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Pre-history History Present Future?

Pre-history

Before there was R, there was S.

Pre-history History Present Future?

The S language

Developed at AT&T Bell laboratories by Rick Becker, John
Chambers, Doug Dunn, Paul Tukey, Graham Wilkinson.

Version 1 1976–1980 Honeywell GCOS, Fortran-based
Version 2 1980–1988 Unix; Macros, Interface Language

1981–1986 QPE (Quantitative Programming Environment)

1984– General outside licensing; books
Version 3 1988-1998 C-based; S functions and objects

1991– Statistical models;
informal classes and methods

Version 4 1998 Formal class-method model;
connections; large objects

1991– Interfaces to Java, Corba?
Source: Stages in the Evolution of S http://ect.bell-labs.com/sl/S/history.html
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The “Blue Book” and the “White Book”

Key features of S version 3 outlined in two books:

• Becker, Chambers and Wilks, The New S
Language: A Programming Environment for
Statistical Analysis and Graphics (1988)

• Functions and objects

• Chambers and Hastie (Eds), Statistical
Models in S (1992)

• Data frames, formulae

These books were later used as a prototype for R.

Pre-history History Present Future?

Programming with Data

“We wanted users to be able to begin in an interactive
environment, where they did not consciously think of
themselves as programming. Then as their needs became
clearer and their sophistication increased, they should be
able to slide gradually into programming.” – John
Chambers, Stages in the Evolution of S

This philosophy was later articulated explicitly in Programming
With Data (Chambers, 1998) as a kind of mission statement for S

To turn ideas into software, quickly and faithfully

Pre-history History Present Future?

The “Green Book”

Key features of S version 4 were outlined in
Chambers, Programming with Data
(1998).

• S as a programming language

• Introduced formal classes and
methods, which were later introduced
into R by John Chambers himself.



Pre-history History Present Future?

S-PLUS

• AT&T was a regulated monopoly with limited ability to
exploit creations of Bell Labs.

• S source code was supplied for free to universities

• After the break up of AT&T in 1984 it became possible for
them to sell S.

• S-PLUS was a commercially available form of S licensed to
Statistical Sciences (later Mathsoft, later Insightful) with
added features:

• GUI,survival analysis, non-linear mixed effects, Trellis graphics,
...

Pre-history History Present Future?

The Rise and Fall of S-PLUS

• 1988. Statistical Science releases first version of S-PLUS.

• 1993. Acquires exclusive license to distribute S. Merges with
Mathsoft.

• 2001. Changes name to Insightful.

• 2004. Purchases S language for $2 million.

• 2008. Insightful sold to TIBCO. S-PLUS incorporated into
TIBCO Spotfire.

Pre-history History Present Future?

History

How R started, and how it turned into an S clone
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The Dawn of R

• Ross Ihaka and Robert Gentlemen at the
University of Auckland

• An experimental statistical environment

• Scheme interpreter with S-like syntax
• Replaced scalar type with vector-based

types of S
• Added lazy evaluation of function

arguments

• Announced to s-news mailing list in
August 1993.

Pre-history History Present Future?

A free software project

• June 1995. Martin Maechler (ETH, Zurich) persuades Ross
and Robert to release R under GNU Public License (GPL)

• March 1996. Mailing list r-testers mailing list
• Later split into three r-announce, r-help, and r-devel.

• Mid 1997. Creation of core team with access to central
repository (CVS)

• Doug Bates, Peter Dalgaard, Robert Gentleman, Kurt Hornik,
Ross Ihaka, Friedrich Leisch, Thomas Lumley, Martin
Maechler, Paul Murrell, Heiner Schwarte, Luke Tierney

• 1997. Adopted by the GNU Project as “GNU S”.

Pre-history History Present Future?

The draw of S

“Early on, the decision was made to use S-like syntax.
Once that decision was made, the move toward being
more and more like S has been irresistible”
– Ross Ihaka, R: Past and Future History (Interface ’98)

R 1.0.0, a complete and stable implementation of S version 3, was
released in 2000.
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A Souvenir

Pre-history History Present Future?

Packages

• Comprehensive R Archive Network (CRAN) started in 1997
• Quality assurance tools built into R
• Increasingly demanding with each new R release

• Recommended packages distributed with R
• Third-party packages included with R distribution
• Provide more complete functionality for the R environment
• Starting with release 1.3.0 (completely integrated in 1.6.0)

Pre-history History Present Future?

Growth of CRAN

Source: Dataset CRANpackages in package Ecdat
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The present

The current era is characterized by

• A mature R community

• Large penetration of R in the commercial world (“data
science”, “analytics”, “big data”)

• Increasing interest in the R language from computer scientists.

Pre-history History Present Future?

Community

• UseR! Annual conference
• Alternating between Europe and N. America

• R Journal.
• Journal of record, peer-reviewed articles, indexed
• Also Journal of Statistical Software (JSS) has many articles

dedicated to R packages.

• Migration to social media
• Stack Exchange/Overflow, Github, Twitter (#rstats)
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Much important R infrastructure is now in package space

Source:

www.kdnuggets.com/2015/06/top-20-r-packages.html



Pre-history History Present Future?

The tidyverse

• Many of the popular packages on CRAN were written by
Hadley Wickham.

• These packages became known as the “hadleyverse” until
Hadley himself rebranded them the “tidyverse”
(www.tidyverse.org).

• All packages in the tidyverse have a common design
philosophy and work together. Common features are:

• Non-standard evaluation rules for function calls.
• Use of the pipe operator %>% to pass data transparently from

one function call to another.

• The CRAN meta-package tidyverse installs all of these
packages.
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Commercial R

Several commercial organizations provide commercial versions of R
including support, consulting, ...

• Revolution Computing, later Revolution Analytics
(2007–2014), purchased by Microsoft.

• RStudio (2010–)

• Mango Solution (2002–)

Pre-history History Present Future?

Validation and Reliability

• R: Regulatory Compliance and Validation Issues guidance
document by The R Foundation

• ValidR by Mango Solutions

• MRAN, a time-stamped version of CRAN
• Allows analysis to be re-run with exactly the same package

versions at a later date.
• Used by Revolution R Open
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Attack of the Clones (and forks)

Name Implementation Commercial Open
sponsor source

pqR C fork Yes
CXXR C++ fork Google Yes
ORBIT C fork Huawei Yes

Renjin Java BeDataDriven Yes
FastR Java (Truffle/Graal) Oracle Yes
Riposte C++ Tableau Research Yes
TERR C++ TIBCO No

A number of projects have looked improving the efficiency of R, either by

forking the original codebase or by re-implementing R.
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The R Foundation for Statistical Computing

A non-profit organization working in the public interest, founded in
2002 in order to:

• Provide support for the R project and other innovations in
statistical computing.

• Provide a reference point for individuals, institutions or
commercial enterprises that want to support or interact with
the R development community.

• Hold and administer the copyright of R software and
documentation (This never happened)

Pre-history History Present Future?

The R Consortium

In 2015, a group of organizations created a consortium to support
the R ecosystem:

R Foundation A statutory member of The R Consortium

Platinum members IBM, Microsoft, RStudio

Gold members TIBCO

Silver members Alteryx, Avant, Google, Hewlett Packard
Enterprise, Ketchum Trading LLC, Mango Solutions,
Oracle, ProCogia
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The Future

“Prediction is very difficult, especially about the future”
– variously attributed to Niels Bohr, Piet Hein, Yogi Bera

Pre-history History Present Future?

Trends

We cannot make predictions, but some long-term trends are very
visible:

• Average age of R Core Team?

• Younger R developers more closely associated with industry
than academia

• R Consortium provides mechanism for substantial investment
in R infrastructure

Pre-history History Present Future?

R language versus R implementation

• R has no formal specification

• R language is defined by its implementation (“GNU R”)

• Long-term future of R may depend on formal specification of
the language, rather than current implementation.
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Simply start over and build something better

The x in this function is
randomly local or global

f = function() {

if (runif(1) > .5)

x = 10

x

}

“In the light of this, I’ve come to the
conclusion that rather than “fixing”
R, it would be better and much more
productive to simply start over and
build something better” – Ross
Ihaka, Christian Robert’s blog,
September 13, 2010

Pre-history History Present Future?

Back to the Future

Ross Ihaka and Duncan Temple Lang propose a new language built
on top of common lisp with:

• Scalar types

• Type hinting

• Call-by-reference semantics

• Use of multi-cores and parallelism

• More strict license to protect work donated to the commons

Pre-history History Present Future?

Julia (www.julialang.org)

“In Julia, I can build a package that achieves good
performance without the need to interface to code
written in C, C++ or Fortran – in the sense that my
package doesn’t need to require compilation of code
outside that provided by the language itself.

It is not surprising that the design of R is starting to
show its age. Although R has only been around for 15-18
years, its syntax and much of the semantics are based on
the design of “S3” which is 25–30 years old”

– Doug Bates, message to R-SIG-mixed-models list,
December 9 2013
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Resources

• Chambers J, Stages in the Evolution of S

• Becker, R, A Brief History of S

• Chambers R, Evolution of the S language

• Ihaka, R and Gentleman R, R: A language for Data Analysis
and Graphics, J Comp Graph Stat, 5, 299–314, 1996.

• Ihaka, R, R: Past and Future History, Interface 98.

• Ihaka, R, Temple Lang, D, Back to the Future: Lisp as a Base
for a Statistical Computing System

• Fox, J, Aspects of the Social Organization and Trajectory of
the R Project, R Journal, Vol 1/2, 5–13, 2009.

Basics The workspace

R: language and basic data management

Krista Fischer

Statistical Practice in Epidemiology, Tartu, 2017
(initial slides by P. Dalgaard)
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Basics The workspace

Language

I R is a programming language – also on the command line
I (This means that there are syntax rules)
I Print an object by typing its name
I Evaluate an expression by entering it on the command line
I Call a function, giving the arguments in parentheses –

possibly empty
I Notice objects vs. objects()
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Objects

I The simplest object type is vector
I Modes: numeric, integer, character, generic (list)
I Operations are vectorized: you can add entire vectors with
a + b

I Recycling of objects: If the lengths don’t match, the shorter
vector is reused
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Demo 1

x <- round(rnorm(10,mean=20,sd=5)) # simulate data
x
mean(x)
m <- mean(x)
m
x - m # notice recycling
(x - m)^2
sum((x - m)^2)
sqrt(sum((x - m)^2)/9)
sd(x)

3 / 23

Basics The workspace

R expressions

x <- rnorm(10, mean=20, sd=5)
m <- mean(x)
sum((x - m)^2)

I Object names
I Explicit constants
I Arithmetic operators
I Function calls
I Assignment of results to names

4 / 23
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Function calls

Lots of things you do with R involve calling functions.
For instance

mean(x, na.rm=TRUE)

The important parts of this are
I The name of the function
I Arguments: input to the function
I Sometimes, we have named arguments

5 / 23
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Function arguments
Examples:

rnorm(10, mean=m, sd=s)
hist(x, main="My histogram")

mean(log(x + 1))

Items which may appear as arguments:
I Names of an R objects
I Explicit constants
I Return values from another function call or expression
I Some arguments have their default values.
I Use help(function) or args(function) to see the

arguments (and their order and default values) that can be
given to any function.

I Keyword matching: t.test(x ~ g, mu=2,
alternative="less")

I Partial matching: t.test(x ~ g, mu=2, alt="l")
6 / 23
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Creating simple functions

logit <- function(p) log(p/(1-p))
logit(0.5)
simpsum <- function(x, dec=5)
# produces mean and SD of a variable
# default value for dec is 5

round(c(mean=mean(x),sd=sd(x)),dec)
x<-rnorm(100)
simpsum(x)
simpsum(x,2)

7 / 23
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Indexing

I R has several useful indexing mechanisms:
I a[5] single element
I a[5:7] several elements
I a[-6] all except the 6th
I a[b>200] logical index
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Basics The workspace

Lists

I Lists are vectors where the elements can have different
types

I Functions often return lists
I lst <- list(A=rnorm(5), B="hello")

I Special indexing:
I lst$A

I lst[[1]] first element (NB: double brackets)
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Basics The workspace

Classes, generic functions

I R objects have classes
I Functions can behave differently depending on the class of

an object
I E.g. summary(x) or print(x) does different things if x

is numeric, a factor, or a linear model fit
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The workspace

I The global environment contains R objects created on the
command line.

I There is an additional search path of loaded packages and
attached data frames.

I When you request an object by name, R looks first in the
global environment, and if it doesn’t find it there, it
continues along the search path.

I The search path is maintained by library(), attach(),
and detach()

I Notice that objects in the global environment may mask
objects in packages and attached data frames
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How to access variables in the data frame?

Different ways to tell R to use variable X from data frame D:
I Use the dataframe$variable notation
summary(D$X)

I Use the with function
with(D, summary(X))

I Use the data argument (works for some functions only)
lm(Y~X, data=D)

I Attach the dataframe – DISCOURAGED!
(seems a convenient solution, but can actually make things more
complicated, as it creates a temporary copy of the dataset)
attach(D)
summary(X)
detach()
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Data manipulation and with

To create a new variable in the data frame, you could use:

students$bmi <-
with(students, weight/(height/100)^2)

. . . while

with(students, bmi <- weight/(height/100)^2)

uses variables weight and height in the data frame
students2001_05 , but creates the variable bmi in the global
environment (not in the data frame).

13 / 23
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Constructors

I We have (briefly) seen the c and list functions
I For matrices and arrays, use the (surprise) matrix and
array functions. data.frame for data frames.

I Notice the naming forms c(boys=1.2, girls=1.1)

I You can extract and set names with names(x); for
matrices and data frames also colnames(x) and
rownames(x);

I It is also fairly common to construct a matrix from its
columns using cbind, whereas joining two matrices with
equal no of columns (with the same column names) can be
done using rbind.
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Conditional assignment: ifelse

I Syntax: ifelse(expr,A,B) where expr is a logical
expression, takes value A, if expression is TRUE and value
B if FALSE

I Examples:

x<-c(1,2,7,1,NA)
ifelse(x<3,1,2)
ifelse(is.na(x),0,x)
ifelse(is.na(x),0,ifelse(x<3,1,2))
y<-c(3,6,1,7,8)
z<-c(0,0,0,1,1)
ifelse(z==0,x,y)

14 / 23
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Factors

I Factors are used to describe groupings (the term
originates from factorial designs)

I Basically, these are just integer codes plus a set of names
for the levels

I They have class "factor" making them (a) print nicely
and (b) maintain consistency

I A factor can also be ordered (class "ordered"),
signifying that there is a natural sort order on the levels

I In model specifications, factors play a fundamental role by
indicating that a variable should be treated as a
classification rather than as a quantitative variable (similar
to a CLASS statement in SAS)
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The factor Function

I This is typically used when read.table gets it wrong
I E.g. group codes read as numeric
I Or read as factors, but with levels in the wrong order (e.g.
c("rare", "medium", "well-done") sorted
alphabetically.)

I Notice that there is a slightly confusing use of levels and
labels arguments.

I levels are the value codes on input
I labels are the value codes on output (and become the

levels of the resulting factor)
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Demo 2

aq <- airquality
aq$Month
aq$Month <- factor(aq$Month, levels=5:9,

labels=month.name[5:9])
aq$Month
table(aq$Month)

aq <- airquality
aq$Month <- factor(aq$Month, levels=1:12,

labels=month.name)
table(aq$Month)

(Note: there can be factor levels with 0 observations in the
dataset)
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The cut Function

I The cut function converts a numerical variable into groups
according to a set of break points

I Notice that the number of breaks is one more than the
number of intervals

I Notice also that the intervals are left-open, right-closed by
default (right=FALSE changes that)

I . . . and that the lowest endpoint is not included by default
(set include.lowest=TRUE if it bothers you)
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Demo 3

st<-students
range(st$age)
st$agegr <- cut(st$age, c(18,seq(20,45,5)),

right=FALSE, include.lowest=TRUE)
table(st$agegr)
st$agegr <- cut(st$age, c(18,20,22,25,41),

right=FALSE, include.lowest=TRUE)
table(st$agegr)
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Working with Dates
I Dates are usually read as character or factor variables
I Use the as.Date function to convert them to objects of

class "Date"
I If data are not in the default format (YYYY-MM-DD) you

need to supply a format specification
> as.Date("11/3-1959",format="%d/%m-%Y")
[1] "1959-03-11"

I You can calculate differences between Date objects. The
result is an object of class "difftime". To get the
number of days between two dates, use
> as.numeric(as.Date("2017-6-1")-

as.Date("1959-3-11"),"days")
[1] 17607
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Basic graphics

The plot() function is a generic function, producing different
plots for different types of arguments. For instance, plot(x)
produces:

I a plot of observation index against the observations, when
x is a numeric variable

I a bar plot of category frequencies, when x is a factor
variable

I a time series plot (interconnected observations) when x is
a time series

I a set of diagnostic plots, when x is a fitted regression
model

I . . .
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Basic graphics

Similarly, the plot(x,y) produces:
I a scatter plot, when x is a numeric variable
I a bar plot of category frequencies, when x is a factor

variable
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Basic graphics

Examples:

x <- c(0,1,2,1,2,2,1,1,3,3)
plot(x)
plot(factor(x))
plot(ts(x)) # ts() defines x as time series
y <- c(0,1,3,1,2,1,0,1,4,3)
plot(x,y)
plot(factor(x),y)
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Basic graphics

More simple plots:
I hist(x) produces a histogram
I barplot(x) produces a bar plot (useful when x contains

counts – often one uses barplot(table(x)))
I boxplot(y x) produces a box plot of y by levels of a

(factor) variable x.

21 / 23



Basics The workspace

Simple simulation

Simulation in R is very easy. It is often useful to simulate
artificial data to see whether a method works or how a
distribution looks like.
Example 1: continuous probability distributions

par(mfrow=c(2,2))
x1 <- runif(100) # Uniform [0,1]
hist(x1)
x2 <- rnorm(100) # Standard Normal
hist(x2)
x3 <- rnorm(100, mean=20, sd=6) # N(20,6)
hist(x3)
x4 <- rbeta(100,0.1,0.1) # Beta
hist(x4)
hist(x2^2)
hist(x4*x3)
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Simple simulation

Example 2: Discrete distributions and a simple model

x5 <- rpois(100,3) # Poisson, lambda=3
table(x5)
barplot(table(x5))
x6 <- rbinom(100,1,0.3) # Bin(1,0.3)

#(Bernoulli, p=0.3)
table(x6)
x7<-x6+rnorm(100)
tapply(x7,x6,mean) # are the means close

# to what is simulated?
boxplot(x7~x6)
summary(lm(x7~x6))
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Statistical Practice in Epidemiology 2017

Poisson regression for cohort studies
Logistic regression for binary data

Janne Pitkäniemi
(EL)
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Points to be covered

1. Incidence rates, rate ratios and rate differences from
follow-up studies can be computed by fitting Poisson
regression models.

