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Introduction

▶ Starters

▶ Analysis and statistics

▶ Uses of statistics in epidemiology

▶ References
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Cohort of male asbestos workers, N = 17800.

Observed D = 24 cases of lung cancer deaths.
Expected E = 7 cases based on age-speci�c rates in general
population.

SMR =
D

E
=

24

7
= 3.4

Observed rate ratio > 1:

▶ true as such?

▶ biased? by which factors?

▶ due to play of chance?
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Nurses Health Study (NHS) on
oral contraceptive (OC) use and breast cancer.

Null hypothesis H0:
OC use does not a�ect risk of breast cancer; true rate ratio = 1
between ever and never users.

Summary of study outcomes:

No. of Person- Rate
OC use Cases years (/105 y)

Ever 204 94,029 217
Never 240 128,528 187
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Results:

▶ Observed rate ratio RR = 217/187 = 1.16

▶ P -value 0.12

▶ 95% con�dence interval [0.96, 1.40]

Interpretation?

▶ true rate ratio = 1.16?

▶ probability that H0 is true = 12% ?

▶ probability = 95%, that true rate ratio is between 0.96 and 1.40?

▶ other? further analysis needed?
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Analysis and statistics

By analysis we mean statistical analysis.

Statistics:

▶ (singular) the science that deals with the:
▶ collection, classi�cation, analysis, and interpretation of numerical

facts or data, and that,
▶ by use of mathematical theories of probability, imposes order and

regularity on aggregates of more or less disparate elements.

▶ (plural) the numerical facts or data themselves

(Webster's Dictionary)
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Use of statistics in epidemiology

▶ assessment of random variation

▶ control of confounding and

▶ evaluation of e�ect modi�cation (a.k.a. interaction)

▶ guiding study planning:
choice of design, group sizes
length of follow-up, sampling
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Use of statistics

Basic approaches and tools:

▶ descriptive summarization of data

▶ mathematical models for random variation

▶ statistical inference: estimation and testing

▶ crude and strati�ed analysis

▶ regression methods.
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Chance variation

▶ Systematic and random variation
▶ Probability model:

▶ random variable � observation � data
▶ distribution
▶ parameters

▶ Statistic

▶ Standard error
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Systematic and random variation

Cancer incidence rates vary by known & measured determinants of
disease, such as:

▶ age,

▶ gender,

▶ region,

▶ time,

▶ speci�c risk factors.

This is systematic variation.
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Systematic and random variation

In addition, observed rates are subject to
random or chance variation:
� variation due to unknown sources like

▶ latent genetic di�erences,

▶ unknown concomitant exposures,

▶ sampling,

▶ "pure chance" � quantum mechanics
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Example: Smoking and lung cancer

▶ Only a minority of smokers get lung cancer

▶ . . . and some non-smokers get the disease, too.

▶ At the individual level the outcome is unpredictable.

▶ When cancer occurs, it can eventually only be explained just by
�bad luck�.

▶ Unpredictability of individual outcomes implies largely
unpredictable � random � variation of disease rates at
population level.
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Example: Breast cancer

Breast cancer incidence rates in Finland, age group 65-69 years in
three successive years.

Males Females
Year (per 106 P-years) (per 104 P-years)

1989 46 21
1990 11 20
1991 33 19

▶ Big annual changes in risk among males?
▶ Is there steady decline in females?
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Example: Breast cancer

Look at observed numbers of cases!

Males Females

Year Cases P-years Cases P-years

1989 4 88,000 275 131,000
1990 1 89,000 264 132,000
1991 3 90,000 253 133,000

Reality of changes over the years?

The information is in the number of cases
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Simple probability model for cancer occurrence

Assume that the population is homogeneous

▶ the theoretical incidence rate

▶ hazard or intensity � λ

▶ of contracting cancer

▶ is constant over a short period of time, dt

λ = Pr{Cancer in(t, t+ dt)}/dt
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Simple probability model for cancer occurrence

▶ The observations:
▶ Number of cases D in
▶ Y person-years at risk
▶ ⇒ empirical incidence rate R = D/Y

▶ are all random variables with unpredictable values
▶ The probability distribution of possible values of a random

variable has some known mathematical form
▶ . . . some properties of the probability distribution are determined

by the assumptions

▶ . . . other properties are determined by quantities called
parameters

▶ � in this case the theoretical rate λ.
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How a probability model works

If the hazard of lung cancer, λ, is constant over time, we can
simulate lung cancer occurrence in a population:

▶ Start with N persons,

▶ 1st day: P {lung cancer} = λ× 1 day for all N persons

▶ 2nd day: P {lung cancer} = λ× 1 day for those left w/o LC

▶ 3rd day: P {lung cancer} = λ× 1 day for those left w/o LC

▶ . . .

Thus a probability model shows how to generate data with known
parameters. Model → Data
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Component of a probability model

▶ structure of the model
� a priori assumptions:
� constant incidence rate

▶ parameters of the model
� size of the incidence rate:
� derived from data conditional on structure
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Statistics

The opposite of a probability models:

▶ the data is known

▶ want to �nd parameters

▶ this is called estimation

▶ . . . mostly using maximum likelihood

Thus statistical modelling is how to estimate parameters from
observed data. Data → Model
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Statistics � the workings

▶ Fix the model (structure)

▶ For any set of parameters we can generate data

▶ Find parameters that generates data that look most like the
observed data

▶ Recall the notion of random variables:
▶ Given model and parameter
▶ we know the distribution of functions of data

▶ Essential distributions are Poisson and Normal (Gaussian)
distributions
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Poisson and Gaussian models

▶ Poisson distribution: simple probability model for number of
cases D (in a �xed follow-up time, Y ) with

▶ expectation (theoretical mean) µ = λY ,

▶ standard deviation
√
µ

▶ When the expectation µ of D is large enough, the Poisson
distribution resembles more and more the Gaussian or
Normal distribution.
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Poisson distribution with di�erent means (µ)
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Normal (Gaussian) distribution
▶ common model for continuous variables

▶ symmetric and bell-shaped
▶ has two parameters:

� µ = expectation or mean
� σ = standard deviation

▶ Central limit theorem:
A sum of many small independent quantities will follow a normal
distribution

▶ Conseqence:
When we compute various functions based on our data we can
approximate the distribution with the normal distribution

▶ . . . so we just need to compute mean and standard deviation �
the shape is �xed by the theory
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Areas under curve limited by selected quantiles
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Example: Observed incidence rate

▶ Model: incidence rate is constant over time

▶ Theoretical rate λ,

▶ Empirical rate R = D/Y ,

▶ Estimator of λ, λ̂ = R.

▶ λ̂ = R is a statistic, random variable:
▶ its value varies from one study population (�sample�) to another on

hypothetical repetitions
▶ . . . namely other similar condition under which data could have been

generated
▶ its sampling distribution is (under the constant rate model & other

conditions) a transformation of the Poisson distribution
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Example: Observed incidence rate

▶ D approximately Poisson, mean λY , sd
√
λY

▶ R = D/Y scaled Poisson:
mean: λ, sd:

√
λY /Y =

√
λ/Y

▶ Standard error of empirical rate R is estimated by replacing λ
with R:

s.e.(R) =

√
λ̂

Y
=

√
R

Y
=

√
D

Y
= R× 1√

D

⇒ Random error depends inversely on the number of cases.

⇒ s.e. of R is proportional to R.
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Example: Observed incidence rate

▶ Use the central limit theorem:

▶ λ̂ = R ∼ N (λ, λ/Y ) = N (λ, λ2/D)

⇒ Observed R is with 95% proability in the interval

(λ− 1.96× λ/
√
D;λ+ 1.96× λ/

√
D)

⇒ with 95% probability λ is in the interval

(R− 1.96×R/
√
D;R + 1.96×R/

√
D)

▶ . . . a 95% con�dence interval for the rate.
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Chance summary

▶ Observations vary systematically by known factors

▶ Observations vary randomly by unknown factors

▶ Probability model describes the random variation

▶ We observe random variables � draws from a probability
distribution

▶ Central limit theorem allows us to quantify the random variation

▶ . . . and construct con�dence interval
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Models and data

▶ A probability model can be used to generate data
(by simulation) � from model to data

▶ Inference is the inverse:

▶ What model generated the data?

