to 20 June, 2018

Points to be covered

- ► Outcome-dependent sampling designs a.k.a. case-control studies *vs.* full cohort design.
- ▶ **Nested case-control** study (NCC): sampling of controls from risk-sets during follow-up of study population.
- ▶ **Matching** in selection of control subjects in NCC.
- ► R tools for NCC: function ccwc() in Epi for sampling controls, and clogit() in survival for model fitting.
- ► Case-cohort study (CC): sampling a subcohort from the whole cohort as it is at the start of follow-up.
- ▶ R tools for CC model fitting: function cch() in survival

Nested case-control studies and case-cohort studies

0/1

Example: Smoking and cervix cancer

Study population, measurements, follow-up, and sampling design

- ▶ Joint cohort of $N \approx$ 500 000 women from 3 Nordic biobanks.
- ▶ Follow-up: From variable entry times since 1970s till 2000.
- ▶ For each of 200 cases, 3 controls were sampled; matched for biobank, age $(\pm 2 \text{ y})$, and time of entry $(\pm 2 \text{ mo})$.
- ▶ Frozen sera of cases and controls analyzed for cotinine etc.

Main result: Adjusted OR = 1.5 (95% CI 1.1 to 2.3) for high (>242.6 ng/ml) vs. low (<3.0 ng/ml) cotinine levels.

Simen Kapeu et al. (2009) Am J Epidemiol

Nested case-control studies and case-cohort studies

Example: USF1 gene and CVD

Study population, measurements, follow-up, and sampling design

- ▶ Two FINRISK cohorts, total $N \approx 14000$ M & F, 25-64 y.
- ▶ Baseline health exam, questionnaire & blood specimens at recruitment in the 1990s Follow-up until the end of 2003.
- Subcohort of 786 subjects sampled.
- ▶ 528 incident cases of CVD; 72 of them in the subcohort.
- Frozen blood from cases and subchort members genotyped.

Main result: Female carriers of a high risk haplotype had a 2-fold hazard of getting CVD [95% CI: 1.2 to 3.5]

Komulainen et al. (2006) PLoS Genetics

Nested case-control studies and case-cohort studies

2/1

Full cohort design & its simple analysis

- ► Full cohort design: Data on exposure variables obtained for all subjects in a large study population.
- ► Summary data for crude comparison:

	Exposed	Unexposed	Total
Cases	D_1	D_0	D
Non-cases	B_1	B_0	B
Group size at start	N_1	N_0	N
Follow-up times	Y_1	Y_0	Y

► Crude estimation of hazard ratio $\rho = \lambda_1/\lambda_0$: incidence rate ratio IR, with standard error of log(IR):

$$\widehat{\rho} = \mathsf{IR} = \frac{D_1/Y_1}{D_0/Y_0} \qquad \mathsf{SE}[\log(\mathsf{IR})] = \sqrt{\frac{1}{D_1} + \frac{1}{D_0}}.$$

▶ More refined analyses: Poisson or Cox regression.

Nested case-control studies and case-cohort studies

3/1

Problems with full cohort design

Obtaining exposure and covariate data

- ▶ Slow and expensive in a big cohort.
- Easier with questionnaire and register data,
- Extremely costly and laborious for e.g.
 - measurements from biological specimens, like genotyping, antibody assays, etc.
 - dietary diaries & other manual records

Can we obtain equally valid estimates of hazard ratios etc. with nearly as good precision by some other strategies?

Yes – we can!

Nested case-control studies and case-cohort studies

Estimation of hazard ratio

The incidence rate ratio can be expressed:

$$\label{eq:IR} {\rm IR} = \frac{D_1/D_0}{Y_1/Y_0} = \frac{{\rm cases: \ exposed \ / \ unexposed}}{{\rm person-times: \ exposed \ / \ unexposed}}$$

- $= \frac{exp're \ odds \ \text{in cases}}{exp're \ odds \ \text{in p-times}} = exposure \ odds \ ratio \ (EOR)$
- = Exposure distribution in cases vs. that in cohort!

Implication for more efficient design:

- ▶ Numerator: Collect exposure data on all cases.
- ▶ Denominator: Estimate the ratio of person-times Y_1/Y_0 of the exposure groups in the cohort by **sampling** "control" subjects, on whom exposure is measured.

Nested case-control studies and case-cohort studies

5/1

Case-control designs

General principle: Sampling of subjects from a given study population is *outcome-dependent*.

Data on risk factors are collected separately from

- (I) Case group: All (or high % of) the D subjects in the study population (total N) encountering the outcome event during the follow-up.
- (II) Control group:
 - ▶ Random sample (simple or stratified) of C subjects (C << N) from the population.</p>
 - ► Eligible controls must be bf risk (alive, under follow-up & free of outcome) at given time(s).

Nested case-control studies and case-cohort studies

6/1

Study population in a case-control study?

Ideally: The study population comprises subjects who $\underline{would\ be}$ included as cases, $\underline{if\ they\ got}$ the outcome in the study

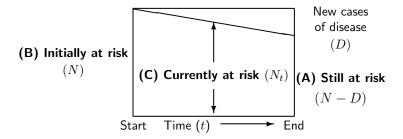
- Cohort-based studies: cohort or closed population of well-identified subjects under intensive follow-up for outcomes (e.g. biobank cohorts).
- ► Register-based studies: **open** or **dynamic** population in a region covered by a disease register.
- ► Hospital-based studies: dynamic catchment population of cases may be hard to identify (e.g. hospitals in US).

In general, the role of control subjects is to represent the distribution of person-times by exposure variables in the underlying population from which the cases emerge.

Nested case-control studies and case-cohort studies

Sampling of controls – alternative frames

Illustrated in a simple longitudinal setting: Follow-up of a cohort over a fixed risk period & no censoring.



Rodrigues, L. & Kirkwood, B.R. (1990). Case-control designs of common diseases . . . *Int J Epidemiol* **19**: 205-13.

Nested case-control studies and case-cohort studies

8/1

Sampling schemes or designs for controls

- (A) Exclusive or traditional, "case-noncase" sampling
 - ► Controls chosen from those N-D subjects still at risk (healthy) <u>at the end</u> of the risk period (follow-up).
- (B) Inclusive sampling or case-cohort design (CC)
 - ► The control group *subcohort* is a random sample of the whole cohort (N) <u>at start</u>.
- (C) Concurrent sampling or density sampling
 - ► Controls drawn during the follow-up
 - ► Risk-set or time-matched sampling: A set of controls is sampled from the *risk set* at each time t of diagnosis of a new case

a.k.a. nested case-control design (NCC)

Nested case-control studies and case-cohort studies

9/1

Nested case-control – two meanings

▶ In some epidemiologic books, the term "nested case-control study" (NCC) covers jointly all variants of sampling: (A), (B), and (C), from a cohort.

Rothman *et al.* (2008): *Modern Epidemology, 3rd Ed.* Dos Santos Silva (1999): *Cancer Epidemiology.* Ch 8-9

▶ In biostatistical texts NCC typically refers only to the variant of concurrent or density sampling **(C)**, in which *risk-set* or *time-matched* sampling is employed.

Borgan & Samuelsen (2003) in *Norsk Epidemiologi* Langholz (2005) in *Encyclopedia of Biostatistics*.

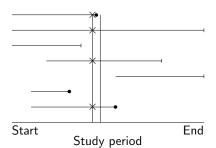
We shall follow the biostatisticians!

