Nordic Summer School in Cancer Epidemiology	Different epidemiologies
12 to 23 August, 2024 Danish Cancer Society, Copenhagen	 descriptive epidemiology – monitoring & surveillance of diseases for planning of health services a major activity of cancer registries.
Measures of disease frequency and effects	 etiologic or "analytic" epidemiology – study of cause-effect relationships
Esa Läärä	 disease epidemiologies – e.g. of cancer, cardiovascular diseases, infectious diseases, mental disorders,
Research Unit of Mathematical Sciences, University of Oulu, Finland esa.laara@oulu.fi	 determinant-based epidemiologies – e.g. occupational epidemiology, nutritional epidemiology,
& Bendix Carstensen	 clinical epidemiology: study of diagnosis, prognosis and effectiveness of
Steno Diabetes Center, Denmark & Department of Biostatistics, University of Copenhagen b@bxc.dk www.bendixcarstensen.com	therapies in patient populations — basis of evidence-based medicine _{6/ 106}
Outline	Frequency (from Webster's Dictionary)
Introduction	Etymology: < L frequentia = assembly, multitude, crowd.
Basic measures of frequency or occurrence	2. rate of occurrence
Measures of effect – comparative measures	3. <i>Physics</i> . number of regularly occurring
Rates in many time scales	events in unit of time,
Standardization of rates	 Statistics. the number of items occurring in a given category. Cf. relative frequency.
Survival analysis	These mannings are all valuant in anidemicland
Conclusion	These meanings are all relevant in epidemiology. But what are rate and occurrence ?
Appendix: Introduction to R	
2/ 106	7/ 106
Key references	Cancer in Norden 1997 (NORDCAN)
IS: dos Santos Silva, I. (1999).	Frequency of cancer (all sites excl. non-melanoma skin) in
Cancer Epidemiology: Principles and Methods. International Agency for Research on Cancer, Lyon.	Nordic male populations expressed by different measures.
B&D: Breslow, N.E., Day, N.E. (1986).	New Crude ASR Cumul. cases rate (World) risk SIR
Statistical Methods in Cancer Research Vol. II – The Design and Analysis of Cohort Studies. IARC, Lyon.	Denmark 11 787 452 281 27.8 104
C&H: Clayton, D., Hills, M. (1993).	Finland 10 058 <u>401</u> 269 26.5 101 Iceland 633 464 347 32.6 132
Statistical Models in Epidemiology. OUP, Oxford.	Norway 10 246 469 294 29.4 109 Sweden 19 908 455 249 25.4 93
	 Where is the frequency truly highest, where lowest? What do these measures mean?
3/ 106	8/ 106
Internet resources on cancer statistics	Questions on frequency & occurrence
► NORDCAN: Incidence, mortality, prevalence and survival statistics from	How many women in Denmark
41 major cancers in the Nordic countries. Association of the Nordic Cancer Registries (ANCR), Danish Cancer Society	are carriers of breast cancer today at 12? – prevalence
https://nordcan.iarc.fr/en	will contract a new breast ca. during 2024? – incidence
Engholm, G. et al. (2010) NORDCAN – a Nordic tool for cancer information, planning, quality control and research. Acta Oncol 49 :	 die from breast ca. in 2024? – mortality will be alive after 5 years since diagnosis among those getting breast ca. in
725-736.	2024? – survival
► Global Cancer Observatory (GCO): An interactive web-based platform	are cured of breast cancer during 2024? - cure
presenting global cancer statistics to inform cancer control and research. International Agency for Research on Cancer (IARC); http://gco.iarc.fr/	What are the proportions or/and rates of the occurrence of these states and events ?
4/ 106	9/ 106
INTRODUCTION	Questions on risk
What is epidemiology?	How great are the risks of these events?
Some textbook definitions:	Is the risk of breast ca. among nulliparous greater than among parous women?
 "study of the distribution and determinants of disease frequency in man" (MacMahon and Pugh (1970). Epidemiology) 	 What are the excess and relative risks for nulliparous compared to parous women?
"study of the distribution and determinants of health related states and events in specified populations,"	 women : Does long-term use of menopausal hormone therapy (MHT) have a causal
(Porta et al. (ed.) (2014). Dictionary of Epidemiology)	effect on the risk of breast cancer, and how strong is this effect?
 "discipline on principles of occurrence research in medicine" (Miettinen (1985). <i>Theoretical Epidemiology</i>) 	What is the exposure-response relationship between MHT use and breast cancer in terms of type, level and duration of exposure?
5/ 106	10/ 106