▶ � from data to model

▶ . . . if we know data we can say something sensible about disease
process in the population that generated data
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Models and data � model components

▶ External, a priori information on observations
� structure of the model

▶ quantitative parameter(s) within model structure

▶ only the latter is the target for inference
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Statistical concepts

▶ Probability: parameters → data

▶ Statistics: data → parameter(estimate)s

▶ Notation:
▶ Parameter denoted by a Greek letter, β
▶ Estimator & estimate by the same Greek letter with "hat", β̂

▶ Example: Incidence rate:
▶ Theoretical rate � the value of the rate in the model that could have

generated data: λ
▶ Estimator: λ̂ = R = D/Y , empirical rate.

▶ . . . but where did the D/Y come from?
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Maximum likelihood principle

▶ De�ne your model (e.g. constant rate)

▶ Choose a parameter value

▶ How likely is it that
� this model with
� this parameter
generated data

▶ P {data|parameter}, P {(d, y)|λ}
▶ Find the parameter value that gives the maximal probability of

data

▶ Find the interval of parameter values that give probabilities not
too far from the maximum.
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Likelihood

Probability of the data given the parameter:

Assuming the rate (intensity) is constant, λ, the probability of
observing 14 deaths in the course of 843.6 person-years:

P {D = 14, Y = 843.6|λ} = λDeλY ×K

= λ14eλ×843.6 ×K

= L(λ|data)

▶ Estimate of λ is the λ-vlaue where this function is as large as
possible.

▶ Con�dence interval is range of λ where it is not too far from the
maximum
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Likelihood function, 14 events, 843.6 PY
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Likelihood function, 14 events, 843.6 PY
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Log-likelihood function 14 events, 843.6 PY
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Log-likelihood function 14 events, 843.6 PY
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Log-likelihood function 14 events, 843.6 PY
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Log-likelihood function 14 events, 843.6 PY
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Log-likelihood function 14 events, 843.6 PY
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Con�dence interval for a rate

▶ Based on the quadratic approximation to the normal density
▶ A 95% con�dence interval for the log of a rate, θ is:

θ̂ ± 1.96/
√
D = log(λ̂)± 1.96/

√
D

� the 1.96 is from the normal distribution:
±1.96 is the middle 95% of the normal distribution.

▶ Take the exponential to get the con�dence interval for the rate:

λ̂
×
÷ exp

(
1.96/

√
D
)︸ ︷︷ ︸

error factor, erf

� the probability the theoretical rate λ is in this interval is 95%.
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Example for a single rate

In the example we had 14 deaths during 843.6 years of follow-up.

The rate is computed as:

λ̂ = D/Y = 14/843.6 = 0.0165 years−1 = 16.5 per 1000 years

The con�dence interval is computed as:

λ̂
×
÷ erf = 16.5

×
÷ exp

(
1.96/

√
14
)
= (9.8, 28.0)

per 1000 person-years.
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Comparing two rates

If we have observations of two rates λ1 and λ0,
based on (D1, Y1) and (D0, Y0)
�from independent samples:

▶ The variance of the di�erence of the rates is the sum of the
variances of each of the rates

▶ The variance of the di�erence of the log of the rates is the sum
of the variances of the log of them

. . . this can be used to construct con�dence intervals for rate
di�erences and rate ratios.
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Ratio of two rates

For two rates λ1 and λ0, based on (D1, Y1) and (D0, Y0);
the log of the ratio (RR) is the di�erence of the logs of each of the
rates: log(RR) = log(λ1)− log(λ0), and so:

var
(
log(RR)

)
= var

(
log(λ1/λ0)

)
= var

(
log(λ1)

)
+ var

(
log(λ0)

)
= 1/D1 + 1/D0

As before a 95% c.i. for the RR is then, using the normal
distribution:

RR
×
÷ exp

(
1.96

√
1

D1
+

1

D0

)
︸ ︷︷ ︸

error factor
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Di�erence of two rates

For two rates λ1 and λ0, based on (D1, Y1) and (D0, Y0);
the variance of the di�erence of the rates, RD = λ1 − λ0, is:

var(RD) = var(λ1 − λ0)

= var(λ1) + var(λ0)

= D1/Y
2
1 +D0/Y

2
0

As before a 95% c.i. for the RD is then, using the normal
distribution:

RD± 1.96

√
D1

Y 2
1

+
D0

Y 2
0︸ ︷︷ ︸

standard error
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Example: (14, 843.6py) and (28, 632.3py)

Suppose we in group 0 have 14 deaths during 843.6 years of follow-up
in one group, and in group 1 have 28 deaths during 632.3 years.

The rate-ratio is computed as:

RR = λ̂1/λ̂0 = (D1/Y1)/(D0/Y0)

= (28/632.3)/(14/843.6) = 0.0443/0.0165 = 2.669

The 95% con�dence interval is computed as:

R̂R
×
÷ erf = 2.669

×
÷ exp

(
1.96

√
1/14 + 1/28

)
= 2.669

×
÷ 1.899 = (1.40, 5.07)
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Example: (14, 843.6py) and (28, 632.3py)

Suppose we in group 0 have 14 deaths during 843.6 years of follow-up
in one group, and in group 1 have 28 deaths during 632.3 years.

The rate-di�erence is computed as:

RR = λ̂1 − λ̂0 = (D1/Y1)− (D0/Y0) = (28/632.3)− (14/843.6)

= 0.0443− 0.0165 = 0.0277 = 27.7per 1000py

The 95% con�dence interval is computed as:

R̂R
×
÷ erf = 2.669

×
÷ exp

(
1.96

√
1/14 + 1/28

)
= 2.669

×
÷ 1.899 = (1.40, 5.07)
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Estimating a rate using R

Poisson likelihood for one rate, based on 14 events in 843.6 PY:

> library( Epi )
> D <- 14 ; Y <- 843.6
> m1 <- glm(D ~ 1, offset = log(Y / 1000), family = poisson)
> ci.exp(m1)

exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107

Conventional description for mortality rates:
�We used Poisson regression with log-person-years as o�set. . . �

But really both D and Y are outcomes (random variables)
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Estimating a rate using R

But really both D and Y are outcomes (random variables):
use poisreg instead of poisson:

> mm <- glm(cbind(D, Y / 1000) ~ 1, family = poisreg)
> ci.exp( mm )

exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107

. . . then you write:
�We used multiplicative Poisson regression for events and
person-years. . . �
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RR example using R

Poisson likelihood, two rates, or one rate and RR:

> D <- c(14, 28) ; Y <- c(843.6, 632.3) ; gg <- factor(0:1)
> cbind(D, Y, gg)

D Y gg
[1,] 14 843.6 1
[2,] 28 632.3 2

> m2 <- glm(cbind(D, Y / 1000) ~ gg, family = poisreg)
> ci.exp(m2)

exp(Est.) 2.5% 97.5%
(Intercept) 16.595543 9.828750 28.021066
gg1 2.668354 1.404825 5.068325

> m3 <- glm(cbind(D, Y / 1000) ~ gg - 1, family = poisreg)
> ci.exp(m3)

exp(Est.) 2.5% 97.5%
gg0 16.59554 9.82875 28.02107
gg1 44.28278 30.57545 64.13525
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RD example using R

Poisson likelihood, two rates, or one rate and RD:

> a2 <- glm(cbind(D, Y / 1000) ~ gg, family = poisreg(link = "identity") )
> ci.exp(a2, Exp=FALSE)

Estimate 2.5% 97.5%
(Intercept) 16.59554 7.902426 25.28866
gg1 27.68723 9.123703 46.25077

> a3 <- glm(cbind(D, Y / 1000) ~ gg - 1, family = poisreg(link = "identity") )
> ci.exp(a3, Exp = FALSE)

Estimate 2.5% 97.5%
gg0 16.59554 7.902426 25.28866
gg1 44.28278 27.880508 60.68505

You do it (both RR and RD):
What is the interpretation of the parameters in m2, m3, a2 and a3?
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Statistical tests

▶ Are the observed data consistent with a given value of the
parameter?

▶ Such a value is often a null value

▶ Typically a conservative assumption, e.g.:
�no di�erence in outcome between the groups�

▶ RR = 1 or RD = 0

▶ This is called a null hypothesis, H0
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Computing a statistical test

Zobs =
R̂R− 1

s.e.(RR)
≈ N (0, 1), or

Zobs =
log(R̂R)− 0

s.e.
(
log(RR)

) ≈ N (0, 1), or

Zobs =
R̂D− 0

s.e.(RD)
≈ N (0, 1), or . . .

▶ How far are are we from the null in terms of the precision?
▶ How far is quanti�ed by the P -value:

P = P {Z is more extreme than Zobs|H0 is true}
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Interpretation of P -values

▶ Note it is not �the probability that H0 is true� !