Nested case-control studies and case-cohort studies

NCC: Risk-set sampling with staggered entry

Sampling frame to select controls for a given case: Members (\times) of the **risk set** at t_k , *i.e.* the population at risk at the time of diagnosis t_k of case k.

Case
Healthy until end
Early censoring
Late entry
Too late entry
Early case
Later case



Sampled risk set contains the case and the control subjects randomly sampled from the non-cases in the risk set at t_k .

Nested case-control studies and case-cohort studies

11/1

Use of different sampling schemes

- (A) Exclusive sampling, or "textbook" case-control design
 - Almost exclusively(!) used in studies of epidemics.
 - (Studies on birth defects with prevalent cases.)
- (B) Inclusive sampling or case-cohort design
 - ► Good esp. for multiple outcomes, if measurements of risk factors from stored material remain stable.
- **(C)** Concurrent or density sampling (without or with time-matching, *i.e.* NCC)
 - ▶ The only logical design in an open population.
 - ▶ Most popular in chronic diseases (Knol et al. 2008).

Designs **(B)** and **(C)** allow valid estimation of hazard ratios ρ without any "rare disease" assumption.

Nested case-control studies and case-cohort studies

12/1

Case-control studies: Textbooks vs. real life

- Many epi texts focus on the traditional design:
 exclusive sampling of controls, ignoring other designs.
- ▶ Claim: "Odds ratio is the only estimable parameter."
- ➤ Yet, over 60% of published case-control studies apply concurrent sampling or density sampling of controls from an open or dynamic population.
- Thus, the parameter most often estimated is the hazard ratio (HR) or rate ratio ρ.
- ▶ Still, 90% of authors really estimating HR, reported as having estimated an OR (e.g. Simen Kapeu et al.)

Knol et al. (2008). What do case-control studies estimate? Am J Epidemiol **168**: 1073-81.

Nested case-control studies and case-cohort studies

Exposure odds ratio - estimate of what?

► Crude summary of case-control data

	exposed	unexposed	total
cases	D_1	D_0	D
controls	C_1	C_0	C

▶ Depending on study base & sampling strategy, the empirical exposure odds ratio (EOR)

$${\rm EOR} = \frac{D_1/D_0}{C_1/C_0} = \frac{{\rm cases: \ exposed \ / \ unexposed}}{{\rm controls: \ exposed \ / \ unexposed}}$$

is a consistent estimator of

- (a) hazard ratio, (b) risk ratio, (c) risk odds ratio,
- (d) prevalence ratio, or (e) prevalence odds ratio
- ▶ **NB.** In case-cohort studies with variable follow-up times C_1/C_0 is substituted by $\widehat{Y}_1/\widehat{Y}_0$, from estimated p-years.

Nested case-control studies and case-cohort studies

14/1

Precision and efficiency

With exclusive **(A)** or concurrent **(C)** sampling of controls (unmatched), estimated variance of log(EOR) is

$$\begin{split} \widehat{\text{var}}[\log(\text{EOR})] &= \frac{1}{D_1} + \frac{1}{D_0} + \frac{1}{C_1} + \frac{1}{C_0} \\ &= \text{cohort variance} + \text{sampling variance} \end{split}$$

- ▶ Depends basically on the numbers of cases, when there are ≥ 4 controls per case.
- ▶ Is not much bigger than $1/D_1 + 1/D_0 = \text{variance}$ in a full cohort study with same numbers of cases.
- \Rightarrow Usually < 5 controls per case is enough.
- ⇒ These designs are very cost-efficient!

Nested case-control studies and case-cohort studies

15/1

Estimation in concurrent or density sampling

- ▶ To put it simply: Exposure odds C_1/C_0 among controls = consistent estimator of exposure odds Y_1/Y_0 of person-times.
- ► Therefore, crude EOR = $(D_1/D_0)/(C_1/C_0)$ = consistent estimator of hazard ratio $\rho = \lambda_1/\lambda_0$.
- ▶ Variance of log(EOR) estimated as above.
- ► Yet, with a closed population or cohort, stability of exposure distribution may be unrealistic.
- Solution: Time-matched sampling of controls from risk sets, i.e. NCC, & matched EOR to estimate HR.

Prentice & Breslow (1978), Greenland & Thomas (1982).

Nested case-control studies and case-cohort studies

Matching in case-control studies

- = **Stratified sampling** of controls, e.g. from the same region, sex, and age group as a given case
- ► Frequency matching or group matching: For cases in a specific stratum (e.g. same sex and 5-year age-group), a set of controls from a similar subgroup.
- ▶ Individual matching (1:1 or 1:m matching): For each case, choose 1 or more (rarely > 5) closely similar controls (e.g. same sex, age within ±1 year.
- ▶ NCC: Sampling from risk-sets implies time-matching at least. Additional matching for other factors possible.
- **CC**: Subcohort selection involves no matching with cases.

Nested case-control studies and case-cohort studies

17/1

Virtues of matching

- ▶ Increases *efficiency*, if the matching factors are both
 - (i) strong risk factors of the disease, and
 - (ii) correlated with the main exposure.
 - Major reason for matching.
- Confounding due to poorly quantified factors (sibship, neighbourhood, etc.) may be removed by close matching

 only if properly analyzed.
- ► Biobank studies: Matching for storage time, freeze-thaw cycle & analytic batch improves **comparability of measurements** from frozen specimens
 - → Match on the time of baseline measurements within the case's risk set.

Nested case-control studies and case-cohort studies

18/ 1

Warnings for overmatching

Matching a case with a control subject is a different issue than matching an unexposed subject to an exposed one in a cohort study — much trickier!

- ► Matching on an *intermediate* variable between exposure and outcome. ⇒ *Bias*!
- Matching on a surrogate or correlate of exposure, which is not a true risk factor.
 - \Rightarrow Loss of efficiency.
- → **Counter-matching:** Choose a control which is not similar to the case w.r.t a correlate of exposure.
 - ⇒ Increases efficiency!
 - Requires appropriate weighting in the analysis.

Nested case-control studies and case-cohort studies

Sampling matched controls for NCC using R

- ▶ Suppose key follow-up items are recorded for all subjects in a cohort, in which a NCC study is planned.
- ► Function ccwc() in package Epi can be used for risk-set sampling of controls. - Arguments:

Time of entry to follow-up entry: exit: Time of exit from follow-up

Status on exit (1 for case, 0 for censored)

origin: Origin of analysis time scale (e.g. time of birth) Number of controls to be selected for each case controls:

List of matching factors match:

data: Cohort data frame containing input variables

▶ Creates a data frame for a NCC study, containing the desired number of matched controls for each case.

Nested case-control studies and case-cohort studies

20/1

Analysis of matched studies

- ► Close matching induces a new parameter for each matched case-control set or stratum.
 - ⇒ unconditional logistic regression breaks down.
- Matching on well-defined variables (like age, sex) - include these factors as covariates.
- ▶ Matching on "soft" variables (like sibship) can be dealt with conditional logistic regression.
- ► Same method in matched designs (A), exclusive, and **(C)**, concurrent, but interpretation of β_i s differs:

(A) $\beta_j = \log$ of risk odds ratio (ROR), (C) $\beta_j = \log$ of hazard ratio (HR).