Descriptive and causal questions	Incidence measures
Descriptive: What is the occurrence in the next 10 y of breast cancer in	► Incidence proportion (Q) over a fixed <i>risk period</i> :
50-59 y old women having been $>$ 5 y on specific MHT as compared with women who had no MHT at all?	$Q = \frac{\text{number of incident (new) cases during period}}{\text{size of pop'n at risk at start of the period}}$
Causal: What is the 10-y risk of breast cancer in a population of 50-59 y old women, <i>if they initiated</i> MHT <u>as compared with</u> what the risk in these women <u>would be</u> , <i>if they did not</i> start MHT at all?	Also called cumulative incidence (even "risk"; <i>e.g.</i> in IS). NB. "Cumulative incidence" has other meanings, too.
NB. Causal question comparison of potential outcomes or counterfactual conditionals .	▶ Indidence rate (I) over a defined observation period:
Challenge: <i>How to find a comparable group of unexposed to an exposed group in real life</i> ?	$I = \frac{\text{number of incident (new) cases during period}}{\text{sum of follow-up times of pop'n at risk}}$
11/ 106	Also called incidence density .
What is risk?	Example: Follow-up of a small cohort
 Phrase "Risk of disease S" may refer to different concepts: (i) probability of getting S during a given risk period → incidence probability, 	$ $ = entry, \circ = exit with censoring; outcome not observed, • = exit with outcome event (disease onset) observed
 (ii) rate of change of that probability → hazard or intensity, or (iii) probability of <i>carrying</i> S at a given <i>time point</i> 	$\begin{bmatrix} 5 & & & & & & \\ enp_4 & & & & & \\ ivpi 2 & & & & & \\ 1 & & & & & & \\ 1 & & & & &$
→ prevalence probability. Most commonly meaning (i) is attached with risk.	2010 2014 0 2 4 6 Calendar Year Follow-up time (y)
NB. "Risk" should not be used in the meaning of risk factor.	Complete follow-up in the 5-year risk period \Rightarrow can calculate both:
However, in risk assessment literature: "hazard" is often used in that meaning.	Inc. rate = $\frac{2 \text{ cases}}{5+3.5+5+1.5+5 \text{ years}} = 10 \text{ per } 100 \text{ years},$
In statistics, though, hazard refers to (ii): change of probability per unit time.	Inc. prop. $= 2/5 = 0.4$ or 40 per cent.
Risks are conditional probabilities	Properties of incidence proportion
There are no "absolute risks".	Dimensionless quantity ranging from 0 to 1 (0% to 100%) = relative from ungrue
 All risks are conditional on a multitude of factors, like length of risk period (e.g. next week or lifetime), 	 (0% to 100%) = relative frequency, ▶ Estimates the average theoretical risk, <i>i.e.</i> the probability of the outcome
 age and gender, genetic constitution, health behaviour & environmental exposures. 	occurring during the risk period, in the population at risk $-i.e.$ among those who are still free from the outcome at the start of the period.
In principle each individual has an own quantitative value for the risk of given disease in any defined risk period, depending on his/her own risk feature grafts.	Simple formula valid when the follow-up time is fixed & equals the risk period, and when there are no competing events or censoring.
factor profile. Yet, these individual risks are latent and unmeasurable. 	Competing events & censoring ⇒ Calculations need to be corrected using special methods of survival analysis.
Average risks of disease in large groups sharing common characteristics (like gender, age, smoking status) are estimable from appropriate epidemiologic studies by pertinent measures of occurrence.	
13/ 106	18/ 106
BASIC MEASURES OF FREQUENCY OR OCCURRENCE	Properties of incidence rate
Quantification of the occurence of disease (or any other health-related state or event) requires specification of:	Like a frequency quantity in physics; measurement unit: e.g. Hz = 1/second, 1/year, or 1/1000 y.
 what is meant by a case, <i>i.e.</i>, an individual in a population who has or gets the disease 	 Estimates the average underlying intensity or hazard rate of the outcome in a population,
- more generally: possesses the state or undergoes the event of interest.	 Estimation accurate in the constant hazard model, Calculation straightforward also with competing events and censored
\Rightarrow challenge to accurate diagnosis and classification!	observations.
(2) the population from which the cases originate.	 ► Hazard usually depends on age ⇒ age-specific rates needed. ► Incidence proportions can be estimated from rates.
(3) the time point or period of observation.	In the constant hazard model with no competing risks:
14/ 106	$Q = 1 - \exp(-I \times \Delta) \approx I \times \Delta$ 19/ 106
Types of occurrence measures	Competing events and censoring
Longitudinal – incidence measures: incidence rate & incidence proportion	The outcome event of interest (<i>e.g.</i> onset of disease) is not always observed for all subjects during the chosen risk period.
Cross-sectional – prevalence measures.	 Some subjects die (from other causes) before the event.
General form of frequency or occurrence measures	Some subjects die (from other causes) before the event. ⇒ Competing event, after which the outcome can no more occur.
numerator denominator	
Numerator: number of cases observed in the population.	Others emigrate and escape national disease registration, or the whole study is closed "now", prematurely interrupting the follow-up of them.
Denominator : generally proportional to the size of the population from which the cases emerge.	\Rightarrow Censoring, withdrawal, or loss to follow-up
Numerator and denominator must cover the same population, and the same period or same time point.	Competing events and censorings require special statistical treatment in estimation of incidence and risk.
15/ 106	20/ 106