▶ No mechanical rules of inference

▶ Rough guidelines:
▶ �large� value (p > 0.1): consistent with H0 but not necessarily

supporting it,
▶ �small� value (p < 0.01): indicates evidence against H0

▶ �intermediate� value (p ≈ 0.05): weak evidence against H0

▶ Division of p-values into "signi�cant" or "non-signi�cant" by
cut-o� of 5% � nonsense!

▶ . . . remember that the 5% is an arbitrary number taken out of
thin air.
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Con�dence interval (CI)

▶ Range of parameter values compatible with the observed data
� null values that will give a P -value larger than 5%
(1− con�dence level)

▶ Speci�ed at certain con�dence level, commonly 95% (also
90% and 99% used)

▶ The probability that the random interval covers the true
parameter value equals the con�dence level (e.g. 95%).

▶ The probability that the parameter value is in the interval is
con�dence level (e.g. 95%).
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Long-term behaviour of CI

Variability of 95% CI under
hypothetical repetitions of
similar study, when true rate
ratio is RR.
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In the long run 95% of these intervals would cover the true value but
5% would not.
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Long-term behaviour of CI

Variability of 95% CI under
hypothetical repetitions of
similar study, when true rate
ratio is RR.
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In the long run 95% of these intervals would cover the true value but
5% would not.
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Interpretation of CI

▶ Con�dence intervals gives quantitative information on the
parameter and on statistical uncertainty about its value

▶ narrow CI about H0 value → results supports H0

▶ narrow CI about non-H0 value → results supports an alternative

▶ wide CI about H0 value → results inconclusive

▶ wide CI about non-H0 value → results inconclusive

▶ width of the interval determines the precision

▶ location of the interval determines relevance
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Con�dence interval and P -value

95 % CIs of rate dif-
ference δ and P val-
ues for H0 : δ = 0 in
di�erent studies.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Estimated effect

p = 0.382

p = 0.417

p = 0.003

p = 0.005

▶ Which ones are signi�cant?

▶ Which ones are informative?
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Recommendations

Sterne and Davey Smith: Sifting the evidence � what's wrong with
signi�cance tests? BMJ 2001; 322: 226-231.

�Suggested guidelines for the reporting of results of statistical
analyses in medical journals�

1. The description of di�erences as
statistically signi�cant is not acceptable.

2. Con�dence intervals (CI) for the main results should always be
included, but 90% rather than 95% levels should be used.
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Recommendations

3. CIs should not be used as a surrogate means of examining
signi�cance at the conventional 5% level.

4. Interpretation of CIs should focus on the implications (clinical
importance) of the range of values in the interval.

5. In observational studies it should be remembered that
considerations of confounding and bias are at least as important
as the issues discussed in this paper.
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Crude analysis

▶ Single incidence rate

▶ Rate ratio in cohort study

▶ Rate di�erence in cohort study

▶ Rate ratio in case-control study

▶ Analysis of proportions

▶ Extensions and remarks
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Single incidence rate

▶ Data: Events and risk time (D, Y )
▶ Model: Events occur with constant rate λ.
▶ Parameter of interest:

λ = true rate in target population

▶ Estimator: λ̂ = R, the empirical rate in a �representative
sample� from the population:

R =
D

Y
=

no. of cases

person-time

▶ Standard error of rate: SE(R) = R/
√
D.
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Example using R

Poisson likelihood for one rate, based on 14 events in 843.6 PY:

> library( Epi )
> D <- 14 ; Y <- 843.6
> m1 <- glm(D ~ 1, offset = log(Y / 1000), family = poisson)
> ci.exp( m1 )

exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107

But really both D and Y are outcomes (random variables)

> mm <- glm(cbind(D, Y / 1000) ~ 1, family = poisreg)
> ci.exp( mm )

exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107
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Rate ratio in cohort study

Question: What is the rate ratio of cancer in the exposed as
compared to the unexposed group?

Model Cancer incidence rates constant in both groups, values λ1,
λ0

Parameter of interest is ratio of theoretical rates:

ρ =
λ1

λ0
=

rate among exposed

rate among unexposed

Null hypothesis H0 : ρ = 1: exposure has no e�ect.
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Rate di�erence in cohort study

Question: What is the rate di�erence of cancer in the exposed as
compared to the unexposed group?

Model Cancer incidence rates constant in both groups, values λ1,
λ0

Parameter of interest is di�erence between theoretical rates:

δ = λ1−λ0 = rate among exposed−rate among unexposed

Null hypothesis H0 : δ = 0: exposure has no e�ect.
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RR example using R
Poisson likelihood: one rate and RR or two rates:
> D <- c(14,28) ; Y <- c(843.6,632.3) ; gg <- factor(0:1)
> cbind(D, Y, gg)

D Y gg
[1,] 14 843.6 1
[2,] 28 632.3 2

> m2 <- glm(cbind(D, Y / 1000) ~ gg, family = poisreg )
> ci.exp(m2)

exp(Est.) 2.5% 97.5%
(Intercept) 16.595543 9.828750 28.021066
gg1 2.668354 1.404825 5.068325

> m3 <- glm(cbind(D, Y / 1000) ~ gg - 1, family = poisreg )
> ci.exp(m3)

exp(Est.) 2.5% 97.5%
gg0 16.59554 9.82875 28.02107
gg1 44.28278 30.57545 64.13525
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RD example using R
Poisson likelihood, one rate and RD or two rates:
> a2 <- glm(cbind(D, Y / 1000) ~ gg, family = poisreg(link = 'identity') )
> ci.exp(m2, Exp = FALSE )

Estimate 2.5% 97.5%
(Intercept) 2.8091342 2.2853118 3.332957
gg1 0.9814617 0.3399129 1.623010

> a3 <- glm(cbind(D, Y / 1000) ~ gg - 1, family=poisreg(link = 'identity') )
> ci.exp(m3, Exp = FALSE )

Estimate 2.5% 97.5%
gg0 2.809134 2.285312 3.332957
gg1 3.790596 3.420197 4.160994

You do it (both RR and RD):
What is the interpretation of the parameters?
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Analysis of proportions

▶ Suppose we have cohort data with a �xed risk period, i.e. all
subjects are followed over the same period and therefore as well
as no losses to follow-up (no censoring).

▶ In this setting the risk, π, of the disease over the risk period
can be estimated by a simple proportion.

▶ . . . the incidence proportion (often called "cumulative

incidence" or even "cumulative risk")
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Analysis of proportions

Theoretical proportion: probability, π, that a random person becomes
a case in a given period.

π̂ = p =
x

n

=
number of new cases during period

size of population at start
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Analysis of proportions

Theoretical prevalence: probability, p, that a randomly chosen
person in the population is a case (at a given time).

Analogously, empirical prevalence (proportion) at a certain point of
time t:

p̂ =
no. of prevalent cases at t

total population size at t
=

x

n
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Analysis of proportions

▶ Proportions (unlike rates) are dimensionless quantities ranging
from 0 to 1

▶ Analysis of proportions based on binomial distribution

▶ Standard error for an estimated proportion:

SE(p) =

√
p(1− p)

n
=

√
(1− p)

n/p
= p×

√
(1− p)

x

▶ Depends also inversely on
√
x

▶ . . . but not a good approximation to the distribution of p̂ = x/n
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Analysis of proportions

▶ CI : p± 2× SE(p) are within [0; 1] if x > 4/(1 + 4/n)
▶ This is always true if x > 3 (if x > 2 for n < 12)
▶ � but the approximation is not good for x < 10

> ci <- function(x, n) round(cbind( x, n, p = p <- x / n,
+ lo = p - 2 * sqrt(p*(1-p)/n),
+ hi = p + 2 * sqrt(p*(1-p)/n)), 4)
> rbind(ci(3, 11:13), ci(2, 3:5), ci(1, 1:2))

x n p lo hi
[1,] 3 11 0.2727 0.0042 0.5413
[2,] 3 12 0.2500 0.0000 0.5000
[3,] 3 13 0.2308 -0.0029 0.4645
[4,] 2 3 0.6667 0.1223 1.2110
[5,] 2 4 0.5000 0.0000 1.0000
[6,] 2 5 0.4000 -0.0382 0.8382
[7,] 1 1 1.0000 1.0000 1.0000
[8,] 1 2 0.5000 -0.2071 1.2071
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Analysis of proportions

▶ Use con�dence limits based on symmetric (normal) log(OR):
▶ Compute error factor: EF = exp

(
1.96/

√
np(1− p)

)
▶ then use EF to compute con�dence interval:

p/
(
p+ (1− p)