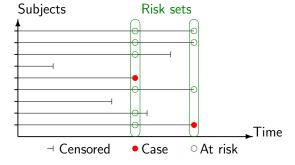
Nested case-control studies and case-cohort studies

21/1

Full cohort design: Follow-up & risk sets

Each member of the cohort provides exposure data for all cases, as long as this member is at risk, i.e.

(i) alive, (ii) not censored & (iii) free from outcome.

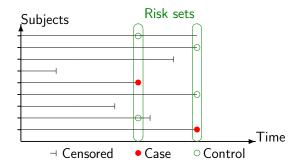


Times of new cases define the **risk-sets**.

Nested case-control studies and case-cohort studies

Nested case-control (NCC) design

Whenever a new case occurs, a set of controls (here 2/case) are sampled from its risk set.



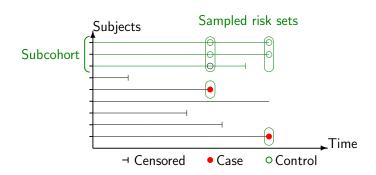
NB. A control once selected for some case can be selected as a control for another case, and can later on become a case, too.

Nested case-control studies and case-cohort studies

23/1

Case-cohort (CC) design

Subcohort: Sample of the whole cohort randomly selected at the outset. – Serves as reference group for all cases.



NB. A subcohort member can become a case, too.

Nested case-control studies and case-cohort studies

24/1

Modelling in NCC and other matched studies

Cox proportional hazards model:

$$\lambda_i(t, x_i; \beta) = \lambda_0(t) \exp(x_{i1}\beta_1 + \dots + x_{ip}\beta_p),$$

Estimation: partial likelihood $L^P = \prod_k L_k^P$:

$$L_k^P = \exp(\eta_{i_k}) / \sum_{i \in \widetilde{R}(t_k)} \exp(\eta_i),$$

where $\widetilde{R}(t_k) =$ sampled risk set at observed event time t_k , containing the case + sampled controls $(t_1 < \cdots < t_D)$

- \Rightarrow Fit stratified Cox model, with $\widetilde{R}(t_k)$'s as the strata.
- **⇔** Conditional logistic regression
 - function clogit() in survival, wrapper of coxph().

Nested case-control studies and case-cohort studies

Modelling case-cohort data

Cox's PH model $\lambda_i(t) = \lambda_0(t) \exp(\eta_i)$ again, but . . .

- ► Analysis of survival data relies on the theoretical principle that you *can't know the future*.
- ► Case-cohort sampling breaks this principle: cases are sampled based on what *is known* to be happening to them during follow-up.
- ▶ The union of cases and subcohort is a mixture
 - 1. random sample of the population, and
 - 2. "high risk" subjects who are certain to become cases.
- ⇒ Ordinary Cox partial likelihood is wrong.
- Overrepresentation of cases must be corrected for, by
 (I) weighting, or (II) late entry method.

Nested case-control studies and case-cohort studies

26/1

Correction method I - weighting

The method of **weighted partial likelihood** borrows some basics ideas from survey sampling.

- ullet Sampled risk sets $\widetilde{R}(t_k) = \{ {\it cases} \} \cup \{ {\it subcohort members} \}$ at risk at $t_k.$
- ▶ Weights:
 - -w = 1 for all cases (within and out of subcohort),
 - $-\ w = N_{
 m non-cases}/n_{
 m non-cases} = {
 m inverse} \ {
 m of} \ {
 m sampling-fraction} \ f \ {
 m for} \ {
 m selecting} \ {
 m a} \ {
 m non-case} \ {
 m to} \ {
 m to} \ {
 m to} \ {
 m color}$
- ▶ Function coxph() with option weights = w would provide consistent estimation of β parameters.
- ▶ However, the SEs must be corrected!
- ▶ R solution: Function cch() a wrapper of coxph() in package survival, with method = "LinYing".

Nested case-control studies and case-cohort studies

27/1

Comparison of NCC and CC designs

- Statistical efficiency
 - Broadly similar in NCC and CC with about same amounts of cases and controls.
- Statistical modelling and valid inference
 - Straightforward for both designs with appropriate software, now widely available for CC, too
- Analysis of outcome rates on several time scales?
- NCC: Only the time scale used in risk set definition can be the time variable t in the baseline hazard of PH model.
 - CC: Different choices for the basic time in PH model possible, because subcohort members are not time-matched to cases.

Nested case-control studies and case-cohort studies

Comparison of designs (cont'd)

Missing data

NCC: With close 1:1 matching, a case-control pair is lost, if either of the two has data missing on key exposure(s).

CC: Missingness of few data items is less serious.

Quality and comparability of biological measurements

NCC: Allows each case and its controls to be matched also for analytic batch, storage time, freeze-thaw cycle,

→ better comparability.

CC: Measurements for subcohort performed at different times than for cases \rightarrow differential quality & misclassification.

▶ Possibility for studying many diseases with same controls

NCC: Complicated, but possible if matching is not too refined.

CC: Easy, as no subcohort member is "tied" with any case.

Nested case-control studies and case-cohort studies

29/1

Conclusion

- "Case-controlling" is very cost-effective.
- ► Case-cohort design is useful especially when several outcomes are of interest, given that the measurements on stored materials remain stable during the study.
- ▶ Nested case-control design is better suited *e.g.* for studies involving biomarkers that can be infuenced by analytic batch, long-term storage, and freeze-thaw cycles.
- ► Matching helps in improving efficiency and in reducing bias but only if properly done.
- ▶ Handy R tools are available for all designs.

Nested case-control studies and case-cohort studies

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Summ

Some topics on causal inference

Krista Fischer

Estonian Genome Center, University of Tartu, Estonia

Statistical Practice in Epidemiology, Lyon 2018

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Sumr

How to define a causal effect?

Causal graphs, confounding and adjustment

Causal models for observational data

Instrumental variables estimation and Mendelian randomization

Summary and references

References

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Sumn

Statistical associations vs causal effects in epidemiology

Does the exposure (smoking level, obesity, etc) have a causal effect on the outcome (cancer diagnosis, mortality, etc)?

is not the same question as

Is the exposure associated with the outcome?

Conventional statistical analysis will answer the second one, but not necessarily the first.

Statistical associations vs causal effects in epidemiology

Does the exposure (smoking level, obesity, etc) have a causal effect on the outcome (cancer diagnosis, mortality, etc)?

is not the same question as

Is the exposure associated with the outcome?

Conventional statistical analysis will answer the second one, but not necessarily the first.

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Summ

Statistical associations vs causal effects in epidemiology

Does the exposure (smoking level, obesity, etc) have a causal effect on the outcome (cancer diagnosis, mortality, etc)?

is not the same question as

Is the exposure associated with the outcome?

Conventional statistical analysis will answer the second one, but not necessarily the first.

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥ 900

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Sum

What is a causal effect?

There is more than just one way to define it. A causal effect may be defined:

- ► At the individual level:

 Would my cancer risk be different if I were a (non-)smoker?
- At the population level: Would the population cancer incidence be different if the prevalence of smoking were different?
- ► At the *exposed subpopulation level*:
 Would the cancer incidence in smokers be different if they were nonsmokers?

None of these questions is "mathematical" enough to provide a mathematically correct definition of causal effect

What is a causal effect?

There is more than just one way to define it.

A causal effect may be defined:

- At the individual level:
 - Would my cancer risk be different if I were a (non-)smoker?
- ► At the population level:
 - Would the population cancer incidence be different if the prevalence of smoking were different?
- At the exposed subpopulation level: Would the cancer incidence in smokers be different if they were nonsmokers?

