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0.1 Preface 1

0.1 Preface

This workshop will provide an overview of the concepts in the title with a special view to
generating results (numbers and graphs) using R.

By the title of the workshop it will (hopefully) be relevant for persons that are working
with follow-up data over time, be that clinical trials, cohort studies or register-based
studies.

e The target audience is (young) statisticians and epidemiologists working in (diabetes)
epidemiological research

e The prerequisites are

a basic knowledge of R,

a working installation of R(latest version, 4.4.1)

a working installation of the latest version of the Epi package (2.57)

a working installation of the latest version of the popEpi package (0.4.12)

some epidemiological practice

AR ANl

a basic knowledge of elementary biostatistics (you should know what a
confidence interval is)

e The format of the workshop will be short lectures closely aligned with the topics in
the exercises. The exercises will be run in chunks between the short lectures.

e The mood of the workshop will be relaxed, encouraging participants to ask questions
and bring forward problems they consider relevant for the workshop. Fortunately,
there will be the rest of the EDEG to interact.

Exercises are given including substantial parts of the solutions. You can get the exercise
code chunks from the workshop website
http://bendixcarstensen.com/AdvCoh/courses/Um-2025

This workshop draws to some extent on the content of the book “Epidemiology with R”
[?], (http://bendixcarstensen.com/EwR), but in particular on the draft book (which by
no means is sure ever to appear as a book) “Practical multistate modeling with R and
Epi:Lexis”. The former is available through Oxford University Press, the latter as a draft
(updated at unpredictable times) as http://bendixcarstensen.com/MSbook.pdf (2004

pages. .. ).


http://bendixcarstensen.com/AdvCoh/courses/Um-2025
http://bendixcarstensen.com/EwR
http://bendixcarstensen.com/MSbook.pdf
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Program of workshop

Each item on the program is a short(ish) lecture followed by a computer practical in R.
The timing of the items is approximate.

The purpose of the workshop is to provide a hands-on experience of computing some the
most common quantities in follow-up studies (and some not so common).

Saturday 17 May 2025

09:00-09:10
09:10-10:00

10:00-11:00
11:10-11:40
11:40-12:20
12:20-13:45
13:45-14:00

Welcome and introdiction

Survival and mortality rates

Kaplan-Meier survival, mortality function, parametric survival
function

Expected lifetime (RMST)

Cause specific rates

Lunch

Competing risks

Wrap-up and questions




Chapter 1

Survival and mortality
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library(Epi)
library(popEpi)
library(survival)
clear()
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> # just until 2.57 comes out
> glmLexis <- glm.Lexis

1.1 Survival

Survival analyses is about evaluation of variables that influence the survival of persons.
Most likely age or disease duration.

As it happens, the data that underlies survival analysis will normally be derived from a
set of dates from registers, trials or cohort studies. For example date of diabetes, date of
death and date of last follow-up (not all persons die in the study period).

So what we see is how long persons have been at risk of dying, and if they die outcome:
(d,y) of event (death, d € {0,1}), and time at risk (y).

1.2 Diabetes data

Now take a look at the date set DMlate, a random sample of diabetes patients diagnosed
between 1995 and 2010 (incl.)
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> data(DMlate)
> hist(DMlate$dodm, breaks = seq(1995, 2010, 1/4), col = 1)
> abline(v = 1995:2010, col = "red")

For convenience take a random subsample of 1000:

> set.seed(19540803)
> DMlate <- DMlate[sample(1:nrow(DMlate), 1000), ]
> str(DMlate)

'data.frame': 1000 obs. of 7 variables:

sex : Factor w/ 2 levels "M","F": 2112111212 ...
dobth: num 1969 1960 1923 1922 1953 ...

dodm : num 2003 2005 2007 1998 2008 ...

dodth: num NA NA NA 1999 2009 ...

dooad: num NA 2005 2007 NA NA ...

doins: num 2003 NA NA NA NA ...

dox : num 2010 2010 2010 1999 2009 ...

P P P H P BHH

The dates in DMlate are coded as fractional years, so for example 1 January 2005 is coded
2005.0 and 1 July 2007 is coded 2007.495. It’s more convenient to have person-time in
units of years, and located at an understandable place on the time axis.

1.3 Survival probability

If we want to see how diabetes patients survived after diagnosis of diabetes we need the
survival time (risk time), dox — dodm and the indicator of whether a person died at exit,
lis.na(dodth).
From this we will want the probability that a person survives a given time t as a function
of t, say:
S(t) = P{alive at time t}

We can directly estimate the survival as a function of time since diagnosis of diabetes.
Note that the term “survival” only makes sense if we define an origin, and we then
measure the risk time as the time since that origin. So here we defined the origin as the
date of diabetes diagnosis, and ¢ means “time since the origin”.