×
÷ EF

)
▶ Observed x = 4 out of n = 25: p̂ = 4/25 = 0.16
▶ Naive CI: 0.16± 1.96×

√
0.16× 0.84/25 = [0.016; 0.304]

▶ Better: EF = exp(1.96/
√
25× 0.16× 0.84) = 2.913

CI : 0.16/
(
0.16 + (0.84

×
÷ 2.913)

)
= [0.061; 0.357]
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Analysis of proportions by glm

▶ Default is to model logit(p) = log(p/(1− p)), log-odds
▶ Using ci.exp gives odds (ω):

ω = p/(1− p) ⇔ p = ω/(1 + ω)

> x <- 4 ; n <- 25
> p0 <- glm(cbind(x, n - x) ~ 1, family = binomial)
> (odds <- ci.exp(p0))

exp(Est.) 2.5% 97.5%
(Intercept) 0.1904762 0.06538417 0.5548924

> odds / (odds + 1)

exp(Est.) 2.5% 97.5%
(Intercept) 0.16 0.06137145 0.3568687
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Analysis of proportions by glm

Also possible to model log(p), log-probability, by changing the link
function:

> x <- 4 ; n <- 25
> pl <- glm(cbind(x, n - x) ~ 1, family = binomial(link = "log") )
> ci.exp(pl)

exp(Est.) 2.5% 97.5%
(Intercept) 0.16 0.06517056 0.3928154

> odds / (odds + 1) # (from last slide)

exp(Est.) 2.5% 97.5%
(Intercept) 0.16 0.06137145 0.3568687

We see that the estimated probability is the same but the con�dence
limits are slightly di�erent.
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Rate ratio in case-control study

Parameter of interest: ρ = λ1/λ0

� same as in cohort study.

Case-control design:

▶ incident cases occurring during a given period in the source
population are collected

▶ controls are obtained by incidence density sampling from those
at risk in the study base

▶ exposure is ascertained in cases and chosen controls.

Analysis (analysis) 72/ 154



Rate ratio in case-control study

Summarized data on outcome:

Exposure Cases Controls

yes D1 C1

no D0 C0

▶ Can we directly estimate the rates λ0 and λ1 from this?

▶ � and the ratio of these?

▶ NO and YES (respectively)

▶ Rates are not estimable from a case-control design
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Rate ratio in case-control study

▶ If controls are representative of the person- years in the
population, their division into exposure groups estimates the
exposure distribution of the person-years:

C1/C0 ≈ Y1/Y0

▶ Hence, we can estimate the RR by the OR:

R̂R =
D1/Y1

D0/Y0
=

D1/D0

Y1/Y0
≈ D1/D0

C1/C0
=

D1/C1

D0/C0
= OR

⇒ RR estimated by the ratio of the case-control ratios (D/C)
▶ . . . but of course there is a penalty to pay. . .
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Rate ratio from case-control study

Standard error for log(OR), 95% error factor
and approximate CI for OR:

SE
(
log(OR)

)
=

√
1

D1
+

1

D0
+

1

C1
+

1

C0

EF = exp
(
1.96× SE

(
log(OR)

))
CI = [OR/EF,OR× EF]

NB. Random error again depends inversely on numbers of cases
and controls � the penalty, in the two exposure groups.
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Example: mobile phone use and brain cancer

(Inskip et al. NEJM 2001; 344: 79-86).

Daily use Cases Controls

≥ 15 min 35 51
no use 637 625

The RR associated with use of mobile phone longer than 15 min (vs.
none) is estimated by the OR:

OR =
35/51

637/625
= 0.67
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Example: mobile phone use and brain cancer

SE for log(OR), 95% error factor and approximate CI for OR:

SE
(
log(OR)

)
=

√
1

35
+

1

637
+

1

51
+

1

625
= 0.2266

EF = exp(1.96× 0.2266) = 1.45

CI = [0.67/1.45, 0.67× 1.45] = [0.43, 1.05]

N.B. model-adjusted estimate (with 95% CI):

OR = 0.6[0.3, 1.0]
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OR from binomial model
> Ca <- c(638, 35); Co <- c(625, 51); Ex <- factor(c("None", ">15"),
> levels = c("None", ">15"))
> data.frame(Ca, Co, Ex)

Ca Co Ex
1 638 625 None
2 35 51 >15

> mf <- glm(cbind(Ca, Co) ~ Ex, family = binomial)
> ci.exp( mf )

exp(Est.) 2.5% 97.5%
(Intercept) 1.0208000 0.9141876 1.139845
Ex>15 0.6722909 0.4311979 1.048185

▶ Intercept is meaningless; only exposure estimate is relevant
▶ The parameter in the model is log(OR), so using ci.exp gives

us the estimated OR � same as in the hand-calculation above.
▶ This is called logistic regression
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Extensions and remarks

▶ This extends to crude analyses of exposure variables with several
categories when each exposure category is separately compared
to a reference group

▶ Evaluation of possible monotone trend in the parameter over
increasing levels of exposure: estimation of regression slope

▶ Crude analysis is insu�cient in observational studies:

▶ control of confounding needed
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Rates

▶ dimension time−1

▶ estimated as λ̂ = D/Y
▶ con�dence interval for λ:

▶ multiplicative λ
×
÷ erf

▶ additive λ± EM
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Practical model for rates

> library( Epi )
> D <- 14 ; Y <- 843.6/1000 ; D/Y

[1] 16.59554

> m0 <- glm( D ~ 1, offset=log(Y), family=poisson )
> ci.exp( m0 )

exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107

Better way:

> mm <- glm( cbind(D,Y) ~ 1, family=poisreg )
> ci.exp( mm )

exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107
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Allows error factor and margin too:

> mm <- glm( cbind(D,Y) ~ 1, family=poisreg )
> ci.exp( mm )

exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107

With error margin (conf.int. on rate-scale)

> ma <- glm( cbind(D,Y) ~ 1, family=poisreg(link="identity") )
> ci.exp( ma, Exp=FALSE )

Estimate 2.5% 97.5%
(Intercept) 16.59554 7.902426 25.28866
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Rate ratio and rate di�erence

> D <- c(14,28) ; Y <- c(843.6,632.3)/1000 ; gg <- factor(0:1)
> mr <- glm( cbind(D,Y) ~ gg, family=poisreg )
> ci.exp( mr )

exp(Est.) 2.5% 97.5%
(Intercept) 16.595543 9.828750 28.021066
gg1 2.668354 1.404825 5.068325

> mR <- glm( cbind(D,Y) ~ gg-1, family=poisreg )
> ci.exp( mR )

exp(Est.) 2.5% 97.5%
gg0 16.59554 9.82875 28.02107
gg1 44.28278 30.57545 64.13525
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Rate ratio and rate di�erence

> ma <- glm( cbind(D,Y) ~ gg, family=poisreg(link="identity") )
> ci.exp( ma, Exp=FALSE )

Estimate 2.5% 97.5%
(Intercept) 16.59554 7.902426 25.28866
gg1 27.68723 9.123703 46.25077

> mA <- glm( cbind(D,Y) ~ gg-1, family=poisreg(link="identity") )
> ci.exp( mA, Exp=FALSE )

Estimate 2.5% 97.5%
gg0 16.59554 7.902426 25.28866
gg1 44.28278 27.880508 60.68505
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Models

▶ Probability model: Data generator, model to data

▶ Statistical analysis: From data to model (parameters)

▶ Maximum likelihood is the basis for parameter estimation

▶ But only for given model

▶ Normal approximation provides con�dence intervals

▶ � either for log-rates, rates, RR, RD, OR

▶ Beware of P -values
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Strati�ed analysis

▶ Shortcomings of crude analysis

▶ E�ect modi�cation

▶ Confounding

▶ Steps of strati�ed analysis

▶ Estimation of rate ratio

▶ Matched case-control study
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Shortcomings of crude analysis

▶ the rate ratio for the risk factor of interest is not constant,
but varies by other determinants of the disease

⇐ heterogeneity of the comparative parameter or e�ect
modi�cation

▶ the exposure groups are not comparable w.r.t. other
determinants of disease

⇒ bias in comparison or confounding

⇐ exposure varies across other determinants
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Models for outcome with e�ects of

▶ primary variable (�exposure�)

▶ secondary variable (�stratum�)

▶ e�ect modi�cation is the interaction model
exposure × stratum
exposure with di�erent e�ects across strata

▶ confounding is the main-e�ects model
exposure + stratum exposure with same e�ect across strata
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Handling for e�ect modi�cation and confounding

▶ Strati�cation of data
by potentially modifying and/or confounding factor(s)
& use of adjusted estimators

▶ Conceptually simpler,
and technically less demanding approach is
regression modeling

▶ Regression modeling is feasible because we have computers

▶ . . . adjustment estimators are left-overs from teachers taught
before the advent of computers (e.g. BxC & EL. . . )
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E�ect modi�cation

Incidence rates (per 105 PY) of lung cancer by occupational asbestos
exposure and smoking:

Asbestos Smokers Non-smokers

exposed 600 60
unexposed 120 12

rate ratio 5 5
rate di�erence 480 48

Is the e�ect of asbestos exposure the same or di�erent in smokers
than in non-smokers?
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E�ect modi�cation (cont'd)

Depends how the e�ect is measured:

▶ Rate ratio: constant or homogeneous

▶ Rate di�erence: heterogeneous:
The value of rate di�erence is modi�ed by smoking.