None of these questions is "mathematical" enough to provide a mathematically correct definition of causal effect

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Sum

What is a causal effect?

There is more than just one way to define it.

A causal effect may be defined:

- At the individual level:
 - Would my cancer risk be different if I were a (non-)smoker?
- At the population level:
 - Would the population cancer incidence be different if the prevalence of smoking were different?
- At the exposed subpopulation level: Would the cancer incidence in smokers be different if they were nonsmokers?

None of these questions is "mathematical" enough to provide a mathematically correct definition of causal effect

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Summ

What is a causal effect?

There is more than just one way to define it.

A causal effect may be defined:

- At the individual level:
 - Would my cancer risk be different if I were a (non-)smoker?
- At the population level:
 - Would the population cancer incidence be different if the prevalence of smoking were different?
- ► At the exposed subpopulation level:
 Would the cancer incidence in smokers be different if they
 were nonsmokers?

None of these questions is "mathematical" enough to provide a mathematically correct definition of causal effect

Causal effects and counterfactuals

- ► Defining the causal effect of an observed exposure always involves some counterfactual (what-if) thinking.
- The individual causal effect can be defined as the difference

$$Y(X = 1) - Y(X = 0)$$

- . where Y(1) = Y(X=1) and Y(0) = Y(X=0) are defined as individual's potential (counterfactual) outcomes if this individual's exposure level X were set to 1 or 0, respectively.
- Sometimes people (e.g J. Pearl) use the "do" notation to distinguish counterfactual variables from the observed ones: Y(do(X = 1)) and Y(do(X = 0)).

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Summ

Causal effects and counterfactuals

- ► Defining the causal effect of an observed exposure always involves some counterfactual (what-if) thinking.
- The individual causal effect can be defined as the difference

$$Y(X=1)-Y(X=0)$$

- . where Y(1)=Y(X=1) and Y(0)=Y(X=0) are defined as individual's potential (counterfactual) outcomes if this individual's exposure level X were set to 1 or 0, respectively.
- Sometimes people (e.g J. Pearl) use the "do" notation to distinguish counterfactual variables from the observed ones: Y(do(X = 1)) and Y(do(X = 0)).

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Summanum Causal models for observational data.

Causal effects and counterfactuals

- ▶ Defining the causal effect of an observed exposure always involves some counterfactual (what-if) thinking.
- The individual causal effect can be defined as the difference

$$Y(X = 1) - Y(X = 0)$$

- . where Y(1)=Y(X=1) and Y(0)=Y(X=0) are defined as individual's potential (counterfactual) outcomes if this individual's exposure level X were set to 1 or 0, respectively.
- Sometimes people (e.g J. Pearl) use the "do" notation to distinguish counterfactual variables from the observed ones: Y(do(X = 1)) and Y(do(X = 0)).

The "naïve" association analysis

▶ With a binary exposure *X*, compare average outcomes in exposed and unexposed populations:

$$E(Y|X=1) - E(Y|X=0)$$

Is cancer incidence different in smokers and nonsmokers?

▶ But mostly:

$$E(Y|X = 1) \neq E(Y(1))$$

Cancer risk in smokers is not the same as the potential cancer risk in the population if everyone were smoking

▶ Similarly:

$$E(Y|X=0)\neq E(Y(0))$$

In most cases there is always some unobserved confounding present and therefore the na ive analysis does not provide causal effect estimates.

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Summ

Counterfactual outcomes in different settings

- ► Randomized trials: probably the easiest setting to imagine *Y*(*X*) for different *X*
- "Actionable" exposures: smoking level, vegetable consumption, ... – potential interventions may alter exposure levels in future.
- Non-actionable exposures: e.g genotypes. It is difficult to ask "What if I had different genes?". Still useful concept to formalize genetic effects (heritability, attributable risk).
- Combinations: With X- a behavioral intervention level, Z-smoking level and Y-a disease outcome, one could formalize the effect of intervention on outcome by using Y(X, Z(X))

Outline How to define a causal effect? Causal graphs, confounding and adjustment Gausal models for observational data Sumr

Counterfactual outcomes in different settings

- ► Randomized trials: probably the easiest setting to imagine *Y*(*X*) for different *X*
- "Actionable" exposures: smoking level, vegetable consumption, ... – potential interventions may alter exposure levels in future.
- ▶ Non-actionable exposures: e.g genotypes. It is difficult to ask "What if I had different genes?". Still useful concept to formalize genetic effects (heritability, attributable risk).
- Combinations: With X- a behavioral intervention level, Z-smoking level and Y-a disease outcome, one could formalize the effect of intervention on outcome by using Y(X, Z(X))

(ロ) (레) (토) (토) 토 9Q@

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Summer Causal models for observational data.

Counterfactual outcomes in different settings

- Randomized trials: probably the easiest setting to imagine Y(X) for different X
- "Actionable" exposures: smoking level, vegetable consumption, ... - potential interventions may alter exposure levels in future.
- ▶ Non-actionable exposures: e.g genotypes. It is difficult to ask "What if I had different genes?". Still useful concept to formalize genetic effects (heritability, attributable risk).
- ► Combinations: With X- a behavioral intervention level, Z-smoking level and Y-a disease outcome, one could formalize the effect of intervention on outcome by using Y(X, Z(X))

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Sum

Counterfactual outcomes in different settings

- Randomized trials: probably the easiest setting to imagine Y(X) for different X
- "Actionable" exposures: smoking level, vegetable consumption, ... - potential interventions may alter exposure levels in future.
- ▶ Non-actionable exposures: e.g genotypes. It is difficult to ask "What if I had different genes?". Still useful concept to formalize genetic effects (heritability, attributable risk).
- Combinations: With X- a behavioral intervention level, Z-smoking level and Y-a disease outcome, one could formalize the effect of intervention on outcome by using Y(X, Z(X))

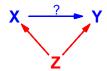
Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Sum

Classical/generalized regression estimates vs causal effects?

- ▶ In the presence of confounding, regression analysis provides a biased estimate for the true causal effect
- To reduce such bias, one needs to collect data on most important confounders and adjust for them
- However, too much adjustment may actually introduce more biases
- Causal graphs (Directed Acyclic Graphs, DAGs) may be extremly helpful in identifying the optimal set of adjustment variables

Adjustment for confounders I

"Classical" confounding: situation where third factors Z influence both, \boldsymbol{X} and \boldsymbol{Y}



For instance, one can assume: X = Z + U and Y = Z + V, where U and V are independent of Z.

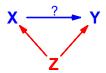
X and Y are independent, conditional on Z, but marginally dependent.

One should adjust the analysis for Z, by fitting a regression model for Y with covariates X and Z. There is a causal effect between X and Y, if the effect of X is present in such model.

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Summ

Adjustment for confounders I

"Classical" confounding: situation where third factors Z influence both, \boldsymbol{X} and \boldsymbol{Y}



For instance, one can assume: X = Z + U and Y = Z + V, where U and V are independent of Z.

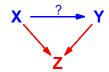
 \boldsymbol{X} and \boldsymbol{Y} are independent, conditional on \boldsymbol{Z} , but marginally dependent.

One should adjust the analysis for Z, by fitting a regression model for Y with covariates X and Z. There is a causal effect between X and Y, if the effect of X is present in such model.

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Summon Causal models for observational data.