The survival funtion can be estimated by the Kaplan-Meier estimator using survfit
from the survival package. Here we use the time at diagnosis of diabetes as the origin:

> sf <- survfit(Surv(dox - dodm, !is.na(dodth)) ~ 1, data = DMlate)
> sf

Call: survfit(formula = Surv(dox - dodm, !is.na(dodth)) ~ 1, data = DMlate)
n events median 0.95LCL 0.95UCL
[1,] 1000 231 NA NA NA

> plot(sf)
> abline(h = 0.5, 1ty = 3)

The curve is a step-curve, although it would seem a more natural assumption that S(t) was
a smooth curve.
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Figure 1.1: Kaplan-Meier estimator of survival function for Danish diabetes patients.
. ./graph/surv0-KM

1.4 Mortality

The data we get from a register, cohort or clinical trial is really mortality data: events
(numerator) and risk time (denominator), so it would seem more natural to start with
estimation of mortality rates:

A(t) = }lllirtl] P{death in (¢,t + h)|alive at t}/h

It is a bit more complicated to estimate this because it requires statistical modeling of the
effect of ¢ on the mortality rate. But let’s begin with the simplest case:

1.4.1 Constant mortality

If we make the assumption that the mortality is constant, the estimator of the mortality
A(t) = A is just the ratio of the number of deaths to the amount of risk time:
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> (mort <- with(DMlate, sum(!is.na(dodth)) / sum(dox - dodm)))
[1] 0.04279325

in this case measured in cases per year, or 4.6 % per year. The relationship between
survival since some origin and the mortality rate is

S(t) = exp(— /Ot)\(u) du)

which, if A(u) = A becomes
S(t) = exp(—At)

so we can put this on top of the Kaplan-Meier curve:

> plot(sf)

> abline(h = 0.5, col = "gray")

>t = seq(0, 15, 0.1)

> lines(t, exp(-mort * t), col = "red", lwd =2)

We see that it is not a good approximation to the KM estimator to assume constant
mortality, we obviously need to allow mortality to depend on time.

1.4.2 Time-dependent mortality

Note that when we allow mortality to depend on time, we are using time (that is time since
diagnosis) as an explanatory variable.

1.4.2.1 Subdividing follow-up

This can be modeled by dividing the timescale in very small intervals, so that the
assunption of constant mortality within each interval is tenable. And then assume that
mortality varies smoothly between the intervals.

A simple way of doing this is to use the Lexis machinery in the Epi package:

> Lx <- Lexis(exit = list(tfd = dox - dodm),

+ exit.status = factor(!is.na(dodth),
+ labels = c("DM", "Dead")),
+ data = DMlate)

NOTE: entry.status has been set to "DM" for all.
NOTE: entry is assumed to be O on the tfd timescale.

CODE EXPLAINED: The Lexis function takes the input data set (here DMlate) and adds
information in the form of a few variables and attributes. In the Epi package is a vignette
explaining all the features in detail, try vignette(package = "Epi").

The exit argument defines the time of exit from the study on some time scale, in this
case time from diabetes, tfd, assuming that entry is at 0 on this timescale.

exit.status defines the status of each person at exit, in this case DM if no date of
death (dodth) is available otherwise Dead. The labels= refer to the order of the values of
lis.na(dodth) where R defines FALSE < TRUE.
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Figure 1.2: Kaplan-Meier estimator of survival of Danish diabetes patients. The red curve
is from the model with constant mortality (exponentially distributed survival times).
. ./graph/surv0-KMexp

Lexis is talkative and tells about the assumptions made.
We can get a summary of the status and follow-up in the Lexis object:

> summary (Lx)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 769 231 1000 231 5398.05 1000

and get a nice print of the 5 first persons

> print(Lx[1:5,], nd = 2)

lex.id tfd lex.dur lex.Cst lex.Xst sex dobth dodm dodth dooad doins dox
1 0 7.08 DM DM F 1969.22 2002.92 NA NA 2003.01 2010.00
2 0 4.79 DM DM M 1959.55 2005.21 NA 2005.22 NA 2010.00

3 0 3.00 DM DM M 1923.07 2007.00 NA 2007.00 NA 2010.00
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4 0 1.05 DM Dead F 1921.69 1998.24 1999.29 NA NA 1999.29
5 0 0.89 DM Dead M 1952.51 2008.12 2009.01 NA NA 2009.01

The follow-up is still with one record per person, the time at the beginning of the interval
is tfd = 0 for all persons, and the length of the follow-up intervals is in lex.dur:

> sL <- splitLexis(Lx, seq(0, 15, 0.5))
> subset(Lx, lex.id Jin) c(2,4))

lex.id tfd lex.dur lex.Cst lex.Xst sex dobth dodm dodth dooad doins dox
2 0 4.79 DM DM M 1959.55 2005.21 NA 2005.22 NA 2010.00
4 0 1.05 DM Dead F 1921.69 1998.24 1999.29 NA NA 1999.29

> subset(sL, lex.id /inj c(2,4))

lex.id tfd lex.dur lex.Cst lex.Xst sex dobth dodm dodth dooad doins dox
2 0.0 0.50 DM DM M 1959.55 2005.21 NA 2005.22 NA 2010.00
2 0.5 0.50 DM DM M 1959.55 2005.21 NA 2005.22 NA 2010.00
2 1.0 0.50 DM DM M 1959.55 2005.21 NA 2005.22 NA 2010.00
2 1.5 0.50 DM DM M 1959.55 2005.21 NA 2005.22 NA 2010.00
2 2.0 0.50 DM DM M 1959.55 2005.21 NA 2005.22 NA 2010.00
2 2.5 0.50 DM DM M 1959.55 2005.21 NA 2005.22 NA 2010.00
2 3.0 0.50 DM DM M 1959.55 2005.21 NA 2005.22 NA 2010.00
2 3.5 0.50 DM DM M 1959.55 2005.21 NA 2005.22 NA 2010.00
2 4.0 0.50 DM DM M 1959.55 2005.21 NA 2005.22 NA 2010.00
2 4.5 0.29 DM DM M 1959.55 2005.21 NA 2005.22 NA 2010.00
4 0.0 0.50 DM DM F 1921.69 1998.24 1999.29 NA NA 1999.29
4 0.5 0.50 DM DM F 1921.69 1998.24 1999.29 NA NA 1999.29
4 1.0 0.05 DM Dead F 1921.69 1998.24 1999.29 NA NA 1999.29

We see that we now have more intervals for each person, but the total follow-up time for
each person (in lex.dur) is the same. Also the number of deaths (lex.Xst==TRUE) is the
same for each person (namely 0 for person 2, and 1 for person 4).

1.4.2.2 Modeling mortality

We can now model the mortality rates as a function of the timescale tfd, that is the time
where the follow-up is. This is done by a spline function:

> m0 <- glmLexis(sL, ~ Ns(tfd, knots = c(0,1,2,4,7,10)))

stats::glm Poisson analysis of Lexis object sL with log link:

Rates for the transition:
DM->Dead

We now have a model for the mortality rates as a function of tfd, so we can make a
prediction of the mortality at any set of values of tfd. ci.pred also produces confidence
intervals:

> nd <- data.frame(tfd = seq(0, 15, 0.1))

> pm <- ci.pred(mO, nd)
> head(cbind (nd$tfd, pm))

Estimate 2.5% 97.5%
1 0.0 0.05157788 0.03569002 0.07453843
2 0.1 0.05193715 0.03778322 0.07139327
3 0.2 0.05227126 0.03959602 0.06900403
4 0.3 0.05255191 0.04090424 0.06751632
5 0.4 0.05275030 0.04153939 0.06698687
6 0.5 0.05283753 0.04149627 0.06727847
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These are mortality rates per 1 year (because lex.dur is in years), but we would want
them in units per 100 person-years (% per year), so we multiply by 100:

> matshade (nd$tfd, pm * 100, plot = TRUE,

+ ylim = ¢(0, 10), yaxs = "i",

+ xlab = "Time since diabetes (years)",
+ ylab = "Mortality rate (J, / year)")

10

Mortality rate (% / year)

0— T T |
0 5 10 15

Time since diabetes (years)

Figure 1.3: Spline model for mortality among Danish diabetes patients.
../graph/survO-mort

1.4.2.3 Parametric survival function

We would also want to see the transformation to the survival function, which is
straight-forward. Confidence limits for it is however not so easy, so there is a function that
does this, ci.surv
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> plot(sf, yaxs = "i")
> abline(h = 0.5)
> ps <- ci.surv(mO, nd)

NOTE: interval length chosen from as tfd[2] - tfd[1]

> matshade (nd$tfd, ps, col = "red", lwd = 2,

+ ylim = c(0, 1), yaxs = "i",

"Time since diabetes (years)",
"Survival probability")

+ xlab
+ ylab

0.4+

0.2

0.0— T T |

Figure 1.4: Kaplan-Meier estimator of (black) overlaid with a parametric estimator based on
a spline model for mortality. W . ./graph/surv0-KMmod

e now see a much closer agreement between the curve, but also a biologically more credible
curve. Obtained by:

e define follow-up as Lexis
e split follow-up in small intervals
e use glmLexis to model mortality as function of time
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e use ci.pred to get mortality rates—mnot available using K-M
e use ci.surv to get survival function—close to K-M, but biologically credible
(continuous function)
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