Follow-up of another small cohort	Mortality
_5 ю _5 ю	Cause-specific mortality from disease S is described by
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mortality rates defined like incidence rates, but
$\begin{bmatrix} \vdots \overline{2} & 3 \\ \overline{2} & 2 \end{bmatrix}$ $\begin{bmatrix} \vdots \overline{2} & 3 \\ \overline{2} & 2 \end{bmatrix}$ $\begin{bmatrix} \vdots \overline{2} & 3 \\ \overline{2} & 2 \end{bmatrix}$	► cases are <i>deaths</i> from <i>S</i> , and
	follow-up is extended until death or censoring.
2010 2014 0 1 2 3 4 5 6 7 Calendar Year Follow-up (y)	Cause-specific mortality proportions must be corrected for the incidence of
Two censored observations \Rightarrow the rate can be calculated:	competing causes of death
Two censored observations \Rightarrow the rate can be calculated: I = 2/12.5 y = 16 per 100 years	Total mortality:
but the 5-year incidence proportion Q IS NO MORE $2/5$!	 cases are deaths from any cause.
Yet, with constant rate and no competing risks, the incidence proportion is:	Mortality depends on the incidence and the prognosis or case fatality of the
$Q = 1 - \exp(-5 \times 2/12.5) = 0.55$ (or 55%)	disease, <i>i.e.</i> the survival of those affected by it.
	26/106
Person-years in dynamic populations	Prevalence measures
With a dynamic study population, individual follow-up times are always variable	Point prevalence or simply prevalence P of a health state C in a population
and impossible to measure accurately.	at a given time point t is defined
Common approximation – mid-population principle:	$P = \frac{\text{number of existing or prevalent cases of } C}{\text{size of the whole population}}$
(1) Let the population size be N_{t-1} at start and N_t at the end of the	size of the whole population
observation period t with length u_t years,	This is calculable from a cross-sectional study base.
(2) Mid-population for the period: $\bar{N}_t = \frac{1}{2} \times (N_{t-1} + N_t).$	Period prevalence for period from t_1 to t_2 is like P but
(3) Approximate person-years: $\widetilde{Y}_t = \overline{N}_t \times u_t$.	\blacktriangleright numerator refers to all cases prevalent already at t_1
NB. The actual study population often contains some already affected, thus not	plus new cases occurring during the period, and
belonging to the population at risk. With rare outcomes their influence is small.	denominator is the population size at t ₂ .
22/ 106	27/ 106
Male person-years in Finland 1991-95	Example 4.1 (IS: p. 59)
Total male population (1000s) on 31 December by year:	
1990 1991 1992 1993 1994 1995	-o r o r
2431 2443 2457 2470 2482 2492	o m r = recovery
	d = death m = migration
Approximate person-years (1000s) in various periods:	d
1992 : $\frac{1}{2} \times (2443 + 2457) \times 1 = 2450$	
1993-94 : $\frac{1}{2} \times (2457 + 2482) \times 2 =$ 4937	t_1 Time (t) \longrightarrow t_2
1991-95 : $\frac{1}{2} \times (2431 + 2492) \times 5 =$ 12307 .5	Prevalence at time $t_1: 2/10 = 0.2 = 20\%$
	Prevalence at time t_2 : $3/8 = 0.38 = 38\%$ Period prevalence: $5/8 = 0.62 = 62\%$
	3/6 = 0.02 = 0.270
23/ 106	28/106
Incidence proportion, rate, and odds (IS, Ex 4.5)	Prevalence and incidence are related
New cases of disease $(D = 10)$	Point prevalence of S at given time point t depends on the
Individuals	(a) incidence of new cases of S before t , and the
initially at risk Non-diseased (disease-free) Individuals individuals	(b) <i>duration</i> of <i>S</i> , depending in turn on the probability of <i>cure</i> or recovery from <i>S</i> , or <i>survival</i> of those affected
(n = 100) currently at risk (still at risk)	typically in a complicated way.
$\begin{array}{c} \hline \\ \hline $	Simple special case: In a stationary ("stable") population, the
Assuming a risk period of 1 year with complete follow-up:	prevalence (P) , incidence (I) , and average duration (d) of S
Incidence proportion $Q = 10/100 = 0.10 = 10\%$	are related $P = \frac{I \times \bar{d}}{I \times \bar{d} + 1} \approx I \times \bar{d}$
Incidence rate $I = 10/95$ y = 10.5 per 100 y Incidence odds $Q/(1-Q) = 10/90 = 0.11 = 11$ per 100	17.00 1
$\frac{1}{24/106}$	The approximation works well, when $P < 0.1$ (10%).
Approximate relations btw measures	Prevalence of cancer?
With sufficiently	How do we know, whether and when cancer is cured?
• "short" length Δ of risk period and "length" rick (range $0 < 5\%$)	\Rightarrow Existing or prevalent case problematic to define.
• "low" risk (say $Q < 5\%$)	NORDCAN: Prevalence of cancer C at time point t in the target population
the incidence proportion Q , rate I and odds are approximately related as follows:	refers to the
$\frac{Q}{1-Q} \approx Q \approx I \times \Delta$	 number & proportion of population members who (a) are alive and resident in the population at t, and
1 - V	(a) are all resident in the population at t , and (b) have a record of an incident cancer C diagnosed before t .
The "rare disease assumption".	 Partial prevalence: Cases limited to those diagnosed during a fixed time in
	the past; e.g. within 1 y (initial treatment period), 3 y (clinical follow-up),
	or 5 y (cure?).
25/ 106	30/ 106

25/ 106

30/ 106

Ex: Cancer with poor and with good prognosis	Ratio measures in "rare diseases" (IS: Ex 5.13)
Age-standardized ^{a} incidence, mortality, prevalence, and survival for	Exposure
cancers of kidney and thyroid in women of Finland. Kidney Thyroid	Yes No
Incidence rate in 2011 (per 10^5 y) 12 11	No. initially at risk 4 000 16 000 No. of cases 30 60
Mortality rate in 2011 (per 10^5 y) 5 1	Person-years at risk 7 970 31 940
Prevalence on 31.12.2011 (per 10 ⁵) 92 198	Inc. prop'n ratio $= \frac{30/4000}{60/16000} = \frac{7.5\text{per}1000}{3.75\text{per}1000} = 2.0000$
- diagnosed < 1 y ago 9 10	$\begin{array}{rcl} \text{Inc. prop in factor} &= & \frac{60/16000}{60/31940 \text{ y}} &= & \frac{3.75 \text{ per } 1000 \text{ y}}{1.88 \text{ per } 1000 \text{ y}} &= & \textbf{2.00038} \end{array}$
- diagnosed < 3 y ago	Inc. odds ratio $= \frac{30/(4000-30)}{30/(4000-60)} = \frac{0.00756}{0.00376} = 2.0076$
- diagnosed > 5 y ago 57 151	With low incidence these ratios are very similar.
5-y relative survival; cases 2004–8 (%) 64 90 ^a Standard: Nordic population in 2000	
	36/106
MEASURES OF EFFECT – COMPARATIVE MEASURES	Attributable fraction (excess fraction)
Quantification of the association between a determinant	Measures of potential impact: Combination of absolute and relative comparisons.
(risk factor) and an outcome (disease) is based on	► When the incidence is higher in the exposed, the attributable fraction
comparison of occurrence between the <i>index</i> ("exposed") and the <i>reference</i> ("unexposed") groups by	(AF) for the exposure or risk factor is defined as:
 relative comparative measures (ratio) absolute comparative measures (difference) 	$AF = \frac{I_1 - I_0}{I_1} = \frac{RR - 1}{RR}.$
In causal studies these are used to estimate the causal effect of the factor on the disease risk.	Also called excess fraction (or even "attributable risk" in old texts).
$\Rightarrow \text{ comparative measure} \approx \text{effect measure}$	This measure estimates the fraction out of all new cases of disease among those exposed, which are attributable to (or "caused" by) the
► Yet, caution is needed in inferences on causal effects, as often the groups to	exposure itself, and which thus could be avoided if the exposure were absent.
be compared suffer from poor comparability ⇔ Confounding . 32/ 106	37/ 106
Relative comparative measures	Population attributable fraction
Generic name "relative risk" (RR) comparing occurrences between exposed (1)	Suppose we ask instead:
and unexposed (0) groups can refer to • incidence rate ratio $IR = I_1/I_0$,	"How large a fraction of all cases in the population would be prevented, if the exposure were eliminated?"
incidence rate ratio $IR = T_1/T_0$, incidence proportion ratio $IPR = Q_1/Q_0$,	 The answer to this question depends in addition on
• incidence odds ratio IOR = $[Q_1/(1-Q_1)]/[Q_0/(1-Q_0)]$,	$p_{\rm E} = {\rm proportion of exposed in the population.}$
▶ prevalence ratio $PR = P_1/P_0$, or	 Population attributable (excess) fraction (PAF) is defined:
▶ prevalence odds ratio $POR = [P_1/(1 - P_1)]/[P_0/(1 - P_0)]$,	
depending on study base and details of its design.	$PAF = \frac{I - I_0}{I} = \frac{p_E(RR - 1)}{1 + p_E(RR - 1)}$
Incidence rate ratio IR $= I_1/I_0$ is the most commonly used comparative measure	 AF: biological impact of exposure,
in cancer epidemiology. 33/ 106	PAF: impact of exposure on the population level. 38/ 106
Absolute comparative measures	Attributable fraction illustrated
Generic term "excess risk" or "risk difference" (RD) btw exposed and	The population is divided into exposed and unexposed.
unexposed can refer to	The rate I_1 among the exposed would be I_0 , <i>i.e.</i> the same as in the
• incidence rate difference ID = $I_1 - I_0$,	unexposed, if the exposure had no effect. The excess incidence $I_1 - I_0$ is caused by the exposure.
• incidence proportion difference IPD = $Q_1 - Q_0$, or	
▶ prevalence difference $PD = P_1 - P_0$.	Unexposed Exposed I ₁ • AF = $\frac{I_1 - I_0}{I_1}$, I ₁ -I ₀
Use of relative and absolute comparisons	-
Ratios – describe the biological strength of the exposure	= fraction of lo
Differences – inform about its public health importance.	out of total black + gray area.
34/ 106	1-p _E p _E
Example (IS, Table 5.2, p.97)	PAF illustrated
Relative and absolute comparisons between the exposed and the unexposed to	 Total incidence I in the population – a weighted average:
risk factor X in two diseases.	$I = p_{E} \times I_1 + (1 - p_{E}) \times I_0 \text{(total area)}$
Disease A Disease B	would equal I_0 , if exposure had no effect
Incidence rate among exposed ^{a} 20 80	Excess incidence caused by exposure: $I - I_0 = p_{E} \times (I_1 - I_0)$ (black area).
Incidence rate among unexposed ^a 5 40 Rate ratio 4.0 2.0	Unexposed Exposed
Rate difference ^a 15 40	$\blacktriangleright PAF = \frac{I - I_0}{I}, \qquad \qquad I_{1} - I_0$
^a Rates per 100 000 pyrs.	= fraction of I ₀ I ₀
Factor X has a stronger biological potency for disease A, but it has a greater public health importance for disease P	out of total
public health importance for disease B.	black + gray area.
35/ 106	1-p _E PE 40/106