Adjustment may sometimes make things worse

Example: the effect of X and Y on Z:



A simple model may hold: Z = X + Y + U, where U is independent of X and Y.

Hence Y = Z - X - U.

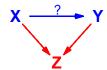
We see the association between X and Y only when the "effect" of Z has been taken into account. But this is not the causal effect of X on Y.

One should NOT adjust the analysis for Z!

150

Adjustment may sometimes make things worse

Example: the effect of X and Y on Z:



A simple model may hold: Z = X + Y + U, where U is independent of X and Y.

Hence Y = Z - X - U.

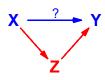
We see the association between X and Y only when the "effect" of Z has been taken into account. But this is not the causal effect of X on Y.

One should NOT adjust the analysis for Z!

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Summ

More possibilities: mediation

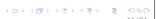
Example: the effect of X on Y is (partly) mediated by Z:



$$Y = X + Z + U$$

If you are interested in the total effect of X on Y – don't adjust for Z!

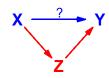
If you are interested in the direct effect of X on Y – adjust for Z. (Only if the Z-Y association is unconfounded)



Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Summon Concorded

More possibilities: mediation

Example: the effect of X on Y is (partly) mediated by Z:



$$Y=X+Z+U,$$

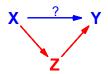
If you are interested in the total effect of X on Y – don't adjust for Z!

If you are interested in the direct effect of X on Y – adjust for Z. (Only if the Z-Y association is unconfounded)

4□ > 4□ > 4필 > 4필 > 4필 > 3
 11/24

More possibilities: mediation

Example: the effect of X on Y is (partly) mediated by Z:



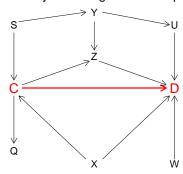
$$Y = X + Z + U$$
,

If you are interested in the total effect of X on Y – don't adjust for Z!

If you are interested in the direct effect of X on Y – adjust for Z. (Only if the Z-Y association is unconfounded)

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Sumn

Actually there might be a complicated system of causal effects:



C-smoking; D-cancer

Q, S, U, W, X, Y, Z - other factors that influence cancer risks and/or smoking (genes, social background, nutrition, environment, personality, \dots)

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Sum

To check for confounding,

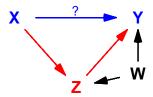
- 1. Sketch a causal graph
- Remove all arrows corresponding to the causal effect of interest (thus, create a graph where the causal null-hypothesis would hold).
- 3. Remove all nodes (and corresponding edges) except those contained in the exposure (*C*) and outcome (*D*) variables and their (direct or indirect) ancestors.
- 4. Connect by an undirected edge every pair of nodes that both share a common child and are not already connected by a directed edge.
 - ▶ If now C and D are still associated, we say that the C − D association is confounded
 - ▶ Identify the set of nodes that need to be deleted to separate C and D – inferences conditional on these variables give unconfounded estimates of the causal effects.

 4 □ > 4 個 > 4 目 > 4 目 > 4 目 > 目

 13/24

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Summer Causal models for observational data.

Example: mediation with confounding



Follow the algorithm to show that one should adjust the analysis for W. If W is an unobserved confounder, no valid causal inference is possible in general. However, the total effect of X on Y is estimable.

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Sum

Instrumental variables estimation and Mendelian randomization

"Mendelian randomization" – genes as Instrumental **Variables**

- Most of the exposures of interest in chronic disease epidemiology cannot be randomized.
- Sometimes, however, nature will randomize for us: there is a SNP (Single nucleotide polymorphism, a DNA marker) that affects the exposure of interest, but not directly the
- ► Example: a SNP that is associated with the enzyme involved in alcohol metabolism, genetic lactose intolerance, etc.

However, the crucial assumption that the SNP cannot affect outcome in any other way than throughout the exposure, cannot be tested statistically!

Outline How to define a causal effect? Causal graphs, confounding and adjustment

Instrumental variables estimation and Mendelian randomization

"Mendelian randomization" – genes as Instrumental **Variables**

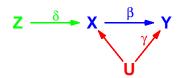
- Most of the exposures of interest in chronic disease epidemiology cannot be randomized.
- Sometimes, however, nature will randomize for us: there is a SNP (Single nucleotide polymorphism, a DNA marker) that affects the exposure of interest, but not directly the
- Example: a SNP that is associated with the enzyme involved in alcohol metabolism, genetic lactose intolerance, etc.

However, the crucial assumption that the SNP cannot affect outcome in any other way than throughout the exposure, cannot be tested statistically!

Instrumental variables estimation and Mendelian randomization

General instrumental variables estimation

A causal graph with exposure X, outcome Y, confounder U and an *instrument* Z:



Simple regression will yield a biased estimate of the causal effect of X on Y, as the graph implies:

$$Y = \alpha_V + \beta X + \gamma U + \epsilon$$
, $E(\epsilon | X, U) = 0$

so $E(Y|X) = \alpha_y + \beta X + \gamma E(U|X)$.

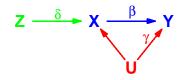
Thus the coefficient of X will also depend on γ and the association between X and U.

16/24

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for obso

Instrumental variables estimation and Mendelian randomization

General instrumental variables estimation



$$Y = \alpha_V + \beta X + \gamma U + \epsilon$$
, $E(\epsilon | X, U) = 0$

How can Z help?

If $E(X|Z) = \alpha_X + \delta Z$, we get

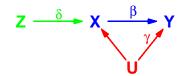
$$E(Y|Z) = \alpha_V + \beta E(X|Z) + \gamma E(U|Z) = \alpha_V + \beta(\alpha_V + \delta Z) = \alpha_V^* + \beta \delta Z$$

As δ and $\beta\delta$ are estimable, also β becomes estimable.

(ロ > 4回 > 4 恵 > 4 恵 >) 臭 り Q で 17/24

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Sum oo • 000000 Instrumental variables estimation and Mendelian randomization

General instrumental variables estimation



$$Y = \alpha_V + \beta X + \gamma U + \epsilon$$
, $E(\epsilon | X, U) = 0$

How can Z help?

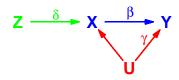
If $E(X|Z) = \alpha_X + \delta Z$, we get

$$E(Y|Z) = \alpha_V + \beta F(X|Z) + \gamma F(U|Z) = \alpha_V + \beta(\alpha_V + \delta Z) = \alpha_V^* + \beta \delta Z$$

As δ and $\beta\delta$ are estimable, also β becomes estimable.

Instrumental variables estimation and Mendelian randomization

General instrumental variables estimation



$$Y = \alpha_V + \beta X + \gamma U + \epsilon$$
, $E(\epsilon | X, U) = 0$

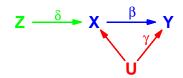
How can Z help?

If $E(X|Z) = \alpha_X + \delta Z$, we get

$$E(Y|Z) = \alpha_y + \beta E(X|Z) + \gamma E(U|Z) = \alpha_y + \beta(\alpha_x + \delta Z) = \alpha_y^* + \beta \delta Z.$$

Instrumental variables estimation and Mendelian randomization

General instrumental variables estimation



$$Y = \alpha_V + \beta X + \gamma U + \epsilon$$
, $E(\epsilon | X, U) = 0$

How can Z help?

