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Survival data

Persons enter the study at some date.

Persons exit at a later date, either dead or alive.

Observation:
Actual time span to death (�event�)
or

Some time alive (�at least this long�)
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Examples of time-to-event measurements

▶ Time from diagnosis of cancer to death.

▶ Time from randomisation to death in a cancer clinical trial

▶ Time from HIV infection to AIDS.

▶ Time from marriage to 1st child birth.

▶ Time from marriage to divorce.

▶ Time to re-o�ending after being released from jail

all of these have a starting point (�since�)
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Each line a person

Each blob a death

Study ended at 31
Dec. 2003
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Ordered by date of
entry

Most likely the
order in your
database.
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Timescale changed
to
�Time since
diagnosis�.

Time since diagnosis
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Patients ordered by
survival time.

Time since diagnosis
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Survival times
grouped into bands
of survival.

Year of follow−up
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Patients ordered by
survival status
within each band.

Year of follow−up
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Survival after Cervix cancer
Stage I Stage II

Year N D L N D L

1 110 5 5 234 24 3
2 100 7 7 207 27 11
3 86 7 7 169 31 9
4 72 3 8 129 17 7
5 61 0 7 105 7 13
6 54 2 10 85 6 6
7 42 3 6 73 5 6
8 33 0 5 62 3 10
9 28 0 4 49 2 13
10 24 1 8 34 4 6

Life-table estimator of death probability: D/(N − L/2)

Estimated risk of death in year 1 for Stage I women is 5/107.5 = 0.0465

Estimated 1 year survival is 1− 0.0465 = 0.9535
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Survival after Cervix cancer

Stage I Stage II

Year N D L N D L

1 110 5 5 234 24 3
2 100 7 7 207 27 11
3 86 7 7 169 31 9

Estimated risk in year 1 for Stage I women is 5/107.5 = 0.0465
Estimated risk in year 2 for Stage I women is 7/96.5 = 0.0725
Estimated risk in year 3 for Stage I women is 7/82.5 = 0.0848

Estimated 1 year survival is 1− 0.0465 = 0.9535
Estimated 2 year survival is 0.9535× (1− 0.0725) = 0.8843
Estimated 3 year survival is 0.8843× (1− 0.0848) = 0.8093

This is the life-table estimator of the survival curve.
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▶ no need to use 1 year intervals: 1 day intervals could be used

▶ very small intervals will leave at most 1 censoring or 1 death in
each

▶ interval with 1 death and nt persons at risk:
P {Death} = 1/nt

▶ corresponding survival probability 1− 1/nt = (nt − 1)/nt

▶ interval with 0 deaths has survival probability 1

▶ multiply these over times with event to get survival function:

S(t) =
∏

τ < t with event

(nτ − 1)/nτ

. . . you have the Kaplan-Meier estimator
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Survival after diabetes

computations

Survival, mortality,
competing risks and
expected lifetime
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The DMlate data set

Get data, de�ne age as age at dodm, omit if dox=dodm

> data(DMlate)
> DM <- mutate(DMlate, age = dodm - dobth)
> DM <- subset(DM, dox > dodm)
> head(DM)

sex dobth dodm dodth dooad doins dox age
50185 F 1940.256 1998.917 NA NA NA 2009.997 58.66119
307563 M 1939.218 2003.309 NA 2007.446 NA 2009.997 64.09035
294104 F 1918.301 2004.552 NA NA NA 2009.997 86.25051
336439 F 1965.225 2009.261 NA NA NA 2009.997 44.03559
245651 M 1932.877 2008.653 NA NA NA 2009.997 75.77550
216824 F 1927.870 2007.886 2009.923 NA NA 2009.923 80.01643

> str(DM)

'data.frame': 9996 obs. of 8 variables:
$ sex : Factor w/ 2 levels "M","F": 2 1 2 2 1 2 1 1 2 1 ...
$ dobth: num 1940 1939 1918 1965 1933 ...
$ dodm : num 1999 2003 2005 2009 2009 ...
$ dodth: num NA NA NA NA NA ...
$ dooad: num NA 2007 NA NA NA ...
$ doins: num NA NA NA NA NA NA NA NA NA NA ...
$ dox : num 2010 2010 2010 2010 2010 ...
$ age : num 58.7 64.1 86.3 44 75.8 ...
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Survival function: KM

Use survfit to construct the Kaplan-Meier estimator of overall
survival:

> ?Surv
> ?survfit

> km <- survfit(Surv(dox - dodm, !is.na(dodth)) ~ 1, data = DM)
> km

Call: survfit(formula = Surv(dox - dodm, !is.na(dodth)) ~ 1, data = DM)

n events median 0.95LCL 0.95UCL
[1,] 9996 2499 14.5 14.2 NA

> # summary(km) # very long output
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We can plot the survival curve
�this is the default plot for a survfit object:

> plot(km)

What is the median survival? What does it mean?
Explore if survival patterns between men and women are di�erent:

> kms <- survfit(Surv(dox - dodm, !is.na(dodth)) ~ sex, data = DM)
> kms

Call: survfit(formula = Surv(dox - dodm, !is.na(dodth)) ~ sex, data = DM)

n events median 0.95LCL 0.95UCL
sex=M 5183 1343 13.8 12.9 NA
sex=F 4813 1156 14.8 14.4 NA

Exercises 1, 2
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Men have worse survival than women, and women are a bit older at
dodm:

> with(DM, tapply(dodm - dobth, sex, mean))

M F
60.28980 62.45266

Signi�cant di�erence in survival between men and women

> survdiff(Surv(dox - dodm, !is.na(dodth)) ~ sex, data = DM)

Call:
survdiff(formula = Surv(dox - dodm, !is.na(dodth)) ~ sex, data = DM)

N Observed Expected (O-E)^2/E (O-E)^2/V
sex=M 5183 1343 1271 4.08 8.31
sex=F 4813 1156 1228 4.22 8.31

Chisq= 8.3 on 1 degrees of freedom, p= 0.004

What is the null hypothesis tested here?
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Rates and rate-ratios

▶ Occurrence rate:

