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Multi-state model — 4 states, 3 transitions
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Transient and absorbing states

Two types of states are normally distinguished:
» transient states are states from which it is possible to exit

» absorbing states are states from which it is impossible to exit,
typically death.
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Transition matrix

» Rows and columns labeled by the states that can be assumed
» The entry in row A, column B is
the probability of state B at time 7 given state A at time
Pys(s,1) = P {state B at time / | state A at time s}

» . .so the matrix is a function of two timepoints, s and

» time-homogeneous = only function of
= transition rates are constant

» no requirement only to consider moves directly from A to B.
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Transition matrix

to
from DM Ins Dead Dead(Ins)
DM 1—ppr—ppp  Ppr  PDD 0
Ins 0 1—pp 0 Pib
Dead 0 0 1 0
Dead(Ins) 0 0 0 1




Transition matrix, ¢ — s =1 month (from boxes)

%

# Initial state distribution
(p0 <- c(DM=1, Ins=0, Dead=0, "Dead(Ins)'"=0))

DM Ins Dead Dead(Ins)
1 0 0 0

# Transition matrix (per month)

Tm <- matrix(0, 4, 4)

rownames (Tm) <- colnames(Tm) <- names (p0)
Tm["DM","Ins"] <- 1694 / 45885.5 / 12
Tm["DM", "Dead"] <- 2048 / 45885.5 / 12
Tm["Ins","Dead(Ins)"] <- 451 / 8387.8 / 12
diag(Tm) <- 1 - apply(Tm, 1, sum)

Tm

v

VVVVYVYVYVYV

DM Ins Dead Dead(Ins)
DM 0.9932041 0.003076498 0.003719403 0.000000000
Ins 0.0000000 0.995519286 0.000000000 0.004480714
Dead 0.0000000 0.000000000 1.000000000 0.000000000
Dead(Ins) 0.0000000 0.000000000 0.000000000 1.000000000
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State distribution after 1, 2,... months

> (p1 <- pO }*}) Tm)

DM Ins Dead Dead(Ins)
[1,1 0.9932041 0.003076498 0.003719403 0
> (p2 <- p1 }*% Tm)

DM Ins Dead Dead(Ins)

[1,] 0.9864544 0.006118304 0.007413529 1.378491e-05

> (p3 <- p2 }4*J) Tm)

DM Ins Dead Dead (Ins)
[1,1 0.9797505 0.009125715 0.01108255 4.119928e-05
> (p4 <- p3 %*% Tm)

DM Ins Dead Dead(Ins)
[1,] 0.9730922 0.01209903 0.01472664 8.2089e-05
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State distribution after 5 years

> pm <- p0
> for(m in 1:60) pm <- pm 7*}, Tm
> pm

DM Ins Dead Dead(Ins)
[1,] 0.6642173 0.1323312 0.1837742 0.01967731

» This relies on the time-homogeneous assumption
— the transition probabilities are the same at any time

» assuming that only one transition occur in each time interval

» It is an approximation — if we used 1 year or 1 day intervals we
would get other results

» There is an analytical solution—the matrix exponential Exp.
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State distribution — 1 year approximation

# Transition matrix (per year)

Ty <- matrix(0, 4, 4)

rownames (Ty) <- colnames(Ty) <- names (p0)
Ty["DM","Ins"] <- 1694 / 45885.5
Ty["DM", "Dead"] <- 2048 / 45885.5
Ty["Ins","Dead(Ins)"] <- 451 / 8387.8
diag(Ty) <- 1 - apply(Ty, 1, sum)

py <- po0

for(m in 1:5) py <- py %*) Ty

Py

VVVVVYVVYVYVYV

DM Ins Dead Dead(Ins)
[1,] 0.6535452 0.1395399 0.189615 0.0172998
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State distribution — 1 day approximation

> # Transition matrix (per day)

> Td <- matrix(0, 4, 4)

> rownames (Td) <- colnames(Td) <- names (p0)