2. Odds ratios can be computed from binary data by fitting
Logistic regression models.

3. Odds-ratios can be estimated from case-control studies.

4. Both models are special instances of
Generalized linear models.

5. There are various ways to do these tasks in R.

2 / 26

The Estonian Biobank cohort: survival among the

elderly

Follow-up of 60 random individuals aged 75-103 at
recruitment, until death (•) or censoring (o) in April 2014
(linkage with the Estonian Causes of Death Registry).
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The Estonian Biobank cohort: survival among the

elderly

Follow-up time for 60 random individuals aged 75-103 at
recruitment (time-scale: time in study).
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Events, dates and risk time

I Mortality as the outcome:

d: indicator for status at exit:
1: death observed
0: censored alive

I Dates:

doe = date of Entry to follow-up,

dox = date of eXit, end of follow-up.

I Follow-up time (years) computed as:

y = (dox - doe)/365.25

5 / 26

Crude overall rate computed in two ways
Total no. cases, person-years & rate (/1000 y):

> D <- sum( d ); Y <- sum(y) ; R <- D/(Y/1000)

> round( c(D=D, Y=Y, R=R), 2)

D Y R

884.00 11678.24 75.70

Poisson regression model with only intercept (“1”).

> m1 <- glm( d ~ 1, family=poisson , offset=log(y))

> coef(m1)

(Intercept)

-2.581025

> exp( coef(m1) )*1000

(Intercept)

75.69636

Why do we get the same results?
6 / 26

Constant hazard — Poisson model

Let T ∼ exp(λ), then f (y ;λ) = λe−λy I (y > 0)

Constant rate: λ(y) = f (y ;λ)
S(y ;λ)

= λ

Observed data {(yi , δi); i = 1, ..., n}.
The likelihood L(λ) =

∏n
i=1 λ

δi e−λyi and

log(L) =
∑n

i=1 [δi log(λ)− λyi ]
Solving the score equations: ∂ log L(λ)

∂λ
=
∑[

δi
λ
− yi

]

= D
λ
− Y = 0 and D − λY = 0

→ maximum likelihood estimator (MLE) of λ:

λ̂ =
D

Y
=

number of cases

total person-time
= empirical rate!
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offset term — Poisson model

Previous model without offset: Intercept 6.784=log(884)

We should use an offset if we suspect that the underlying
population sizes (person-years) differ for each of the
observed counts – For example varying person-years by
tratment group, sex,age,...

We need a term in the model that ”scales” the likelihood, but
does not depend on model parameters ( include a term with
reg. coef. fixed to 1) – offset term is log(y)

log(µ
y

) = β0 + β1x1
log(µ) = 1× log(y) + β0 + β1x1

8 / 26

Comparing rates: The Thorotrast Study

I Cohort of seriously ill patients in Denmark on whom
angiography of brain was performed.

I Exposure: contrast medium used in angiography,

1. thor = thorotrast (with 232Th), used 1935-50
2. ctrl = other medium (?), used 1946-63

I Outcome of interest: death

doe = date of Entry to follow-up,

dox = date of eXit, end of follow-up.

I data(thoro) in the Epi package.
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Comparing rates: thorotrast vs. control

Tabulating cases, person-years & rates by group

> s t a t . t a b l e ( c o n t r a s t ,
+ l i s t ( N = count ( ) ,
+ D = sum ( d ) ,
+ Y = sum ( y ) ,
+ r a t e = r a t i o ( d , y , 1 0 0 0 ) ) )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c o n t r a s t N D Y r a t e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c t r l 1236 797 .00 30517.56 2 6 . 1 2
t h o r 807 748 .00 19243.85 3 8 . 8 7
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Rate ratio, RR = 38.89/26.12 = 1.49,
Std. error of log-RR, SE =

√
1/748 + 1/797 = 0.051,

Error factor, EF = exp(1.96× 0.051) = 1.105,
95% confidence interval for RR:
(1.49/1.105, 1.49× 1.105) = (1.35, 1.64).
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Rate ratio estimation with Poisson regression

I Include contrast as the explanatory variable (factor).
I Insert person years in units that you want rates in

> m2 <− glm ( d ˜ c o n t r a s t , o f f s e t=l o g ( y /1000) ,
+ f a m i l y = p o i s s o n )
> round ( summary (m2) $coef , 4 ) [ , 1 : 2 ]

E s t i m a t e Std . E r r o r
( I n t e r c e p t ) 3 .2626 0 .0354
c o n t r a s t t h o r 0 .3977 0 .0509

I Rate ratio and CI?
Call function ci.exp() in Epi

> round( ci.exp( m2 ), 3 )

exp(Est.) 2.5% 97.5%

(Intercept) 26.116 24.364 27.994

contrast thor 1.488 1.347 1.644
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Rates in groups with Poisson regression

I Include contrast as the explanatory variable (factor).
I Remove the intercept (-1)
I Insert person-years in units that you want rates in

> m3 <- glm( d ~ contrast - 1,

offset=log(y/1000) ,

+ family = poisson )

> round( summary(m3)$coef , 4)[, 1:2]

Estimate Std. Error

contrast ctrl 3.2626 0.0354

contrast thor 3.6602 0.0366

> round( ci.exp( m3 ), 3 )

exp(Est.) 2.5% 97.5%

contrast ctrl 26.116 24.364 27.994

contrast thor 38.870 36.181 41.757
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Rates in groups with Poisson regression

I You can have it all in one go:

> CM <- rbind( c(1,0), c(0,1), c(-1,1) )

> rownames(CM) <- c("Ctrl","Thoro","Th vs.Ct")

> colnames(CM) <- names( coef(m3) )

> CM

contrast ctrl contrast thor

Ctrl 1 0

Thoro 0 1

Th vs. Ct -1 1

> round( ci.exp( m3 , ctr.mat=CM ),3 )

exp(Est.) 2.5% 97.5%

Ctrl 26.116 24.364 27.994

Thoro 38.870 36.181 41.757

Th vs. Ct 1.488 1.347 1.644
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Rate ratio estimation with Poisson regression

I Response may also be specified as individual rates:
d/y

weights= instead of offset= are needed.

> m4<-glm( d/(y/1000)~ contrast , weights=y/1000,

+ family=poisson)

> round( ci.exp(m4), 3 )

exp(Est.) 2.5% 97.5%

(Intercept) 26.116 24.365 27.994

contrast thor 1.488 1.347 1.644
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Rate difference estimation with Poisson regression

I The approach with d/y enables additive rate models too:

> m5 <-glm(d/(y/1000) ~contrast ,weights=y/1000,

+ family=poisson(link=" identity ") )

> round( ci.exp(m5 ,Exp=F), 3 )

Estimate 2.5% 97.5%

(Intercept) 26.116 24.303 27.929

contrast thor 12.753 9.430 16.077
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Rates difference

I As before you can have it all:

> m6 <- glm( d/(y/1000) ~ contrast -1,

+ family = poisson(link=" identity"),

+ weights = y/1000)

> round(ci.exp(m6 , ctr.mat=CM , Exp=F ), 3)

Estimate 2.5% 97.5%

Ctrl 26.116 24.303 27.929

Thoro 38.870 36.084 41.655

Th vs. Ct 12.753 9.430 16.077

> round( ci.exp( m3 , ctr.mat=CM), 3 )

exp(Est.) 2.5% 97.5%

Ctrl 26.116 24.364 27.994

Thoro 38.870 36.181 41.757

Th vs. Ct 1.488 1.347 1.644
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Binary data: Treatment success Y/N

85 diabetes-patients with foot-wounds:

I Dalterapin (Dal)

I Placebo (Pl)

Treatment group

Dalterapin Placebo

Outcome: Better 29 20
Worse 14 22

43 42

p̂Dal =
29

43
= 67% p̂Pl =

20

42
= 47%
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The difference between the probabilities is the fraction of the
patients that benefit from the treatment: pDal − pPl
> dlt <- rbind( c(29,14), c(20 ,22) )

> colnames( dlt ) <- c(" Better","Worse ")

> rownames( dlt ) <- c("Dal","Pl")

> twoby2( dlt )

2 by 2 table analysis:

/.../

Better Worse P(Better) 95% conf. interval

Dal 29 14 0.6744 0.5226 0.7967

Pl 20 22 0.4762 0.3316 0.6249

95% conf. interval

Relative Risk: 1.4163 0.9694 2.0692

Sample Odds Ratio: 2.2786 0.9456 5.4907

Conditional MLE Odds Ratio: 2.2560 0.8675 6.0405

Probability difference: 0.1982 -0.0110 0.3850

Exact P-value: 0.0808

Asymptotic P-value: 0.0665
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Logistic regression for binary data

For grouped binary data, the response is a two-column matrix
with columns (successes,failures).

> trt <- factor(c("Dal","Pl"))

> b1 <- glm( dlt ~ trt , family=binomial )

> ci.exp( b1 )

exp(Est.) 2.5% 97.5%

(Intercept) 2.0714286 1.0945983 3.919992

trtPl 0.4388715 0.1821255 1.057557

Oops! Dalterapin has become the reference group; we want
Placebo to be the reference. . .
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Logistic regression for binary data

> trt <- relevel( trt , 2 )

> b1 <- glm( dlt ~ trt , family=binomial )

> round( ci.exp( b1 ), 4 )

exp(Est.) 2.5% 97.5%

(Intercept) 0.9091 0.4962 1.6657

trtDal 2.2786 0.9456 5.4907

The default parameters in logistic regression are odds (the
intercept: 20/22 = 0.9090) and the odds-ratio
((29/14)/(20/22) = 2.28).
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Case-control study: Food-poisoning outbreak

I An outbreak of acute gastrointestinal illness (AGI)
occurred in a psychiatric hospital in Dublin in 1996.

I Out of all 423 patients and staff members, 65 were
affected during 27 to 31 August, 1996.

I 65 cases and 62 randomly selected control subjects were
interviewed.

I Exposure of interest: chocolate mousse cake.

I 47 cases and 5 controls reported having eaten the cake.

Ref: http://www.eurosurveillance.org/ViewArticle.aspx?

ArticleId=188 – here original numbers somewhat modified.
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Outbreak: crude summary of results
Distribution of exposure to chocolate mousse cake

Group Exposed Unexposed Total

Cases D1 = 47 (72%) D0 = 18 (28%) D = 65 (100%)
Controls C1 = 5 (8%) C0 = 57 (92%) C = 62 (100%)

Case/Ctr ratio 47/5 = 9.4 18/57 = 0.32

I The absolute size of case/control ratio depends on how many
cases and controls we selected.

I The ratio of the case/control ratio says something about the
exposure effect.
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p probability to be exposed, π probability of failure, 0.99 and
0.17 sampling (selection) fractions of cases and controls

Odds of disease =
P {Case given inclusion}

P {Control given inclusion}

ω1 =
p × π1 × 0.99

p × (1− π1)× 0.17
=

0.99

0.17
× π1

1− π1

ω0 =
(1− p)× π0 × 0.99

(1− p)× (1− π0)× 0.17
=

0.99

0.17
× π0

1− π0

OR =
ω1

ω0
=

π1
1− π1

/
π0

1− π0
= OR(disease)population
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Logistic regression in case-control studies

I Model for disease occurrence in the population:

logit(P{case}) = ln

[
p

1− p

]
= β0 + β1x1 + β2x2 = η

I Sampling fractions:

P{inclusion in study|control} = sctr

P{inclusion in study|case} = scas

I Model for observed case-control data:

ln[odds ( case — incl.) ] = ln

[
p

1− p

]
+ ln

[
scas
sctr

]

=

(
ln

[
scas
sctr

]
+ β0

)
+ β1x1 + β2x2
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Logistic regression in case-control studies

Analysis of P {case — inclusion} — i.e. binary observations:

Y =

{
1 ∼ case
0 ∼ control

ln[odds ( case — incl.) ] =

(
ln

[
scas
sctr

]
+ β0

)
+ β1x1 + β2x2

I Effect of covariates is estimated correctly.

I Intercept is meaningless —
depends on scas and sctr that are often unknown.
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Conclusion: What did we learn?

I Poisson regression models.

I In Poisson models the response can be either:
I case indicator d with offset = log(y), or
I rate d/y with weights = y.

I Both may be fitted on either grouped data, or individual
records.

I Binary date can be modeled with odds.

I Case-control studies:
Odds-ratios can be computed by logistic regression
models, but Intercept from model is meaningless.
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Linear and generalized linear models

Friday 2 June, 14:30-15:00
Esa Läärä

Statistical Practice in Epidemiology with R
1 to 6 June, 2017
University of Tartu, Estonia

Outline

I Simple linear regression.

I Fitting a model and extracting results.

I Predictions and diagnostics.

I Categorical factors and contrast matrices.

I Main effects and interactions.

I Generalized linear models.

I Modelling curved effects.
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Variables in generalized linear models

I The outcome or response variable must be numeric.

I Main types of response variables are

– Metric or continuous (a measurement with units)

– Binary (two values coded 0/1)

– Failure (does the subject fail at end of follow-up)

– Count (aggregated failure data, number of cases)

I Explanatory variables or regressors can be

– Numeric or quantitative variables

– Categorical factors, represented by class indicators or
contrast matrices.

Linear and generalized linear models 2/ 22

The births data in Epi

id: Identity number for mother and baby.
bweight: Birth weight of baby.
lowbw: Indicator for birth weight less than 2500 g.

gestwks: Gestation period in weeks.
preterm: Indicator for gestation period less than 37 weeks.
matage: Maternal age.

hyp: Indicator for maternal hypertension (0 = no, 1 = yes).
sex: Sex of baby (1 = male, 2 = female).

Declaring and transforming some variables as factors:

> library(Epi) ; data(births)

> births <- transform(births,

+ hyp = factor(hyp, labels=c("N", "H")),

+ sex = factor(sex, labels=c("M", "F")),

+ gest4 = cut(gestwks,breaks=c(20, 35, 37, 39, 45), right=FALSE) )

> births <- subset(births, !is.na(gestwks))
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Birth weight and gestational age
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> with(births, plot(bweight ~ gestwks, xlim = c(24,45), pch = 16, cex.axis=1.5, cex.lab = 1.5,

+ xlab= "Gestational age (wk)", ylab= "Birth weight (g)" ) )
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Metric response, numeric explanatory variable

Roughly linear relationship btw bweight and gestwks

→ Simple linear regression model fitted.

> m <- lm(bweight ~ gestwks, data=births)

I lm() is the function that fits linear regression models,
assuming Gaussian distribution for error terms.

I bweight ~ gestwks is the model formula

I m is a model object belonging to class “lm”.

> coef(m) – Printing the estimated regression coefficients

(Intercept) gestwks

-4489.1 197.0

Interpretation of intercept and slope?
Linear and generalized linear models 5/ 22

Model object and extractor functions

Model object = list of different elements, each being
separately accessible. – See str(m) for the full list.

Functions that extract results from the fitted model object

I summary(m) – lots of output

I coef(m) – beta-hats only (see above)

I ci.lin(m)[,c(1,5,6)] – β̂j s plus confidence limits

Estimate 2.5% 97.5%

(Intercept) -4489.1 -5157.3 -3821.0

gestwks 197.0 179.7 214.2

This function is in Epi package

I anova(m) – Analysis of Variance Table

Linear and generalized linear models 6/ 22

Other extractor functions, for example

I fitted(m), resid(m), vcov(m), . . .

I predict(m, newdata = ..., interval=...)

– Predicted responses for desired combinations of new
values of the regressors – newdata

– Argument interval specifies whether
confidence intervals for the mean response or
prediction intervals for individual responses
are returned.

I plot(m) – produces various diagnostic plots based on
residuals (raw or standardized)

Many of these are special methods for certain generic
functions, aimed at acting on objects of class “lm”.
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Fitted values, confidence & prediction intervals
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> nd <- data.frame( gestwks = seq(24, 45, by = 0.25 ) )

> pr.c1 <- predict( m, newdata=nd, interval="conf" )

> pr.p1 <- predict( m, newdata=nd, interval="pred" )

> with(births, plot(bweight ~ gestwks, xlim = c(24,45), cex.axis=1.5, cex.lab = 1.5, xlab = Gestational age (wk), ylab = Birth weight (g) ) )

> matlines( nd$gestwks, pr.c1, lty=1, lwd=c(3,2,2), col=c(red,blue,blue))

> matlines( nd$gestwks, pr.p1, lty=1, lwd=c(3,2,2), col=c(red,green,green))
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A couple of diagnostic plots
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> par(mfrow=c(1,2))

> plot(m, 1:2, cex.lab = 1.5, cex.axis=1.5, cex.caption=1.5, lwd=2)

I Some deviation from linearity?
I Reasonable agreement with Gaussian error assumption?

Linear and generalized linear models 9/ 22

Factor as an explanatory variable

I How bweight depends on maternal hypertension?

> mh <- lm( bweight ~ hyp, data=births)

Estimate 2.5% 97.5%

(Intercept) 3198.9 3140.2 3257.6

hypH -430.7 -585.4 -275.9

I Removal of intercept → mean bweights by hyp:

> mh2 <- lm( bweight ~ -1 + hyp, data = births)

> coef(mh2)

hypN hypH

3198.9 2768.2

I Interpretation: -430.7 = 2768.2 - 3198.9 =
difference between level 2 vs. reference level 1 of hyp

Linear and generalized linear models 10/ 22



Additive model with both gestwks and hyp

I Joint effect of hyp and gestwks under additivity is
modelled e.g. by updating a simpler model:

> mhg <- update(mh, . ~ . + gestwks)

Estimate 2.5% 97.5%

(Intercept) -4285.0 -4969.7 -3600.3

hypH -143.7 -259.0 -28.4

gestwks 192.2 174.7 209.8

I The effect of hyp: H vs. N is attenuated
(from −430.7 to −143.7).

I This suggests that much of the effect of hypertension on
birth weight is mediated through a shorter gestation
period among hypertensive mothers.