λ(t) = limh→0 P {event in (t, t+ h] | alive at t} /h

�measured in probability per time: time−1

▶ observation in a survival study: (exit status, time alive)

▶ empirical rate (d, y) = (deaths, time)
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Rates and rate-ratios: Simple Cox model

Now explore how sex and age (at diagnosis) in�uence the
mortality�note that in a Cox-model we are addressing the mortality
rate and not the survival:

> c0 <- coxph(Surv(dox - dodm, !is.na(dodth)) ~ sex , data = DM)
> c1 <- coxph(Surv(dox - dodm, !is.na(dodth)) ~ sex + age, data = DM)
> summary(c1)
> ci.exp(c0)
> ci.exp(c1)

What variables from DM are we using?
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> c0 <- coxph(Surv(dox - dodm, !is.na(dodth)) ~ sex , data = DM)
> c1 <- coxph(Surv(dox - dodm, !is.na(dodth)) ~ sex + age, data = DM)
> summary(c1)

Call:
coxph(formula = Surv(dox - dodm, !is.na(dodth)) ~ sex + age,

data = DM)

n= 9996, number of events= 2499

coef exp(coef) se(coef) z Pr(>|z|)
sexF -0.386126 0.679685 0.040757 -9.474 <2e-16 ***
age 0.079884 1.083161 0.001833 43.569 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
sexF 0.6797 1.4713 0.6275 0.7362
age 1.0832 0.9232 1.0793 1.0871

Concordance= 0.762 (se = 0.005 )
Likelihood ratio test= 2391 on 2 df, p=<2e-16
Wald test = 1902 on 2 df, p=<2e-16
Score (logrank) test = 1875 on 2 df, p=<2e-16Survival after diabetes (DMsurv) 19/ 139



> ci.exp(c0)

exp(Est.) 2.5% 97.5%
sexF 0.8908372 0.8234534 0.9637351

> ci.exp(c1)

exp(Est.) 2.5% 97.5%
sexF 0.6796851 0.6275025 0.7362072
age 1.0831613 1.0792759 1.0870608

What do these estimates mean?

λ(t, x) = λ0(t)exp(β1x1 + β2x2)

Where is β1 ? Where is β2 ? Where is λ0(t) ?

What is the mortality RR for a 10 year age di�erence?
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If mortality is assumed constant (λ(t) = λ), then the likelihood for
the Cox-model is equivalent to a Poisson likelihood, which can be
�tted using the poisreg family from the Epi package:

> ?poisreg

> p1 <- glm(cbind(!is.na(dodth), dox - dodm) ~ sex + age,
+ family = poisreg,
+ data = DM)
> ci.exp(p1) # Poisson

exp(Est.) 2.5% 97.5%
(Intercept) 0.0003520559 0.000274337 0.0004517924
sexF 0.6911295663 0.638139016 0.7485204093
age 1.0794724027 1.075733792 1.0832240061

> ci.exp(c1) # Cox

exp(Est.) 2.5% 97.5%
sexF 0.6796851 0.6275025 0.7362072
age 1.0831613 1.0792759 1.0870608

Is the sex-e�ect confounded by age?Survival after diabetes (DMsurv) 21/ 139



Sex and age e�ects are quite close for the Poisson and the Cox
models.

Poisson model has an intercept term, the estimate of the (assumed)
constant underlying mortality.

The risk time part of the response (second argument in the cbind)
was entered in units of years, so the (Intercept) (taken from the
ci.exp) is a rate per 1 person-month.

What age and sex does the (Intercept) refer to?

> ci.exp(p1) # Poisson

exp(Est.) 2.5% 97.5%
(Intercept) 0.0003520559 0.000274337 0.0004517924
sexF 0.6911295663 0.638139016 0.7485204093
age 1.0794724027 1.075733792 1.0832240061
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poisreg and poisson

poisreg: cbind(d,y) � ...

> p1 <- glm(cbind(!is.na(dodth), dox - dodm) ~ sex + age,
+ family = poisreg,
+ data = DM)

poisson: d � ... + offset(log(y))

> px <- glm(!is.na(dodth) ~ sex + age + offset(log(dox - dodm)),
+ family = poisson,
+ data = lung)
> ## or:
> px <- glm(!is.na(dodth) ~ sex + age,
+ offset = log(dox - dodm),
+ family = poisson,
+ data = lung)
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y d

te t1 t2 tx

y1 y2 y3
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What is it that we see as outcome?

(d, y) or: (0, y1), (0, y2), (d, y3)

the amount of information is the same � or is it?

What we observe is occurrence rates

Statistical model � hazard, intensity, occurrence rate, λ:

λ(t) = limh→0 P {event in (t, t+ h] | alive at t} /h

�measured in probability per time: time−1

What are the measurement scales for t and h?
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Likelihood

▶ Likelihood is the probability of data as a function of
parameters, assuming the model is correct

L(λ) = P(d at tx|entry te & correct model)

�this is a quantity that depends on λ (model parameters)
▶ Maximum likelihood estimation is choosing the value of λ that

makes L(λ) as large a possible
▶ Normally we maximize log-likelihood, ℓ(λ) = log

(
L(λ)

)
, m.l.e.

called λ̂
▶ The second derivative of ℓ(λ) evaluated at λ̂ contains

information about the uncertainty of λ̂
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∗ Likelihood and records

▶ Suppose a person is alive from te (entry) to tx (exit) and
▶ that the person's status at tx is d,

where d = 0 means alive and d = 1 means dead.
▶ If we choose, say, two time points, t1, t2 between te and tx,
▶ standard use of conditional probability

(formally, repeated use of Bayes' formula) gives:

P {d at tx | entry at te} =P {survive (te, t1] | alive at te}×
P {survive (t1, t2] | alive at t1}×
P {survive (t2, tx] | alive at t2}×
P {d at tx | alive just before tx}
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∗ Rates and likelihood

For a start assume that the mortality is constant over time λ(t) = λ:

P {death during (t, t+ h]|alive at t} ≈ λh (1)

⇒ P {survive (t, t+ h]|alive at t} ≈ 1− λh

where the approximation gets better the smaller h is.
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∗ Dividing follow-up time

▶ Survival for a time span: y = tx − te
▶ Subdivided in N intervals, each of length h = y/N

▶ The rate is assumed constant: λ(t) = λ

▶ Survival probability for the entire span from te to tx is the
product of probabilities of surviving each of the small intervals,
conditional on being alive at the beginning each interval:

P {survive te to tx} ≈ (1− λh)N =

(
1− λy

N

)N
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∗ Dividing follow-up time in small pieces

▶ From mathematics it is known that (1 + x/n)n → exp(x) as
n → ∞ (some de�ne exp(x) this way).