Smoking is thus an e�ect modi�er of asbestos exposure
on the absolute scale (rates)
but not
on the relative scale (log-rates)
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Incidence of CHD (per 103 PY) by risk factor E and age:

Factor E Young Old

exposed 4 9
unexposed 1 6

rate ratio 4 1.5
rate di�erence 3 3

▶ Rate ratio modi�ed by age
▶ Rate di�erence not modi�ed.
▶ There is no such thing as interaction (e�ect modi�cation)

without reference to the scale of the e�ect
(e.g. additive or multiplicative)
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Handling e�ect modi�cation

▶ In real examples, comparative parameters are more or less
heterogeneous across categories of other determinants of disease

▶ This is termed interaction or e�ect modi�cation

▶ The e�ect of X depend on the level of Z

▶ The e�ect of X cannot be described by a single number,

▶ . . . it is a function of Z
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Actual example
Age-speci�c CHD mortality rates (per 104 PY) and numbers of cases
(D) among British male doctors by cigarette smoking, rate
di�erences (RD) and rate ratios (RR) (Doll and Hill, 1966).

Smokers Non-smokers

Age (y) rate D rate D RD RR

35�44 6.1 32 1.1 2 5 5.7
45�54 24 104 11 12 13 2.1
55�64 72 206 49 28 23 1.5
65�74 147 186 108 28 39 1.4
75�84 192 102 212 31 -20 0.9

Total 44 630 26 101 18 1.7
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CHD and smoking

Both comparative parameters appear heterogeneous:

▶ RD increases by age (at least up to 75 y)

▶ RR decreases by age

No single-parameter (common rate ratio or rate di�erence)
comparison captures adequately the joint pattern of rates.
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Evaluation of modi�cation

▶ Modi�cation or its absence is an inherent property of the
phenomenon:

▶ cannot be removed or �adjusted� for

▶ � it depends on the scale on which it is measured

▶ Before looking for e�ect-modi�cation:
▶ what scale are we using for description of e�ects
▶ how will we report the modi�ed e�ects (the interaction)
▶ . . . do not test for an interaction you have not seen:

that would be returning to the world of P-values
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Evaluation of modi�cation (cont'd)

▶ statistical tests for heterogeneity insensitive and rarely helpful

▶ ⇒ tempting to assume �no essential modi�cation�:

+ simpler analysis and result presentation,

− misleading if essential modi�cation is present.
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CHD and smoking example with R I

> library( Epi )
> R <- c(6.1, 24, 72, 147, 192, 1.1, 11, 49, 108, 212)
> D <- c( 32, 104, 206, 186, 102, 2 , 12, 28, 28, 31)
> Y <- D / R # risk time in units of 10^4 PY
> smk <- factor(rep(1:2, each = 5), labels = c("Smoke", "non-Sm") )
> age <- factor(rep(seq(35, 75, 10), 2))
> data.frame(D, Y, age, smk)

D Y age smk
1 32 5.2459016 35 Smoke
2 104 4.3333333 45 Smoke
3 206 2.8611111 55 Smoke
4 186 1.2653061 65 Smoke
5 102 0.5312500 75 Smoke
6 2 1.8181818 35 non-Sm
7 12 1.0909091 45 non-Sm
8 28 0.5714286 55 non-Sm
9 28 0.2592593 65 non-Sm
10 31 0.1462264 75 non-Sm

Strati�ed analysis (strat) 98/ 154



CHD and smoking example with R II
> ma <- glm(cbind(D, Y) ~ age + smk, family = poisreg)
> mi <- update(ma, . ~ . + age:smk) # add the multiplicative interaction
> anova(ma, mi, test = "Chisq")

Analysis of Deviance Table

Model 1: cbind(D, Y) ~ age + smk
Model 2: cbind(D, Y) ~ age + smk + age:smk

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 4 11.993
2 0 0.000 4 11.993 0.0174 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> #
> aa <- glm(cbind(D, Y) ~ age + smk, family = poisreg(link = identity))
> ai <- update(ma, . ~ . + age:smk ) # add the additive interaction
> anova(aa, ai, test = "Chisq")
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CHD and smoking example with R III
Analysis of Deviance Table

Model 1: cbind(D, Y) ~ age + smk
Model 2: cbind(D, Y) ~ age + smk + age:smk

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 4 7.7434
2 0 0.0000 4 7.7434 0.1014
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Deviance?

▶ . . . is the likelihood-ratio test of a given model versus the
model with one parameter per record in the data

▶ In the case of CHD and smoking, strati�ed by age, the model
with one parameter per record is the interaction model
so this has 0 deviance

▶ in general, the deviance per se is not meaningful

▶ . . . but for models �tted to the same dataset, the difference
in deviances between the models is the likelihood ratio test
comparing the two models.

▶ That is what we computed using anova().
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Interaction - CHD, age and smoking�your turn!

1. enter data and repeat the analyses as on the slide

2. what is the multiplicative (main) e�ect of smoking

3. what is the additive (main) e�ect of smoking

4. use the model � age / smk� � what does it do?

5. what is the multiplicative (interaction) e�ect of smoking

6. what is the additive (interaction) e�ect of smoking

7. try to use plotEst to visualize the interactions
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CHD and smoking example with R I

> library( Epi )
> R <- c(6.1, 24, 72, 147, 192, 1.1, 11, 49, 108, 212)
> D <- c( 32, 104, 206, 186, 102, 2 , 12, 28, 28, 31)
> Y <- D / R # risk time in units of 10^4 PY
> smk <- factor(rep(1:2, each = 5), labels = c("Smoke", "no-Sm") )
> age <- factor(rep(seq(35, 75, 10), 2))
> data.frame(D, Y, R, D/Y, age, smk)

D Y R D.Y age smk
1 32 5.2459016 6.1 6.1 35 Smoke
2 104 4.3333333 24.0 24.0 45 Smoke
3 206 2.8611111 72.0 72.0 55 Smoke
4 186 1.2653061 147.0 147.0 65 Smoke
5 102 0.5312500 192.0 192.0 75 Smoke
6 2 1.8181818 1.1 1.1 35 no-Sm
7 12 1.0909091 11.0 11.0 45 no-Sm
8 28 0.5714286 49.0 49.0 55 no-Sm
9 28 0.2592593 108.0 108.0 65 no-Sm
10 31 0.1462264 212.0 212.0 75 no-Sm
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CHD and smoking example with R II
> # model with log link
> ma <- glm(cbind(D, Y) ~ age + smk, family = poisreg)
> mi <- update(ma, . ~ . + age:smk) # add the multiplicative interaction
> anova(ma, mi, test = "Chisq")

Analysis of Deviance Table

Model 1: cbind(D, Y) ~ age + smk
Model 2: cbind(D, Y) ~ age + smk + age:smk

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 4 11.993
2 0 0.000 4 11.993 0.0174 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> # with identity link
> aa <- glm(cbind(D, Y) ~ age + smk, family = poisreg(link = identity))
> ai <- update(aa, . ~ . + age:smk ) # add the additive interaction
> anova(aa, ai, test = "Chisq")
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CHD and smoking example with R III
Analysis of Deviance Table

Model 1: cbind(D, Y) ~ age + smk
Model 2: cbind(D, Y) ~ age + smk + age:smk

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 4 7.7434
2 0 0.0000 4 7.7434 0.1014

> # multiplicative interaction
> mI <- update(mi, . ~ -1 + age / smk)
> ci.exp(mI, subset = "smk")

exp(Est.) 2.5% 97.5%
age35:smkno-Sm 0.1803279 0.04321658 0.7524459
age45:smkno-Sm 0.4583333 0.25215724 0.8330891
age55:smkno-Sm 0.6805556 0.45858247 1.0099729
age65:smkno-Sm 0.7346939 0.49381111 1.0930801
age75:smkno-Sm 1.1041667 0.73868885 1.6504703