Linear and generalized linear models 11/ 22

Model with interaction of hyp and gestwks

I mhgi <- lm(bweight ~ hyp + gestwks +

hyp:gestwks, data = births)

I Or with shorter formula: bweight ~ hyp * gestwks

Estimate 2.5% 97.5%

(Intercept) -3960.8 -4758.0 -3163.6

hypH -1332.7 -2841.0 175.7

gestwks 183.9 163.5 204.4

hypH:gestwks 31.4 -8.3 71.1

I Estimated slope: 183.9 g/wk in reference group N and
183.9 + 31.4 = 215.3 g/wk in hypertensive mothers.

⇔ For each additional week the difference in mean bweight

between H and N group increases by 31.4 g.

I Interpretation of Intercept and “main effect” hypH?

Linear and generalized linear models 12/ 22

Model with interaction (cont’d)

More interpretable parametrization obtained if gestwks is
centered at some reference value, using e.g. the insulate
operator I() for explicit transformation of an original term.

I mi2 <- lm(bweight ~ hyp*I(gestwks-40), ...)

Estimate 2.5% 97.5%

(Intercept) 3395.6 3347.5 3443.7

hypH -77.3 -219.8 65.3

I(gestwks - 40) 183.9 163.5 204.4

hypH:I(gestwks - 40) 31.4 -8.3 71.1

I Main effect of hyp = −77.3 is the difference between H

and N at gestwks = 40.

I Intercept = 3395.6 is the estimated mean bweight at
the reference value 40 of gestwks in group N.

Linear and generalized linear models 13/ 22



Factors and contrasts in R

I A categorical explanatory variable or factor with L levels
will be represented by L− 1 linearly independent columns
in the model matrix of a linear model.

I These columns can be defined in various ways implying
alternative parametrizations for the effect of the factor.

I Parametrization is defined by given type of contrasts.

I Default: treatment contrasts, in which 1st class is the
reference, and regression coefficient βk for class k is
interpreted as βk = µk − µ1

I Own parametrization may be tailored by function C(),
with the pertinent contrast matrix as argument.

I Or, use ci.lin(mod, ctr.mat = CM) after fitting.

Linear and generalized linear models 14/ 22

Two factors: additive effects

I Factor X has 3 levels, Z has 2 levels – Model:

µ = α + β1X1 + β2X2 + β3X3 + γ1Z1 + γ2Z2

I X1 (reference), X2,X3 are the indicators for X ,

I Z1 (reference), Z2 are the indicators for Z .

I Omitting X1 and Z1 the model for mean is:

µ = α + β2X2 + β3X3 + γ2Z2

with predicted means µjk (j = 1, 2, 3; k = 1, 2):

Z = 1 Z = 2
1 µ11 = α µ11 = α + γ2

X 2 µ21 = α + β2 µ22 = α + β2 + γ2
3 µ31 = α + β3 µ32 = α + β3 + γ2

Linear and generalized linear models 15/ 22

Two factors with interaction

I Effect of Z differs at different levels of X :
Z = 1 Z = 2

1 µ11 = α µ12 = α + γ2
X 2 µ21 = α + β2 µ22 = α + β2 + γ2 + δ22

3 µ31 = α + β3 µ32 = α + β3 + γ2 + δ32

I How much the effect of Z (level 2 vs. 1)
changes when the level of X is changed from 1 to 3:

δ32 = (µ32 − µ31)− (µ12 − µ11)

= (µ32 − µ12)− (µ31 − µ11),

= how much the effect of X (level 3 vs. 1)
changes when the level of Z is changed from 1 to 2.

I See the exercise: interaction of hyp and gest4.
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Contrasts in R

I All contrasts can be implemented by supplying a suitable
contrast function giving the contrast matrix e.g:

> contr.cum(3) > contr.sum(3)

1 0 0 1 1 0

2 1 0 2 0 1

3 1 1 3 -1 -1

I In model formula factor name faktori can be replaced
by expression like C(faktori, contr.cum).

I Function ci.lin() has an option for calculating CI’s for
linear functions of the parameters of a fitted model mall
when supplied by a relevant contrast matrix
> ci.lin(mall, ctr.mat = CM)[ , c(1,5,6)]

→ No need to specify contrasts in model formula!

Linear and generalized linear models 17/ 22

From linear to generalized linear models

I An alternative way of fitting our 1st Gaussian model:

> m <- glm(bweight ~ gestwks, family=gaussian, data=births)

I Function glm() fits generalized linear models (GLM).

I Requires specification of the

I family – i.e. the assumed “error” distribution for Yi s,
I link function – a transformation of the expected Yi .

I Covers common models for other types of response
variables and distributions, too, e.g. logistic regression
for binary responses and Poisson regression for counts.

I Fitting: method of maximum likelihood.

I Many extractor functions for a glm object similar to those
for an lm object.

Linear and generalized linear models 18/ 22

More about numeric regressors

What if dependence of Y on X is non-linear?

I Categorize the values of X into a factor.

– Continuous effects violently discretized by often arbitrary
cutpoints. – Inefficient.

I Fit a low-degree (e.g. 2 to 4) polynomial of X .

– Tail behaviour may be problematic.

I Use fractional polynomials.

– Invariance problems. Only useful if X = 0 is well-defined.

I Use a spline model: smooth function s(X ; β).

– More flexible models that act locally.
– Effect of X reported by graphing ŝ(X ;β) & its CI
– See Martyn’s lecture

Linear and generalized linear models 19/ 22



Mean bweigth as 3rd order polynomial of gestwks
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> mp3 <- update( m, . ~ . - gestwks + poly(gestwks, 3) )

I The model is linear in parameters with 4 terms & 4 df.
I Otherwise good, but the tails do not behave well.

Linear and generalized linear models 20/ 22

Penalized spline model with cross-validation
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> library(mgcv)

> mpen <- gam( bweight ~ s(gestwks), data = births)

I Looks quite nice.
I Model degrees of freedom ≈ 4.2;

almost 4, as in the 3rd degree polynomial modelLinear and generalized linear models 21/ 22

What was covered

I A wide range of models from simple linear regression to
splines.

I R functions fitting linear and generalized models:
lm() and glm().

I Parametrization of categorical explanatory factors;
contrast matrices.

I Extracting results and predictions:
ci.lin(), fitted(), predict(), ... .

I Model diagnostics:
resid(), plot.lm(), ... .

Linear and generalized linear models 22/ 22
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Linear interpolation

• Suppose a dose
response curve is
known exactly at
certain points

• We can fill in the
gaps (interpolate)
by drawing a
straight (linear) line
between adjacent
points

Join the dots Brownian motion Smoothing splines Conclusions

Why linear interpolation?

Out of all possible curves that go through the observed points,
linear interpolation is the one that minimizes the penalty function

∫ (
∂f

∂x

)2

dx

Join the dots Brownian motion Smoothing splines Conclusions

What does the penalty mean?

• The contribution to
the penalty at each
point depends on
the steepness of the
curve (represented
by a colour
gradient)

• Any deviation from
a straight line
between the two
fixed points will
incur a higher
penalty overall.
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Extrapolation

• Linear interpolation
fits a linear
dose-response curve
exactly

• But it breaks down
when we try to
extrapolate

Join the dots Brownian motion Smoothing splines Conclusions

Why does linear interpolation break down?

• The penalty function

∫ (
∂f

∂x

)2

dx

penalizes the steepness of the curve

• Minimizing the penalty function gives us gives us the
“flattest” curve that goes through the points.

• In between two observations the flattest curve is a straight line.
• Outside the range of the observations the flattest curve is

completely flat.

Join the dots Brownian motion Smoothing splines Conclusions

A roughness penalty

• If we want a fitted curve that extrapolates a linear trend then
we want to minimize the curvature.

∫ (
∂2f

∂x2

)2

dx

• Like the first penalty function but uses the second derivative
of f (i.e. the curvature).

• This is a roughness penalty.
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A roughness penalty

• If we want a fitted curve that extrapolates a linear trend then
we want to minimize the curvature.

∫ (
∂2f

∂x2

)2

dx

• Like the first penalty function but uses the second derivative
of f (i.e. the curvature).

• This is a roughness penalty.

Join the dots Brownian motion Smoothing splines Conclusions

What does the roughness penalty mean?

• The contribution to
the penalty at each
point depends on
the curvature
(represented by a
colour gradient)

• A straight line has
no curvature, hence
zero penalty.

• Sharp changes in
the slope are
heavily penalized.
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An interpolating cubic spline

• The smoothest
curve that goes
through the
observed points is a
cubic spline.
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An interpolating cubic spline

• The smoothest
curve that goes
through the
observed points is a
cubic spline.
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Properties of cubic splines

• A cubic spline consists of a sequence of curves of the form

f (x) = a + bx + cx2 + dx3

for some coefficients a, b, c, d , in between each observed
point.

• The cubic curves are joined at the observed points (knots)

• The cubic curves match where they meet at the knots
• Same value f (x)
• Same slope ∂f /∂x
• Same curvature ∂2f /∂x2
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Brownian motion

• In 1827, botanist Robert
Brown observed particles
under the microscope
moving randomly

• Theoretical explanation
by Einstein (1905) in
terms of water molecules

• Verified by Perrin (1908).
Nobel prize in physics
1927.
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Evolution of 1-dimensional Brownian motion with time

• In mathematics a
Brownian motion is a
stochastic process that
randomly goes up or
down at any time point

• Also called a Wiener
process after American
mathematician Norbert
Wiener.

• A Brownian motion is
fractal – it looks the same
if you zoom in and rescale

Join the dots Brownian motion Smoothing splines Conclusions

A partially observed Brownian motion

• Suppose we observe
a Brownian motion
at three points

• Grey lines show a
sample of possible
paths through the
points

• The black line
shows the average
over all paths
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A partially observed Brownian motion

• Suppose we observe
a Brownian motion
at three points

• Grey lines show a
sample of possible
paths through the
points

• The black line
shows the average
over all paths

Join the dots Brownian motion Smoothing splines Conclusions

A partially observed Brownian motion

• Suppose we observe
a Brownian motion
at three points

• Grey lines show a
sample of possible
paths through the
points

• The black line
shows the average
over all paths
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Statistical model for linear interpolation

• Suppose the curve f is generated by the underlying model

f (x) = α + σW (x)

where W (for Wiener process) is a Brownian motion

• Then given points (x1, f (x1)) . . . (xn, f (xn)) the expected value
of f is the curve we get from linear interpolation.
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Integrated Brownian motion

• The value of an
integrated
Brownian motion is
the area under the
curve (AUC) of a
Brownian motion
up to that point.

• AUC goes down
when the Brownian
motion takes a
negative value.
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Integrated Brownian motion with drift

Add a mean parameter and a linear trend (drift) to the integrated
Brownian motion:

f (x) = α + βx + σ

∫ x

0
W (z)dz

This more complex model is capable of modelling smooth curves.
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A partially observed integrated Brownian motion with drift

• Grey lines show a
sample of possible
paths through the
points

• The black line
shows the average
over all paths
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Zoom on the expected value

• The expected value
is a cubic spline.

• Extrapolation
beyond the
boundary of the
points is linear
(natural spline).
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The smoothness paradox

• A cubic natural spline is the smoothest curve that goes
through a set of points.

• But the underlying random process f (x) is nowhere smooth.

• f (x) is constantly changing its slope based on the value of the
underlying Brownian motion.

Join the dots Brownian motion Smoothing splines Conclusions

The knot paradox

• There are no knots in the underlying model for a cubic natural
spline.

• Knots are a result of the observation process.
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Dose response with error

In practice we never
know the dose response
curve exactly at any
point but always
measure with error. A
spline model is then a
compromise between

• Model fit

• Smoothness of the
spline
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Fitting a smoothing spline

Minimize
∑

i

(yi − f (xi ))2 + λ

∫ (
∂2f

∂x2

)2

dx

Or, more generally

Deviance + λ ∗ Roughness penalty

Size of tuning parameter λ determines compromise between model
fit (small λ) and smoothness (large λ).
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How to choose the tuning parameter λ

This is a statistical problem. There are various statistical
approaches:

• Restricted maximum likelihood (REML)

• Cross-validation

• Bayesian approach (with prior on smoothness)

At least the first two should be available in most software.
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Spline models done badly

• Choose number and
placement of knots

• Create a spline bases

• Use spline basis as the
design matrix in a
generalized linear model.

• Without penalization,
model will underfit (too
few knots) or overfit (too
many knots)

• Placement of knots may
create artefacts in the
dose-response relationship
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Spline models done well

• A knot for every observed
value (remember: knots
are a product of the
observation process).

• Use penalization: find the
right compromise between
model fit and model
complexity.

• In practice we can get a
good approximation to
this “ideal” model with
fewer knots.

• This assumption should
be tested
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Spline models in R

• Do not use the splines package.

• Use the gam function from the mgcv package to fit your spline
models.

• The gam function chooses number and placement of knots for
you and estimates the size of the tuning parameter λ
automatically.

• You can use the gam.check function to see if you have
enough knots. Also re-fit the model explicitly setting a larger
number of knots (e.g. double) to see if the fit changes.
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Penalized spline

• A gam fit to some
simulated data

• Model has 9
degrees of freedom

• Smoothing reduces
this to 2.88
effective degrees of
freedom
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Penalized spline

• A gam fit to some
simulated data

• Model has 9
degrees of freedom

• Smoothing reduces
this to 2.88
effective degrees of
freedom
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Unpenalized spline

• An unpenalized
spline using the
same spline basis as
the gam fit.

• Model has 9
degrees of freedom
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Unpenalized spline

• An unpenalized
spline using the
same spline basis as
the gam fit.

• Model has 9
degrees of freedom
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Graphics Systems in R

R has several different graphics systems:
I Base graphics (the graphics package)
I Lattice graphics (the lattice package)
I Grid graphics (the grid package)
I Grammar of graphics (the ggplot2 package)

Why so many? Which one to use?
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Base Graphics

I The oldest graphics system in R.
I Based on S graphics (Becker, Chambers and Wilks, The

New S Language, 1988)
I Implemented in the base package graphics

I Loaded automatically so always available
I Ink on paper model; once something is drawn “the ink is

dry” and it cannot be erased or modified.
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Lattice Graphics

I A high-level data visualization system with an emphasis on
multivariate data

I An implementation of Trellis graphics, first described by
William Cleveland in the book Visualizing Data, 1993.

I Implemented in the base package lattice.
I More fully described by the lattice package author

Deepayan Sarkar in the book Lattice: Multivariate Data
Visualization with R, 2008.
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Grammar of Graphics

I Originally described by Leland Wilkinson in the book The
Grammar of Graphics, 1999 and implemented in the
statistical software nViZn (part of SPSS)

I Statistical graphics, like natural languages, can be broken
down into components that must be combined according to
certain rules.

I Provides a pattern language for graphics:
I geometries, statistics, scales, coordinate systems,

aesthetics, themes, ...
I Implemented in R in the CRAN package ggplot2

I Described more fully by the ggplot2 package author
Hadley Wickham in the book ggplot2: Elegant Graphics for
Data Analysis, 2009.
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Grid Graphics

I A complete rewrite of the graphics system of R,
independent of base graphics.

I Programming with graphics:
I Grid graphics commands create graphical objects (Grobs)
I Printing a Grob displays it on a graphics device
I Functions can act on grobs to modify or combine them

I Implemented in the base package grid, and extended by
CRAN packages gridExtra, gridDebug, ...

I Described by the package author Paul Murrell in the book
R Graphics (2nd edition), 2011.
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Putting It All Together

I Base graphics are the default, and are used almost
exclusively in this course

I lattice and ggplot2 are alternate, high-level graphics
packages

I grid provides alternate low-level graphics functions.
I A domain-specific language for graphics within R
I Underlies both lattice and ggplot
I Experts only

I All graphics packages take time to learn...
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Graphics Devices

Graphics devices are used by all graphics systems (base,
lattice, ggplot2, grid).

I Plotting commands will draw on the current graphics device
I This default graphics device is a window on your screen:

On Windows windows()
On Unix/Linux x11()
On Mac OS X quartz()
It normally opens up automatically when you need it.

I You can have several graphics devices open at the same
time (but only one is current)
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Graphics Device in RStudio

RStudio has its own graphics device RStudioGD built into the
graphical user interface

I You can see the contents in a temporary, larger window by
clicking the zoom button.

I You can write the contents directly to a file with the export
menu

I Sometimes small size of the RStudioGD causes problems.
Open up a new device calling RStudioGD(). This will
appear in its own window, free from the GUI.
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Writing Graphs to Files

There are also non-interactive graphics devices that write to a
file instead of the screen.

pdf produces Portable Document Format files
win.metafile produces Windows metafiles that can be

included in Microsoft Office documents (windows
only)

postscript produces postscript files
png, bmp, jpeg all produce bitmap graphics files

I Turn off a graphics device with dev.off(). Particularly
important for non-interactive devices.

I Plots may look different in different devices
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Types of Plotting Functions

I High level
I Create a new page of plots with reasonable default

appearance.
I Low level

I Draw elements of a plot on an existing page:
I Draw title, subtitle, axes, legend . . .
I Add points, lines, text, math expressions . . .

I Interactive
I Querying mouse position (locator), highlighting points

(identify)
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Basic x-y Plots

I The plot function with one or two numeric arguments
I Scatterplot or line plot (or both) depending on type

argument: "l" for lines, "p" for points (the default), "b"
for both, plus quite a few more

I Also: formula interface, plot(y~x), with arguments
similar to the modeling functions like lm
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Customizing Plots

I Most plotting functions take optional parameters to change
the appearance of the plot

I e.g., xlab, ylab to add informative axis labels
I Most of these parameters can be supplied to the par()

function, which changes the default behaviour of
subsequent plotting functions

I Look them up via help(par)! Here are some of the more
commonly used:

I Point and line characteristics: pch, col, lty, lwd
I Multiframe layout: mfrow, mfcol
I Axes: xlim, ylim, xaxt, yaxt, log
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Adding to Plots

I title() add a title above the plot
I points(), lines() adds points and (poly-)lines
I text() text strings at given coordinates
I abline() line given by coefficients (a and b) or by fitted

linear model
I axis() adds an axis to one edge of the plot region.

Allows some options not otherwise available.
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Approach to Customization

I Start with default plots
I Modify parameters (using par() settings or plotting

arguments)
I Add more graphics elements. Notice that there are

graphics parameters that turn things off, e.g. plot(x, y,
xaxt="n") so that you can add completely customized
axes with the axis function.