Prevented fractions

▶ When the incidence in exposed is lower, we define the **prevented fraction**:

$$\mathsf{F} = \frac{I_0 - I_1}{I_0} = 1 - \mathsf{R}\mathsf{R}$$

also called relative risk reduction

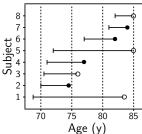
- = percentage of cases prevented among the exposed due to the exposure.
- Used to evaluate the relative effect of a preventive intervention ("exposure") vs. no intervention.
- Population prevented fraction (PPF) combines this with the prevalence of exposure in the population:

$$\mathsf{PPF} = \frac{I_0 - I}{I_0} = p_\mathsf{E} \times (1 - \mathsf{RR}),$$

measuring the relative reduction in caseload attributable to the presence of preventive factor in the population.

Smoking on mortality by cause (IS: Ex 5.14, p. 98)

Underlying	Never	Current	Rate	Rate	Attributable
cause of	smoked	cigarette	ratio	differ-	fraction
death	regularly Rate ^b	smoker Rate ^b		ence ^b	(%)
	(1)	(2)	(2)/(1)	(2) - (1)	$\frac{(2)-(1)}{(2)} \times 10$
Cancer					
All sites	305	656	2.2	351	54
Lung	14	209	14.9	195	93
Oesophagus	4	30	7.5	26	87
Bladder	13	30	2.3	17	57
Respiratory diseases	107	313	2.9	206	66
Vascular diseases	1037	1643	1.6	606	37
All causes	1706	3038	1.8	1332	44


RATES IN MANY TIME SCALES

Incidence can be studied on various distinct time scales, e.g.

Time scale	Origin: date of
age exposure time follow-up time duration of disease	entry to study

- > Age is usully the strongest time-dependent determinant of health outcomes.
- Age is also often correlated with duration of "chronic" exposure (*e.g.* years of smoking).

Follow-up of a small geriatric cohort

Overall rate: 4 cases/53.5 person-years = 7.5 per 100 y. Hides the fact that the "true" rate varies by age, being higher among the old.

Splitting follow-up into agebands

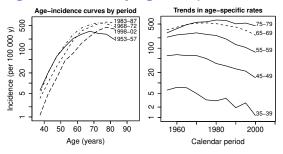
- To describe, how incidence varies by age, individual person-years from age of entry to age of exit must first be split or divided into narrower agebands.
- Usually these are based on common 5-year age grouping.
- Numbers of cases are equally divided into same agebands.
- ► Age-specific incidence rate for age group k is

 $I_k = \frac{\text{number of cases observed in ageband}}{\text{person-years contained in ageband}}$

Underlying assumption: piecewise constant rates

P-years and cases in agebands: age-specific rates

		Ageband	I	
Subject	70-74	75-79	80-84	Tota
1	5.0	5.0	3.5	13.5
2	4.5	-	-	4.5
3	4.5	1.0	-	5.5
4	4.0	2.0	-	6.0
5	3.0	5.0	5.0	13.0
6	-	3.0	2.0	5.0
7	-	-	3.0	3.0
8	-	-	3.0	3.0
Sum of person-years	21.0	16.0	16.5	53.5
Cases	1	1	2	4
Rate (/100 y)	4.8	6.2	12.1	7.5
	Age-specific rates			overal


Ex. Lung cancer incidence in Finland by age and period (compare IS, Table 4.1)

Calendar	Age group (y)									
period	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+
1953-57	21	61	119	209	276	340	295	279	193	93
1958-62	22	65	135	243	360	405	429	368	265	224
1963-67	24	61	143	258	395	487	509	479	430	280
1968-72	21	61	134	278	424	529	614	563	471	358
1973-77	16	50	134	251	413	541	629	580	490	392
1978-82	13	36	115	234	369	514	621	653	593	442
1983-87	11	31	74	186	347	450	566	635	592	447
1988-92	9	25	57	128	262	411	506	507	471	441
1993-97	7	22	48	106	188	329	467	533	487	367
1998-02	5	14	46	77	150	239	358	445	396	346

Rows: age-incidence pattern in different calendar periods.