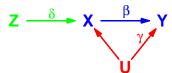
If $E(X|Z) = \alpha_X + \delta Z$, we get

$$E(Y|Z) = \alpha_{V} + \beta E(X|Z) + \gamma E(U|Z) = \alpha_{V} + \beta(\alpha_{X} + \delta Z) = \alpha_{V}^{*} + \beta \delta Z.$$

As δ and $\beta\delta$ are estimable, also β becomes estimable.

Instrumental variables estimation and Mendelian randomization

General instrumental variables estimation

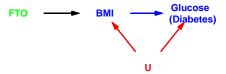


- 1. Regress X on Z, obtain an estimate $\hat{\delta}$
- 2. Regress Y on Z, obtain an estimate $\hat{\delta\beta}$
- 3. Obtain $\hat{\beta} = \frac{\delta \hat{\beta}}{\hat{\delta}}$
- 4. Valid, if Z is not associated with U and does not have any effect on *Y* (other than mediated by *X*)
- 5. Standard error estimation is more tricky use for instance library(sem), function tsls().

Instrumental variables estimation and Mendelian randomization

Mendelian randomization example

FTO genotype, BMI and Blood Glucose level (related to Type 2 Diabetes risk; Estonian Biobank, n=3635, aged 45+)



- Average difference in Blood Glucose level (Glc, mmol/L) per BMI unit is estimated as 0.085 (SE=0.005)
- Average BMI difference per FTO risk allele is estimated as 0.50 (SE=0.09)
- Average difference in Glc level per FTO risk allele is estimated as 0.13 (SE=0.04)
- ► Instrumental variable estimate of the mean Glc difference per BMI unit is 0.209 (se=0.078)

Outline How to define a causal effect? Causal graphs, confounding and adjustment

Causal models for observational data Summonooco

Instrumental variables estimation and Mendelian randomization

IV estimation in R (using library (sem)):

```
> summary(tsls(Glc~bmi, ~fto,data=fen),digits=2)
 2SLS Estimates
Model Formula: Glc ~ bmi
Instruments: ~fto
Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max. -6.3700 -1.0100 -0.0943 0.0000 0.8170 13.2000
             Estimate Std. Error t value Pr(>|t|)
               -1.210
                              2.106
                                        -0.6
                                                  0.566
(Intercept)
                 0.209
                              0.078
                                                  0.008 **
bmi
```

IV estimation: can untestable assumptions be tested?

```
> summary(lm(Glc~bmi+fto,data=fen))
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.985 0.106
                          18.75 <2e-16 ***
            0.088
                  0.004
                           23.36
                                   <2e-16 ***
bmi
fto
            0.049
                   0.030
                            1.66
                                    0.097
For Type 2 Diabetes:
> summary(glm(t2d~bmi+fto,data=fen,family=binomial))
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.515
                     0.187 -40.18 <2e-16 ***
             0.185
                     0.006
                             31.66
                                     <2e-16 ***
                     0.047
                              2.01
                                      0.044 *
```

Does FTO have a direct effect on Glc or T2D?

A significant FTO effect would not be a proof here (nor does non-significance prove the opposite)! (WHY?)

19/24

Instrumental variables estimation and Mendelian randomization

Can we test pleiotropy?

A naïve approach would be to fit a linear regression model for Y, with both X and G as covariates.

But in this case we estimate:

$$E(Y|X, G) = const + \beta_{pl}G + \beta X + \gamma E(U|X, G).$$

It is possible to show that U is not independent of neither X nor G – therefore, the coefficient of G in the resulting model would be nonzero even if $\beta_{pl} = 0$.

Therefore there is no formal test for pleiotropy possible in the case of one genetic instrument – only biological arguments could help to decide, whether assumptions are likelt to be fulfilled

In the case of *multiple genetic instruments* and *meta-analysis*, sometimes the approach of *Egger regression* can be used (Bowden et al, 2015). But even that is not an assumption-free method!

少 Q (~ 22/24

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Summ

Summary

- ► There is no unique definition of "the causal effect"
- ► The validity of any causal effect estimates depends on the validity of the underlying assumptions.
- Adjustment for other available variables may remove (some) confounding, but it may also create more confounding. Do not adjust for variables that may themselves be affected by the outcome.
- Instrumental variables approaches can be helpful, but beware of assumptions!

◆ロト ◆日ト ◆日ト ◆日ト 日 夕久で 23/24

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Sumn

Some references

- A webpage by Miguel Hernan and Jamie Robins: http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
- An excellent overview of Mendelian randomization: Sheehan, N., Didelez, V., Burton, P., Tobin, M., Mendelian Randomization and Causal Inference in Observational Epidemiology, PLoS Med. 2008 August; 5(8).
- A way to correct for pleiotropy bias: Bowden J, Davey Smith G, Burgess S, Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015 Apr;44(2):512-25.
- ... and how to interpret the findings (warning against overuse): Burgess, S., Thompson, S.G., Interpreting findings from Mendelian randomization using the MR-Egger method, Eur J Epidemiol (2017).

Multistate models

Bendix Carstensen Steno Diabetes Center

Gentofte, Denmark

http://BendixCarstensen.com

IARC, Lyon,

June 2018

http://BendixCarstensen.com/SPE

 $From \ / home/bendix/teach/SPE/git/SPE/lectures/multistate/multistate.tex$

Tuesday 5th June, 2018, 12:46

1/42

Multistate models

Bendix Carstensen, Martyn Plummer

Multistate models

IARC, Lyon,

June 2018

http://BendixCarstensen.com/SPE

ms-Markov

Common assumptions in survival analysis

- 1. Subjects are **either** "healthy" **or** "diseased", with no intermediate state.
- 2. The disease is **irreversible**, or requires intervention to be cured.
- 3. The time of disease incidence is known **exactly**.
- 4. The disease is **accurately** diagnosed.

These assumptions are true for death and many chronic diseases.

Multistate models (ms-Markov)

Is the disease a dichotomy?

A disease may be preceded by a sub-clinical phase before it shows symptoms.

AIDS Decline in CD4 count
Cancer Pre-cancerous lesions
Type 2 Diabetes Impaired glucose tolerance

Or a disease may be classified into degrees of severity (mild, moderate, severe).

Multistate models (ms-Markov)

3/ 42

A model for cervical cancer

Invasive squamous cell cancer of the cervix is preceded by cervical intraepithelial neoplasia (CIN)

The purpose of a screening programme is to detect and treat CIN.

Aim of the modeling the transition rates between states, is to be able predict how population moves between states

Probabilities of state occupancy can be calculated.

Multistate models (ms-Markov)

4/ 42

When does the disease occur?

You may need a clinical visit to diagnose the disease:

- examination by physician, or
- ▶ laboratory test on blood sample, or
- examination of biopsy by pathologist

We do not know what happens between consecutive visits (interval censoring).

Multistate models (ms-Markov)

Informative observation process?

Is the **reason** for the visit dependent on the **evolution** of disease? Ignoring this may cause bias, like informative censoring.