I Put all your plotting commands in a script or inside a
function so you can start again
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Demo 1

library(ISwR)
par(mfrow=c(2,2))
matplot(intake)
matplot(t(intake))
matplot(t(intake),type="b")
matplot(t(intake),type="b",pch=1:11,col="black",

lty="solid", xaxt="n")
axis(1,at=1:2,labels=names(intake))
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Margins
I R sometimes seems to leave too much empty space

around plots (especially in multi-frame layouts).
I There is a good reason for it: You might want to put

something there (titles, axes).
I This is controlled by the mar parameter. By default, it is
c(5,4,4,2)+0.1

I The units are lines of text, so depend on the setting of
pointsize and cex

I The sides are indexed in clockwise order, starting at the
bottom (1=bottom, 2=left, 3=top, 4=right)

I The mtext function is designed to write in the margins of
the plot

I There is also an outer margin settable via the oma
parameter. Useful for adding overall titles etc. to
multiframe plots
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Demo 2

x <- runif(50,0,2)
y <- runif(50,0,2)
plot(x, y, main="Main title", sub="subtitle",

xlab="x-label", ylab="y-label")
text(0.6,0.6,"text at (0.6,0.6)")
abline(h=.6,v=.6)
for (side in 1:4)

mtext(-1:4,side=side,at=.7,line=-1:4)
mtext(paste("side",1:4), side=1:4, line=-1,font=2)
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The lattice package provides functions that produce similar
plots to base graphics (with a different “look and feel”)

base lattice
plot xyplot
hist histogram
boxplot bwplot
barplot barchart
heatmap, contour levelplot
dotchart dotplot

Lattice graphics can also be used to explore multi-dimensional
data
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Panels

I Plotting functions in lattice consistently use a formula
interface, e.g y~x to plot y against x

I The formula allows conditioning variables, e.g.
y~x|g1*g2*...

I Conditioning variables create an array of panels,
I One panel for each value of the conditioning variables
I Continuous conditioning variables are divided into shingles

(slightly overlapping ranges, named after the roof covering)
I All panels have the same scales on the x and y axes.
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Ozone Concentration by Solar Radiation

xyplot(log(Ozone)~Solar.R, data=airquality)

Solar.R
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Conditioned on Temperature
xyplot(log(Ozone)~Solar.R | equal.count(Temp),
data=airquality)
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Coloured by Month
xyplot(log(Ozone)~Solar.R | equal.count(Temp),
group=Month, data=airquality)
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Customizing Panels

I What goes inside each panel of a Lattice plot is controlled
by a panel function

I There are many standard functions: panel.xyplot,
panel.lmline, etc.

I You can write your own panel functions, most often by
combining standard ones

mypanel <- function(x,y,...){
panel.xyplot(x,y,...) #Scatter plot
panel.lmline(x,y,type="l") #Regression line

}
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With Custom Panel
xyplot(log(Ozone)~Solar.R | equal.count(Temp),
panel=mypanel, data=airquality)
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Each panel shows a scatter plot (panel.xyplot) and a
regression line (panel.lmline)
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A Few Words on Grid Graphics

I Experts only, but . . .
I Recall that lattice and ggplot2 both use grid

I The key concepts you need are grobs and viewports
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Grobs: Graphical Objects

I Grobs are created by plotting functions in grid, lattice,
ggplot2

I Grobs are only displayed when they are printed
I Grobs can be modified or combined before being displayed
I The ggplot2 package uses the + operator to combine

grobs representing different elements of the plot
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Viewports

I The plotting region is divided into viewports
I Grobs are displayed inside a viewport
I The panels in lattice graphics are examples of viewports,

but in general
I Viewports can be different sizes (inches, centimetres, lines

of text, or relative units)
I Each viewport may have its own coordinate systems
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Points to be covered

1. Survival or time to event data & censoring.

2. Distribution concepts for times to event:
survival, hazard and cumulative hazard,

3. Competing risks: event-specific cumulative incidences &
hazards.

4. Kaplan–Meier and Aalen–Johansen estimators.

5. Regression modelling of hazards: Cox model.

6. Packages survival, mstate, cmprisk.

7. Functions Surv(), survfit(), plot.survfit(),

coxph(), Cuminc().

Points not to be covered – many!
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Survival time – time to event

Let T be the time spent in a given state from its beginning
till a certain endpoint or outcome event or transition occurs,
changing the state to another.
(lex.Cst - lex.dur - lex.Xst)

Examples of such times and outcome events:

I lifetime: birth → death,

I duration of marriage: wedding → divorce,

I healthy exposure time:
start of exposure → onset of disease,

I clinical survival time:
diagnosis of a disease → death.
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Ex. Survival of 338 oral cancer patients

Important variables:

I time = duration of patientship from
diagnosis (entry) till death or censoring,

I event = indicator for the outcome and its
observation at the end of follow-up (exit):
0 = censoring,
1 = death from oral cancer,
2 = death from some other cause.

Special features:

I Several possible endpoints, i.e. alternative causes of
death, of which only one is realized.

I Censoring – incomplete observation of the survival time.
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Set-up of classical survival analysis

I Two-state model: only one type of event changes the
initial state.

I Major applications: analysis of lifetimes since birth and of
survival times since diagnosis of a disease until death
from any cause.

Alive Dead-Transition

I Censoring: Death and final lifetime not observed for
some subjects due to emigration or closing the follow-up
while they are still alive
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Distribution concepts: survival function

Cumulative distribution function (CDF) F (t) and density
function f(t) = F ′(t) of survival time T :

F (t) = P (T ≤ t) =

∫ t

0

f(u)du

= risk or probability that the event occurs by t.

Survival function

S(t) = 1− F (t) = P (T > t) =

∫ ∞

t

f(u)du,

= probability of avoiding the event at least up to t
(the event occurs only after t).
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Distribution concepts: hazard function

The hazard rate or intensity function h(t)

λ(t) = lim
∆→0

P (t < T ≤ t+ ∆|T > t)/∆

= lim
∆→0

P (t < T ≤ t+ ∆)

P (T > t)

1

∆
=
f(t)

S(t)

≈ the conditional probability that the event occurs in a
short interval (t, t+ ∆], given that it does not occur
before t, divided by interval length.

In other words, during a short interval

risk of event ≈ hazard × interval length
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Distribution: cumulative hazard etc.

The cumulative hazard (or integrated intensity):

Λ(t) =

∫ t

0

λ(v)dv

Connections between the functions:

λ(t) =
f(t)

1− F (t)
= −S

′(t)

S(t)
= −d log[S(t)]

dt
,

Λ(t) = − log[S(t)],

S(t) = exp{−Λ(t)} = exp

{
−
∫ t

0

λ(v)dv

}
,

f(t) = λ(t)S(t)

F (t) = 1− exp{−Λ(t)}

=

∫ t

0

λ(v)S(v)dv
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Observed data on survival times

For individuals i = 1, . . . , n let
Ti = true time to outcome event,
Ui = true time to censoring.

Censoring is assumed noninformative, i.e.
independent from occurrence of events.

We observe

yi = min{Ti, Ui}, i.e. the exit time, and

δi = 1{Ti<Ui}, indicator (1/0) for the outcome event
occurring first, before censoring.

Censoring must properly be taken into account in the
statistical analysis.
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Approaches for analysing survival time

I Parametric model (like Weibull, gamma, etc.) on
hazard rate λ(t) → Likelihood:

L =
n∏

i=1

λ(yi)
δiS(yi) =

n∏

i=1

λ(yi)
δi exp{−Λ(yi)}

= exp

{
n∑

i=1

[δi log λ(yi)− Λ(yi)]

}

I Piecewise constant rate model on λ(t)
– see Bendix’s lecture on time-splitting.

I Non-parametric methods, like
Kaplan–Meier (KM) estimator of survival curve S(t) and
Cox proportional hazards model on λ(t).

10/ 55

R package survival

Tools for analysis with one outcome event.

I Surv(time, event) -> sobj

creates a survival object sobj, containing pairs (yi, δi),

I Surv(entry, exit, event) -> sobj2

creates a survival object from entry and exit times,

I survfit(sobj ~ x) -> sfo

creates a survfit object sfo containing KM or other
non-parametric estimates (also from a fitted Cox model),

I plot(sfo)

plot method for survival curves and related graphs,

I coxph(sobj ~ x1 + x2)

fits a Cox model with covariates x1 and x2.

I survreg() – parametric survival models.
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Ex. Oral cancer data (cont’d)

> orca$suob <- Surv(orca$time, 1*(orca$event > 0) )

> orca$suob[1:7] # + indicates censored observation

[1] 5.081+ 0.419 7.915 2.480 2.500 0.167 5.925+

> km1 <- survfit( suob ~ 1, data = orca)

> km1 # brief summary

records n.max n.start events median 0.95LCL 0.95UCL

338.00 338.00 338.00 229.00 5.42 4.33 6.92

> summary(km1) # detailed KM-estimate

time n.risk n.event survival std.err lower 95% CI upper 95% CI

0.085 338 2 0.9941 0.00417 0.9859 1.000

0.162 336 2 0.9882 0.00588 0.9767 1.000

0.167 334 4 0.9763 0.00827 0.9603 0.993

0.170 330 2 0.9704 0.00922 0.9525 0.989

0.246 328 1 0.9675 0.00965 0.9487 0.987

...
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Oral cancer: Kaplan-Meier estimates

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated survival (+censorings & conf.limits) and CDF

Time (years)

P
ro

po
rt

io
n

KM for S(t)

KM for F(t) = 1−S(t)

13/ 55

Estimated F (t) = 1− S(t) on variable scales

I KM curve of survival S(t) is the most popular.

I Informative are also graphs for estimates of
F (t) = 1− S(t), i.e. CDF
Λ(t) = − log[1− F (t)], cumulative hazard,
log[Λ(t)], cloglog transform of CDF.
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Competing risks model: causes of death

I Often the interest is focused on the risk or hazard of
dying from one specific cause.

I That cause may eventually not be realized, because a
competing cause of death hits first.

Alive

Dead from cancer

Dead, other causes

��
��

��1

PPPPPPq

λ1(t)

λ2(t)

I Generalizes to several competing causes.
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Competing events & competing risks

In many epidemiological and clinical contexts there are
competing events that may occur before the target event and
remove the person from the population at risk for the event,
e.g.

I target event: occurrence of endometrial cancer,
competing events: hysterectomy or death.

I target event: relapse of a disease
(ending the state of remission),
competing event: death while still in remission.

I target event: divorce,
competing event: death of either spouse.
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Event-specific quantities

Cumulative incidence function (CIF) or
subdistribution function for event c:

Fc(t) = P (T ≤ t and C = c), c = 1, 2,

subdensity function fc(t) = dFc(t)/dt

From these one can recover

I F (t) =
∑

c Fc(t), CDF of event-free survival time T , i.e.
cumulative risk of any event by t.

I S(t) = 1− F (t), event-free survival function, i.e.
probability of avoiding all events by t
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Event-specific quantities (cont’d)

Event- or cause-specific hazard function

λc(t) = lim
∆→0

P (t < T ≤ t+ ∆ and C = c | T > t)

∆

=
fc(t)

1− F (t)

≈ Risk of event c in a short interval (t, t+ ∆], given
avoidance of all events up to t, per interval length.

Event- or cause-specific cumulative hazard

Λc(t) =

∫ t

0

λc(v)dv
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Event-specific quantities (cont’d)

I CIF = risk of event c over risk period [0, t] in the presence
of competing risks, also obtained

Fc(t) =

∫ t

0

λc(v)S(v)dv, c = 1, 2,

I Depends on the hazard of the competing event, too, via

S(t) = exp

{
−
∫ t

0

[λ1(v) + λ2(v)]dv

}

= exp {−Λ1(t)} × exp {−Λ2(t)} .
Hazard of the subdistribution

γc(t) = fc(t)/[1− Fc(t)]

I Is not the same as λc(t) = fc(t)/[1− F (t)],
I Interpretation tricky!
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Warning of “net risk” and “cause-specific survival”

I The “net risk” of outcome c by time t, assuming
hypothetical elimination of competing risks, is often
defined as

F ∗c (t) = 1− S∗c (t) = 1− exp{−Λc(t)}

I In clinical survival studies, function S∗c (t) is often called
“cause-specific survival”, and estimated by KM, but
treating competing deaths as censorings.

I Yet, these *-functions, F ∗c (t) and S∗c (t), lack proper
probability interpretation when competing risks exist.

I Hence, their use and naive KM estimation should be
viewed critically (Andersen & Keiding, Stat Med, 2012)
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Example: Risk of lung cancer by age a?

I Empirical cumulative rate CR(a) =
∑

k<a Ik∆k, i.e.
ageband-width (∆k) weighted sum of empirical
age-specific incidence rates Ik up to a given age a
= estimate of cumulative hazard Λc(a).

I Nordcan & Globocan give “cumulative risk” by 75 y of
age, computed from 1− exp{−CR(75)}, as an estimate
of the probability of getting cancer before age 75 y,
assuming that death were avoided by that age. This is
based on deriving “net risk” from cumulative hazard:

F ∗c (a) = 1− exp{−Λc(a)}.
I Yet, cancer occurs in a mortal population.

I As such CR(75) is a sound age-standardized summary
measure for comparing cancer incidence across
populations based on a neutral standard population.
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Example. Male lung cancer in Denmark

Event-specific hazards λc(a) by age estimated by age-spec.
rates of death and lung ca., resp.
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Cumulative incidence of lung cancer by age
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Both CR and 1− exp(−CR) tend to
overestimate the real cumulative incidence CI after 60 y.
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Analysis with competing events

Let Ui = censoring time, Ti = time to first event, and
Ci = variable for event 1 or 2. We observe

I yi = min{Ti, Ui}, i.e. the exit time, and
I δic = 1{Ti<Ui & Ci=c}, indicator (1/0) for

event c being first observed, c = 1, 2.

Likelihood factorizes into event-specific parts:

L =
n∏

i=1

λ1(yi)
δi1λ2(yi)

δi2S(yi) = L1L2

=
n∏

i=1

λ1(yi)
δi1 exp{−Λ1(yi)} ×

n∏

i=1

λ2(yi)
δi2 exp{−Λ2(yi)}

⇒ If λ1(yi) and λ2(yi) have no common parameters, they may
be fitted separately treating competing events as censorings.
– Still, avoid estimating “net risks” from F ∗c = 1− exp(−Λc)!
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Non-parametric estimation of CIF

I Let t1 < t2 < · · · < tK be the K distinct time points at
which any outcome event was observed,
Let also S̃(t) be KM estimator for overall S(t).

I Aalen-Johansen estimator (AJ) for the cumulative
incidence function F (t) is obtained as

F̃c(t) =
∑

tk≤t

Dkc

nk
× S̃(tk−1), where

nk = size of the risk set at tk (k = 1, . . . , K),
Dkc = no. of cases of event c observed at tk.

I Naive KM estimator F̃ ∗c (t) of “net survival” treats
competing events occuring first as censorings:

F̃ ∗c (t) = 1− S̃∗c (t) = 1−
∏

tk≤t

nk −Dkc

nk
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R tools for competing risks analysis

Package mstate

I Cuminc(time, status, ...):
AJ-estimates (and SEs) for each event type (status,
value 0 indicating censoring)

Package cmprsk

I cuminc(ftime, fstatus, ...) computes
CIF-estimates, plot.cuminc() plots them.

I crr() fits Fine–Gray models for the hazard γc(t) of the
subdistribution

Package Epi – Lexis tools for multistate analyses

I will be advertised by Bendix!

26/ 55



Ex. Survival from oral cancer

I Creating a Lexis object with two outcome events and
obtaining a summary of transitions

> orca.lex <- Lexis(exit = list(stime = time),

exit.status = factor(event,

labels = c("Alive", "Oral ca. death", "Other death") ),

data = orca)

> summary(orca.lex)

Transitions:

To

From Alive Oral ca. Other Records: Events: Risk time: Persons:

Alive 109 122 107 338 229 1913.67 338
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Box diagram for transitions

Interactive use of function boxes().

> boxes(orca.lex)

Alive
1,913.7

Oral ca. death

Other death

Alive
1,913.7

Oral ca. death

Other death

122

107

Alive
1,913.7

Oral ca. death

Other death

Alive
1,913.7

Oral ca. death

Other death
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Ex. Survival from oral cancer

I AJ-estimates of CIFs (solid) for both causes.

I Naive KM-estimates of CIF (dashed) > AJ-estimates

I CIF curves may also be stacked (right).
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NB. The sum of the naive KM-estimates of CIF exceeds 100%
at 13 years!
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Ex. CIFs by cause in men and women
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CIF for cancer higher in women (chance?) but for other causes
higher in men (no surprise).
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Regression models for time-to-event data

Consider only one outcome & no competing events

I Subject i (i = 1, . . . , n) has an own vector xi that
contains values (xi1, . . . , xip) of a set of p continuous
and/or binary covariate terms.

I In the spirit of generalized linear models we let
β = (β1, . . . , βp) be regression coefficients and build a
linear predictor

ηi = xTi β = β1xi1 + · · ·+ βpxip

I Specification of outcome variable?
Distribution (family)? Expectation? Link?
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Regression models (cont’d)

Survival regression models can be defined e.g. for

(a) survival times directly

log(Ti) = ηi + εi, s.t. εi ∼ F0(t;α)

where F0(t;α) is some baseline model,

(b) hazards, multiplicatively:

λi(t) = λ0(t;α)r(ηi), where

λ0(t;α) = baseline hazard and
r(ηi) = relative rate function, typically exp(ηi)

(c) hazards, additively:

λi(t) = λ0(t;α) + ηi.
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Relative hazards model or Cox model

In model (b), the baseline hazard λ0(t, α) may be given a
parametric form (e.g. Weibull) or a piecewise constant rate
(exponential) structure.

Often a parameter-free form λ0(t) is assumed. Then

λi(t) = λ0(t) exp(η1),

specifies the Cox model or the semiparametric
proportional hazards model.

ηi = β1xi1 + · · ·+ βpxip not depending on time.

Generalizations: time-dependent
covariates xij(t), and/or effects βj(t).
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PH model: interpretation of parameters

Present the model explicitly in terms of x’s and β’s.

λi(t) = λ0(t) exp(β1xi1 + · · ·+ βpxip)

Consider two individuals, i and i′, having the same values of
all other covariates except the jth one.

The ratio of hazards is constant:

λi(t)

λi′(t)
=

exp(ηi)

exp(ηi′)
= exp{βj(xij − xi′j)}.