> Td["DM","Ins"] <- 1694 / 45885.5 / 365

> Td["DM","Dead"] <- 2048 / 45885.5 / 365

> Td["Ins","Dead(Ins)'"] <- 451 / 8387.8 / 365
> diag(Td) <- 1 - apply(Td, 1, sum)

> pd <- pO

> for(m in 1:(5*365)) pd <- pd }*} Td

> pd

DM Ins Dead Dead(Ins)
[1,] 0.6651121 0.1317354 0.1832844 0.01986808
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State distribution after 5 years

> cbind(py = as.vector(py),
+ pm = as.vector(pm),
+ pd = as.vector(pd))

py pm pd
[1,] 0.6535452 0.66421730 0.66511213
[2,] 0.1395399 0.13233121 0.13173536
[3,] 0.1896150 0.18377418 0.18328444
[4,] 0.0172998 0.01967731 0.01986808

1-year approximation is not good.

Assumption of ignorable proabability of two transitions in one interval
is untenable.
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Computing the state distribution by time

> pt <- NArray(list(month = 0:120, state = names(p0)))
> str(pt)

logi [1:121, 1:4] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 2
..$ month: chr [1:121] "Q" 1" naw n3m |
..$ state: chr [1:4] "DM" "Ins" "Dead" "Dead(Imns)"

> pt["0",] <- pO
> for(i in 1:120) pt[i+1,] <- pt[i,] }*} Tm
> pt[1:5,]

state
month DM Ins Dead Dead (Ins)
1.0000000 0.000000000 0.000000000 0.000000e+00
0.9932041 0.003076498 0.003719403 0.000000e+00
0.9864544 0.006118304 0.007413529 1.378491e-05
0.9797505 0.009125715 0.011082551 4.119928e-05
0.9730922 0.012099026 0.014726638 8.208900e-05

»WN - O

... still using time-homogeneous Markov model
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Computing the state distribution by time
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time-inhomogeneous Markov model

if transition probabilities vary by time we would replace:
> for(i in 1:120) pt[i+1,] <- pt[i,] %*% Tm
with:

> for (i in 1:120) pt[i+1,] <- pt[i,] %*% Tm[,,i]

—transition matrix depends on time (1)

But we still have all FU referring to the same time-scale:
(i in 1:120)
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Semi-markov model

» Transition probabilities (and -rates) depend on time since entry
to current state

» = time is different for different persons
» = matrix multiplication machinery does not apply

» Prediction only possible by micro-simulation
(see the simLexis vignette in the Epi package
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Non-markov model

» Transition probabilities (and -rates) depend on more than one
time scale

> = persons in a state are at different times on several time scales
» = matrix multiplication machinery does not apply

» Prediction only possible by micro-simulation
(see the simLexis vignette in the Epi package)
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4 classes of multistate models

1. Homogeneous Markov: All transition intensities are
constant over time. Allows calculation of state probabilities
using the matrix exponential on the transition intensity matrix.

2. Inhomogeneous Markov: Transition rates vary by time but
all transition rates vary along the same time scale.
Time-specific transition probability matrices.

3. Semi Markov: Transition rates from different states vary by
time since entry to the state, so along different time scales in
different states. Micro-simulation needed.

4. Multiple timescales: Transition rates depend on more than
one time scale, such as current age and current duration of
diabetes. Micro-simulation needed.

17/ 1



Data, observations

» The simplest multistate model is a survival model with states
Alive and Dead — one possible transition.

» The basic observation for each person is the (empirical) rate in
the form (d,y), where
d is the event count (0 or 1) and
y is the risk time, j.e. the time at risk of dying.
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Model

» The likelihood is the probability of seeing (d,y) as a function of
the occurrence rate.

» We need a precise definition of a theoretical mortality rate:

A(t) = limp_,o P {death in (¢,t + h||alive at t} /h
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Likelihood

» a person at risk from time t. (entry) to ¢, (exit)
» status at ¢, is d, where d = 0 is alive and d = 1 is dead.