Columns: Trends of age-specific rates over calendar time.

Lung cancer rates by age and period

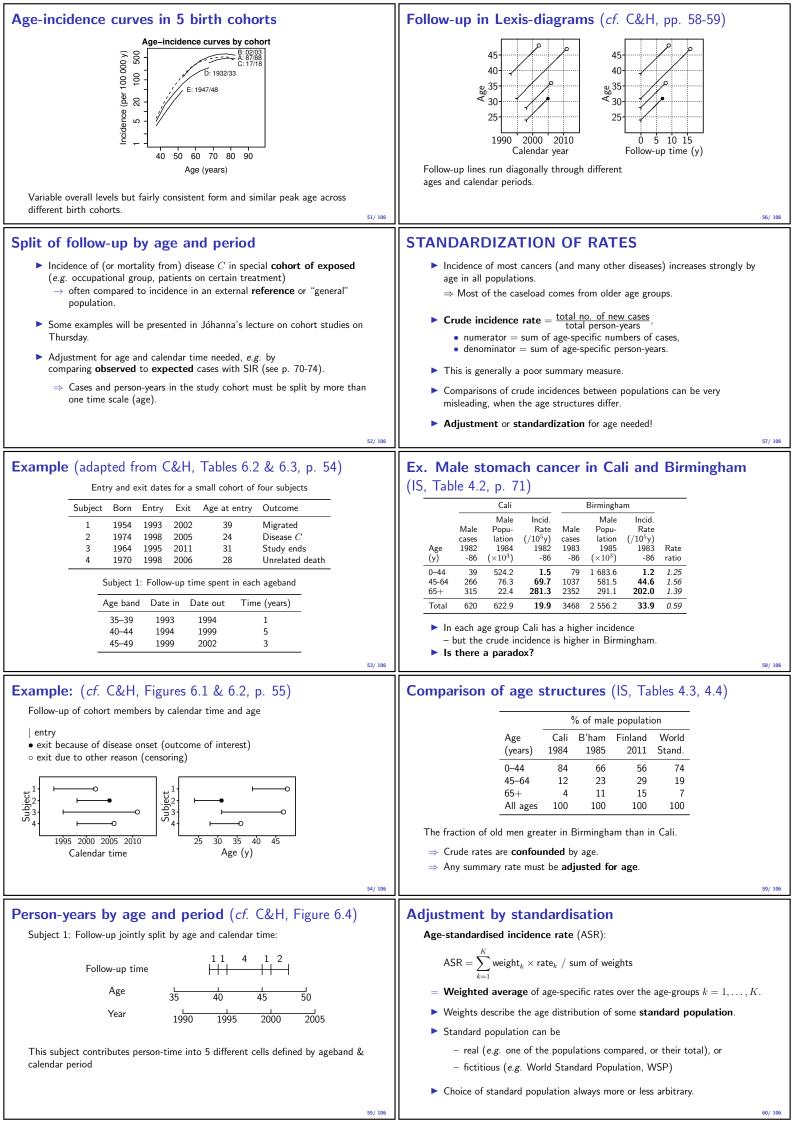
Age-incidence curves: overall level and peak age variable across periods.
 Time trends inconsistent across age groups.

Incidence by age, period & cohort

Secular trends of specific and adjusted rates show, how the "cancer burden" has developed over periods of calendar time.

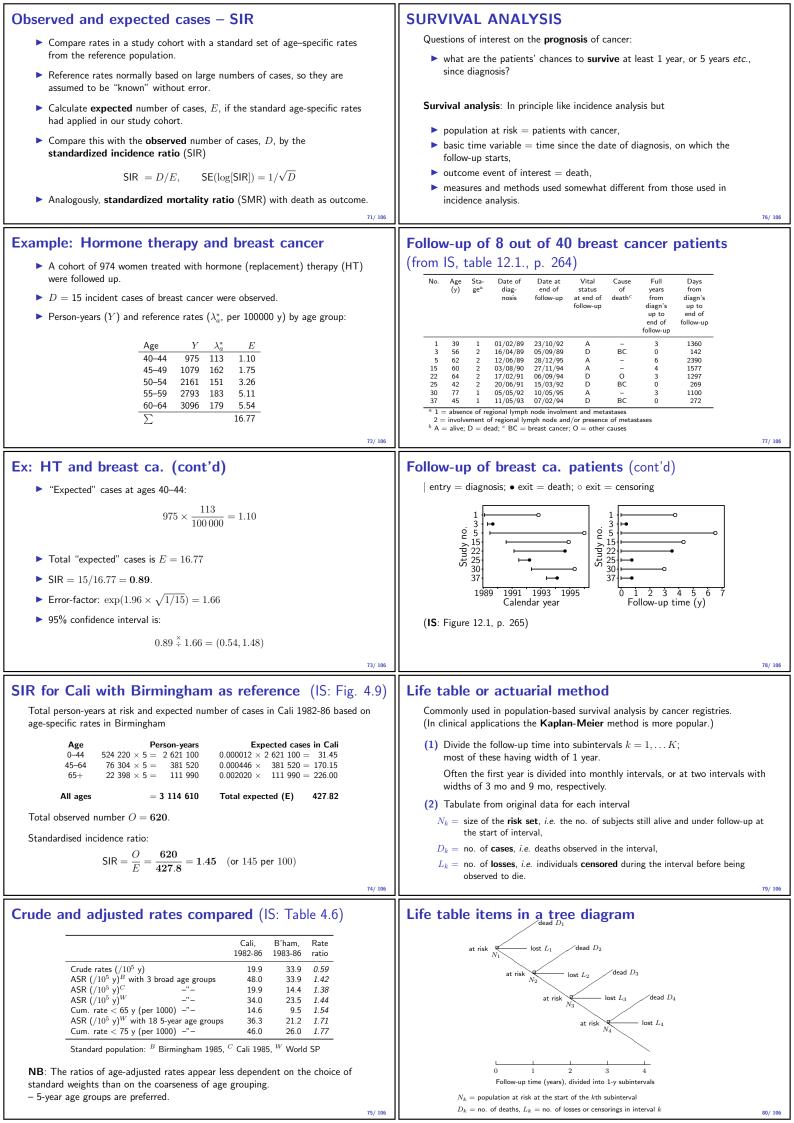
 ${\bf Birth\ cohort}={\rm people\ born\ during\ the\ same\ limited\ time\ interval,\ e.g.\ single\ calendar\ year,\ or\ 5\ years\ period.}$