Thus eβj = HRj = hazard ratio or relative rate associated
with a unit change in covariate Xj.
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Fitting the Cox PH model

Solution 1: Cox’s partial likelihood LP =
∏

k L
P
k , ignores

λ0(tk) when estimating β, using only the ordering of the
observed event times tk:

LPk = P (the event occurs for ik | an event at tk)

= exp(ηik)/
∑

i∈R(tk)

exp(ηi), where

ik = the subject encountering the event at tk,
R(tk) = risk set = subjects at risk at tk.

Solution 2: Piecewise constant rate model with dense division
of the time axis, and fitting by Poisson regression using glm()

(profile likelihood!).
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Ex. Total mortality of oral ca. patients

Fitting Cox models with sex and sex + age.

> cm0 <- coxph( suob ~ sex, data = orca)

> summary( cm0)

coef exp(coef) se(coef) z Pr(>|z|)

sexMale 0.126 1.134 0.134 0.94 0.35

exp(coef) exp(-coef) lower .95 upper .95

sexMale 1.13 0.882 0.872 1.47

> cm1 <- coxph( suob ~ sex + age, data = orca)

> summary(cm1)

exp(coef) exp(-coef) lower .95 upper .95

sexMale 1.49 0.669 1.14 1.96

age 1.04 0.960 1.03 1.05

The M/F contrast visible only after age-adjustment.
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Predictions from the Cox model

I Individual survival times cannot be predicted but ind’l
survival curves can. PH model implies:

Si(t) = [S0(t)]exp(β1xi1+...+βpxip)

I Having estimated β by partial likelihood, the baseline
S0(t) is estimated by Breslow method

I From these, a survival curve for an individual with given
covariate values is predicted.

I In R: pred <- survfit(mod, newdata=...) and
plot(pred), where mod is the fitted coxph object, and
newdata specifies the covariate values.
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Proportionalilty of hazards?

I Consider two groups g and h defined by one categorical
covariate, and let ρ > 0.

If λg(t) = ρλh(t) then Λg(t) = ρΛh(t) and

log Λg(t) = log(ρ) + log Λh(t),

thus log-cumulative hazards should be parallel!

⇒ Plot the estimated log-cumulative hazards and see
whether they are sufficiently parallel.

I plot(coxobj, ..., fun = ’cloglog’)

I Testing the proportionality assumptions:
cox.zph(coxobj).
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Ex. Mortality of oral cancer patients

Complementary log-log plots of total mortality by

I age: 15-54 y (dash), 55-74 y (solid),
75+ y (longdash),

I sex: females (solid) and males (longdash).
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Non-proportionality w.r.t. one covariate?

If the covariate is not an exposure of interest, but needs to be
adjusted for → fit a stratified model.

Allows different baseline hazards, but same relative effects of
other covariates in each strata.

> cm2 <- coxph( suob ~ sex + strata(age3), data = orca)

> summary(cm2)

exp(coef) exp(-coef) lower .95 upper .95

sexMale 1.35 0.74 1.03 1.77

If the covariate is a factor of interest, one may consider
transformations of it – or a completely different model: a
non-proportional one!
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Modelling with competing risks

Main options, providing answers to different questions.

(a) Cox model for event-specific hazards
λc(t) = fc(t)/[1− F (t)], when e.g. the interest is in the
biological effect of the prognostic factors on the fatality
of the very disease that often leads to the relevant
outcome.

(b) Fine–Gray model for the hazard of the subdistribution
γc(t) = fc(t)/[1− Fc(t)] when we want to assess the
impact of the factors on the overall cumulative incidence
of event c.
– Function crr() in package cmprsk.
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Relative Survival - Motivation

I Survival is the primary outcome for all cancer patients
in a population

- trials are restricted by age and inclusion criteria
- hospital patients represent only those entered

I A measure of population level progress in cancer
control

+ monitoring, success of childhood cancers
+ inequalities, defined by sex, social class etc.

I Survival and duration of life after diagnosis one of the
most important measures of success in the
management (not only clinical treatment) of cancer
patients
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Relative Survival - Practical Motivation

I Estimate of mortality associated with a diagnosis of a
particular cancer without the need for cause of death
information.

I If we had perfect cause-of-death information then treat
those that die from another cause as censored at their
time of death.

I The quality of cause-of-death information varies
over time, between types of cancer and between
regions/countries.

I Many cancer registries do not record cause of death.

I Cause of death is rarely a simple dichotomy.

43/ 55

Relative Survival (RS) function

Rather than estimating cumulative distribution funtion
F (t) = P (T < t) we are more interested in survival function
S(t) = 1− F (t)

When the cause of death is not known an interesting quantity
is

r(t) =
SO(t)

SP (t)
,

here SO(t) is the observed survival from the cohort of interest
and SP (t) is the expected (population) estimated from the
population life tables
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Estimation of Relative Survival

Four different approaches has been developed. They differ in
weighting aspects of cohort and period information to utilize
available data.

1. Complete approach - patients diagnosed in a given
period with prespecified potential follow-up (more
historical, miss recent changes in survival)

2. Cohort approach - some follow-up times missed
(censoring) in cohort approach, changing cohort miss
rapidly changing outcomes.

3. Period approach - based on the most recent years, not
considering follow-up outside given calendar time period

4. Hybrid approach - combining all methods, recent
changes in late after diagnosis outcomes missed

45/ 55

Estimation of Relative Survival

Estimation of relative survival requires two data sources:

1. (Cancer) registry data of patients with date of
diagnosis (and other covariates) and follow-up
information on deaths (date)

2. Demographic information - population mortality tables
transformed to survival

Statistical packages that can be used to estimate relative
survival are

I STATA (strel,stmp2,strs,stns)

I R-package popEpi written in Finnish Cancer registry by
Joonas Miettinen, Karri Seppä, Matti Rantanen and
Janne Pitkaniemi. Available on CRAN and github.
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Estimation of Relative Survival

Reference population mortality (tables) by sex,year and age
group given by official statistics converted to survival

data ( popmort )
pm <− data . f rame ( popmort )
names (pm) <− c ( ” s e x ” , ”CAL” , ”AGE” , ” haz ” )
head (pm)

> head ( popmort )
s e x y e a r agegroup haz

1 : 0 1951 0 0.036363176
2 : 0 1951 1 0.003616547
3 : 0 1951 2 0.002172384
4 : 0 1951 3 0.001581249
5 : 0 1951 4 0.001180690
6 : 0 1951 5 0.001070595
. . .

[frame=0]
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RS example

A cancer patient cohort sire with a twist pertaining female
Finnish rectal cancer patients diagnosed between 1993-2012.
sire is a data.table object in popEpi -package

sex gender of the patient (1 = female)
bi date date of birth
dg date date of cancer diagnosis
ex date date of exit from follow-up (death or censoring)
status status of the person at exit;

0 alive;
1 dead due to pertinent cancer;
2 dead due to other causes

dg age age at diagnosis expressed as fractional years

The closing date for the pertinent data was 2012-12-31,
meaning status information was available only up to that point
- hence the maximum possible ex date is 2012-12-31.
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RS example

The six first observations from the sire data

> head ( s i r e )
s ex b i date dg date ex date s t a t u s dg age

1 : 1 1952−05−27 1994−02−03 2012−12−31 0 41.68877
2 : 1 1959−04−04 1996−09−20 2012−12−31 0 37.46378
3 : 1 1958−06−15 1994−05−30 2012−12−31 0 35.95616
4 : 1 1957−05−10 1997−09−04 2012−12−31 0 40.32055
5 : 1 1957−01−20 1996−09−24 2012−12−31 0 39.67745
6 : 1 1962−05−25 1997−05−17 2012−12−31 0 34.97808
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RS example

Estimated survival (surv.obs) and 95% confidence interval
(surv.obs.lo,surv.obs.hi) from the rectal cancer in females in
Finland 2008-2012

l i b r a r y ( PopEpi )
l i b r a r y ( Epi )
l i b r a r y ( s u r v i v a l )
par ( mfco l=c (1 , 2 ) )

data ( s i r e )
x <− L e x i s ( e n t r y = l i s t (FUT = 0 ,

AGE = dg age ,
CAL = get . y r s ( dg date ) ) ,
e x i t = l i s t (CAL = get . y r s ( ex date ) ) ,
data = s i r e [ s i r e $dg date < s i r e $ ex date , ] ,
e x i t . s t a t u s = f a c t o r ( s t a t u s , l e v e l s = 0 : 2 ,

l a b e l s = c ( ” a l i v e ” , ”canD” , ”othD” ) ) ,
merge = TRUE)
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RS example (continue)
## obse r v ed s u r v i v a l
s t <− s u r v t ab ( Surv

( t ime = FUT, even t = l e x . Xst ) ˜ sex ,
data = x ,
s u r v . t ype = ” su r v . obs ” ,
b r e ak s = l i s t (FUT = seq (0 , 5 , 1/12) ) )

s t

s t . e2 <− s u r v t ab l e x (
Surv ( t ime = FUT, even t = l e x . Xst ) ˜ sex ,
data = x ,
s u r v . t ype = ” su r v . r e l ” ,
r e l s u r v . method = ”e2” ,
b r e ak s = l i s t (FUT = seq (0 , 5 , 1/12) ) ,
pophaz = pm)

s t . e2
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RS example

Estimated observed and relative survival (Ederer II,surv.obs)
and 95% confidence interval (r.e2.lo, r.e2.hi)from the rectal
cancer in females in Finland 2008-2012

Observed survival

> st

Totals:

person-time: 23993 --- events: 3636

Stratified by: ’sex’

sex Tstop surv.obs.lo surv.obs surv.obs.hi SE.surv.obs

1: 0 2.5 0.6174 0.6328 0.6478 0.007751

2: 0 5.0 0.4962 0.5126 0.5288 0.008321

3: 1 2.5 0.6235 0.6389 0.6539 0.007748

4: 1 5.0 0.5006 0.5171 0.5334 0.008370
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RS example

Relative survival

person-time: 23993 --- events: 3636

Stratified by: ’sex’

sex Tstop r.e2.lo r.e2 r.e2.hi SE.r.e2

1: 0 2.5 0.7046 0.7224 0.7393 0.008848

2: 0 5.0 0.6487 0.6706 0.6914 0.010890

3: 1 2.5 0.6756 0.6924 0.7085 0.008397

4: 1 5.0 0.5891 0.6087 0.6277 0.009853

>
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RS example

Observed and relative (net) survival curves
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Representation of follow-up

Bendix Carstensen

Representation of follow-up

University of Tartu,

June 2017

http://BendixCarstensen.com/SPE

Follow-up and rates

I In follow-up studies we estimate rates from:
I D — events, deaths
I Y — person-years
I λ̂ = D/Y rates
I . . . empirical counterpart of intensity — estimate

I Rates differ between persons.
I Rates differ within persons:

I By age
I By calendar time
I By disease duration
I . . .

I Multiple timescales.
I Multiple states (little boxes — later)
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Examples: stratification by age

If follow-up is rather short, age at entry is OK for age-stratification.

If follow-up is long, use stratification by categories of
current age, both for:

No. of events, D , and Risk time, Y .

Age-scale
35 40 45 50

Follow-up
Two e1 5 3

One u4 3

— assuming a constant rate λ throughout.
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Representation of follow-up data

A cohort or follow-up study records:
Events and Risk time.

The outcome is thus bivariate: (d , y)

Follow-up data for each individual must therefore have (at least)
three variables:

Date of entry entry date variable
Date of exit exit date variable
Status at exit fail indicator (0/1)

Specific for each type of outcome.
Representation of follow-up (time-split) 4/ 40

y d

t0 t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry t0) d log(λ)− λy
= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(d at tx|entry t2) + d log(λ)− λy3
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y ed = 0

t0 t1 t2 tx

y1 y2 y3
e

Probability log-Likelihood

P(surv t0 → tx|entry t0) 0 log(λ)− λy
= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(surv t2 → tx|entry t2) + 0 log(λ)− λy3
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y ud = 1

t0 t1 t2 tx

y1 y2 y3
u

Probability log-Likelihood

P(event at tx|entry t0) 1 log(λ)− λy
= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(event at tx|entry t2) + 1 log(λ)− λy3
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y d

t0 t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry t0) d log(λ)− λy
= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(d at tx|entry t2) + d log(λ)− λy3
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y d

t0 t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry t0) d log(λ)− λy
= P(surv t0 → t1|entry t0) = 0 log(λ1)− λ1y1
×P(surv t1 → t2|entry t1) + 0 log(λ2)− λ2y2
×P(d at tx|entry t2) + d log(λ3)− λ3y3

— allows different rates (λi) in each interval
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Dividing time into bands:

If we want to compute D and Y in intervals on some timescale we
must decide on:

Origin: The date where the time scale is 0:

I Age — 0 at date of birth
I Disease duration — 0 at date of diagnosis
I Occupation exposure — 0 at date of hire

Intervals: How should it be subdivided:

I 1-year classes? 5-year classes?
I Equal length?

Aim: Separate rate in each interval
Representation of follow-up (time-split) 10/ 40

Example: cohort with 3 persons:

Id Bdate Entry Exit St
1 14/07/1952 04/08/1965 27/06/1997 1
2 01/04/1954 08/09/1972 23/05/1995 0
3 10/06/1987 23/12/1991 24/07/1998 1

I Age bands: 10-years intervals of current age.

I Split Y for every subject accordingly

I Treat each segment as a separate unit of observation.

I Keep track of exit status in each interval.
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Splitting the follow up

subj. 1 subj. 2 subj. 3

Age at Entry: 13.06 18.44 4.54
Age at eXit: 44.95 41.14 11.12

Status at exit: Dead Alive Dead

Y 31.89 22.70 6.58
D 1 0 1
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subj. 1 subj. 2 subj. 3
∑

Age Y D Y D Y D Y D

0– 0.00 0 0.00 0 5.46 0 5.46 0
10– 6.94 0 1.56 0 1.12 1 8.62 1
20– 10.00 0 10.00 0 0.00 0 20.00 0
30– 10.00 0 10.00 0 0.00 0 20.00 0
40– 4.95 1 1.14 0 0.00 0 6.09 1
∑

31.89 1 22.70 0 6.58 1 60.17 2
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Splitting the follow-up

id Bdate Entry Exit St risk int

1 14/07/1952 03/08/1965 14/07/1972 0 6.9432 10
1 14/07/1952 14/07/1972 14/07/1982 0 10.0000 20
1 14/07/1952 14/07/1982 14/07/1992 0 10.0000 30
1 14/07/1952 14/07/1992 27/06/1997 1 4.9528 40
2 01/04/1954 08/09/1972 01/04/1974 0 1.5606 10
2 01/04/1954 01/04/1974 31/03/1984 0 10.0000 20
2 01/04/1954 31/03/1984 01/04/1994 0 10.0000 30
2 01/04/1954 01/04/1994 23/05/1995 0 1.1417 40
3 10/06/1987 23/12/1991 09/06/1997 0 5.4634 0
3 10/06/1987 09/06/1997 24/07/1998 1 1.1211 10

Keeping track of calendar time too?
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Timescales

I A timescale is a variable that varies deterministically within
each person during follow-up:

I Age
I Calendar time
I Time since treatment
I Time since relapse

I All timescales advance at the same pace
(1 year per year . . . )

I Note: Cumulative exposure is not a timescale.
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Follow-up on several timescales

I The risk-time is the same on all timescales
I Only need the entry point on each time scale:

I Age at entry.
I Date of entry.
I Time since treatment at entry.

— if time of treatment is the entry, this is 0 for all.

I Response variable in analysis of rates:

(d , y) (event, duration)

I Covariates in analysis of rates:
I timescales
I other (fixed) measurements

I . . . do not confuse duration and timescale !
Representation of follow-up (time-split) 16/ 40

Follow-up data in Epi — Lexis objects

> thoro[1:6,1:8]

id sex birthdat contrast injecdat volume exitdat exitstat
1 1 2 1916.609 1 1938.791 22 1976.787 1
2 2 2 1927.843 1 1943.906 80 1966.030 1
3 3 1 1902.778 1 1935.629 10 1959.719 1
4 4 1 1918.359 1 1936.396 10 1977.307 1
5 5 1 1902.931 1 1937.387 10 1945.387 1
6 6 2 1903.714 1 1937.316 20 1944.738 1

Timescales of interest:
I Age

I Calendar time

I Time since injection
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Definition of Lexis object

thL <- Lexis( entry = list( age = injecdat-birthdat,
per = injecdat,
tfi = 0 ),

exit = list( per = exitdat ),
exit.status = as.numeric(exitstat==1),

data = thoro )

entry is defined on three timescales,
but exit is only needed on one timescale:
Follow-up time is the same on all timescales:

exitdat - injecdat

One element of entry and exit must have same name (per).
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The looks of a Lexis object

> thL[1:4,1:9]
age per tfi lex.dur lex.Cst lex.Xst lex.id

1 22.18 1938.79 0 37.99 0 1 1
2 49.54 1945.77 0 18.59 0 1 2
3 68.20 1955.18 0 1.40 0 1 3
4 20.80 1957.61 0 34.52 0 0 4
...