▶ So if we divide the time span y in small pieces we will have that
as N → ∞:

P {survive te to tx} ≈
(
1− λy

N

)N

→ exp(−λy) (2)

▶ The contribution to the likelihood from a person observed for a
time span of length y is exp(−λy), and the contribution to the
log-likelihood is therefore −λy.
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∗ Dividing follow-up time: death at the end

▶ A person dying at the end of the last interval, the contribution
to the likelihood from the last interval will be

▶ the probability surviving till just before the end of the interval,

▶ multiplied by

▶ the probability of dying in the last tiny instant (of length ϵ) of
the interval

▶ The probability of dying in this tiny instant is λϵ

▶ log-likelihood contribution from this last instant is
log(λϵ) = log(λ) + log(ϵ).
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∗ Total likelihood
The total likelihood for one person is the product of all these terms
from the follow-up intervals (i) for the person; and the log-likelihood
(ℓ) is therefore the sum of the log-likelihood terms:

ℓ(λ) =
∑
i

(−λyi + dilog(λ) + dilog(ϵ))

=
∑
i

(
dilog(λ)− λyi

)
+
∑
i

dilog(ϵ)

The last term does not depend on λ, so it can be ignored
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∗ Total log-likelihood
▶ . . . for the follow up of one person is (the rate likelihood):∑

i

(
dilog(λ)− λyi

)
▶ this is also the likelihood for independent Poisson variates di

with means λyi.

▶ even though the dis are neither Poisson nor independent

▶ Di�erent models can have the same (log)likelihood:
▶ model for follow-up of a person (di, yi), constant rate λ
▶ model for independent Poisson variates (di), mean λyi
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What did we do?

▶ Divide follow-up time in small pieces for the sake of
mathematical approximations

▶ . . . leading to an expression of the log-likelihood contribution
from a single person's follow-up

▶ . . . as a sum of many small contributions with small FU

▶ . . . explains why the rate likelihood is the same as a Poisson
likelihood (although the model is not a Poisson model)

▶ Unrelated to this, next we will subdivide follow-up for the sake
of modeling the rate λ as a function of covariates that varies
over time, within each person
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y d

te t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry te) d log(λ)− λy

= P(surv te → t1|entry te) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(d at tx|entry t2) + d log(λ)− λy3
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y ed = 0

te t1 t2 tx

y1 y2 y3
e

Probability log-Likelihood

P(surv te → tx|entry te) 0 log(λ)− λy

= P(surv te → t1|entry te) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(surv t2 → tx|entry t2) + 0 log(λ)− λy3
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y ud = 1

te t1 t2 tx

y1 y2 y3
u

Probability log-Likelihood

P(event at tx|entry te) 1 log(λ)− λy

= P(surv te → t1|entry te) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(event at tx|entry t2) + 1 log(λ)− λy3
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y d

te t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry te) d log(λ)− λy

= P(surv te → t1|entry te) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(d at tx|entry t2) + d log(λ)− λy3
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y d

te t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry te) d log(λ)− λy

= P(surv te → t1|entry te) = 0 log(λ1)− λ1y1
×P(surv t1 → t2|entry t1) + 0 log(λ2)− λ2y2
×P(d at tx|entry t2) + d log(λ3)− λ3y3

� allows di�erent rates (λi) in each interval
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Maximum likelihood estimation of a rate

▶ One person (p) followed over many intervals contributes:

ℓp(λ) =
∑
i

(
dpilog(λ)− λypi

)
▶ all persons followed over many intervals contributes:∑

p

ℓp(λ) =
∑
p,i

(
dpilog(λ)− λypi

)
= Dlog(λ)− λY

where D is total no. of deaths and Y is total risk time
▶ This is maximal for λ̂ = D/Y
▶ λ can depend on many parameters, so maximization is

multidimensional. . .
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Representation of follow-up: Lexis object

> Ll <- Lexis(entry = list(per = dodm, # "per"iod = calendar time of entry
+ tfd = 0), # "t"ime "f"rom "d"iabetes
+ exit = list(per = dox), # calendar time of exit
+ exit.status = factor(!is.na(dodth),
+ labels = c("DM","Dead")), # status at exit time
+ data = DM)

NOTE: entry.status has been set to "DM" for all.

> head(Ll)

lex.id per tfd lex.dur lex.Cst lex.Xst sex dobth dodm dodth dooad
1 1998.92 0 11.08 DM DM F 1940.26 1998.92 NA NA
2 2003.31 0 6.69 DM DM M 1939.22 2003.31 NA 2007.45
3 2004.55 0 5.45 DM DM F 1918.30 2004.55 NA NA
4 2009.26 0 0.74 DM DM F 1965.23 2009.26 NA NA
5 2008.65 0 1.34 DM DM M 1932.88 2008.65 NA NA
6 2007.89 0 2.04 DM Dead F 1927.87 2007.89 2009.92 NA

doins dox age
NA 2010.00 58.66
NA 2010.00 64.09
NA 2010.00 86.25
NA 2010.00 44.04
NA 2010.00 75.78
NA 2009.92 80.02
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New variables in a Lexis object
tfd: time from diabetes diagnosis at the time of entry,

therefore it is 0 for all persons; the entry time is 0 from the
date of diabetes. De�nes a timescale with name tfd.

per: calendar time at the time of entry. De�nes a timescale

with name per.
lex.dur: the length of time a person is in state lex.Cst, here

measured in years because all dates are.
lex.Cst: Current state, the state in which the lex.dur time is

spent.
lex.Xst: eXit state, the state to which the person moves after the

lex.dur time in lex.Cst.
lex.id: an id of each record in the source dataset. Can be

explicitly set by id=.
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Lexis object: Overview of follow-up

Overkill?
The point is that the machinery generalizes to multistate data.