> round(1 / ci.exp(mI, subset = "smk"), 2)
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CHD and smoking example with R IV
exp(Est.) 2.5% 97.5%

age35:smkno-Sm 5.55 23.14 1.33
age45:smkno-Sm 2.18 3.97 1.20
age55:smkno-Sm 1.47 2.18 0.99
age65:smkno-Sm 1.36 2.03 0.91
age75:smkno-Sm 0.91 1.35 0.61

> # additive interaction
> aI <- update(ai, . ~ -1 + age / smk)
> ci.exp(aI, Exp = FALSE)
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CHD and smoking example with R V
Estimate 2.5% 97.5%

age35 6.1 3.986497 8.213503
age45 24.0 19.387433 28.612567
age55 72.0 62.167884 81.832116
age65 147.0 125.874405 168.125595
age75 192.0 154.739452 229.260548
age35:smkno-Sm -5.0 -7.605951 -2.394049
age45:smkno-Sm -13.0 -20.746643 -5.253357
age55:smkno-Sm -23.0 -43.641599 -2.358401
age65:smkno-Sm -39.0 -84.238620 6.238620
age75:smkno-Sm 20.0 -63.412950 103.412950

> round(- ci.exp(aI, Exp = FALSE, subset = "smk"), 2)
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CHD and smoking example with R VI
Estimate 2.5% 97.5%

age35:smkno-Sm 5 7.61 2.39
age45:smkno-Sm 13 20.75 5.25
age55:smkno-Sm 23 43.64 2.36
age65:smkno-Sm 39 84.24 -6.24
age75:smkno-Sm -20 63.41 -103.41

> # forest plots
> par(mfrow = c(1,2))
> plotEst(1 / ci.exp(mI, subset = "smk"),
+ xlog = TRUE, xlab = "smoking RR")
> abline(v = c(1, exp(-coef(ma)[6])))
> plotEst(-ci.exp(aI, Exp = FALSE, subset = "smk"),
+ xlab = "smoking RD")
> abline(v = c(0, -coef(aa)[6]))
> # forest plots again, niceified
> par(mfrow = c(1,2))
> plotEst(1 / ci.exp(mI, subset = "smk"),
+ xlog = TRUE, xlab = "smoking RR", xlim = c(0.5, 20))
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CHD and smoking example with R VII
> abline(v = c(1, exp(-coef(ma)[6])), col = 1:2)
> plotEst(-ci.exp(aI, Exp = FALSE, subset = "smk"),
+ xlab = "smoking RD", xlim = c(-50, 100))
> abline(v = c(0, -coef(aa)[6]), col = 1:2)
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Confounding - operation example

Observational clinical study with comparison of success of treatment
between two types of operation for treating renal calculi:

▶ OS: open surgery (invasive)

▶ PN: percutaneous nephrolithotomy (non-invasive)

Treatment Pts Op. OK % OK %-di�.

OS 350 273 78

PN 350 290 83 +5

PN appears more successful than OS?
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Operation example

Results strati�ed by initial diameter size of the stone:

Size Treatment Pts Op. OK % OK %-di�.

< 2 cm: OS 87 81 93
PN 270 235 87 −6

≥ 2 cm: OS 263 192 73
PN 80 55 69 −4

OS seems more successful in both subgroups.

Is there a paradox here?
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Operation example

▶ Treatment groups are not comparable w.r.t. initial size.

▶ Size of the stone (SS) is a confounder of the association
between operation type and success:

1 a determinant of outcome (success), based on external
knowledge,

2 statistically associated with operation type in the study
population,

3 not causally a�ected by operation type.
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Operation example

▶ Instance of �confounding by indication�:
� patient status a�ects choice of treatment,
⇒ bias in comparing treatments.

▶ This bias is best avoided in planning:
� randomized allocation of treatment.
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Grey hair and cancer incidence

Gray P-years Rate
Age hair Cases ×1000 /1000 y RR

Total yes 66 25 2.64 2.2
no 30 25 1.20

Young yes 6 10 0.60 1.09
no 11 20 0.55

Old yes 60 15 4.0 1.05
no 19 5 3.8

Observed crude association nearly vanishes after controlling for age.
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Means for control of confounding

Design:

▶ Randomization

▶ Restriction

▶ Matching

Strati�ed analysis (strat) 108/ 154



Means for control of confounding (cont'd)

Analysis:

▶ Strati�cation

▶ Regression modeling

Only randomization can remove confounding due to
unmeasured factors.

Other methods provide partial removal, but only due to
measured factors
residual confounding may remain.
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Steps of strati�ed analysis

▶ Stratify by levels of the potential confounding/modifying
factor(s)

▶ Compute stratum-speci�c estimates of the e�ect parameter (e.g.
RR or RD)

▶ Evaluate similarity of the stratum-speci�c estimates by
�eye-balling� or test of heterogeneity.
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Steps of strati�ed analysis (cont.)

▶ If the parameter is judged to be homogeneous enough, calculate
an adjusted summary estimate.

▶ If e�ect modi�cation is judged to be present:
▶ report stratum-speci�c estimates with CIs,
▶ if desired, calculate an adjusted summary estimate by appropriate

standardization � (formally meaningless).
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Estimation of rate ratio

▶ Suppose that the rate ratio RR is su�ciently homogeneous
across strata (no modi�cation), but confounding is present.

▶ Crude RR estimator is biased.

▶ Adjusted summary estimator, controlling for confounding,
must be used.

▶ These estimators are weighted averages of stratum-speci�c
estimators.
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Adjusted summary estimators

Di�erent weighting methods:

▶ maximum likelihood (ML)

▶ weighted least squares (WLS)

▶ Mantel-Haenszel (MH) weights

▶ (direct) standardization by external standard population (CMF)

▶ standardized morbidity ratio (SMR)

Preferred method in analysis: ML Useful method in simple
descriptive: CMF / SMR
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Gray hair & cancer

> D <- c( 6, 11, 60, 19)
> Y <- c(10, 20, 15, 5)
> age <- factor(c("Young", "Young", "Old", "Old"))
> hair <- factor(c("Gray", "Col", "Gray", "Col"))
> data.frame(D, Y, age, hair)

D Y age hair
1 6 10 Young Gray
2 11 20 Young Col
3 60 15 Old Gray
4 19 5 Old Col
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Gray hair & cancer

Crude and adjusted risk estimate by Poisson model:

> library(Epi)
> ci.exp(glm(cbind(D, Y) ~ hair , family = poisreg))

exp(Est.) 2.5% 97.5%
(Intercept) 1.2 0.8390232 1.716281
hairGray 2.2 1.4288756 3.387279

> ci.exp(glm(cbind(D, Y) ~ hair + age, family = poisreg))

exp(Est.) 2.5% 97.5%
(Intercept) 3.7782269 2.49962653 5.7108526
hairGray 1.0606186 0.67013527 1.6786339
ageYoung 0.1470116 0.08418635 0.2567211

Strati�ed analysis (strat) 115/ 154



Case-control study of

Alcohol and oesophageal cancer

▶ Tuyns et al. 1977, see Breslow & Day 1980,
▶ 205 incident cases,
▶ 770 unmatched population controls,
▶ Risk factor: daily consumption of alcohol.
▶ Crude summary:

Exposure
≥ 80 g/d Cases Controls OR

yes 96 109 5.64
no 104 666
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Crude analysis of CC-data

> Ca <- c( 96, 104)
> Co <- c(109, 666)
> Ex <- factor(c(">80", "<80"))
> data.frame(Ca, Co, Ex)

Ca Co Ex
1 96 109 >80
2 104 666 <80

> m0 <- glm(cbind(Ca, Co) ~ Ex, family = binomial)
> round(ci.exp(m0), 2)

exp(Est.) 2.5% 97.5%
(Intercept) 0.16 0.13 0.19
Ex>80 5.64 4.00 7.95

The odds-ratio of oesophageal cancer, comparing high vs. low
alcohol consumption is 5.64(4.00; 7.95)
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Strati�cation by age
Exposure

Age ≥ 80 g/d Cases Controls EOR

25-34 yes 1 9 ∞
no 0 106

35-44 yes 4 26 5.05
no 5 164

45-54 yes 25 29 5.67
no 21 138

55-64 yes 42 27 6.36
no 34 139

65-74 yes 19 18 2.58
no 36 88

75-84 yes 5 0 ∞
no 8 31

NB! Selection of controls: ine�cient study
Should have employed strati�ed sampling by age.