> summary( thL )
Transitions:

To
From 0 1 Records: Events: Risk time: Persons:

0 504 1964 2468 1964 51934.08 2468
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> plot( thL, lwd=3 )
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> plot( thL, 2:1, lwd=5, col=c("red","blue")[thL$contrast],

+ grid=TRUE, lty.grid=1, col.grid=gray(0.7),

+ xlim=1930+c(0,70), xaxs="i", ylim= 10+c(0,70), yaxs="i", las=1 )

> points( thL, 2:1, pch=c(NA,3)[thL$lex.Xst+1],lwd=3, cex=1.5 )
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Representation of follow-up (time-split) 21/ 40

Splitting follow-up time

> spl1 <- splitLexis( thL, breaks=seq(0,100,20),
> time.scale="age" )
> round(spl1,1)

age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
1 22.2 1938.8 0.0 17.8 0 0 1 2 1916.6 1 1938.8 22
2 40.0 1956.6 17.8 20.0 0 0 1 2 1916.6 1 1938.8 22
3 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
4 49.5 1945.8 0.0 10.5 0 0 640 2 1896.2 1 1945.8 20
5 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 1945.8 20
6 68.2 1955.2 0.0 1.4 0 1 3425 1 1887.0 2 1955.2 0
7 20.8 1957.6 0.0 19.2 0 0 4017 2 1936.8 2 1957.6 0
8 40.0 1976.8 19.2 15.3 0 0 4017 2 1936.8 2 1957.6 0
...
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Split on another timescale
> spl2 <- splitLexis( spl1, time.scale="tfi",

breaks=c(0,1,5,20,100) )
> round( spl2, 1 )

lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
1 1 22.2 1938.8 0.0 1.0 0 0 1 2 1916.6 1 1938.8 22
2 1 23.2 1939.8 1.0 4.0 0 0 1 2 1916.6 1 1938.8 22
3 1 27.2 1943.8 5.0 12.8 0 0 1 2 1916.6 1 1938.8 22
4 1 40.0 1956.6 17.8 2.2 0 0 1 2 1916.6 1 1938.8 22
5 1 42.2 1958.8 20.0 17.8 0 0 1 2 1916.6 1 1938.8 22
6 1 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
7 2 49.5 1945.8 0.0 1.0 0 0 640 2 1896.2 1 1945.8 20
8 2 50.5 1946.8 1.0 4.0 0 0 640 2 1896.2 1 1945.8 20
9 2 54.5 1950.8 5.0 5.5 0 0 640 2 1896.2 1 1945.8 20
10 2 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 1945.8 20
11 3 68.2 1955.2 0.0 1.0 0 0 3425 1 1887.0 2 1955.2 0
12 3 69.2 1956.2 1.0 0.4 0 1 3425 1 1887.0 2 1955.2 0
13 4 20.8 1957.6 0.0 1.0 0 0 4017 2 1936.8 2 1957.6 0
14 4 21.8 1958.6 1.0 4.0 0 0 4017 2 1936.8 2 1957.6 0
15 4 25.8 1962.6 5.0 14.2 0 0 4017 2 1936.8 2 1957.6 0
16 4 40.0 1976.8 19.2 0.8 0 0 4017 2 1936.8 2 1957.6 0
17 4 40.8 1977.6 20.0 14.5 0 0 4017 2 1936.8 2 1957.6 0
...
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plot( spl2, c(1,3), col="black", lwd=2 )

age tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
22.2 0.0 1.0 0 0 1 2 1916.6 1 1938.8 22
23.2 1.0 4.0 0 0 1 2 1916.6 1 1938.8 22
27.2 5.0 12.8 0 0 1 2 1916.6 1 1938.8 22
40.0 17.8 2.2 0 0 1 2 1916.6 1 1938.8 22
42.2 20.0 17.8 0 0 1 2 1916.6 1 1938.8 22
60.0 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
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Likelihood for a constant rate

I This setup is for a situation where it is assumed that rates are
constant in each of the intervals.

I Each observation in the dataset contributes a term to the
likelihood.

I Each term looks like a contribution from a Possion variate
(albeit with values only 0 or 1)

I Rates can vary along several timescales simultaneously.

I Models can include fixed covariates, as well as the timescales
(the left end-points of the intervals) as continuous variables.

I The latter is where we will need splines.
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The Poisson likelihood for split data

I Split records (one per person-interval (p, i)):
∑

p,i

(
dpi log(λ)− λypi

)
= D log(λ)− λY

I Assuming that the death indicator (dpi ∈ {0, 1}) is Poisson, a
model with with offset log(ypi) will give the same result.

I If we assume that rates are constant we get the simple
expression with (D ,Y )

I . . . but the split data allows models that assume different rates
for different (dpi , ypi), so rates can vary within a person’s
follow-up.

Representation of follow-up (time-split) 26/ 40



Where is (dpi , ypi) in the split data?

> spl1 <- splitLexis( thL , breaks=seq(0,100,20) , time.scale="age" )
> spl2 <- splitLexis( spl1, breaks=c(0,1,5,20,100), time.scale="tfi" )
> options( digits=5 )
> spl2[1:10,1:11]

lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast
1 1 22.182 1938.8 0.000 1.00000 0 0 1 2 1916.6 1
2 1 23.182 1939.8 1.000 4.00000 0 0 1 2 1916.6 1
3 1 27.182 1943.8 5.000 12.81793 0 0 1 2 1916.6 1
4 1 40.000 1956.6 17.818 2.18207 0 0 1 2 1916.6 1
5 1 42.182 1958.8 20.000 17.81793 0 0 1 2 1916.6 1
6 1 60.000 1976.6 37.818 0.17796 0 1 1 2 1916.6 1
7 2 16.063 1943.9 0.000 1.00000 0 0 2 2 1927.8 1
8 2 17.063 1944.9 1.000 2.93703 0 0 2 2 1927.8 1
9 2 20.000 1947.8 3.937 1.06297 0 0 2 2 1927.8 1
10 2 21.063 1948.9 5.000 15.00000 0 0 2 2 1927.8 1

— and what are covariates for the rates?
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Analysis of results

I dpi — events in the variable: lex.Xst:
In the model as response: lex.Xst==1

I ypi — risk time: lex.dur (duration):
In the model as offset log(y), log(lex.dur).

I Covariates are:
I timescales (age, period, time in study)
I other variables for this person (constant or assumed constant in each

interval).

I Model rates using the covariates in glm:
— no difference between time-scales and other covariates.
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Fitting a simple model

> stat.table( contrast,
+ list( D = sum( lex.Xst ),
+ Y = sum( lex.dur ),
+ Rate = ratio( lex.Xst, lex.dur, 100 ) ),
+ margin = TRUE,
+ data = spl2 )

------------------------------------
contrast D Y Rate
------------------------------------
1 928.00 20094.74 4.62
2 1036.00 31839.35 3.25

Total 1964.00 51934.08 3.78
------------------------------------
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Fitting a simple model

------------------------------------
contrast D Y Rate
------------------------------------
1 928.00 20094.74 4.62
2 1036.00 31839.35 3.25
------------------------------------

> m0 <- glm( (lex.Xst==1) ~ factor(contrast) - 1,
+ offset = log(lex.dur/100),
+ family = poisson,
+ data = spl2 )
> round( ci.exp( m0 ), 2 )

exp(Est.) 2.5% 97.5%
factor(contrast)1 4.62 4.33 4.93
factor(contrast)2 3.25 3.06 3.46
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SMR
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Representation of follow-up

University of Tartu,

June 2017

http://BendixCarstensen.com/SPE

Cohorts where all are exposed

When there is no comparison group we may ask:
Do mortality rates in cohort differ from those of an external
population, for example:

Rates from:

I Occupational cohorts

I Patient cohorts

compared with reference rates obtained from:

I Population statistics (mortality rates)

I Hospital registers (disease rates)
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Log-likelihood for the SMR

I Cohort rates proportional to reference rates:
λ(a) = θ × λP(a) — θ the same in all age-bands.

I Da deaths during Ya person-years an age-band a gives the
likelihood:

Da log(λ(a))− λ(a)Ya = Da log(θλP(a))− θλP(a)Ya

= Da log(θ) + Da log(λP(a))− θ(λP(a)Ya)

I The constant Da log(λP(a)) does not involve θ, and so can be
dropped.
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I λP(a)Ya = Ea is the “expected” number of cases in age a, so
the log-likelihood contribution from age a is:

Da log(θ)− θ(λP(a)Ya) = Da log(θ)− θ(Ea)

I Note: λP(a) is known for all values of a.

I The log-likelihood is similar to the log-likelihood for a rate,
except that person-years Y is replaced by expected numbers,
E , so:

θ̂ =
D

λPY
=

D

E
=

Observed

Expected
= SMR

I SMR is the maximum likelihood estimator of the relative
mortality in the cohort.
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Modelling the SMR in practise

I As for the rates, the SMR can be modelled using individual
data.

I Response is di , the event indicator (lex.Xst).

I log-offset is the expected value for each piece of follow-up,
ei = yi × λP (lex.dur * rate)

I λP is the population rate corresponding to the age, period and
sex of the follow-up period yi .
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Split the data to fit with population data

> tha <- splitLexis(thL, time.scale="age", breaks=seq(0,90,5) )
> thap <- splitLexis(tha, time.scale="per", breaks=seq(1938,2038,5) )
> dim( thap )

[1] 23094 21

Create variables to fit with the population data

> thap$agr <- timeBand( thap, "age", "left" )
> thap$cal <- timeBand( thap, "per", "left" )
> round( thap[1:5,c("lex.id","age","agr","per","cal","lex.dur","lex.Xst","sex")], 2 )

lex.id age agr per cal lex.dur lex.Xst sex
1 1 22.18 20 1938.79 1938 2.82 0 2
2 1 25.00 25 1941.61 1938 1.39 0 2
3 1 26.39 25 1943.00 1943 3.61 0 2
4 1 30.00 30 1946.61 1943 1.39 0 2
5 1 31.39 30 1948.00 1948 3.61 0 2
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> data( gmortDK )
> gmortDK[1:6,1:6]

agr per sex risk dt rt
1 0 38 1 996019 14079 14.135
2 5 38 1 802334 726 0.905
3 10 38 1 753017 600 0.797
4 15 38 1 773393 1167 1.509
5 20 38 1 813882 2031 2.495
6 25 38 1 789990 1862 2.357

> gmortDK$cal <- gmortDK$per+1900
> #
> thapx <- merge( thap, gmortDK[,c("agr","cal","sex","rt")] )
> #
> thapx$E <- thapx$lex.dur * thapx$rt / 1000
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> stat.table( contrast,
+ list( D = sum( lex.Xst ),
+ Y = sum( lex.dur ),
+ E = sum( E ),
+ SMR = ratio( lex.Xst, E ) ),
+ margin = TRUE,
+ data = thapx )

--------------------------------------------
contrast D Y E SMR
--------------------------------------------
1 923.00 20072.53 222.01 4.16
2 1036.00 31839.35 473.88 2.19

Total 1959.00 51911.87 695.89 2.82
--------------------------------------------
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--------------------------------------------
contrast D Y E SMR
--------------------------------------------
1 923.00 20072.53 222.01 4.16
2 1036.00 31839.35 473.88 2.19

Total 1959.00 51911.87 695.89 2.82
--------------------------------------------

> m.SMR <- glm( lex.Xst ~ factor(contrast) - 1,
+ offset = log(E),
+ family = poisson,
+ data = thapx )
> round( ci.exp( m.SMR ), 2 )

exp(Est.) 2.5% 97.5%
factor(contrast)1 4.16 3.90 4.43
factor(contrast)2 2.19 2.06 2.32

I Analysis of SMR is like analysis of rates:
I Replace Y with E — that’s all!
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Nested case-control studies and
case-cohort studies
Monday, 5 June, 2017, at 9:30–10:30
Esa Läärä & Martyn Plummer

Statistical Practice in Epidemiology with R
Tartu, Estonia, 1 to 6 June, 2017

Points to be covered

I Outcome-dependent sampling designs a.k.a.
case-control studies vs. full cohort design.

I Nested case-control study (NCC): sampling of controls
from risk-sets during follow-up of study population.

I Matching in selection of control subjects in NCC.

I R tools for NCC: function ccwc() in Epi for sampling
controls, and clogit() in survival for model fitting.

I Case-cohort study (CC): sampling a subcohort from the
whole cohort as it is at the start of follow-up.

I R tools for CC model fitting: function cch() in survival

Nested case-control studies and case-cohort studies 0/ 30

Example: Smoking and cervix cancer

Study population, measurements, follow-up, and sampling design

I Joint cohort of N ≈ 500 000 women from 3 Nordic biobanks.

I Follow-up: From variable entry times since 1970s till 2000.

I For each of 200 cases, 3 controls were sampled; matched for
biobank, age (±2 y), and time of entry (±2 mo).

I Frozen sera of cases and controls analyzed for cotinine etc.

Main result: Adjusted OR = 1.5 (95% CI 1.1 to 2.3) for high
(>242.6 ng/ml) vs. low (<3.0 ng/ml) cotinine levels.

Simen Kapeu et al. (2009) Am J Epidemiol
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Example: USF1 gene and CVD

Study population, measurements, follow-up, and sampling design

I Two FINRISK cohorts, total N ≈ 14000 M & F, 25-64 y.

I Baseline health exam, questionnaire & blood specimens at
recruitment in the 1990s – Follow-up until the end of 2003.

I Subcohort of 786 subjects sampled.

I 528 incident cases of CVD; 72 of them in the subcohort.

I Frozen blood from cases and subchort members genotyped.

Main result: Female carriers of a high risk haplotype had a
2-fold hazard of getting CVD [95% CI: 1.2 to 3.5]

Komulainen et al. (2006) PLoS Genetics
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Full cohort design & its simple analysis

I Full cohort design: Data on exposure variables obtained
for all subjects in a large study population.

I Summary data for crude comparison:

Exposed Unexposed Total
Cases D1 D0 D
Non-cases B1 B0 B
Group size at start N1 N0 N
Follow-up times Y1 Y0 Y

I Crude estimation of hazard ratio ρ = λ1/λ0:
incidence rate ratio IR, with standard error of log(IR):

ρ̂ = IR =
D1/Y1
D0/Y0

SE[log(IR)] =

√
1

D1

+
1

D0

.

I More refined analyses: Poisson or Cox regression.
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Problems with full cohort design

Obtaining exposure and covariate data

I Slow and expensive in a big cohort.

I Easier with questionnaire and register data,

I Extremely costly and laborious for e.g.

– measurements from biological specimens, like
genotyping, antibody assays, etc.

– dietary diaries,

– occupational exposure histories in manual records.

Can we obtain equally valid estimates of hazard ratios etc.
with nearly as good precision by some other strategies?

Yes – we can!
Nested case-control studies and case-cohort studies 4/ 30



Estimation of hazard ratio

The incidence rate ratio can be expressed:

IR =
D1/D0

Y1/Y0
=

cases: exposed / unexposed

person-times: exposed / unexposed

=
exp’re odds in cases

exp’re odds in p-times
= exposure odds ratio (EOR)

= Exposure distribution in cases vs. that in cohort!

Implication for more efficient design:

I Numerator: Collect exposure data on all cases.

I Denominator: Estimate the ratio of person-times Y1/Y0
of the exposure groups in the cohort by sampling
“control” subjects, on whom exposure is measured.
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Case-control designs

General principle: Sampling of subjects from a given study
population is outcome-dependent.

Data on risk factors are collected separately from

(I) Case group: All (or high % of) the D subjects in the
study population (total N) encountering the outcome
event during the follow-up.

(II) Control group:

I Random sample (simple or stratified) of
C subjects (C << N) from the population.

I Eligible controls must be bf risk (alive, under follow-up &
free of outcome) at given time(s).

Nested case-control studies and case-cohort studies 6/ 30

Study population in a case-control study?

Ideally: The study population comprises subjects who
would be included as cases, if they got the outcome in the
study

I Cohort-based studies: cohort or closed population of
well-identified subjects under intensive follow-up for
outcomes (e.g. biobank cohorts).

I Register-based studies: open or dynamic population in a
region covered by a disease register.

I Hospital-based studies: dynamic catchment population
of cases – may be hard to identify (e.g. hospitals in US).

In general, the role of control subjects is to represent the
distribution of person-times by exposure variables in the
underlying population from which the cases emerge.
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Sampling of controls – alternative frames

Illustrated in a simple longitudinal setting:
Follow-up of a cohort over a fixed risk period & no censoring.

hhhhhhhhhhhhhh

Time (t)Start End-

(B) Initially at risk

(N) (C) Currently at risk (Nt)

6

?

New cases
of disease

(D)

(A) Still at risk

(N −D)

Rodrigues, L. & Kirkwood, B.R. (1990). Case-control designs of

common diseases . . . Int J Epidemiol 19: 205-13.
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Sampling schemes or designs for controls

(A) Exclusive or traditional, “case-noncase” sampling

I Controls chosen from those N −D subjects still at risk
(healthy) at the end of the risk period (follow-up).

(B) Inclusive sampling or case-cohort design (CC)

I The control group – subcohort – is a random sample of
the whole cohort (N) at start.

(C) Concurrent sampling or density sampling

I Controls drawn during the follow-up

I Risk-set or time-matched sampling:
A set of controls is sampled from the risk set
at each time t of diagnosis of a new case

a.k.a. nested case-control design (NCC)
Nested case-control studies and case-cohort studies 9/ 30

Nested case-control – two meanings

I In some epidemiologic books, the term “nested
case-control study” (NCC) covers jointly all variants of
sampling: (A), (B), and (C), from a cohort.

Rothman et al. (2008): Modern Epidemology, 3rd Ed.
Dos Santos Silva (1999): Cancer Epidemiology. Ch 8-9

I In biostatistical texts NCC typically refers only to the
variant of concurrent or density sampling (C), in which
risk-set or time-matched sampling is employed.

Borgan & Samuelsen (2003) in Norsk Epidemiologi
Langholz (2005) in Encyclopedia of Biostatistics.

I We shall follow the biostatisticians!
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NCC: Risk-set sampling with staggered entry

Sampling frame to select controls for a given case:
Members (×) of the risk set at tk, i.e. the population at risk
at the time of diagnosis tk of case k.

r×Case b×Healthy until end bEarly censoring b×Late entry bToo late entry rEarly case r×Later case

Start End
Study period

Sampled risk set contains the case and the control subjects
randomly sampled from the non-cases in the risk set at tk.

Nested case-control studies and case-cohort studies 11/ 30

Use of different sampling schemes

(A) Exclusive sampling, or “textbook” case-control design

I Almost exclusively(!) used in studies of epidemics.
I (Studies on birth defects with prevalent cases.)

(B) Inclusive sampling or case-cohort design

I Good esp. for multiple outcomes, if measurements of
risk factors from stored material remain stable.

(C) Concurrent or density sampling
(without or with time-matching, i.e. NCC)

I The only logical design in an open population.

I Most popular in chronic diseases (Knol et al. 2008).

Designs (B) and (C) allow valid estimation of hazard ratios ρ
without any “rare disease” assumption.Nested case-control studies and case-cohort studies 12/ 30

Case-control studies: Textbooks vs. real life

I Many texts in epidemiology teach outdated dogma and
myths about outcome-dependent designs.

I They tend to focus on the traditional design: exclusive
sampling of controls from the non-diseased, and claim
that odds ratio (OR) is the only estimable parameter.

I Yet, over 60% of published case-control studies apply
concurrent sampling or density sampling of controls
from an open or dynamic population.

I Thus, the parameter most often estimated is the
hazard ratio (HR) or rate ratio ρ.