- Analysis of rates by birth cohort reveals, how the level of incidence (or mortality) differs between successive generations.
 May reflect differences in risk factor levels across the cohorts.
- Often more informative about "true" age-incidence pattern than age-specific incidences of single calendar period.

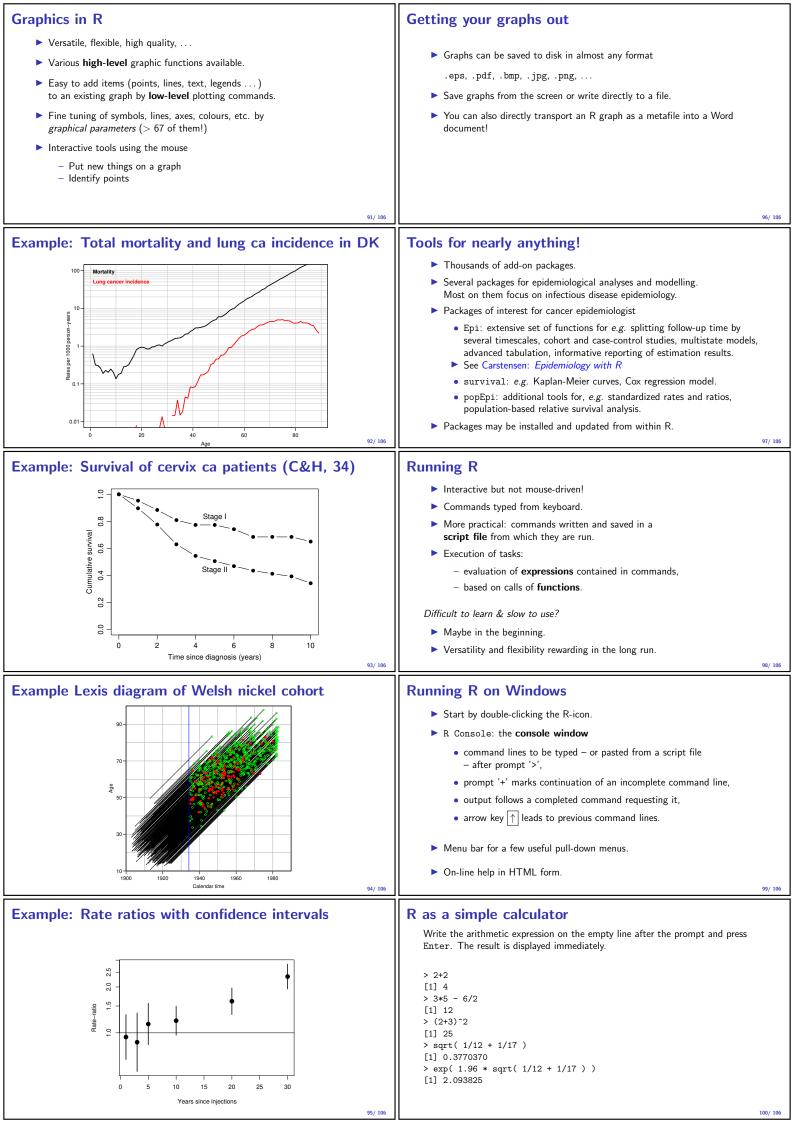

Age-specific rates by birth cohort

44/106

Calendar				Age gr	oup (y)				
period	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	
1953-57	21	61	119	209	276	340	295	279	
1958-62	22	65	135	243	360	405	429	368	
1963-67	24	61	143	258	395	487	509	479	
1968-72	21	61	134	278	424	529	614	563	
1973-77	16	50	134	251	413	541	629	580	
1978-82	13	36	115	234	369	514	621	653	
1983-87	11	31	74	186	347	450	566	635	
1988-92	9	25	57	128	262	411	506	507	
1993-97	7	22	48	106	188	329	467	533	
1998-02	5	14	46	77	150	239	358	445	
			E: 19	47/48		D: 19	32/33		


 $A= synthetic cohort born around 1887/88, B: 1902/03, C: 1917/18 \\ Diagonals reflect age-incidence patterns in various birth cohorts.$