> summary(Ll)

Transitions:
To

From DM Dead Records: Events: Risk time: Persons:
DM 7497 2499 9996 2499 54273.27 9996

What is the average follow-up time for persons?
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> boxes(Ll, boxpos = TRUE, scale.Y = 12, digits.R = 2)

DM
4,522.8

Dead

2,499
(0.55)

DM
4,522.8

Dead

DM
4,522.8

Dead

Exercise 3
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Cox model using the Lexis-speci�c variables:

> cl <- coxph(Surv(tfd,
+ tfd + lex.dur,
+ lex.Xst == "Dead") ~ sex + age,
+ data = Ll)

Surv(from-time, to-time, event indicator)

Using the Lexis features:

> cL <- coxph.Lexis(Ll, tfd ~ sex + age)

survival::coxph analysis of Lexis object Ll:
Rates for the transition:
DM->Dead
Baseline timescale: tfd

> round(cbind(ci.exp(cL),
+ ci.exp(cl)), 3)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
sexF 0.680 0.628 0.736 0.680 0.628 0.736
age 1.083 1.079 1.087 1.083 1.079 1.087
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The crude Poisson model:

> pc <- glm(cbind(lex.Xst == "Dead", lex.dur) ~ sex + age,
+ family = poisreg,
+ data = Ll)

or even simpler, by using the Lexis features:

> pL <- glm.Lexis(Ll, ~ sex + age)

stats::glm Poisson analysis of Lexis object Ll with log link:
Rates for the transition:
DM->Dead

> round(cbind(ci.exp(pL),
+ ci.exp(pc)), 3)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 0.000 0.000 0.000 0.000
sexF 0.691 0.638 0.749 0.691 0.638 0.749
age 1.079 1.076 1.083 1.079 1.076 1.083
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Poisson and Cox model

The crude Poisson model is a Cox-model with the (quite brutal)
assumption that baseline rate is constant over time.

But results are similar:

> round(cbind(ci.exp(cL),
+ ci.exp(pL)[-1,]), 3)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
sexF 0.680 0.628 0.736 0.691 0.638 0.749
age 1.083 1.079 1.087 1.079 1.076 1.083
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Baseline hazard: splitting time

> Sl <- splitMulti(Ll, tfd = seq(0, 15, 0.5))
> summary(Ll)

Transitions:
To

From DM Dead Records: Events: Risk time: Persons:
DM 7497 2499 9996 2499 54273.27 9996

> summary(Sl)

Transitions:
To

From DM Dead Records: Events: Risk time: Persons:
DM 111178 2499 113677 2499 54273.27 9996

What happended to no. records?

What happended to amount of risk time?

What happended to no. events?
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> wh <- names(Ll)[1:10] # names of variables in some order
> subset(Ll, lex.id == 6)[,wh]

lex.id per tfd lex.dur lex.Cst lex.Xst sex dobth dodm dodth
6 2007.89 0 2.04 DM Dead F 1927.87 2007.89 2009.92

> subset(Sl, lex.id == 6)[,wh]

lex.id per tfd lex.dur lex.Cst lex.Xst sex dobth dodm dodth
6 2007.89 0.0 0.50 DM DM F 1927.87 2007.89 2009.92
6 2008.39 0.5 0.50 DM DM F 1927.87 2007.89 2009.92
6 2008.89 1.0 0.50 DM DM F 1927.87 2007.89 2009.92
6 2009.39 1.5 0.50 DM DM F 1927.87 2007.89 2009.92
6 2009.89 2.0 0.04 DM Dead F 1927.87 2007.89 2009.92

In Sl each record now represents a small interval (0.5 year) of
follow-up for a person, so each person has many records.
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Natural splines for baseline hazard

> ps <- glm(cbind(lex.Xst == "Dead", lex.dur)
+ ~ Ns(tfd, knots = seq(0, 15, 5)) + sex + age,
+ family = poisreg,
+ data = Sl)

or even simpler:

> ps <- glm.Lexis(Sl, ~ Ns(tfd, knots = seq(0, 15, 5)) + sex + age)

stats::glm Poisson analysis of Lexis object Sl with log link:
Rates for the transition:
DM->Dead

> ci.exp(ps)

exp(Est.) 2.5% 97.5%
(Intercept) 0.0002647664 0.0002005196 0.000349598
Ns(tfd, knots = seq(0, 15, 5))1 2.4823273077 1.9470986530 3.164682413
Ns(tfd, knots = seq(0, 15, 5))2 1.6172454509 1.0715875536 2.440755158
Ns(tfd, knots = seq(0, 15, 5))3 2.2067211974 1.3528945106 3.599407349
sexF 0.6798768856 0.6276865380 0.736406712
age 1.0832396476 1.0793524197 1.087140875
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Comparing with estimates from the Cox-model and from the model
with constant baseline:

> round(cbind(ci.exp(cl),
+ ci.exp(ps, subset = c("sex","age")),
+ ci.exp(pc, subset = c("sex","age"))), 4)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
sexF 0.6797 0.6275 0.7362 0.6799 0.6277 0.7364 0.6911 0.6381 0.7485
age 1.0832 1.0793 1.0871 1.0832 1.0794 1.0871 1.0795 1.0757 1.0832
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But where is the baseline hazard?

ps is a model for the hazard so we can predict the baseline hazard at
de�ned values for given sets of covariates in the model:

> prf <- data.frame(tfd = seq(0, 15, 0.2),
+ sex = "F",
+ age = 60)

We can over-plot with the predicted rates from the model where
mortality rates are constant, the only change is the model (pc
instead of ps):

> matshade(prf$tfd, ci.pred(ps, prf),
+ plot = TRUE, log = "y", lwd = 3)
> matshade(prf$tfd, ci.pred(pc, prf), lty = 3, lwd = 3)
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Here is the baseline hazard!
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What are the units on the y-axis? Describe the mortality rates as a function of tfd
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Survival function and hazard function

S(t) = exp(−
∫ t

0

λ(u) du)

Simple, but the CI for S(t) not so simple. . .