I Still, 90% of authors really estimating HR, reported as
having estimated an OR (e.g. Simen Kapeu et al.)

Knol et al. (2008). What do case-control studies estimate?

Am J Epidemiol 168: 1073-81.
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Exposure odds ratio – estimate of what?

I Crude summary of case-control data

exposed unexposed total
cases D1 D0 D
controls C1 C0 C

I Depending on study base & sampling strategy,
the empirical exposure odds ratio (EOR)

EOR =
D1/D0

C1/C0

=
cases: exposed / unexposed

controls: exposed / unexposed

is a consistent estimator of

(a) hazard ratio, (b) risk ratio, (c) risk odds ratio,

(d) prevalence ratio, or (e) prevalence odds ratio

I NB. In case-cohort studies with variable follow-up times
C1/C0 is substituted by Ŷ1/Ŷ0, from estimated p-years.Nested case-control studies and case-cohort studies 14/ 30

Precision and efficiency

With exclusive (A) or concurrent (C) sampling of controls
(unmatched), estimated variance of log(EOR) is

v̂ar[log(EOR)] =
1

D1

+
1

D0

+
1

C1

+
1

C0

= cohort variance + sampling variance

I Depends basically on the numbers of cases, when there
are ≥ 4 controls per case.

I Is not much bigger than 1/D1 + 1/D0 = variance in a full
cohort study with same numbers of cases.

⇒ Usually < 5 controls per case is enough.

⇒ These designs are very cost-efficient!

Nested case-control studies and case-cohort studies 15/ 30

Estimation in concurrent or density sampling

I Assume first a simple situation: Prevalence of exposure in
the study population is constant

⇒ Exposure odds C1/C0 among controls = consistent
estimator of exposure odds Y1/Y0 of person-times, even if
controls sampled at any time from population at risk.

I Therefore, crude EOR = (D1/D0)/(C1/C0)
= consistent estimator of hazard ratio ρ = λ1/λ0, and
the standard error of log(EOR) is as given above.

I Yet, with a closed population or cohort, stability of
exposure distribution may be unrealistic.

I Solution: Time-matched sampling of controls from
risk sets, i.e. NCC, & matched EOR to estimate HR.

Prentice & Breslow (1978), Greenland & Thomas (1982).
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Matching in case-control studies

= Stratified sampling of controls, e.g. from the
same region, sex, and age group as a given case

I Frequency matching or group matching:
For cases in a specific stratum (e.g. same sex and 5-year
age-group), a set of controls from a similar subgroup.

I Individual matching (1:1 or 1:m matching):
For each case, choose 1 or more (rarely > 5) closely
similar controls (e.g. same sex, age within ±1 year, same
neighbourhood, etc.).

I NCC: Sampling from risk-sets implies time-matching at
least. Additional matching for other factors possible.

I CC: Subcohort selection involves no matching with cases.

Nested case-control studies and case-cohort studies 17/ 30

Virtues of matching

I Increases efficiency, if the matching factors are both

(i) strong risk factors of the disease, and
(ii) correlated with the main exposure.

– Major reason for matching.

I Confounding due to poorly quantified factors (sibship,
neighbourhood, etc.) may be removed by close matching
– only if properly analyzed.

I Biobank studies: Matching for storage time, freeze-thaw
cycle & analytic batch improves comparability of
measurements from frozen specimens

→ Match on the time of baseline measurements within
the case’s risk set.

Nested case-control studies and case-cohort studies 18/ 30

Warnings for overmatching

Matching a case with a control subject is a different issue than
matching an unexposed subject to an exposed one in a cohort
study – much trickier!

I Matching on an intermediate variable between exposure
and outcome. ⇒ Bias!

I Matching on a surrogate or correlate of exposure, which
is not a true risk factor.
⇒ Loss of efficiency.

→ Counter-matching: Choose a control which
is not similar to the case w.r.t a correlate of exposure.

⇒ Increases efficiency!

• Requires appropriate weighting in the analysis.

Nested case-control studies and case-cohort studies 19/ 30



Sampling matched controls for NCC using R

I Suppose key follow-up items are recorded for all subjects
in a cohort, in which a NCC study is planned.

I Function ccwc() in package Epi can be used for risk-set
sampling of controls. – Arguments:

entry : Time of entry to follow-up
exit : Time of exit from follow-up
fail : Status on exit (1 for case, 0 for censored)

origin : Origin of analysis time scale (e.g. time of birth)
controls : Number of controls to be selected for each case

match : List of matching factors
data : Cohort data frame containing input variables

I Creates a data frame for a NCC study, containing the
desired number of matched controls for each case.
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Analysis of matched studies

I Close matching induces a new parameter for each
matched case-control set or stratum.
⇒ Methods that ignore matching, like

unconditional logistic regression, break down.
I When matching on well-defined variables (like age, sex)

broader strata may be formed post hoc, and these factors
included as covariates.

I Matching on “soft” variables (like sibship) cannot be
ignored, but this can be dealt with using
conditional logistic regression.

I Same method in matched designs (A), exclusive, and
(C), concurrent, but the meaning of regression
coefficients βj is different:

(A) βj = log of risk odds ratio (ROR),
(C) βj = log of hazard ratio (HR).
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Full cohort design: Follow-up & risk sets

Each member of the cohort provides exposure data for all
cases, as long as this member is at risk, i.e. alive, not censored
& free from outcome.

-Time

6
Subjects

Censored

t

tCase

�

�

�

�

ddd
ddd dAt risk

t

�

�

�

�

dd
d

Risk sets

Times of new cases define the risk-sets.
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Nested case-control (NCC) design

Whenever a new case occurs, a set of controls
(here 2/case) are sampled from its risk set.

-Time

6
Subjects

Censored

t

tCase

Risk sets�

�

�

�

d

d
dControl

t

�

�

�

�

d
d

NB. A control once selected for some case can be selected as a
control for another case, and can later on become a case, too.
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Case-cohort (CC) design

Subcohort: Sample of the whole cohort randomly selected at
the outset. – Serves as reference group for all cases.

-Time

6
Subjects

Censored tCase dControl

�
�Subcohort

t
�
�
�
�����

Sampled risk setsddd

t

�
�
�
�
����

dd

NB. A subcohort member can become a case, too.
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Modelling in NCC and other matched studies

Cox proportional hazards model:

λi(t, xi; β) = λ0(t)exp(xi1β1 + · · ·+ xipβp),

Estimation: partial likelihood LP =
∏

k L
P
k :

LP
k = exp(ηik)/

∑

i∈R̃(tk)

exp(ηi),

where R̃(tk) = sampled risk set at observed event time tk,
containing the case + sampled controls (t1 < · · · < tD)

⇒ Fit stratified Cox model, with R̃(tk)’s as the strata.

⇔ Conditional logistic regression
– function clogit() in survival, wrapper of coxph().
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Modelling case-cohort data

Cox’s PH model λi(t) = λ0(t)exp(ηi) again, but . . .

I Analysis of survival data relies on the theoretical principle
that you can’t know the future.

I Case-cohort sampling breaks this principle:
cases are sampled based on what is known to be
happening to them during follow-up.

I The union of cases and subcohort is a mixture

1. random sample of the population, and

2. “high risk” subjects who are certain to become cases.

⇒ Ordinary Cox partial likelihood is wrong.

I Overrepresentation of cases must be corrected for, by
(I) weighting, or (II) late entry method.
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Correction method I – weighting

The method of weighted partial likelihood borrows some
basics ideas from survey sampling.

I Sampled risk sets
R̃(tk) = {cases} ∪ {subcohort members} at risk at tk.

I Weights:
− w = 1 for all cases (within and out of subcohort),
− w = Nnon-cases/nnon-cases = inverse of sampling-fraction

f for selecting a non-case to the subcohort.

I Function coxph() with option weights = w would
provide consistent estimation of β parameters.

I However, the SEs must be corrected!

I R solution: Function cch() – a wrapper of coxph() – in
package survival, with method = "LinYing".
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Comparison of NCC and CC designs

I Statistical efficiency

Broadly similar in NCC and CC with about same
amounts of cases and controls.

I Statistical modelling and valid inference

Straightforward for both designs with appropriate
software, now widely available for CC, too

I Analysis of outcome rates on several time scales?

NCC: Only the time scale used in risk set definition can be the
time variable t in the baseline hazard of PH model.

CC: Different choices for the basic time in PH model
possible, because subcohort members are not
time-matched to cases.
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Comparison of designs (cont’d)

I Missing data

NCC: With close 1:1 matching, a case-control pair is lost, if
either of the two has data missing on key exposure(s).

CC: Missingness of few data items is less serious.

I Quality and comparability of biological measurements

NCC: Allows each case and its controls to be matched also for
analytic batch, storage time, freeze-thaw cycle,
→ better comparability.

CC: Measurements for subcohort performed at different times
than for cases → differential quality & misclassification.

I Possibility for studying many diseases with same controls

NCC: Complicated, but possible if matching is not too refined.
CC: Easy, as no subcohort member is “tied” with any case.

Nested case-control studies and case-cohort studies 29/ 30

Conclusion

I “Case-controlling” is very cost-effective.

I Case-cohort design is useful especially when several
outcomes are of interest, given that the measurements on
stored materials remain stable during the study.

I Nested case-control design is better suited e.g. for studies
involving biomarkers that can be infuenced by analytic
batch, long-term storage, and freeze-thaw cycles.

I Matching helps in improving effciency and in reducing
bias – but only if properly done.

I Handy R tools are available for all designs.

Nested case-control studies and case-cohort studies 30/ 30
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Statistical associations vs causal effects in
epidemiology

Does the exposure (smoking level, obesity, etc) have a causal
effect on the outcome (cancer diagnosis, mortality, etc)?

is not the same question as

Is the exposure associated with the outcome?

Conventional statistical analysis will answer the second one,
but not necessarily the first.

3 / 24
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What is a causal effect?

There is more than just one way to define it.
A causal effect may be defined:

I At the individual level:
Would my cancer risk be different if I were a (non-)smoker?

I At the population level:
Would the population cancer incidence be different if the
prevalence of smoking were different?

I At the exposed subpopulation level :
Would the cancer incidence in smokers be different if they
were nonsmokers?

None of these questions is “mathematical” enough to provide a
mathematically correct definition of causal effect
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Causal effects and counterfactuals

I Defining the causal effect of an observed exposure always
involves some counterfactual (what-if) thinking.

I The individual causal effect can be defined as the
difference

Y (X = 1)− Y (X = 0)

. where Y (1) = Y (X = 1) and Y (0) = Y (X = 0) are
defined as individual’s potential (counterfactual) outcomes
if this individual’s exposure level X were set to 1 or 0,
respectively.

I Sometimes people (e.g J. Pearl) use the “do” notation to
distinguish counterfactual variables from the observed
ones: Y (do(X = 1)) and Y (do(X = 0)).

5 / 24

Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Summary and references References

The “naïve” association analysis
I With a binary exposure X , one would compare average

outcomes in exposed and unexposed populations, finding for
instance:

E(Y |X = 1)− E(Y |X = 0)
Is cancer incidence different in smokers and nonsmokers?

I This would not answer any of the causal questions stated before,
as mostly:

E(Y |X = 1) 6= E(Y (1))
Cancer risk in smokers is not the same as the potential cancer
risk in the population if everyone were smoking

I Similarly:
E(Y |X = 0) 6= E(Y (0))

I In most cases there is always some unobserved confounding
present – the outcome in exposed and unexposed populations
differing for other, often unmeasurable reasons than the
exposure.

6 / 24
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Counterfactual outcomes in different settings
I Randomized trials: probably the easiest – one can

realistically imagine different result of a “coin flip”,
determining the treatment exposure status

I “Actionable” exposures: smoking level, vegetable
consumption, . . . – interventions may alter exposure levels
in future, different potential interventions would create
different “counterfactual worlds”

I Non-actionable exposures: e.g genotypes. It is difficult to
ask “What if I had different genes?”. Still useful concept to
formalize genetic effects and distinguish them from
non-genetic effects.

I Combinations: With X– a behavioral intervention level,
Z–smoking level and Y–a disease outcome, one could
formalize the effect of intervention on outcome by using
Y (X ,Z (X ))

7 / 24



Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Summary and references References

Classical/generalized regression estimates vs causal
effects?

I A well-conducted randomized trial provides the best setting
for estimation of causal effect: if exposure is randomized, it
cannot be confounded

I In the presence of confounding, regression analysis
provides a biased estimate for the true causal effect

I To reduce such bias, one needs to collect data on most
important confounders and adjust for them

I However, too much adjustment may actually introduce
more biases

I Causal graphs (Directed Acyclic Graphs, DAGs) may be
extremly helpful in identifying the optimal set of adjustment
variables

8 / 24
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Adjustment for confounders I
“Classical” confounding: situation where third factors Z
influence both, X and Y

X Y

Z

?

For instance, one can assume: X = Z + U and Y = Z + V ,
where U and V are independent of Z .
X and Y are independent, conditional on Z , but marginally
dependent.
One should adjust the analysis for Z , by fitting a regression
model for Y with covariates X and Z . There is a causal effect
between X and Y , if the effect of X is present in such model.

9 / 24
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Adjustment may sometimes make things worse

Example: the effect of X and Y on Z:

X Y

Z

?

A simple model may hold: Z = X + Y + U,
where U is independent of X and Y .
Hence Y = Z − X − U.
We see the association between X and Y only when the
“effect” of Z has been taken into account. But this is not the
causal effect of X on Y .
One should NOT adjust the analysis for Z !
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More possibilities: mediation

Example: the effect of X on Y is (partly) mediated by Z:

X Y

Z

?

Y = X + Z + U,
If you are interested in the total effect of X on Y – don’t adjust
for Z !
If you are interested in the direct effect of X on Y – adjust for Z .
(Only if the Z -Y association is unconfounded)

11 / 24
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Actually there might be a complicated system of causal effects:

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

C D

X

Y

Q
W

Z

S U

C-smoking; D-cancer
Q, S, U, W, X, Y, Z - other factors that influence cancer risks and/or
smoking (genes, social background, nutrition, environment,
personality, . . . )
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To check for confounding,

1. Sketch a causal graph
2. Remove all arrows corresponding to the causal effect of

interest (thus, create a graph where the causal
null-hypothesis would hold).

3. Remove all nodes (and corresponding edges) except those
contained in the exposure (C) and outcome (D) variables
and their (direct or indirect) ancestors.

4. Connect by an undirected edge every pair of nodes that
both share a common child and are not already connected
by a directed edge.

I If now C and D are still associated, we say that the C − D
association is confounded

I Identify the set of nodes that need to be deleted to separate
C and D – inferences conditional on these variables give
unconfounded estimates of the causal effects.
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Example: mediation with confounding

X Y

Z
W

?

Follow the algorithm to show that one should adjust the
analysis for W . If W is an unobserved confounder, no valid
causal inference is possible in general. However, the total effect
of X on Y is estimable.

14 / 24
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Instrumental variables estimation and Mendelian randomization

“Mendelian randomization” – genes as Instrumental
Variables

I Most of the exposures of interest in chronic disease
epidemiology cannot be randomized.

I Sometimes, however, nature will randomize for us: there is
a SNP (Single nucleotide polymorphism, a DNA marker)
that affects the exposure of interest, but not directly the
outcome.

I Example: a SNP that is associated with the enzyme
involved in alcohol metabolism, genetic lactose
intolerance, etc.

However, the crucial assumption that the SNP cannot affect
outcome in any other way than throughout the exposure,
cannot be tested statistically!
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Instrumental variables estimation and Mendelian randomization

General instrumental variables estimation
A causal graph with exposure X , outcome Y , confounder U and
an instrument Z :

Z X Y

U

δ β

γ

Simple regression will yield a biased estimate of the causal
effect of X on Y , as the graph implies:

Y = αy + βX + γU + ε, E(ε|X ,U) = 0

so E(Y |X ) = αy + βX + γE(U|X ).
Thus the coefficient of X will also depend on γ and the
association between X and U.
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Instrumental variables estimation and Mendelian randomization

General instrumental variables estimation

Z X Y

U

δ β

γ

Y = αy + βX + γU + ε, E(ε|X ,U) = 0

How can Z help?
If E(X |Z ) = αx + δZ , we get

E(Y |Z ) = αy+βE(X |Z )+γE(U|Z ) = αy+β(αx+δZ ) = α∗
y+βδZ .

As δ and βδ are estimable, also β becomes estimable.

17 / 24
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Instrumental variables estimation and Mendelian randomization

General instrumental variables estimation

Z X Y

U

δ β

γ

1. Regress X on Z , obtain an estimate δ̂
2. Regress Y on Z , obtain an estimate δ̂β

3. Obtain β̂ = δ̂β

δ̂

4. Valid, if Z is not associated with U and does not have any
effect on Y (other than mediated by X )

5. Standard error estimation is more tricky – use for instance
library(sem), function tsls().
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Instrumental variables estimation and Mendelian randomization

Mendelian randomization example
FTO genotype, BMI and Blood Glucose level (related to Type 2
Diabetes risk; Estonian Biobank, n=3635, aged 45+)

FTO BMI Diabetes

U

I Average difference in Blood Glucose level (Glc, mmol/L)
per BMI unit is estimated as 0.085 (SE=0.005)

I Average BMI difference per FTO risk allele is estimated as
0.50 (SE=0.09)

I Average difference in Glc level per FTO risk allele is
estimated as 0.13 (SE=0.04)

I Instrumental variable estimate of the mean Glc difference
per BMI unit is 0.209 (se=0.078)
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Instrumental variables estimation and Mendelian randomization

IV estimation in R (using library(sem)):

> summary(tsls(Glc~bmi, ~fto,data=fen),digits=2)

2SLS Estimates

Model Formula: Glc ~ bmi

Instruments: ~fto

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-6.3700 -1.0100 -0.0943 0.0000 0.8170 13.2000

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.210 2.106 -0.6 0.566
bmi 0.209 0.078 2.7 0.008 **
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Instrumental variables estimation and Mendelian randomization

IV estimation: can untestable assumptions be tested?

> summary(lm(Glc~bmi+fto,data=fen))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.985 0.106 18.75 <2e-16 ***
bmi 0.088 0.004 23.36 <2e-16 ***
fto 0.049 0.030 1.66 0.097 .

For Type 2 Diabetes:
> summary(glm(t2d~bmi+fto,data=fen,family=binomial))
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.515 0.187 -40.18 <2e-16 ***
bmi 0.185 0.006 31.66 <2e-16 ***
fto 0.095 0.047 2.01 0.044 *

Does FTO have a direct effect on Glc or T2D?
A significant FTO effect would not be a proof here (nor does
non-significance prove the opposite)! (WHY?)