» choose, say, two time points, ¢, to between t, and ¢,
— Bayes’ formula gives:

P{d at t,| entry at t.} =P {survive (t., ;]| alive at t.} x
P {survive (t1, o] | alive at t1} x
P {survive (t3,1,) | alive at 3} x
P {d at t, | alive just before t,}

..one term per interval
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Likelihood contributions per interval

» more intermediate time points =- smaller intervals

» for the first three terms we just need to derive the probability of
surviving a small piece of time, as a function of the mortality
rate.
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Likelihood from survival

» Assume that the mortality is constant over time A(t) = .
» The definition of a rate

A(t) = limy, o P {death in (¢, + h] | alive at t} /h
leads to (conditional on being alive at t):

P {death during (¢,t + h]} ~ \h
= P {survive (t,t + h]} =1 — Ah
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Likelihood from survival

» a single person’s survival (risk time) time y = t, — ¢,
» subdivided in N intervals, each of length h = y/N

» = survival probability for the entire span from ¢, to t, is the
product of probabilities of surviving each of the N small
intervals, conditional on being alive at the beginning of each
interval:

o\
P {survive ¢, to t,} ~ (1 — Ah)" = (1 — Ny> — exp(—Ay)

for N = oo
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Likelihood from event

» event at the end of the last interval for a person
= likelihood contribution:
probability of dying in the last tiny instant (of length ¢, say)

» by the definition of the rate, this is ¢, and hence the
log-likelihood contribution is log(Ae) = log(A) + log(e).

» since d; = 1 only for the last interval if an event occurs and 0
otherwise, we can say that all intervals contribute

d; (log(X) + log(e))

24/ 1



one person’s log-likelihood contribution

» The total likelihood for one person is the product of all these
terms from the follow-up intervals (i) for the person:

> = log-likelihood, ¢(A[(d;, ;) is a sum over intervals:

Z —A\y; + Z d log ) + log(e))
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model and log-likelihood from one person

> (dilog(h) — Ayi)

(3
» this is also the log-likelihood for
independent Poisson variates d; with mean Ay;

» ... but the (d;,y;) contributions from a single person are
neither independent nor Poisson
... merely an algorithmic convenience.

» Same likelihood, but
different models and different observations
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Parametric rate models

» parametric modeling of rates allows different \;s in each
interval
—assuming that rates are constant within each interval

> (age-)groups are irrelevant, the actual age at the start of the
interval is used as a quantitative variable

» (duration-)groups are irrelevant, the actual duration at the
start of the interval is used as a quantitative variable

» note that the values of the quantitative variables describing the
A;s need not be in a pre-defined finite set
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Demography: Scales of inference

-1.

Occurrence rates
—the scale of observed register data, (d,y) (empirical rate),
measured in time ' (events per person-time)

State probabilities (survival function)

—the integral of rates w.r.t. time

—requires an origin (such as date of diagnosis)
measured in time" (dimensionless)

. Sojourn times (time spent in a state)

—the integral of state probabilities w.r.t. time
—requires an origin and endpoint
measured in time!
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Demographic quantities—functions of time

» occurrence rate:
A(t) = limy_,g P{event in (¢,¢ + h)|alive at ¢} /h

» survival probability (since time a):

S, (£) = exp (— / "Aw) du)

» sojourn time (between ¢ and b)
(restricted mean survival time to b, RMST):

L(t) = /t "y () du
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Mortality / survival / life time after DM
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Mortality / survival / life time after DM

Mortality per 1000 PY
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Mortality / survival / life time after DM
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Mortality / survival / life time after DM
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Mortality / survival / life time after DM
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Mortality / survival / life time after DM
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Mortality / survival / life time after DM
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How does follow-up look in a dataset

» One record per time interval (where nothing happens)

» Things happen at the end of the interval,
the interval FU time belongs in a particular state, e.g.:

> noDM / T1/ T2
» noCKD / CKD
» no comorb. / 1 comorb. /2 comorb. / 3 comorb. / ...
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How does follow-up look in a dataset

» Intervals may further be classified by time-varying variables:
> quantitative deterministic variables (time scales):
age, date of follow up, diabetes duration
» quantitative random variables: HbA., cholesterol, . ..
» categorical random variables: parity, marital status
» States are a special type of time varying covariates:

targets of demographic measures (probability, sojourn time)
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> library(Epi)
> data(DMlate)

> DMlate[13:19,]

119305
188248
38336

368534
139497
132331
228434

Each record: relevant dates for a person followed from date of

sex

mETmETE

dobth

1938.
1979.
1944 .
1962.
1956.
1935.
1949.

107
864
420
482
439
024
622

1997.
1999.
2002.
2000.
1995.
1996.
2006.

dodm
461
684
550
355
544
746
783

dodth dooad
1998.35 NA
NA NA

NA NA

NA 2001.559

NA NA

NA 1997.915

NA 2006.783

2005.354
NA
NA
2005.995
NA

diabetes till death or 2009-12-31 (end of study).

—combination of several registers

1998.
.997
.997
.997
.997
.997
.997

2009
2009
2009
2009
2009
2009

dox
350
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Total follow-up of diabetes ptt.
In terms of follow-up we must define:

» Entry time: doDM
» Exit time: dox
» Event death: dodth = dox
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Intermediate register events

Other dates specify occurrence of intermediate events

» start of OAD drugs at doOAD
» start of insulin at doIns

» possible states:

DM, no drug
0AD alone

Ins alone

both 0AD & Ins

or.
» 0AD after Ins
» Ins after 0AD

» Dead

vVVyVYYVYY

States are not derived from data, they are defined by the investigator
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Multi-state model — 5 states, 8 transitions

D ns

[N

y v

OAD ns+OAD
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Multi-state data

689
DM (30.1)
22,920.3
1,056
(46.1)
152
2.957 (39.1)
(129.0) 4
Dead
N\
992
(43.2)
299
' 1,005 (66.4)
OAD (43.8)

22,965.2

Ins
3,883.1

172
(44.3)

Ins+OAD
4,504.7
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Practical representation of follow-up

» provide an overview of the follow-up

» provide analytical possibility for rate models:
modeling on the observation scale (observed rates (d, y))
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Multi-state data representation with Lexis

> dmL <- Lexis(entry = list(Per = dodm,

+ Age = dodm - dobth,

+ DMdur = 0 ),

+ exit = list(Per = dox),

+ exit.status = factor(!is.na(dodth),

+ labels = c("DM", "Dead'")),
+ data = DMlate)

NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 4 rows with duration of follow up < tol

> summary (dmL)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 7497 2499 9996 2499 54273.27 9996

Multiple time scales: Per, Age, DMdur
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A Lexis diagram

> plot(dmL)
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Multi-state data representation with Lexis

> dmI0 <- mcutLexis(dmL,

+ wh = c("dooad", "doins'),
+ timescale = "Per",

+ new.states = c("0OAD", "Ins"),

+ seq.states = FALSE,

+ ties.resolve = 1/365.25)

NOTE: Precursor states set to DM
NOTE: 15 records with tied events times resolved (adding 0.002737851 random unifo
so results are only reproducible if the random number seed was set.