Implemented in the ci.surv function

Arguments: 1:model, 2:prediction data frame, 3:equidistance

Prediction data frame must correspond to a sequence of equidistant
time points:

> matshade(prf$tfd, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, lwd = 3, ylim = c(0.5, 1))
> lines(prf$tfd, ci.surv(pc, prf, intl = 0.2)[,1], col="blue")
> lines(survfit(c1, newdata = data.frame(sex = "F", age = 60)),
+ lwd = 2, lty = 1, col = "limegreen")
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Survival functions
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Hazard and survival functions

> par(mfrow = c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6)
> #
> # hazard scale
> matshade(prf$tfd, ci.pred(ps, prf),
+ plot = TRUE, log = "y", lwd = 3)
> matshade(prf$tfd, ci.pred(pc, prf), lty = 3, lwd = 3)
> #
> # survival
> matshade(prf$tfd, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)
> lines(survfit(c1, newdata = data.frame(sex = "F", age = 60)),
+ col = "forestgreen", lwd = 3, conf.int = FALSE)
> lines(survfit(c1, newdata = data.frame(sex = "F", age = 60)),
+ col = "forestgreen", lwd = 1, lty = 1)
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Hazard and survival functions
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K-M estimator and smooth Poisson model

Kaplan-Meier estimator compared to survival from corresponding
Poisson-model, which is the model with time from diabetes (tfd) as
the only covariate:

> par(mfrow=c(1,2))
> pk <- glm(cbind(lex.Xst == "Dead",
+ lex.dur) ~ Ns(tfd, knots = seq(0, 12, 4)),
+ family = poisreg,
+ data = Sl)
> # hazard
> matshade(prf$tfd, ci.pred(pk, prf),
+ plot = TRUE, log = "y", lwd = 3, ylim = c(0.01,0.2))
> # survival from smooth model
> matshade(prf$tfd, ci.surv(pk, prf, intl = 0.2) ,
+ plot = TRUE, lwd = 3, ylim = 0:1)
> # K-M estimator
> lines(km, lwd = 1, col = "forestgreen")
> lines(km, lwd = 2, col = "forestgreen", confint = FALSE)
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K-M estimator and smooth Poisson model
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K-M estimator and smooth Poisson model

We can explore how the tightness of the knots in the smooth model
in�uence the underlying hazard and the resulting survival function:

> zz <- function(dk) # distance between knots
+ {
+ par(mfrow=c(1,2))
+ kn <- seq(0, 12, dk)
+ pk <- glm(cbind(lex.Xst == "Dead",
+ lex.dur) ~ Ns(tfd, knots = kn),
+ family = poisreg,
+ data = Sl)
+ matshade(prf$tfd, ci.pred(pk, prf),
+ plot = TRUE, log = "y", lwd = 3, ylim = c(0.01,1))
+ rug(kn, lwd=2)
+
+ matshade(prf$tfd, ci.surv(pk, prf, intl = 0.2) ,
+ plot = TRUE, lwd = 2, ylim = c(0.4, 1))
+ lines(km, lwd = 2, col = "forestgreen")
+ }
> zz(12)DMsurv 60/ 139



K-M estimator and smooth Poisson model
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K-M estimator and smooth Poisson model
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K-M estimator and smooth Poisson model
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K-M estimator and smooth Poisson model
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K-M estimator and smooth Poisson model
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K-M estimator and smooth Poisson model
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K-M estimator and smooth Poisson model
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Survival analysis summary

▶ 1 to 1 correspondence between
▶ hazard function + starting point
▶ survival function

▶ K-M and Cox use a very detailed baseline hazard (and omits it)

▶ Smooth parametric hazard function more credible:
▶ De�ne Lexis object
▶ Split along time
▶ Fit Poisson model: smooth e�ect of time
▶ De�ne prediction data frame
▶ ci.pred to get baseline rates
▶ ci.surv to get baseline survival
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> data(DMlate)
> DMlate <- mutate(subset(DMlate, dodm < dox), age = dodm - dobth)
> Lx <- Lexis(exit = list(tfd = dox - dodm), # tfd at exit
+ exit.status = factor(!is.na(dodth)), # status at exit time
+ data = DMlate)
> sL <- splitMulti(Lx, tfd = seq(0, 15, 1/12))

Smooth parametric hazard function
> m0 <- glm.Lexis(sL, ~ Ns(tfd, knots = seq(0, 14, , 5)) + sex + age)

Prediction data frame
> nd <- data.frame(tfd = seq(0, 15, 1/10), sex = "M", age = 65)

Predicted rates and survival
> rate <- ci.pred(m0, nd) # rates per year
> surv <- ci.surv(m0, nd, int = 1/10)

Plot the rates and the survival function
> matshade(nd$tfd, rate, log = "y", plot = TRUE)
> matshade(nd$tfd, surv, ylim = c(0, 1), plot = TRUE)

Exercises 4, 5
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Lexis object from DM to Death

> data(DMlate)
> dl <- mutate(DMlate, dofin = pmin(dodth, doins, dox, na.rm = TRUE),
+ xstat = factor(case_when(dofin == dodth ~ "Dead",
+ dofin == doins ~ "Ins",
+ TRUE ~ "DM"),
+ levels = c("DM", "Ins", "Dead")))
> Ldm <- Lexis(exit = list(tfd = dofin - dodm),
+ exit.status = xstat,
+ data = dl)

NOTE: entry.status has been set to "DM" for all.
NOTE: entry is assumed to be 0 on the tfd timescale.
NOTE: Dropping 101 rows with duration of follow up < tol

> summary(Ldm)

Transitions:
To

From DM Ins Dead Records: Events: Risk time: Persons:
DM 6157 1694 2048 9899 3742 45885.49 9899
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Produce graphical overview of FU

> boxes(Ldm, boxpos = TRUE, scale.R = 100, show.BE = TRUE)
> legendbox(70, 10, rates = "\n(Rate in %/y)")
> args(legendbox)

function (x, y, state = "State", py = "Person-time", begin = "no. begin",
end = "no. end", trans = "Transitions", rates = "\n(Rate)",
font = 1, right = !left, left = !right, ...)