49/ 106



Some standard populations:	Cumulative and life-time risks
Age group (years) African World European Nordic ^a	It is, of course, an interesting and relevant question to ask:
	"What are my chances of getting cancer C , say, in the next 10 years, between ages 50 to 75 years, or during the whole lifetime?"
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	However, this is difficult to answer.
35-39 10 000 6 000 7 000 7 300 40-44 5 000 6 000 7 000 7 000	 Fully individualized risks are unidentifiable.
45-49 5 000 6 000 7 000 6 900 50-54 3 000 5 000 7 000 7 400 55-59 2 000 4 000 6 000 6 100	 Age-specific and standardized rates are not very informative as such.
60-64 2 000 4 000 5 000 4 800 65-69 1 000 3 000 4 000 4 100	Average cumulative risks are often estimated from cumulative rates using
$\begin{array}{ccccccc} 70-74 & 1 \ 000 & 2 \ 000 & 3 \ 900 \\ 75-79 & 500 & 1 \ 000 & 2 \ 000 & 3 \ 500 \\ 80-84 & 300 & 500 & 1 \ 000 & 2 \ 400 \end{array}$	the simple formula above.
85+ 200 500 1 000 1 900 Total 100 000 100 000 100 000 100 000	Yet, these naive estimates fictitiously presume that a person would not die from any cause before cancer hits him/her, but could even survive forever!
^a NORDCAN population in 2000. 61/100 000 100 000 61/106 000 61/106	66/ 106
Stomach cancer in Cali & Birmingham Age-standardized rates by the World Standard Population:	Total mortality and incidence of two common cancers by age, Finland 2005
Cali Birmingham	Males Females
AgeRate ^a WeightRate ^a Weight0-44 $1.5 \times$ $0.74 = 1.11$ $1.2 \times$ $0.74 = 0.89$	mates remates 0 Total mortality 0 Total mortality
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Age-standardised rate 34.04 23.50	
ASR in Cali higher – coherent with the age-specific rates.	e v Prostate ca. v incidence
Summary rate ratio estimate: standardized rate ratio SRR = 34.0/23.5 = 1.44.	$\mathcal{R} = \mathcal{R}$ $\mathcal{R} = \mathcal{R}$ \mathcal{R} \mathcal
 SRR = 34.0/23.5 = 1.44. This is also called as comparative mortality figure (CMF), when the 	
• This is also called as comparative mortality figure (CMF) , when the outcome is death (from cause C or from all causes).	40 50 60 70 80 90 40 50 60 70 80 90
62/106	Age (years) Age (years) 67/ 106
Cumulative rate and "cumulative risk"	Estimation of cumulative risks
A neutral alternative to arbitrary standard population for age-adjustment is provided by cumulative rate:	The probability of contracting cancer during realistic lifespan or in any age range depends not only on age-specific hazard rates of cancer itself but also
$CumRate = \sum_{k=1}^{K} width_k \times rate_k,$	of probabilities of overall survival up to relevant ages,Hence, the dependence of total mortality by age in the population at risk
Weights are now widths of the agebands to be included, usually up to 75 y.	must be incorporated in the estimation of cumulative risks of cancer.
NORDCAN & GLOBOCAN use a transformation:	When this is properly done, the corrected estimates of cumulative risk will always be lower than the uncorrected "risks".
$CumRisk = 1 - \exp(-CumRate),$ calling it as the cumulative risk of getting the disease by given age, in the	The magnitude of bias in the latter grows by age, but is reduced with
absence of competing causes.	increased life expectancy.
 Yet, in reality competing events are present, so the probability interpretation of CumRisk is somewhat problematic. 	
63/ 106	68/ 106
Stomach cancer in Cali & Birmingham	Cumulative measures, Finland 2005
From age-specific rates of Table 4.2. the cumulative rates up to 65 years and	Prostate cancer Breast cancer
their ratio are	Rate Hate
Cali: $45 \ y \times \frac{1.5}{10^5 y} + 20 \ y \times \frac{69.7}{10^5 y} = 0.0146 = 1.46 \text{ per } 100$	Q = (ig
B'ham: $45 \ y \times \frac{1.2}{10^5 y} + 20 \ y \times \frac{44.6}{10^5 y} = 0.0095 = 0.95$ per 100 ratio: $1.46/0.95 = 1.54$	CE OE TRisk PI Risk YS OR - 17.9 PI 10.3 PE 16.4 PIsk - 10.3
"Cumulative risks" & their ratio up to 65 y:	
Cali: $1 - \exp(-0.0146) = 0.0145 = 1.45\%$	♀ -
B'ham: $1 - \exp(-0.0095) = 0.0048 = 0.94\%$	
ratio: $1.45/0.94 = 1.54$	40 50 60 70 80 90 40 50 60 70 80 90 Age (years) Age (years)
NB. For more appropriate estimates of cumulative risks, correction for total mortality (competing event) needed.	
64/106	Greater differences in males reflect shorter life expectancy and relatively high rates of prostate ca. in old ages. 69/106
Cum. measures in B'ham with 5-y groups (IS, Fig 4.11)	Special cohorts of exposed subjects
Age-group (years) Incidence rate (per 100 000 pyrs)	 Occupational cohorts, exposed to potentially hazardous agents, e.g. asbestos workers, uranium miners (see Jóhanna's lecture on cohort studies)
0-4,,15-19 0.0 20-24,25-29 0.1	Cohorts of patients on intensive treatment, which may have harmful
30-34 0.9 35-39 3.5 40-44 6.7	long-term side-effects, <i>e.g.</i> people with a history of childhood cancer.
4549 14.5 5054 26.8	 Often no internal comparison group of unexposed subjects available.
55-59 52.6 60-64 87.2 65-69 141.7	Question : Do incidence or mortality rates in the exposed target cohort differ
70-74 190.8 Sum 524.9	from those of a roughly comparable reference population?
	Reference rates obtained from: population statistics (mortality rates)
Cumulative rate 0-75 y = $5 \text{ y} \times \frac{524.9}{10^5 \text{ y}} = 0.0262 = 2.6 \text{ per 100}$	 population statistics (mortality rates) disease & hospital discharge registers (incidence)
"Cumulative risk" 0-75 y = $1 - \exp(-0.0262) = 0.0259 = 2.6\%$.	70/106

[►] disease & hospital discharge registers (incidence)