> summary (dmI0)

Transitions:
To

From DM Dead O0OAD Ins Inst0OAD Records: Events: Risk time: Persons:
DM 2830 1056 2957 689 0 7532 4702 22920.25 7532
0AD 0 992 3327 0 1005 5324 1997 22965.23 5324
Ins 0 152 0 462 172 786 324 3883.06 786
Ins+0AD 0 299 0 0 878 1177 299 4504.73 1177
Sum 2830 2499 6284 1151 2055 14819 7322 54273.27 9996
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lex.id Per
2 2003.31

15 2002.55

18 1996.75

770 1995.22

lex.id Per
2 2003.31

2 2007.45
lex.id Per
15 2002.55

15 2005.35
lex.id Per
18 1996.75

18 1997.92

18 2005.99
lex.id Per
770 1995.22
770 1995.49
770 1995.64

Age
64.09
58.13
61.72
79.25

Age
64.09
68.23

Age
58.13
60.93

Age
61.72
62.89
70.97

Age
79.25
79.52
79.67

DMdur

[eNoNeoNe]

DMdur
0.00
4.14

DMdur

0.0
2.8

DMdur
0.00
1.17
9.25

DMdur
0.00
0.27
0.42

lex.dur
6.69
7.45
13.25
8.31

lex.dur
4.14
2.55
lex.dur
2.80
4.64
lex.dur
1.17
8.08
4.00
lex.dur
0.27
0.15
7.89

lex.Cst is the Current state

lex.

lex.

lex.

lex.

Cst
DM
0AD
Cst
DM
Ins
Cst
DM
0AD

Ins+0AD

lex.

Cst
DM
Ins

Ins+0AD

lex.

lex.Xst
0AD

0AD
lex.Xst
Ins

Ins
lex.Xst
0AD
Ins+0AD
Ins+0AD
lex.Xst
Ins
Ins+0AD
Dead

Xst is the eXit state
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Multistate model: total (log-)likelihood

The log-likelihood contribution from a single person has:

>

>
>
>

>

contributions to the log-likelihood for each state visited
...one term for each possible exit from the state
with the same y, but d = 1{A}, 1{B}, etc.

If the model assumes constant rates, log-likelihood terms are

of the form dlog(\) — Ay
—a Poisson log-likelihood for variate d with mean \y

= total log-likelihood for a multistate model is a sum of terms,
one per possible transition between states.

a person only contributes terms from states actually visited
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Multistate model data representation

» If all transition times are known (register data):

» one record per (transient states)
—representation of follow-up—Epi and survival package
“Andersen-Gill” representation

» one record per (transitions)
stacked data—mstate package

> state occupancy known at (some arbitrary) times
(person p is in state s at time t)
“prevalence’, panel data—msm package

We stick to representation of follow-up time
—the most natural representation for register-based data
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Likelihood for multistate transition rates

» assume all transitions and -times known exactly

» likelihood from one person is a product of terms with A as
argument

» = log-likelihood a sum of terms like:
dlog(\) — \y
» —one term for each possible transition between states.

» for state DM one record but
three , different ds, same y
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Total multi-state likelihood — 5 states, 8 transitions

(dins, Yom)
D Ins

(dpead: Yom) /
Dead
(dy \
\i y

OAD ns+OAD
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Total multi-state likelihood — 5 states, 8 transitions

D

v

OAD

A

0

(dins+0aD: YoaD)

ns

v

ns+OAD
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Total multi-state likelihood — 5 states, 8 transitions

D

v

OAD

/

ns

(dins+0AD: Yins

s+OAD

55/ 1



Total multi-state likelihood — 5 states, 8 transitions

D

v

OAD

N
-

Dead

(d;:::::;;:;;s\\\\\\\\\
\i

e

ns

s+OAD
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Separate models for transition rates

>

>
>

For rates in the same model: common parameters possible
e.g. same age effect for different rates

Lexis represents FU-time—not likelihood terms

= analysis of a model for different rates from different states
can be done based on a Lexis object

different subsets of transition rates in different models

for a complete model, any transition rate must be in precisely
one model
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Separate models for transition rates

» A model for different rates from the same state requires a
stacked data frame (multiple records with the same y)

» .. but this is hardly ever relevant, e.g.:
» do not expect age effect to be the same for rate of 0AD and Ins
» in practise only rates from different origin states are analysed
together, such as Ins rates from DM resp. 0AD
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Partial multi-state likelihood — rates of Ins