NULL
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Transitions: competing rates
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Exercise 6
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Survival function?

S(t) = exp

(
−
∫ t

0

λIns(u) + µ(u) du

)
S(t) = exp

(
−
∫ t

0

λIns(u) du

)
S(t) = exp

(
−
∫ t

0

µ(u) du

)

Competing risks (cmpr) 73/ 139



Survival function and Cumulative risk function

survfit does the trick; the requirements are:

1. (start, stop, event) arguments to Surv

2. the third argument to the Surv function is a factor

3. an id argument is given, pointing to an id variable that links
together records belonging to the same person.

4. the initial state (DM) must be the �rst level of the factor (in a
Lexis object, lex.Cst)
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Survival function and Cumulative risk function
> levels(Ldm$lex.Xst)

[1] "DM" "Ins" "Dead"

> m3 <- survfit(Surv(tfd, tfd + lex.dur, lex.Xst) ~ 1,
+ id = lex.id,
+ data = Ldm)
> m3$states

[1] "(s0)" "Ins" "Dead"

> head(cbind(time = m3$time, m3$pstate))

time (s0) Ins Dead
[1,] 0.002737851 0.9988888 0.0003030609 0.0008081624
[2,] 0.005475702 0.9982825 0.0005051424 0.0012123254
[3,] 0.008213552 0.9972721 0.0011113869 0.0016164884
[4,] 0.010951403 0.9955543 0.0024250496 0.0020206923
[5,] 0.013689254 0.9939374 0.0038397633 0.0022227943
[6,] 0.016427105 0.9916133 0.0057597319 0.0026269982

�this is called the Aalen-Johansen estimator of state probabilities
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Survival function and Cumulative risk function

the Aalen-Johansen estimator of state probabilities is obtained easily
from a Lexis object

> aaj <- AaJ.Lexis(Ldm)

NOTE: Timescale is tfd

> head(cbind(time = aaj$time, aaj$pstate))

time DM Dead Ins
[1,] 0.002737851 0.9988888 0.0008081624 0.0003030609
[2,] 0.005475702 0.9982825 0.0012123254 0.0005051424
[3,] 0.008213552 0.9972721 0.0016164884 0.0011113869
[4,] 0.010951403 0.9955543 0.0020206923 0.0024250496
[5,] 0.013689254 0.9939374 0.0022227943 0.0038397633
[6,] 0.016427105 0.9916133 0.0026269982 0.0057597319
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Survival function and cumulative risks

S(t) = exp

(
−
∫ t

0

λ(u) + µ(u) du
)

RDead(t) =

∫ t

0

µ(u)S(u) du

RIns(t) =

∫ t

0

λ(u)S(u) du)

=

∫ t

0

λ(u)exp
(
−
∫ u

0

λ(s) + µ(s) ds
)
du

S(t) +RIns(t) +RDead(t) = 1, ∀t
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Transitions: competing rates
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Survival function and cumulative risks
> par( mfrow=c(1,2) )
> matplot(m3$time, m3$pstate,
+ type="s", lty=1, lwd=4,
+ col=c("ForestGreen","red","black"),
+ xlim=c(0,15), xaxs="i",
+ ylim=c(0,1), yaxs="i" )
> stackedCIF(m3, lwd = 3, xlim = c(0,15), xaxs = "i", yaxs = "i" )
> text(rep(12,3), c(0.9,0.1,0.4), levels(Ldm))
> box(bty="o")

> par(mfrow = c(1, 2))
> matshade(m3$time, cbind(m3$pstate,
+ m3$lower,
+ m3$upper)[, c(1, 4, 7, 2, 5, 8, 3, 6, 9)],
+ plot = TRUE, lty = 1, lwd = 2,
+ col = clr <- c("ForestGreen","red","black"),
+ xlim=c(0,15), xaxs="i",
+ ylim = c(0,1), yaxs = "i")
> mat2pol(m3$pstate, perm = 3:1, x = m3$time, col = clr[3:1])
> text(rep(12, 3), c(0.8, 0.5, 0.2), levels(Ldm), col = "white")
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Survival and cumulative risk functions
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Survival and cumulative risk functions
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Survival function and cumulative risks: don't

RIns(t) =

∫ t

0

λ(u)S(u) du)

=

∫ t

0

λ(u)exp
(
−
∫ u

0

λ(s) + µ(s) ds
)
du

̸=
∫ t

0

λ(u)exp
(
−
∫ u

0

λ(s) ds
)
du

= 1− exp

(
−
∫ t

0

λ(s) ds
)
� nice formula, but wrong!

Probability of Ins assuming Dead does not exist and rate of Ins unchanged!

exp

(
−
∫ t

0
λ(s) ds

)
known as �net survival� or �cause speci�c survival�. . .
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Survival function and cumulative risks�don't

> m2 <- survfit(Surv(tfd,
+ tfd + lex.dur,
+ lex.Xst == "Ins" ) ~ 1,
+ data = Ldm)
> M2 <- survfit(Surv(tfd,
+ tfd + lex.dur,
+ lex.Xst == "Dead") ~ 1,
+ data = Ldm)
> par(mfrow = c(1,2))
> mat2pol(m3$pstate, c(2,3,1), x = m3$time,
+ col = c("red", "black", "transparent"),
+ xlim=c(0,15), xaxs="i",
+ yaxs = "i", xlab = "time since DM", ylab = "" )
> lines(m2$time, 1 - m2$surv, lwd = 3, col = "red" )
> mat2pol(m3$pstate, c(3,2,1), x = m3$time, yaxs = "i",
+ col = c("black","red","transparent"),
+ xlim=c(0,15), xaxs="i",
+ yaxs = "i", xlab = "time since DM", ylab = "" )
> lines(M2$time, 1 - M2$surv, lwd = 3, col = "black" )
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Survival and cumulative risk functions
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Cause-speci�c rates

▶ There is nothing wrong with modeling the cause-speci�c
event-rates, the problem lies in how you transform them into
probabilities.