Strati�ed analysis (strat) 118/ 154



Strati�ed analysis

> ca <- c(1, 0, 4, 5, 25, 21, 42, 34, 19, 36, 5, 8)
> co <- c(9, 106, 26, 164, 29, 138, 27, 139, 18, 88, 0, 31)
> alc <- rep(c(">80", "<80"), 6)
> age <- factor(rep(seq(25, 75, 10), each = 2))
> data.frame(ca, co, alc, age)

ca co alc age
1 1 9 >80 25
2 0 106 <80 25
3 4 26 >80 35
4 5 164 <80 35
5 25 29 >80 45
6 21 138 <80 45
7 42 27 >80 55
8 34 139 <80 55
9 19 18 >80 65
10 36 88 <80 65
11 5 0 >80 75
12 8 31 <80 75
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Strati�ed analysis

The �age:� operator produces a separate alc-OR for each age class
(in the absence of a main e�ect of alc):

> mi <- glm(cbind(ca, co) ~ age + age:alc, family = binomial)
> round(ci.exp(mi), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.000000e+00 0.000 Inf
age35 2.345328e+10 0.000 Inf
age45 1.170624e+11 0.000 Inf
age55 1.881661e+11 0.000 Inf
age65 3.147003e+11 0.000 Inf
age75 1.985206e+11 0.000 Inf
age25:alc>80 8.547416e+10 0.000 Inf
age35:alc>80 5.046000e+00 1.272 20.025
age45:alc>80 5.665000e+00 2.799 11.464
age55:alc>80 6.359000e+00 3.449 11.726
age65:alc>80 2.580000e+00 1.216 5.475
age75:alc>80 1.755246e+11 0.000 Inf

Strati�ed analysis (strat) 120/ 154



Strati�ed analysis

. . . only the relevant parameters:

> round(ci.exp(mi, subset = "alc"), 3)

exp(Est.) 2.5% 97.5%
age25:alc>80 8.547416e+10 0.000 Inf
age35:alc>80 5.046000e+00 1.272 20.025
age45:alc>80 5.665000e+00 2.799 11.464
age55:alc>80 6.359000e+00 3.449 11.726
age65:alc>80 2.580000e+00 1.216 5.475
age75:alc>80 1.755246e+11 0.000 Inf

> round(pmin(ci.exp(mi, subset = "alc"), 50), 2)

exp(Est.) 2.5% 97.5%
age25:alc>80 50.00 0.00 50.00
age35:alc>80 5.05 1.27 20.02
age45:alc>80 5.67 2.80 11.46
age55:alc>80 6.36 3.45 11.73
age65:alc>80 2.58 1.22 5.47
age75:alc>80 50.00 0.00 50.00

▶ The age-speci�c ORs are quite variable
▶ Random error in some of them apparently large
▶ No clear pattern in the interaction
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Oesophageal cancer CC � e�ect modi�cation?

> ma <- glm(cbind(ca, co) ~ age + alc, family = binomial)
> anova(mi, ma, test = "Chisq")

Analysis of Deviance Table

Model 1: cbind(ca, co) ~ age + age:alc
Model 2: cbind(ca, co) ~ age + alc

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 0 0.000
2 5 11.041 -5 -11.041 0.05057 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

▶ Some evidence against homogeneity,
but no clear pattern in the interaction (e�ect modi�cation)

▶ Extract a common e�ect from the reduced model
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Oesophageal cancer CC � linear e�ect modi�cation

> ml <- glm(cbind(ca, co) ~ age + alc * as.integer(age), family = binomial)
> round(ci.exp( ml, subset="alc"), 3)

exp(Est.) 2.5% 97.5%
alc>80 8.584 1.961 37.579
alc>80:as.integer(age) 0.883 0.609 1.279

> ma <- glm(cbind(ca, co) ~ age + alc, family = binomial)
> anova(mi, ml, ma, test = "Chisq")[1:3, 1:5]

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 0 0.000
2 4 10.609 -4 -10.6093 0.03132 *
3 5 11.041 -1 -0.4319 0.51107
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Evidence against linear interaction (OR decreasing by age)
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Oesophageal cancer CC � e�ect modi�cation?

> mn <- glm(cbind(ca, co) ~ alc , family = binomial )
> round(ci.exp(mn, subset = "alc" ), 2)

exp(Est.) 2.5% 97.5%
alc>80 5.64 4 7.95

> ma <- glm(cbind(ca, co) ~ age + alc, family = binomial )
> round(ci.exp(ma, subset = "alc" ), 2)

exp(Est.) 2.5% 97.5%
alc>80 5.31 3.66 7.7

▶ No clear interaction (e�ect modi�cation) detected

▶ Crude OR: 5.64(4.00; 7.95)

▶ Adjusted OR: 5.31(3.66; 7.70)

▶ Note: No test for confounding exists.
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Regression modeling

▶ Limitations of strati�ed analysis

▶ Log-linear model for rates

▶ Additive model for rates

▶ Model �tting

▶ Problems in modeling
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Limitations of strati�ed analysis

▶ Multiple strati�cation:
▶ many strata with sparse data
▶ loss of precision

▶ Continuous risk factors must be categorized
▶ loss of precision
▶ arbitrary (unreasonable) assumptions about e�ect shape

▶ More than 2 exposure categories:
▶ Pairwise comparisons give inconsistent results
▶ (non)Linear trends not easily estimated
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Limitations

▶ Joint e�ects of several risk factors di�cult to quantify

▶ Matched case-control studies:
di�cult to allow for confounders & modi�ers not matched on.

These limitations may be overcome to some extent by regression
modeling.

Key concept: statistical model
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Log-linear model for rates

Assume that the theoretical rate λ depends on
explanatory variables or regressors X, Z (& U , V , . . . )
according to a log-linear model

log
(
λ(X,Z, . . . )

)
= α + βX + γZ + . . .

Equivalent expression, multiplicative model:

λ(X,Z, . . . ) = exp(α + βX + γZ + . . . )

= λ0 ρ
XτZ · · ·
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Log-linear model

Model parameters

α = log(λ0) = intercept, log-baseline rate λ0

(i.e. rate when X = Z = · · · = 0)

β = log(ρ) = slope,
change in log(λ) for unit change in X,
adjusting for the e�ect of Z (& U, V, . . . )

eβ = ρ = rate ratio for unit change in X.

No e�ect modi�cation w.r.t. rate ratios assumed in this model.
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Lung cancer incidence,

asbestos exposure and smoking

Dichotomous explanatory variables coded:

▶ X = asbestos: 1: exposed, 0: unexposed,

▶ Z = smoking: 1: smoker, 0: non-smoker

Log-linear model for theoretical rates

log
(
λ(X,Z)

)
= 2.485 + 1.609X + 2.303Z
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Log-linear model: Variables

Rates Variables

X Z
Asbestos Smoke Non-sm Smoke Non-sm Smoke Non-sm

exposed 600 60 1 1 1 0
unexposed 120 12 0 0 1 0

Note: There will be 4 lines in the dataset, one for each combination
of exposure and smoking
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Lung cancer, asbestos and smoking

Entering the data:
� note that the data are arti�cial assuming the no. of PY among
asbestos exposed is 1/4 of that among non-exposed

> D <- c(150, 15, 120, 12) # cases
> Y <- c( 25, 25, 100, 100) / 100 # PY (100,000s)
> asb <- c(1, 1, 0, 0) # Asbestos exposure
> smk <- c(1, 0, 1, 0) # Smoking
> cbind(D, Y, asb, smk)

D Y asb smk
[1,] 150 0.25 1 1
[2,] 15 0.25 1 0
[3,] 120 1.00 0 1
[4,] 12 1.00 0 0
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Lung cancer, asbestos and smoking

▶ Regression modeling

▶ Multiplicative (default) Poisson model

▶ 2 equivalent approaches
▶ D response, log(Y) o�set (mostly used in the literature)
▶ cbind(D,Y) response, family=poisreg
▶ . . . the latter approach also useful for additive models
▶

> library( Epi )
> mo <- glm( D ~ asb + smk, family = poisson, offset = log(Y))
> mm <- glm(cbind(D, Y) ~ asb + smk, family = poisreg)
> ma <- glm(cbind(D, Y) ~ asb + smk, family = poisreg(link = identity))
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Lung cancer, asbestos and smoking

Summary and extraction of parameters:

> summary(mo)

Call:
glm(formula = D ~ asb + smk, family = poisson, offset = log(Y))