D ns

[N

y v

OAD ns+OAD
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Modeling rates

>
>
>

Poisson likelihood is for constant rates:
= model restricted to constant rate within each FU-record

remedy: split records in many records with shorter length
—so0 short that constant rates in intervals is reasonable

splitLexis or splitMulti (from popEpi package)
many records with lex.Cst = lex.Xst
include timescales in models as quantitative variables
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> summary (dmI0)

Transitions:
To

From DM Dead O0OAD Ins Inst0AD Records:
DM 2830 1056 2957 689 0 7532
0AD 0 992 3327 0 1005 5324
Ins 0 1562 0 462 172 786
Ins+0AD 0 299 0 0 878 1177
Sum 2830 2499 6284 1151 2055 14819

Events:
4702
1997

324
299
7322

> sI0 <- splitLexis(dmIO, seq(0, 20, 0.5), "DMdur")

> summary (sI0)

Transitions:
To
From DM Dead 0AD
DM 45467 1056 2957 689

0AD 0 992 47830 0
Ins 0 152 0 8036
Ins+0AD 0 299 0 0
Sum 45467 2499 50787 8725

1005
172
9844
11021

Ins Ins+0AD Records:

50169
49827
8360
10143
118499

Events:
4702
1997

324
299
7322

Risk time:

22920.25
22965.23
3883.06
4504.73
54273 .27

Risk time:
22920.25
22965.23

3883.06
4504.73
54273.27

Persons:
7532
5324

786
1177
9996

Persons:
7532
5324

786
1177
9996
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> print (subset (sIO, lex.id == 15, select

lex.id
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

2002.
2003.
2003.
2004 .
2004.
2005.
2005.
2005.
2006.
2006.
2007.
2007.
2008.
2008.
2009.
2009.

Per

58.
58.
59.
59.
60.
60.

Age DMdur lex.dur lex.Cst lex.Xst dooad

13
63
13
63
13
63

0.

~NOOO U PWWNNNRFEEPO
QUIOUITOUITOUIO0UIO 01O 01O

[eNoNoNoloNoNoNoNololoNoRoNoNoNe]

.50
.50
.50
.50
.50
.30
.20
.50
.50
.50
.50
.50
.50
.50
.50
.45

= c¢(wh, '"dooad",
DM DM NA
DM DM NA
DM DM NA
DM DM NA
DM DM NA
DM Ins NA
Ins Ins NA
Ins Ins NA
Ins Ins NA
Ins Ins NA
Ins Ins NA
Ins Ins NA
Ins Ins NA
Ins Ins NA
Ins Ins NA
Ins Ins NA

"doins")))

doins

2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.

35
35
35
35
35
35
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> print (subset (sI0, lex.id == 18, c(wh, "dooad", "doins")))
Age DMdur lex.dur lex.Cst lex.Xst

lex.id
18
18
18
18

1996
1997
1997
1997

1998.
1998.
1999.
1999.
2000.
2000.
2001.
2001.
2002.
2002.
2003.
2003.
2004.
2004.
2005.
2005.
2005.
2006.

Per
.75
.25
.75
.92

61.
62.
62.

72
22
72

0.

00

0.50

OO OWOONNOOODTOHDPWWNNF P

.00
.17

[eNeoNoNoloNoNoNoNoloNoNoloNoloNoloNoNoNoNoNe]

.50
.50
17

.25
.25 Ins+0AD Ins+0AD
.50 Ins+0AD Ins+QAD

DM

DM

DM
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD

DM

DM
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD
0AD

0AD Ins+0AD

dooad

1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.

92
92
92
92

doins

2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
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> print (subset (sIO, lex.id == 18, c(wh, "dooad", "doins"))[-(1:16),1)

lex.id

2004 .
2004.

2005
2005
2005
2006

2006.
2007.
2007.
2008.
2008.
2009.
2009.