▶ The relevant model for a competing risks situation normally
consists of separate models for each of the cause-speci�c rates.

▶ These models have no common parameters (e�ects of time or
other covariates are not constrained to be the same).

▶ . . . not for statistical reasons, but for substantial reasons:
it is unlikely that rates of di�erent types of event (Insulin
initiation and death, say) depend on time in the same way.
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Cause-speci�c rates
> Sdm <- splitMulti(Ldm, tfd = seq(0, 20, 0.1))
> summary(Ldm)

Transitions:
To

From DM Ins Dead Records: Events: Risk time: Persons:
DM 6157 1694 2048 9899 3742 45885.49 9899

> summary(Sdm)

Transitions:
To

From DM Ins Dead Records: Events: Risk time: Persons:
DM 460054 1694 2048 463796 3742 45885.49 9899
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Cause-speci�c rates
> round(cbind(
+ with(subset(Sdm, lex.Xst == "Ins" ), quantile(tfd + lex.dur, 0:4/4)),
+ with(subset(Sdm, lex.Xst == "Dead"), quantile(tfd + lex.dur, 0:4/4))), 2)

[,1] [,2]
0% 0.00 0.00
25% 0.11 1.10
50% 1.82 3.08
75% 5.77 5.83
100% 13.88 14.61

> ikn <- c(0, 0.5, 3, 10)
> dkn <- c(0, 2.0, 5, 9)
> Ins.glm <- glm.Lexis(Sdm, ~ Ns(tfd, knots = ikn), to = "Ins" )

stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition:
DM->Ins

> Dead.glm <- glm.Lexis(Sdm, ~ Ns(tfd, knots = dkn), to = "Dead")

stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition:
DM->Dead
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Cause-speci�c rates

> int <- 0.01
> nd <- data.frame(tfd = seq(0, 15, int))
> l.glm <- ci.pred( Ins.glm, nd)
> m.glm <- ci.pred(Dead.glm, nd)
> matshade(nd$tfd,
+ cbind(l.glm, m.glm) * 100,
+ plot = TRUE,
+ yaxs="i", ylim = c(0, 20),
+ # log = "y", ylim = c(2, 20),
+ col = rep(c("red","black"), 2), lwd = 3,
+ xlab = "Time since DM (years)",
+ ylab = "Rates per 100 PY")

Competing risks (cmpr) 88/ 139



Survival and cumulative risk functions
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Survival and cumulative risk functions
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Exercise 7, 8
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∗ Integrals with R

▶ Integrals look scary to many people, but they are really just
areas under curves.

▶ In R, a curve of the function µ(t) is a set of two vectors:
one vector of ts and one vector y = µ(t)s.

▶ When we have a model such as the glm above that estimates
the mortality as a function of time (tfd), we can get the
mortality as a funtion of time by �rst choosing the timepoints,
say from 0 to 15 years in steps of 0.01 year (≈ 4 days)

▶ Using ci.pred on this gives the predicted rates

▶ Then use the formuale with all the integrals to get the state
probabilities.

Competing risks (cmpr) 91/ 139



∗ Integrals with R

> t <- seq(0, 15, 0.01)
> nd <- data.frame(tfd = t)
> mu <- ci.pred(Dead.glm, nd)[,1]
> head(cbind(t, mu))

t mu
1 0.00 0.06681677
2 0.01 0.06657067
3 0.02 0.06632549
4 0.03 0.06608123
5 0.04 0.06583789
6 0.05 0.06559547

> plot(t, mu, type="l", lwd = 3,
+ xlim = c(0, 7), xaxs = "i",
+ ylim = c(0, 0.1), yaxs = "i")
> polygon(t[c(1:501,501:1)], c(mu[1:501], rep(0, 501)),
+ col = "gray", border = "transparent")
> abline(v=0:50/10, col="white")
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∗ Integrals with R
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∗ Numerical integration with R

> mid <- function(x) x[-1] - diff(x) / 2
> (x <- c(1:5, 7, 10))

[1] 1 2 3 4 5 7 10

> mid(x)

[1] 1.5 2.5 3.5 4.5 6.0 8.5

mid(x) is a vector that is 1 shorter than the vector x, just as diff(x) is.

So if we want the integral over the period 0 to 5 years, we want the sum over the
�rst 500 intervals, corresponding to the �rst 501 interval endpoints:

> cbind(diff(t), mid(mu))[1:5,]

[,1] [,2]
2 0.01 0.06669372
3 0.01 0.06644808
4 0.01 0.06620336
5 0.01 0.06595956
6 0.01 0.06571668

> sum(diff(t[1:501]) * mid(mu[1:501]))

[1] 0.2085188

So now we have computed
∫ 5

0
µ(s) d(s). This is called the cumulative rate over

the interval [0, 5] years.
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∗ Numerical integration with R

In practice we will want the integral function of µ, so for every t we want
M(t) =

∫ t

0
µ(s) d(s). This is easily accomplished by the function cumsum:

> Mu <- c(0, cumsum(diff(t) * mid(mu)))
> head(cbind(t, Mu))

t Mu
0.00 0.0000000000

2 0.01 0.0006669372
3 0.02 0.0013314180
4 0.03 0.0019934516
5 0.04 0.0026530472
6 0.05 0.0033102141

Note the �rst value which is the integral from 0 to 0, so by de�nition 0.
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Cumulative risks from parametric models

If we have estimates of λ and µ as functions of time, we can derive
the cumulative risks.

In practice this will be by numerical integration; compute the rates at
closely spaced intervals and evaluate the integrals as sums. This is
easy.