21 / 24
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Instrumental variables estimation and Mendelian randomization

Can we test pleiotropy?
A naïve approach would be to fit a linear regression model for
Y , with both X and G as covariates.
But in this case we estimate:

E(Y |X ,G) = const + βplG + βX + γE(U|X ,G).

It is possible to show that U is not independent of neither X nor
G – therefore, the coefficient of G in the resulting model would
be nonzero even if βpl = 0.
Therefore there is no formal test for pleiotropy possible in the
case of one genetic instrument – only biological arguments
could help to decide, whether assumptions are likelt to be
fulfilled
In the case of multiple genetic instruments and meta-analysis,
sometimes the approach of Egger regression can be used
(Bowden et al, 2015). But even that is not an assumption-free
method!

22 / 24



Outline How to define a causal effect? Causal graphs, confounding and adjustment Causal models for observational data Summary and references References

Summary

I There is no unique definition of “the causal effect”
I The validity of any causal effect estimates depends on the

validity of the underlying assumptions.
I Adjustment for other available variables may remove

(some) confounding, but it may also create more
confounding. Do not adjust for variables that may
themselves be affected by the outcome.

I Instrumental variables approaches can be helpful, but
beware of assumptions!
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Some references
I A webpage by Miguel Hernan and Jamie Robins:

http://www.hsph.harvard.edu/miguel-hernan/causal-inference-
book/

I An excellent overview of Mendelian randomization:
Sheehan, N., Didelez, V., Burton, P., Tobin, M., Mendelian
Randomization and Causal Inference in Observational
Epidemiology, PLoS Med. 2008 August; 5(8).

I A way to correct for pleiotropy bias:
Bowden J, Davey Smith G, Burgess S, Mendelian randomization
with invalid instruments: effect estimation and bias detection
through Egger regression. Int J Epidemiol. 2015
Apr;44(2):512-25.

I . . . and how to interpret the findings (warning against overuse):
Burgess, S., Thompson, S.G., Interpreting findings from
Mendelian randomization using the MR-Egger method, Eur J
Epidemiol (2017).
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University of Tartu,
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Common assumptions in survival analysis

1. Subjects are either“healthy”or“diseased”, with no
intermediate state.

2. The disease is irreversible, or requires intervention to be
cured.

3. The time of disease incidence is known exactly.

4. The disease is accurately diagnosed.

These assumptions are true for death and many chronic diseases.

Multistate models (ms-Markov) 2/ 42

Is the disease a dichotomy?

A disease may be preceded by a sub-clinical phase before it shows
symptoms.

AIDS Decline in CD4 count
Cancer Pre-cancerous lesions
Type 2 Diabetes Impaired glucose tolerance

Or a disease may be classified into degrees of severity (mild,
moderate, severe).

Multistate models (ms-Markov) 3/ 42



A model for cervical cancer

Invasive squamous cell cancer of the cervix is preceded by cervical
intraepithelial neoplasia (CIN)

Normal CIN I CIN II CIN III CancerNormal CIN I CIN II CIN III CancerNormal CIN I CIN II CIN III Cancer
λ01

λ10

λ12

λ21

λ23

λ32

λ3D

The purpose of a screening programme is to detect and treat CIN.

Aim of the modeling the transition rates between states, is to be
able predict how population moves between states

Probabilities of state occupancy can be calculated.

Multistate models (ms-Markov) 4/ 42

When does the disease occur?

You may need a clinical visit to diagnose the disease:

I examination by physician, or

I laboratory test on blood sample, or

I examination of biopsy by pathologist

We do not know what happens between consecutive visits
(interval censoring).

Multistate models (ms-Markov) 5/ 42

Informative observation process?

Is the reason for the visit dependent on the evolution of disease?

Ignoring this may cause bias, like informative censoring.

Different reasons for follow-up visits:

I Fixed intervals (OK)

I Random intervals (OK)

I Doctor’s care (OK)

I Self selection (Not OK — visits are likely to be close to event
times)

Multistate models (ms-Markov) 6/ 42



Markov models for multistate diseases

The natural generalization of Poisson regression to multiple disease
states:

I Probability of transition between states depends only on
current state

I — this is the Markov property

I ⇒ transition rates are constant over time

I (time-fixed) covariates may influence transition rates

I the formal Markov property is very restrictive

I In clinical litterature “Markov model” is often used about any
type of multistate model

Multistate models (ms-Markov) 7/ 42

Compnents of a multistate (Markov) model

I Define the disease states.

I Define which transitions between states are allowed.

I Select covariates influencing transition rates (may be different
between transitions)

I Constrain some covariate effects to be the same, or zero.
I Not a trivial task — do we want e.g.

I cause of death
I disease status at death

Multistate models (ms-Markov) 8/ 42

Likelihood for multistate model

I The likelihood of the model depends on the probability of being
in state j at time t1, given that you were in state i at time t0.

I Assume transition rates constant in small time intervals
I ⇒ each interval contributes terms to the likelihood:

I one for each person at risk of a transition in the interval
I . . . for each possible transition
I each term has the form of a Poisson likelihood contribution
I the total likelihood for each time interval is a product of terms over

persons and (possible) transitions

I Total likelihood is product of terms for all intervals
I — components not independent, but the total likelihood is a

product; hence of the same form as the likelihood of
independent Poisson variates

Multistate models (ms-Markov) 9/ 42



Purpose of multistate modeling

I Separation of intensities of interest (model definition)

I Evaluation of covariate effects on these

I — biological interpretability of covariate effects

I Use a fitted model to compute:

I state occupancy probabilities: P {in state X at time t}
I time spent in a given state

Multistate models (ms-Markov) 10/ 42

Special multistate models

I If all transition rates depend on only one time scale

I — but possibly different (time-fixed) covariates

I ⇒ easy to compute state probabilities

I For this reason the most commonly available models

I but not the most realistic models.

I Realistically transition rates depend on:

I multiple time scales

I time since entry to certain states.

Multistate models (ms-Markov) 11/ 42
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Example: Renal failure data from Steno

Hovind P, Tarnow L, Rossing P, Carstensen B, and Parving H-H: Improved

survival in patients obtaining remission of nephrotic range albuminuria in diabetic

nephropathy. Kidney Int., 66(3):1180–1186, 2004.

I 96 patients entering at nephrotic range albuminuria (NRA), i.e.
U-alb> 300mg/day.

I Is remission from this condition (i.e return to
U-alb< 300mg/day) predictive of the prognosis?

I Endpoint of interest: Death or end stage renal disease
(ESRD), i.e. dialysis or kidney transplant.

Multistate models with
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Remission

Total Yes No

No. patients 125 32 93
No. events 77 8 69

Follow-up time (years) 1084.7 259.9 824.8

Cox-model:
Timescale: Time since nephrotic range albuminuria (NRA)

Entry: 2.5 years of GFR-measurements after NRA
Outcome: ESRD or Death

Estimates: RR 95% c.i. p

Fixed covariates:
Sex (F vs. M): 0.92 (0.53,1.57) 0.740

Age at NRA (per 10 years): 1.42 (1.08,1.87) 0.011

Time-dependent covariate:
Obtained remission: 0.28 (0.13,0.59) 0.001

Multistate models with
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Features of the analysis

I Remission is included as a time-dependent variable.

I Age at entry is included as a fixed variable.

renal[1:5,]
id dob doe dor dox event
17 1967.944 1996.013 NA 1997.094 2
26 1959.306 1989.535 1989.814 1996.136 1
27 1962.014 1987.846 NA 1993.239 3
33 1950.747 1995.243 1995.717 2003.993 0
42 1961.296 1987.884 1996.650 2003.955 0

Note patient 26, 33 and 42 obtain remission.

Multistate models with

Lexis (ms-Lexis) 15/ 42

> Lr <- Lexis( entry = list( per=doe,
+ age=doe-dob,
+ tfi=0 ),
+ exit = list( per=dox ),
+ exit.status = event>0,
+ states = c("NRA","ESRD"),
+ data = renal )
> summary( Lr )

Transitions:
To

From NRA ESRD Records: Events: Risk time: Persons:
NRA 48 77 125 77 1084.67 125

Multistate models with

Lexis (ms-Lexis) 16/ 42

> boxes( Lr, boxpos=list(x=c(25,75),
+ y=c(75,25)),
+ scale.R=100, show.BE=TRUE )

NRA
1,084.7

125          48

ESRD
0          77

77
(7.1)

NRA
1,084.7

125          48

ESRD
0          77

NRA
1,084.7

125          48

ESRD
0          77

Multistate models with
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Illness-death model

NRA Rem

ESRD

0.0

0.1
0.0

NRA Rem

ESRD

NRA Rem

ESRD

λ

µNRA µRem

λ: remission rate.
µNRA: mortality/ESRD rate before remission.
µrem: mortality/ESRD rate after remission.

Multistate models with
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Cutting follow-up at remission: cutLexis

> Lc <- cutLexis( Lr, cut=Lr$dor,
+ timescale="per",
+ new.state="Rem",
+ precursor.states="NRA" )
> summary( Lc )

Transitions:
To

From NRA Rem ESRD Records: Events: Risk time: Persons:
NRA 24 29 69 122 98 824.77 122
Rem 0 24 8 32 8 259.90 32
Sum 24 53 77 154 106 1084.67 125

Multistate models with
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Showing states and FU: boxes.Lexis

> boxes( Lc, boxpos=list(x=c(15,85,50),
+ y=c(85,85,20)),

scale.R=100, show.BE=TRUE )

NRA
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122          24
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3          24

ESRD
0          77
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122          24

Rem
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3          24

ESRD
0          77

NRA
824.8

122          24

Rem
259.9

3          24

ESRD
0          77
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Splitting states: cutLexis

> Lc <- cutLexis( Lr, cut=Lr$dor,
+ timescale="per",
+ new.state="Rem",
+ precursor.states="NRA",
+ split.states=TRUE )
> summary( Lc )

Transitions:
To

From NRA Rem ESRD ESRD(Rem) Records: Events: Risk time: Persons:
NRA 24 29 69 0 122 98 824.77 122
Rem 0 24 0 8 32 8 259.90 32
Sum 24 53 69 8 154 106 1084.67 125
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Showing states and FU: boxes.Lexis

> boxes( Lc, boxpos=list(x=c(15,85,15,85),
+ y=c(85,85,20,20)), scale.R=100 )

NRA
824.8

Rem
259.9

ESRD ESRD(Rem)

29
(3.5)

69
(8.4)

8
(3.1)

NRA
824.8

Rem
259.9

ESRD ESRD(Rem)

NRA
824.8

Rem
259.9

ESRD ESRD(Rem)
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Likelihood for a general MS-model

I Product of likelihoods for each transition
— each one as for a survival model

I Risk time is the risk time in the “From” state

I Events are transitions to the “To” state

I All other transitions out of “From” are treated as censorings

I Possible to fit models separately for each transition
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NRA Rem

ESRD ESRD(Rem)

0.0

0.1 0.0

NRA Rem

ESRD ESRD(Rem)

NRA Rem

ESRD ESRD(Rem)

λ

µNRA µRem

Cox-analysis with remission as time-dependent covariate:

I Ignores λ, the remission rate.

I Assumes µNRA and µrem use the same timescale.
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Model for all transitions

NRA
824.8

Rem
259.9

ESRD ESRD(Rem)

29

69 8

NRA
824.8

Rem
259.9

ESRD ESRD(Rem)

NRA
824.8

Rem
259.9

ESRD ESRD(Rem)

Cox-model:

I Different timescales for
transitions possible

I . . . only one per transition

I No explicit representation of
estimated rates.

Poisson-model:

I Timescales can be different

I Multiple timescales can be
accomodated simultaneously

I Explicit representation of all
transition ratesMultistate models with

Lexis (ms-Lexis) 25/ 42

Calculus of probabilities

P {Remission before time t}

=

∫ t

0

λ(u)exp

(
−
∫ u

0

λ(s) + µNRA ds

)
du

P {Being in remission at time t}

=

∫ t

0

λ(u)exp

(
−
∫ u

0

λ(s) + µNRA(s) ds

)
×

exp

(
−
∫ t

u

µrem(s) ds

)
du

Note µrem could also depend on u, time since obtained remission.
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Sketch of programming, assuming that λ (lambda), µNRA (mu.nra)
and µrem (mu.rem) are known for each age (stored in vectors)

c.rem <- cumsum( lambda )
c.mort.nra <- cumsum( mu.nra )
c.mort.rem <- cumsum( mu.rem )
pr1 <- cumsum( lambda * exp( -( c.rem + c.mort.nra ) ) )

intgr(t,s) <- function(t,s){
lambda[s] * exp( -( c.rem[s] + c.mort.nra[s] ) ) *

exp( -( c.mort.rem[t]-c.mort.rem[s] ) ) }
for( t in 1:100 ) p2[t] <- sum( intgr(t,1:t) )

If µrem depends on time of remission, then c.mort.rem should have
an extra argument.
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Calculation of integrals

The possibility of computing the state-occupancy probabilities relies
on:

I Availablity of closed-form formulae for the probailities in terms
of the transition rates

I Transition rates are assumed to be continuous functions of
time

I Transition rates can be calulated at any point of time. . .

I This will allow simple calulation of the integrals from the
closed-form expressions.
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Semi-Markov models

I if we only have one time scale, which is common for all
transitions

I — in practical terms: transition intensities only depend on
state and the current time.

I then we can construct transition matrices for each tiny time
interval

Pij (t , t + h) = P {state j at t + h | state i at t}

I Simple matrix multiplication then gives the matrix of transition
probabilities between states between any two timepoints.
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A more complicated multistate model

DN
1,706.4

309          175

CVD
1,219.4

234          119

ESRD(CVD)
108.6

0          14

ESRD
138.8

0          34

Dead(CVD)
0          98

Dead(ESRD(CVD))
0          25

Dead(ESRD)
0          14
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309          175
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A more complicated multistate model
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State probabilities

How do we get from rates to probabilities:

I 1: Analytical calculations:

I immensely complicated formulae
I computationally fast (once implemented)
I difficult to generalize

I 2: Simulation of persons’ histories

I conceptually simple
I computationally not quite simple
I easy to generalize
I hard to get confidence intervals (bootstrap)
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Simulation in a multistate model
DN
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Dead(DN)
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Dead(ESRD)
0          14

Dead(DN)
0          64

I Simulate a “survival time” for each transition out of a state.

I The smallest of these is the transition time.

I Choose the corresponding transition type as transition.
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Transition object are glms
DN
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309          175
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234          119
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0          14
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Tr <- list( "DN" = list( "Dead(DN)" = E1d,
"CVD" = E1c,
"ESRD" = E1e ),

"CVD" = list( "Dead(CVD)" = E1d,
"ESRD(CVD)" = E1e ),

"ESRD" = list( "Dead(ESRD)"= E1n ),
"ESRD(CVD)" = list( "Dead(ESRD(CVD))"= E1n ) )
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simLexis

Input required:

I A Lexis object representing the initial state of the persons to
be simulated.
(lex.dur and lex.Xst will be ignored.)

I A transition object with the estimated Poisson models
collected in a list of lists.

Output produced:

I A Lexis object with simulated event histories for may persons

I Use nState to count how many persons in each state at
different times

Prediction in multistate models

with simLexis (sim-Lexis) 35/ 42

Using simLexis

Put one record a new Lexis object (init, say). representing a
person with the desired covariates.

Must have same structure as the one used for estimation:

init <- subset( S5, FALSE,
select=c(timeScales(S5),"lex.Cst",

"dm.type","sex","hba1c",
"sys.bt","tchol","alb",
"smoke","bmi","gfr","hmgb",
"ins.kg") )

init[1,"sex"] <- "M"
init[1,"age"] <- 60
...

sim1 <- simLexis( Tr1, init,
time.pts=seq(0,25,0.2),
N=500 ) )

Prediction in multistate models

with simLexis (sim-Lexis) 36/ 42

Output from simLexis

> summary( sim1 )

Transitions:
To

From DN CVD ES(CVD) ES Dead(CVD) Dead(ES(CVD)) Dead(ES) Dead(DN)
DN 212 81 0 145 0 0 0 62
CVD 0 50 7 0 24 0 0 0
ESRD(CVD) 0 0 3 0 0 4 0 0
ESRD 0 0 0 70 0 0 75 0
Sum 212 131 10 215 24 4 75 62

Transitions:
To

From Records: Events: Risk time: Persons:
DN 500 288 9245.95 500
CVD 81 31 667.90 81
ESRD(CVD) 7 4 45.72 7
ESRD 145 75 891.11 145
Sum 733 398 10850.67 500
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Using a simulated Lexis object — pState

nw1 <- pState( nState( sim1,
at = seq(0,15,0.1),
from = 60,
time.scale = "age" ),

perm = c(1:4,7:5,8) ) )
head( pState )
when DN CVD ES(CVD) ES Dead(ES) Dead(ES(CVD)) Dead(CVD) Dead(DN)
60 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1
60.1 0.9983 0.9986 0.9986 0.9997 0.9997 0.9997 0.9997 1
60.2 0.9954 0.9964 0.9964 0.9990 0.9990 0.9990 0.9990 1
60.3 0.9933 0.9947 0.9947 0.9981 0.9981 0.9981 0.9982 1
60.4 0.9912 0.9929 0.9929 0.9973 0.9973 0.9973 0.9974 1
60.5 0.9894 0.9913 0.9913 0.9964 0.9964 0.9964 0.9965 1

plot( pState )
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Simulated probabilities
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How many persons should you simulate?

I All probabilities have the same denominator — the initial
number of persons in the simulation, N , say.

I Thus, any probability will be of the form p = x/N

I For small probabilities we have that:

s.e.
(
log(p̂)

)
= (1− p)/

√
Np(1− p)

I So c.i. of the form p
×
÷ erf where:

erf = exp
(
1.96× (1− p)/

√
Np(1− p)

)
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Precision of simulated probabilities
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Multistate model overview

I Clarify what the relevant states are

I Allows proper estimation of transition rates

I — and relationships between them

I Separate model for each transition (arrow)

I The usual survival methodology to compute probabilities
breaks down

I Simulation allows estimation of cumulative probabilities:

I Estimate transition rates (as usual)
I Simulate probabilities (not as usual)

Your turn: “Renal complications”
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