Life table items for breast ca. patients	Survical curve of breast ca. patients (IS: Fig 12.8)
$(\textbf{IS: Table 12.2., p. 273, first 4 columns})$ $\boxed{\begin{array}{c c c c c c c c c } \hline \textbf{Inter-} & \textbf{Years} & \textbf{No. at} & \textbf{No. of} & \textbf{No. of} \\ \hline \textbf{val} & \textbf{since} & \textbf{start of} & \textbf{deaths} & \textbf{losses} \\ \hline \textbf{diagnosis} & \textbf{interval} \\ \hline (k) & (N_k) & (D_k) & (L_k) \\ \hline 1 & \textbf{0-<1} & 40 & 7 & 0 \\ 2 & 1-<2 & 33 & 3 & 6 \\ 3 & 2-<3 & 24 & 4 & 3 \\ 4 & 3-<4 & 17 & 4 & 4 \\ 5 & 4-<5 & 9 & 2 & 3 \\ 6 & 5-<6 & 4 & 1 & 2 \\ \hline 7 & 6-<7 & 1 & 0 & 1 \\ \hline \textbf{Total} & 21 & 19 \\ \hline \end{array}}$	Numbers above <i>x</i> -axis show the size of population at risk.
81/ 106	86/ 106
Life table calculations (cont'd)	Relative survival analysis
(3) Calculate and tabulate for each interval $N'_k = N_k - L_k/2 = $ corrected size of the risk set, or "effective denominator" at start of the interval, $q_k = D_k/N'_k = $ estimated conditional probability of dying during the interval given survival up to its start,	 Another interesting and relevant question: "How much worse are the chances of a cancer patient to survive, say, 5 years, as compared with a comparable person without the disease?" An answer is provided by relative survival proportions: R_k = S_k^{obs}/S_k^{exp}, where
$p_k = 1 - q_k =$ conditional survival proportion over the int'l,	 S_k^{obs} = observed survival proportion in cancer patient group k by age, gender and year of diagnosis,
$S_k = p_1 \times \cdots \times p_k =$ cumulative survival proportion from date of diagnosis until the end of the kth interval = estimate of survival probability up to this time point.	 S_k^{exp} = expected survival proportion based on the age-specific mortality rates of the same gender and calendar time in a reference population (compare with calculations of SIR!) + No information on causes of death needed.
82/ 106	87/ 106
Follow-up of breast ca. patients (cont'd)	CONCLUSION
Actuarial life table completed (IS, table 12.2, p. 273)	Measuring and comparing disease frequencies
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 not a trivial task but demands expert skills in epidemiologic methods. Major challenges: obtain the right denominator for each numerator, valid calculation of person-years, appropriate treatment of time and its various aspects,
1-year survival probability is thus estimated 82.5% and 5-year probability 32.8%.	 removal of confounding from comparisons. 88/ 106
Comparison to previous methods	APPENDIX: Introduction to Rand how we use it
• Complement of survival proportion $Q_k = 1 - S_k$ = incidence proportion of deaths. Estimates the cumulative risk of death from the start of follow-up till the end of kth interval. • Indidence rate in the kth interval is computed as: $I_k = \frac{\text{number of cases } (D_k)}{\text{approximate person-time } (\tilde{Y}_k)}$ where the approximate person-time is given by $\tilde{Y}_k = \left[N_k - \frac{1}{2}(D_k + L_k) \right] \times \text{width of interval}$ The dead and censored thus contribute half of the interval width.	 What is R? A practical calculator: You can see what you compute and change easily to do similar calculations. A statistical program. An environment for data analysis and graphics. A programming language Developed by international community of volunteers. Free. Runs on any computer. Updated every 6 months.
Survival curve and other measures	What does R offer for epidemiologists?
 Line diagram of survival proportions through interval endpoints provides graphical estimates of interesting parameters of the survival time distribution, <i>e.g.</i>: median and quartiles: time points at which the curve crosses the 50%, 75%, and 25% levels mean residual lifetime: area under the curve, given that it decreases all the way down to the 0% level. NB. Often the curve ends at higher level than 0%, in which case some measures cannot be calculated. 	 Descriptive tools Versatile tabulation High-quality graphics Analytic methods Basic epidemiologic statistics Survival analysis methods Common regression models and their extensions Other
	These are provided by <i>e.g.</i> SPSS, SAS and Stata, too, so? Many features of R are more appealing in the long run.
85/ 106	90/ 106

R as a smart calculator	R in this course
Simple summary of results from a cohort study: Exposed Unexposed	The main purpose is to inform you about the existence and potential of R, which you might find useful in any future work involving serious
No. of cases/Person-years 20/2000 25/5000	epidemiologic data analysis.
► No's of cases and p-years are first assigned & saved into vectors D and Y;	Here, R will be used only as a simple calculator.
Incidence rates in the two groups as well as their ratio and difference are	No need for a lot of the more fancy stuff.
then calculated and printed:	The script editor will help you keep your solutions for future reference.
> D <- c(20, 25) ; Y <- c(2000, 5000) > rate <- 1000*D/Y ; rate	After the course, solutions to all exercises will be provided.
[1] 10 5	There is a good workbook introduction to R
<pre>> ratio <- rate[1]/rate[2] ; diff <- rate[1]-rate[2] > c(ratio, diff)</pre>	
[1] 2 5	106/ 106
A couple of important things	
A couple of important things	
 Names of variables (or any other objects) Start with a letter from A,, Z or a,, z; 	
lower case separated from upper case, e.g. 'x' \neq 'X'	
 Letters, integers 0,, 9, dots '.', and underlines '_' allowed after 1st letter. 	
Assignment operator '<-' (consists of '<' and '-')	
– assigns a value to an object, for example > A <- 5+2 ; A	
[1] 7 means that a numeric variable 'A' is given $5+2 = 7$ as its value, and is then printed	
then printed, — the equal sign '=' is also allowed as assignment operator.	
102/ 106	
Vectors and their arithmetics	
Vector = ordered set of numbers (or other similar elements)	
Can be assigned values elementwise by function c()	
Vector x with 4 elements 1, 2, 4, 7 assigned and printed:	
> x <- c(1,2,4,7) > x	
[1] 1 2 4 7	
Arithmetic operations +, -, *, /, ^ (power) for vectors of same length <i>i.e.</i> same number of elements.	
\Rightarrow Outcome: a new vector whose elements are results of the operation on the corresponding elements in original vectors.	
Common mathematical functions, like sqrt(), log(), exp() work in the same way for numeric vectors.	
103/ 106	
R script – commands in a file	
R script file is an ASCII file containing a sequence of R commands to be executed.	
The script editor of R works as follows:	
1. In RGui open the script editor window: File - New script, or when editing an	
existing script file: <i>File - Open script</i>,2. Write the command lines <u>without prompt</u> '>' or '+'.	
3. Save the script file: <i>File</i> - <i>Save e.g.</i> as c:\\mycmds.R	
or with some other file name having extension .R	
104/ 106	
R script (cont'd)	
 Paint the lines to be excecuted and paste them on the console window using the third icon on the toolbar. 	
5. Edit the file using <i>Edit</i> menu, save & continue.	
To run a whole script file, write in console window: > source("c://mycmds.R", echo=TRUE)	
An effective alternative: R Studio – a handy interface for writing and running R scripts; see http://www.rstudio.com/.	