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.4849 0.2031 12.23 <2e-16 ***
asb 1.6094 0.1168 13.78 <2e-16 ***
smk 2.3026 0.2018 11.41 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 4.1274e+02 on 3 degrees of freedom
Residual deviance: -1.5987e-14 on 1 degrees of freedom
AIC: 28.37

Number of Fisher Scoring iterations: 3

> ci.exp(mo)

exp(Est.) 2.5% 97.5%
(Intercept) 12 8.059539 17.867026
asb 5 3.977142 6.285921
smk 10 6.732721 14.852836

> ci.exp(mo, Exp = FALSE)

Estimate 2.5% 97.5%
(Intercept) 2.484907 2.086856 2.882957
asb 1.609438 1.380563 1.838312
smk 2.302585 1.906979 2.698191

> ci.exp(mm, Exp = FALSE)

Estimate 2.5% 97.5%
(Intercept) 2.484907 2.086856 2.882957
asb 1.609438 1.380563 1.838312
smk 2.302585 1.906979 2.698191

Parameters are the same for the two modeling approaches.
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Summary and extraction of parameters I

> ci.exp(mo)

exp(Est.) 2.5% 97.5%
(Intercept) 12 8.059539 17.867026
asb 5 3.977142 6.285921
smk 10 6.732721 14.852836

> ci.exp(mo, Exp = FALSE)

Estimate 2.5% 97.5%
(Intercept) 2.484907 2.086856 2.882957
asb 1.609438 1.380563 1.838312
smk 2.302585 1.906979 2.698191

> ci.exp(mm, Exp = FALSE)

Estimate 2.5% 97.5%
(Intercept) 2.484907 2.086856 2.882957
asb 1.609438 1.380563 1.838312
smk 2.302585 1.906979 2.698191
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Summary and extraction of parameters II
Parameters are the same for the two modeling approaches.
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Interpretation of parameters I

> round( cbind( ci.exp( mm, Exp=F ),
+ ci.exp( mm ) ), 3 )

Estimate 2.5% 97.5% exp(Est.) 2.5% 97.5%
(Intercept) 2.485 2.087 2.883 12 8.060 17.867
asb 1.609 1.381 1.838 5 3.977 6.286
smk 2.303 1.907 2.698 10 6.733 14.853

α = 2.485 = log(12), log of baseline rate,

β = 1.609 = log(5), log of rate ratio ρ = 5 between exposed and
unexposed for asbestos

γ = 2.303 = log(10), log of rate ratio τ = 10 between smokers
and non-smokers.
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Interpretation of parameters II
Rates for all 4 asbestos/smoking combinations can be recovered from
the above formula.
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Log-linear model: Estimated rates

Rates Parameters

Asbestos Smokers Non-smokers Smokers Non-smokers

exposed 600 60 α + γ + β α + β
unexposed 120 12 α + γ α

Rate ratio 5 5 exp(β) exp(β)
Rate di�erence 480 48 β β
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Log-linear model

Model with e�ect modi�cation (two regressors only)

log
(
λ(X,Z)

)
= α + βX + γZ + δXZ,

equivalently

λ(X,Z) = exp
(
α + βX + γZ + δXZ

)
= λ0ρ

XτZθXZ

where α is as before, but

β = log-rate ratio ρ for a unit change in X when Z = 0,

γ = log-rate ratio τ for a unit change in Z when X = 0
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Interaction parameter

δ = log(θ), interaction parameter, describing
e�ect modi�cation

For binary X and Z we have

θ = eδ =
λ(1, 1)/λ(0, 1)

λ(1, 0)/λ(0, 0)
,

i.e. the ratio of relative risks associated with X between the two
categories of Z.
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Log-linear model: Estimated rates

Rates Parameters

Asbestos Smokers Non-smokers Smokers Non-smokers

exposed 600 60 α + γ + β + δ α + β
unexposed 120 12 α + γ α

Rate ratio 5 5 log(β + δ) log(β)
Rate di�erence 480 48 β + δ β
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Lung cancer, asbestos and smoking

> mi <- glm(cbind(D, Y) ~ asb + smk + I(asb*smk), family = poisreg)
> round(cbind( ci.exp(mi),
+ rbind(ci.exp(mm), NA)), 3)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
(Intercept) 12 6.815 21.130 12 8.060 17.867
asb 5 2.340 10.682 5 3.977 6.286
smk 10 5.524 18.101 10 6.733 14.853
I(asb * smk) 1 0.451 2.217 NA NA NA

▶ No interaction on the multiplicative scale:
▶ interaction parameter is 1,
▶ asbestos and smoking e�ects are the unchanged,
▶ but SEs are larger because they refer to RRs for levels X = 0

and Z = 0 respectively and not both levels jointly
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Additive model for rates

General form with two regressors

λ(X,Z) = α + βX + γZ + δXZ

α = λ(0, 0) is the baseline rate,

β = λ(x+ 1, 0)− λ(x, 0), rate di�erence for
unit change in X when Z = 0

γ = λ(0, z + 1)− λ(0, z), rate di�erence for
unit change in Z when X = 0,
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Additive model

δ = interaction parameter.

▶ For binary X,Z:

δ = [λ(1, 1)− λ(1, 0)]− [λ(0, 1)− λ(0, 0)]

▶ If no e�ect modi�cation present, δ = 0, and

β = rate di�erence for unit change in X
for all values of Z

γ = rate di�erence for unit change in Z
for all values of X,
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Example: Additive model

> mai <- glm( cbind(D,Y) ~ asb + smk + asb*smk, family=poisreg(link=identity) )
> round( ci.exp( mai, Exp=FALSE, pval=TRUE ), 4 )

Estimate 2.5% 97.5% P
(Intercept) 12 5.2105 18.7895 0.0005
asb 48 16.8865 79.1135 0.0025
smk 108 85.4817 130.5183 0.0000
asb:smk 432 328.8083 535.1917 0.0000

A very clear interaction (e�ect modi�cation)

Regression models (regress) 146/ 154



λ(X,Z) = α + βX + γZ + δXZ = 12 + 48X + 108Z + 432XZ

α = 12, baseline rate, i.e. that among non-smokers unexposed to
asbestos (reference group),

β = 48 (60− 12), rate di�erence between asbestos exposed and
unexposed among non-smokers only,

γ = 108 (= 120− 12), rate di�erence between smokers and
non-smokers among only those unexposed to asbestos

δ = excess of rate di�erence between smokers and non-smokers
among those exposed to asbestos:
δ = (600− 120)− (60− 12) = 432
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Model �tting

Output from computer packages will give:

▶ parameter estimates and SEs,
▶ goodness-of-�t statistics,
▶ �tted values,
▶ residuals,...

May be di�cult to interpret!

Model checking & diagnostics:

▶ assessment whether model assumptions seem reasonable and
consistent with data

▶ involves �tting and comparing di�erent models
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Problems in modeling

▶ Simple model chosen may be far from the �truth�.

▶ possible bias in e�ect estimation, � underestimation of SEs.

▶ Multitude of models �t well to the same data
which model to choose?

▶ Software easy to use:

▶ . . . easy to �t models blindly

▶ . . . possibility of unreasonable results
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Modeling

▶ Modeling should not substitute, but complement crude analyses:

▶ Crude analyses can be seen as initial modeling steps:
one or two e�ects in the model

▶ Final model for used for reporting developed mainly from subject
matter knowledge, not data-driven

▶ Adequate training and experience required.

▶ Ask help from a professional statistician!

▶ Collaboration is the keyword.
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Conclusion
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Nordic Summerschool of Cancer Epidemiology
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Concluding remarks

Epidemiologic study is a

Measurement excercise

Target is a parameter(s) of interest, like

▶ incidence rate
▶ rate ratio
▶ rate di�erence
▶ relative risk
▶ di�erence in prevalences

Result: Estimate of the parameter.
Conclusion (concl-analysis) 151/ 154



Estimation and its errors

Like errors in measurement, estimation of parameter is prone to error:

estimate = true parameter value

+ systematic error (bias)

+ random error

▶ confounding, non-comparability,

▶ measurement error, misclassi�cation,

▶ non-response, loss to follow-up,
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Recommendations for analysis and reporting

▶ de-emphasize inferential statistics in favor of pure data
decriptors: graphs and tables

▶ adopt statistical techniques based on realistic probability models

▶ subject the results of these to in�uence and sensitivity analysis.
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Conclusion

�In presenting and discussing the results of an observational study the
greatest emphasis should be placed on bias and confounding.�
(Brennan and Croft 1994)

Motto (Campbell & Machin 1983):

STATISTICS is about

COMMON SENSE and

GOOD DESIGN!
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