Different reasons for follow-up visits:

- Fixed intervals (OK)
- ► Random intervals (OK)
- ▶ Doctor's care (OK)
- ► Self selection (**Not** OK visits are likely to be close to event times)

Multistate models (ms-Markov)

6/ 42

Markov models for multistate diseases

The natural generalization of Poisson regression to multiple disease states:

- Probability of transition between states depends only on current state
- ► this is the **Markov** property
- ▶ ⇒ transition rates are constant over time
- ▶ (time-fixed) covariates may influence transition rates
- ▶ the formal Markov property is **very** restrictive
- ► In clinical litterature "Markov model" is often used about any type of multistate model

Multistate models (ms-Markov)

7/ 42

Compnents of a multistate (Markov) model

- ▶ Define the disease states.
- ▶ Define which transitions between states are allowed.
- ► Select covariates influencing transition rates (may be different between transitions)
- ▶ Constrain some covariate effects to be the same, or zero.
- ▶ Not a trivial task do we want e.g.
 - cause of death
 - disease status at death

Multistate models (ms-Markov)

Likelihood for multistate model

- ▶ The likelihood of the model depends on the probability of being in state j at time t_1 , given that you were in state i at time t_0 .
- ▶ Assume transition rates constant in small time intervals
- ▶ ⇒ each interval contributes terms to the likelihood:
 - ▶ one for each person at risk of a transition in the interval
 - ▶ ... for each possible transition
 - each term has the form of a Poisson likelihood contribution
 - the total likelihood for each time interval is a product of terms over persons and (possible) transitions
- ▶ Total likelihood is product of terms for all intervals
- components not independent, but the total likelihood is a product; hence of the same form as the likelihood of independent Poisson variates

Multistate models (ms-Markov

9/ 42

Purpose of multistate modeling

- Separation of intensities of interest (model definition)
- ▶ Evaluation of covariate effects on these
- ▶ biological interpretability of covariate effects
- ▶ Use a fitted model to compute:
- ▶ state occupancy probabilities: P {in state X at time t}
- ▶ time spent in a given state

Multistate models (ms-Markov)

10/ 42

Special multistate models

- ▶ If all transition rates depend on only one time scale
- ▶ but possibly different (time-fixed) covariates
- ightharpoonup easy to compute state probabilities
- ▶ For this reason the most commonly available models
- but not the most realistic models.
- ▶ Realistically transition rates depend on:
- multiple time scales
- time since entry to certain states.

Multistate models (ms-Markov)

Multistate models with Lexis

Bendix Carstensen

Multistate models

IARC, Lyon,

June 2018

http://BendixCarstensen.com/SPE

ms-Lexis

Example: Renal failure data from Steno

Hovind P, Tarnow L, Rossing P, Carstensen B, and Parving H-H: Improved survival in patients obtaining remission of nephrotic range albuminuria in diabetic nephropathy. *Kidney Int.*, 66(3):1180–1186, 2004.

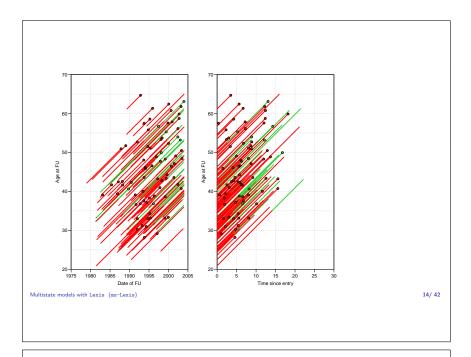
- ▶ 96 patients entering at nephrotic range albuminuria (NRA), i.e. U-alb> 300mg/day.
- ► Is remission from this condition (i.e return to U-alb< 300mg/day) predictive of the prognosis?
- ► Endpoint of interest: Death or end stage renal disease (ESRD), i.e. dialysis or kidney transplant.

Multistate models with Lexis (ms-Lexis)

12/ 42

		Remission	
	Total	Yes	No
No. patients No. events Follow-up time (years)	125 77 1084.7	32 8 259.9	93 69 824.8
Cox-model: Timescale: Time since nephrotic range albuminuria (NRA) Entry: 2.5 years of GFR-measurements after NRA Outcome: ESRD or Death			
Estimates:	RR	95% c.i.	p
Fixed covariates: Sex (F vs. M): Age at NRA (per 10 years):	0.92 1.42	(0.53,1.57) (1.08,1.87)	0.740 0.011
Time-dependent covariate: Obtained remission:	0.28	(0.13,0.59)	0.001

Multistate models with Lexis (ms-Lexis)



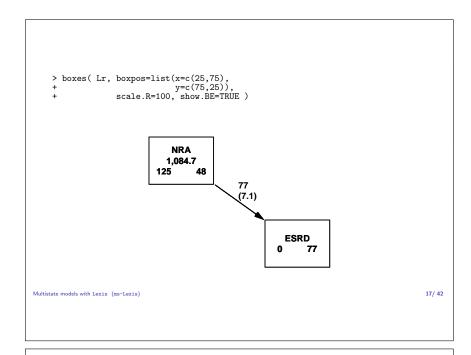
Features of the analysis

- ▶ Remission is included as a time-dependent variable.
- Age at entry is included as a fixed variable.

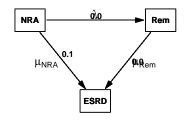
```
renal[1:5,]
id dob doe dor dox event
17 1967.944 1996.013 NA 1997.094 2
26 1959.306 1989.535 1989.814 1996.136 1
27 1962.014 1987.846 NA 1993.239 3
33 1950.747 1995.243 1995.717 2003.993 0
42 1961.296 1987.884 1996.650 2003.955 0
```

Note patient 26, 33 and 42 obtain remission.

Multistate models with Lexis (ms-Lexis)



Illness-death model



 λ : remission rate.

 $\begin{array}{ll} \mu_{\rm NRA} \colon & {\rm mortality/ESRD~rate~before~remission.} \\ \mu_{\rm rem} \colon & {\rm mortality/ESRD~rate~after~remission.} \end{array}$

Multistate models with Lexis (ms-Lexis)

18/ 42

Cutting follow-up at remission: cutLexis

```
> Lc <- cutLexis( Lr, cut=Lr$dor,
+ timescale="per",
+ new.state="Rem",
+ precursor.states="NRA")
> summary( Lc )

Transitions:
To
From NRA Rem ESRD Records: Events: Risk time: Persons:
NRA 24 29 69 122 98 824.77 122
Rem 0 24 8 32 8 259.90 32
Sum 24 53 77 154 106 1084.67 125
```

Multistate models with Lexis (ms-Lexis)

Splitting states: cutLexis

Multistate models with Lexis (ms-Lexis)

21/ 42

Showing states and FU: boxes.Lexis

```
> boxes( Lc, boxpos=list(x=c(15,85,15,85), y=c(85,85,20,20)), scale.R=100 )

RRA (3.5) Rem (259.9)

(8.4) (3.1)
```

ESRD(Rem)

Multistate models with Lexis (ms-Lexis)

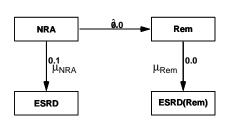
ESRD

Likelihood for a general MS-model

- Product of likelihoods for each transition
 each one as for a survival model
- ▶ **Risk time** is the risk time in the "From" state
- ▶ **Events** are transitions to the "To" state
- ▶ All other transitions out of "From" are treated as censorings
- ▶ Possible to fit models separately for each transition

Multistate models with Lexis (ms-Lexis)

23/ 42



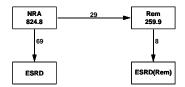
Cox-analysis with remission as time-dependent covariate:

- Ignores λ , the remission rate.
- Assumes $\mu_{\rm NRA}$ and $\mu_{\rm rem}$ use the same timescale.

Multistate models with Lexis (ms-Lexis)

24/ 42

Model for all transitions



Cox-model:

- Different timescales for transitions possible
- ▶ ...only one per transition
- No explicit representation of estimated rates.