Per
25
75
.25
.75
.99
.25

Age DMdur lex.dur lex.Cst

.22
.72
.22
.72
.97
.22
.72

[eNoNoNoloNoNoNoNoNoNoNoNe]

.50
.50
.50
.25
.25
.50

0AD
0AD
0AD
0AD
Ins+0AD
Ins+0AD
Ins+0AD
Ins+0AD
Ins+0AD
Ins+0AD
Ins+0AD
Ins+0AD
Ins+0AD

lex.Xst

0AD

0AD

0AD
Ins+0AD
Ins+0AD
Ins+0AD
Ins+0AD
Ins+0AD
Ins+0AD
Ins+0AD
Ins+0AD
Ins+0AD
Ins+0AD

dooad

1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.
1997.

doins

2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
2005.
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Multi-state likelihood — mortality rates

D ns

|

y v

OAD ns+OAD
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Mortality rates

> # prior to Epi_2.58 this was glm.Lexis
> mdth <- glmLexis(sIO, ~ Ns(DMdur, knots=c(0,1,3,6,10)) + lex.Cst,
+ to = "Dead")

stats::glm Poisson analysis of Lexis object sI0 with log link:
Rates for transitions:

DM->Dead

0AD->Dead

Ins->Dead

Ins+0AD->Dead

> round(ci.exp(mdth), 3)
exp(Est.) 2.5% 97.5%

(Intercept) 0.070 0.063 0.078
Ns(DMdur, knots = c(0, 1, 3, 6, 10))1 0.614 0.514 0.734
Ns (DMdur, knots = c(0, 1, 3, 6, 10))2 0.808 0.691 0.945
Ns (DMdur, knots = c(0, 1, 3, 6, 10))3 0.337 0.253 0.450
Ns(DMdur, knots = c(0, 1, 3, 6, 10))4 0.997 0.880 1.129
lex.CstOAD 0.970 0.889 1.059
lex.CstIns 0.878 0.740 1.042
lex.CstIns+0AD 1.504 1.312 1.725
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Mortality rates coxph— who cares about DMdur

> # prior to Epi_2.58 this was coxph.Lexis
> cdth <- coxphLexis(dmI0O, DMdur ~ lex.Cst, to = "Dead')

survival: :coxph analysis of Lexis object dmIO:
Rates for transitions:

DM->Dead

0AD->Dead

Ins->Dead

Ins+0AD->Dead

Baseline timescale: DMdur

> round(cbind(ci.exp(cdth) [-1,],

+ ci.exp(mdth, subset = "lex")), 3)

exp(Est.) 2.5 97.5% exp(Est.) 2.5% 97.5%
lex.Cst0OAD 0.982 0.899 1.072 0.970 0.889 1.059
lex.Cstlns 0.891 0.751 1.058 0.878 0.740 1.042
lex.CstIns+0AD 1.519 1.324 1.742 1.504 1.312 1.725
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Estimated mortality rates

> ni <- data.frame(DMdur = seq(0, 10, 0.2), lex.Cst = '"Ins")
> no <- data.frame(DMdur = seq(0, 10, 0.2), lex.Cst = "OAD")
> pdf("./graph/morti.pdf", width = 8)

> matshade (ni$DMdur, cbind(ci.pred(mdth, ni),

+ ci.pred(mdth, no)) * 1000,

+ plot = TRUE, col = c("red", '"blue"),

+ 1Og - uyn,

+ xlab = "DM duration',

+ ylab = "Mortality in Ins per 1000 PY")
> dev.off()

null device
1
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Mortality rates in Ins
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Multi-state likelihood — rates of Ins

D ns

[N

y v

OAD ns+OAD
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Rates of insulin uptake

> mins <- glmLexis(sIO, ~ Ns(DMdur, knots=c(0,1,3,6,10)) + lex.Cst,
+ from c("DM" ,"0AD"),
+ to c("Ins","Ins+0AD"))

stats::glm Poisson analysis of Lexis object sI0 with log link:
Rates for transitions:

DM->Ins

0AD->Ins+0AD

> round(ci.exp(mins), 3)

exp(Est.) 2.5}, 97.5%

(Intercept) 0.114 0.104 0.125
Ns(DMdur, knots = c(0, 1, 3, 6, 10))1 0.215 0.169 0.272
Ns (DMdur, knots = c(0, 1, 3, 6, 10))2 0.535 0.437 0.653
Ns (DMdur, knots = c(0, 1, 3, 6, 10))3 0.011 0.008 0.015
Ns(DMdur, knots = c(0, 1, 3, 6, 10))4 1.636 1.376 1.944
lex.Cst0AD 1.766 1.599 1.950

OAD users are 1.8 times more likely to start on insulin
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Multi-state likelihood — rates of 0AD

D ns

[N

y v

OAD ns+OAD
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Rates of oral drug uptake—incidence of(0AD

> moad <- glmLexis(sIO, ~ Ns(DMdur, knots=c(0,1,3,6,10)) + lex.Cst,
+ from = c("DM" ,"Ins"),
+ to c("0AD", "Ins+0AD"))

stats::glm Poisson analysis of Lexis object sI0 with log link:
Rates for transitions:

DM->0AD

Ins->Ins+0AD

> round(ci.exp(moad), 3)
exp(Est.) 2.5}, 97.5%

(Intercept) 0.460 0.437 0.485
Ns(DMdur, knots = c(0, 1, 3, 6, 10))1 0.292 0.243 0.351
Ns (DMdur, knots = c(0, 1, 3, 6, 10))2 0.211 0.170 0.263
Ns (DMdur, knots = c(0, 1, 3, 6, 10))3 0.011 0.008 0.013
Ns(DMdur, knots = c(0, 1, 3, 6, 10))4 0.400 0.330 0.485
lex.CstIns 0.468 0.401 0.546

Insulin users are half as likely as non-users to start OAD
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what is glmlLexis

> glmLexis(sI0, ~ Ns(DMdur, knots=c(0,1,3,6,10)) + lex.Cst,
+ from = c("DM" ,"Ins"),
+ to c("DAD", "Ins+0AD"))

is a wrapper for

> glm(cbind(lex.Xst }inj, c("0OAD","Ins+0AD") & lex.Xst != lex.Cst,
+ lex.dur)

+ ~ Ns(DMdur, knots=c(0,1,3,6,10)) + lex.Cst,

+ family = poisreg,

+ data = subset(sI0, lex.Cst Jinj), c("DM" ,"Ins")))

... note the poisreg family from Epi
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What not to do

> mDM <- glmLexis(sIO, ~ Ns(DMdur, knots=c(0,1,3,6,10)), from = "DM")

NOTE:

Multiple transitions *from* state ' DM ' - are you sure?

The analysis requested is effectively merging outcome states.

You may want analyses using a *stacked* dataset - see 7stack.Lexis
stats::glm Poisson analysis of Lexis object sIO with log link:
Rates for transitions:

DM->Dead

DM->0AD

DM->Ins

> round(ci.exp(mDM), 3)
exp(Est.) 2.5}, 97.5%

(Intercept) 0.722 0.693 0.753
Ns(DMdur, knots = c(0, 1, 3, 6, 10))1 0.297 0.256 0.346
Ns (DMdur, knots = c(0, 1, 3, 6, 10))2 0.247 0.208 0.293
Ns (DMdur, knots = c(0, 1, 3, 6, 10))3 0.013 0.010 0.015
Ns (DMdur, knots = c(0, 1, 3, 6, 10))4 0.553 0.479 0.640

The model is meaningless, not statistically meaningless, but substantially meaningless

—not sensible to have same duration (or other) effect for different event types 751



Material
» Book on line: Practical Multistate Modeling
https://bendixcarstensen.com/PMM/

» Book: Bendix Carstensen:
Epidemiology with R, Oxford University Press, 2022

» Vignette in the Epi package:
Analysis of follow-up data using the Lexis functions in Epi
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