Multistate models with Lexis (ms-Lexis

Poisson-model:

- ► Timescales can be different
- Multiple timescales can be accommodated simultaneously
- Explicit representation of all transition rates

Calculus of probabilities

P {Remission **before** time t}

$$= \int_0^t \lambda(u) \mathrm{exp} \left(- \! \int_0^u \lambda(s) + \mu_{\mathsf{NRA}} \, \mathrm{d}s \right) \, \mathrm{d}u$$

P {Being in remission **at** time t}

$$= \int_0^t \lambda(u) \exp\left(-\int_0^u \lambda(s) + \mu_{\mathsf{NRA}}(s) \, \mathrm{d}s\right) \times \\ \exp\left(-\int_u^t \mu_{\mathsf{rem}}(s) \, \mathrm{d}s\right) \, \mathrm{d}u$$

Note $\mu_{\rm rem}$ could also depend on u, time since obtained remission.

Multistate models with Lexis (ms-Lexis)

26/ 42

Sketch of programming, assuming that λ (lambda), μ_{NRA} (mu.nra) and μ_{rem} (mu.rem) are known for each age (stored in vectors)

If μ_{rem} depends on time of remission, then c.mort.rem should have an extra argument.

Multistate models with Lexis (ms-Lexis)

27/ 42

Calculation of integrals

The possibility of computing the state-occupancy probabilities relies on:

- Availablity of closed-form formulae for the probailities in terms of the transition rates
- Transition rates are assumed to be continuous functions of time
- Transition rates can be calulated at any point of time. . .
- This will allow simple calulation of the integrals from the closed-form expressions.

Multistate models with Lexis (ms-Lexis)

Semi-Markov models

- if we only have one time scale, which is common for all transitions
- ► in practical terms: transition intensities only depend on state and the current time.
- then we can construct transition matrices for each tiny time interval

$$P_{ij}(t,t+h) = \mathbf{P} \left\{ \text{state } j \text{ at } t+h \mid \text{state } i \text{ at } t \right\}$$

► Simple matrix multiplication then gives the matrix of transition probabilities between states between any two timepoints.

Multistate models with Lexis (ms-Lexis)

29/ 42

Prediction in multistate models:

simLexis

Bendix Carstensen

Multistate models

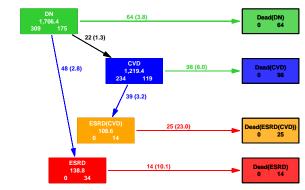
IARC, Lyon,

June 2018

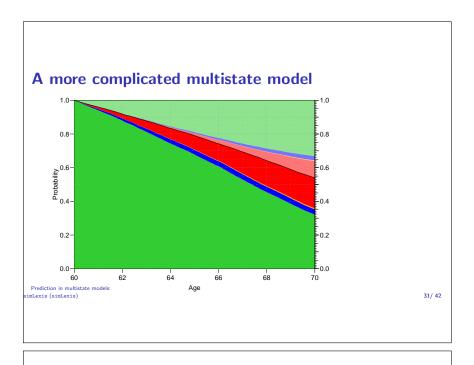
http://BendixCarstensen.com/SPE

simLexis

A more complicated multistate model



Prediction in multistate models: mLexis (simLexis)



State probabilities

How do we get from rates to probabilities:

- ▶ 1: Analytical calculations:

 - immensely complicated formulaecomputationally fast (once implemented)
 - difficult to generalize
- ▶ 2: Simulation of persons' histories
 - conceptually simple
 - computationally not quite simple
 - easy to generalize
 - hard to get confidence intervals (bootstrap)

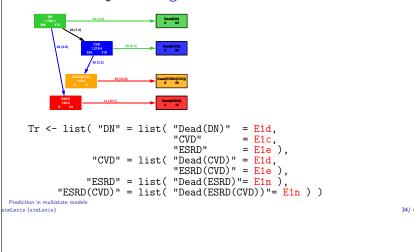
Prediction in multistate models: imLexis (simLexis)

Simulation in a multistate model

- ► Simulate a "survival time" for each transition **out** of a state.
- ▶ The smallest of these is the transition time.
- ▶ Choose the corresponding transition type as transition.

Prediction in multistate models: mLexis (simLexis)

Transition object are glms



simLexis

Input required:

- ► A Lexis object representing the initial state of the persons to be simulated.
 - (lex.dur and lex.Xst will be ignored.)
- ► A transition object with the estimated Poisson models collected in a list of lists.

Output produced:

- ▶ A Lexis object with simulated event histories for may persons
- Use nState to count how many persons in each state at different times

Prediction in multistate models: mLexis (simLexis)

35/

Using simLexis

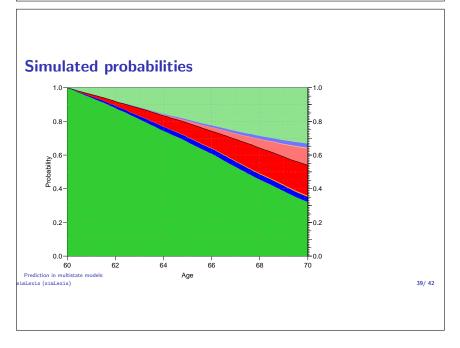
Put one record a new Lexis object (init, say). representing a person with the desired covariates.

Must have same structure as the one used for estimation:

```
Output from simLexis
    > summary( sim1 )
    Transitions:
                                   DN CVD ES(CVD)
                212 81
0 50
0 0
0 0
                               0 145
7 0
3 0
                                                                      0
0
0
75
75
      DN
                                                                                 0 0
      CVD
      ESRD(CVD)
                                               0
      ESRD
      Sum
                 212 131
                              10 215
    Transitions:
        To
                 Records: Events: Risk time: 500 288 9245.95
      CVD
                        81
7
                                 31
4
75
                                         667.90
45.72
                                                        81
7
      ESRD(CVD)
                                      891.11
10850.67
                                                       145
      ESRD
                                                                                    37/ 42
mLexis (simLexis)
```

Using a simulated Lexis object — pState

Prediction in multistate models: imLexis (simLexis)



How many persons should you simulate?

- ightharpoonup All probabilities have the same denominator the initial number of persons in the simulation, N, say.
- lacktriangle Thus, any probability will be of the form p=x/N
- ► For small probabilities we have that:

s.e.
$$(\log(\hat{p})) = (1-p)/\sqrt{Np(1-p)}$$

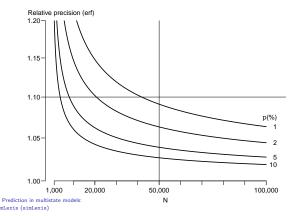
▶ So c.i. of the form $p \stackrel{\times}{\div} \mathrm{erf}$ where:

$$erf = \exp(1.96 \times (1 - p) / \sqrt{Np(1 - p)})$$

Prediction in multistate models: simLexis (simLexis)

40/ 42

Precision of simulated probabilities



41/ 42

Multistate model overview

- ▶ Clarify what the relevant states are
- ▶ Allows proper estimation of transition rates
- ▶ and relationships between them
- ► Separate model for each transition (arrow)
- ► The usual survival methodology to compute probabilities breaks down
- Simulation allows estimation of cumulative probabilities:
 - ► Estimate transition rates (as usual)
 - ► Simulate probabilities (not as usual)

Your turn: "Renal complications"

Prediction in multistate models: imLexis (simLexis)