What is not so easy is to come up with con�dence intervals for the
cumulative risks.
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Simulation of cumulative risks: ci.Crisk

1. a random vector from the multivariate normal distribution with
▶ mean equal to the parameters of the model,
▶ variance-covariance equal to the estimated variance-covariance of the

parameter estimates

2. use this to generate a simulated set of rates (λ(t), µ(t)),
evaluated a closely spaced times

3. derive state probabilities at these times by numerical integration
4. repeat to obtain, say, 1000 sets of state probabilities at these

times
5. derive con�dence intervals for the state probabilities as the 2.5

and 97.5 percentiles of the state probabilities at each time

This machinery is implemented in the function ci.Crisk in Epi
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Cumulative risks from parametric models

> cR <- ci.Crisk(mods = list(Ins = Ins.glm,
+ Dead = Dead.glm),
+ nd = nd)

NOTE: Times are assumed to be in the column tfd at equal distances of 0.01

> str(cR)

List of 4
$ Crisk: num [1:1501, 1:3, 1:3] 1 0.997 0.993 0.99 0.987 ...
..- attr(*, "dimnames")=List of 3
.. ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
.. ..$ cause: chr [1:3] "Surv" "Ins" "Dead"
.. ..$ : chr [1:3] "50%" "2.5%" "97.5%"

$ Srisk: num [1:1501, 1:2, 1:3] 0 0.000666 0.001328 0.001985 0.002637 ...
..- attr(*, "dimnames")=List of 3
.. ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
.. ..$ cause: chr [1:2] "Dead" "Dead+Ins"
.. ..$ : chr [1:3] "50%" "2.5%" "97.5%"

$ Stime: num [1:1501, 1:3, 1:3] 0 0.00998 0.01993 0.02985 0.03974 ...
..- attr(*, "dimnames")=List of 3
.. ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
.. ..$ cause: chr [1:3] "Surv" "Ins" "Dead"
.. ..$ : chr [1:3] "50%" "2.5%" "97.5%"

$ time : num [1:1501] 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...
- attr(*, "int")= num 0.01

There are 4 components of the results, the three �rst are simply
arrays with 2 or 3 functions of time with con�dence intervals.
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Cumulative risks from parametric models

So now plot the cumulative risks of being in each of the states (the
Crisk component):

> matshade(as.numeric(dimnames(cR$Crisk)[[1]]),
+ cbind(cR$Crisk[,1,],
+ cR$Crisk[,2,],
+ cR$Crisk[,3,]), plot = TRUE,
+ lwd = 2, yaxs = "i", col = c("limegreen","red","black"))
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Survival and cumulative risk functions
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Stacked probabilities: (matrix 2 polygons)

> mat2pol(cR$Crisk[,3:1,1], yaxs = "i",
+ col = c("forestgreen","red","black")[3:1])

1st argument to mat2pol must be a 2-dimensional matrix, with rows
representing the x-axis of the plot, and columns states.

The component Srisk has the con�dence limits of the stacked
probabilities:

> mat2pol(cR$Crisk[,3:1,1], yaxs = "i",
+ col = c("forestgreen","red","black")[3:1])
> matlines(as.numeric(dimnames(cR$Srisk)[[1]]),
+ cbind(cR$Srisk[,"Dead" ,2:3],
+ cR$Srisk[,"Dead+Ins",2:3]),
+ lty = "32", lwd = 1, col = gray(0.7))
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Survival and cumulative risk functions
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Expected life time: using simulated objects

The areas between the lines (up to say 10 years) are expected
sojourn times, that is:

▶ expected years alive without Ins

▶ expected years lost to death without Ins

▶ expected years after Ins, including years dead after Ins

Not all of direct relevance; actually only the �rst may be so.

They are available (with simulation-based con�dence intervals) in the
component of cR, Stime (Sojourn time).

Exercise 9
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Expected life time: using simulated objects

A relevant quantity would be the expected time alive without Ins
during the �rst 5, 10 and 15 years:

> str(cR$Stime)

num [1:1501, 1:3, 1:3] 0 0.00998 0.01993 0.02985 0.03974 ...
- attr(*, "dimnames")=List of 3
..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
..$ cause: chr [1:3] "Surv" "Ins" "Dead"
..$ : chr [1:3] "50%" "2.5%" "97.5%"

> round(cR$Stime[c("5","10","15"),"Surv",], 1)

tfd 50% 2.5% 97.5%
5 4.1 4.0 4.1
10 7.0 6.9 7.0
15 8.8 8.7 8.9

Exercise 10, 11 (and 12)
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RMST

simulation

Survival, mortality,
competing risks and
expected lifetime
EDEG 2025 / Umeå University,17 May 2025

http://bendixcarstensen.com/AdvCoh/courses/Um-2025/ rmst
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Comparisons

▶ RMST � Restricted Mean Survival Time

▶ a variant of expected lifetime, or more precisely expected residual
lifetime as has been available in published life tables for eons

▶ The term �sojourn time� is also used for the time spent in a
given state

▶ mortality rates among diabetes patients of the two di�erent
sexes:
▶ rate-ratio (M/W HR, typically a function of time)
▶ 5 or 10 year survival
▶ RMST during the next, say, 10 years for a given age, say, 60
▶ Note that RMST refers to an interval, in this case age 60 to 60 + 10
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> data(DMlate)
> set.seed(19540803)
> DMlate <- DMlate[sample(1:nrow(DMlate), 1000), ]
> Lx <- Lexis(entry = list(age = dodm - dobth,
+ tfd = 0),
+ exit = list(tfd = dox - dodm),
+ exit.status = factor(!is.na(dodth), labels = c("DM", "Dead")),
+ data = DMlate)

NOTE: entry.status has been set to "DM" for all.

> sL <- splitLexis(Lx, seq(0, 15, 0.5), "tfd")
> summary(Lx)

Transitions:
To

From DM Dead Records: Events: Risk time: Persons:
DM 769 231 1000 231 5398.05 1000

> summary(sL)

Transitions:
To

From DM Dead Records: Events: Risk time: Persons:
DM 11063 231 11294 231 5398.05 1000
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proportional hazards model:

> m1 <- glmLexis(sL, ~ Ns(age, knots = c(30, 50, 70))
+ + Ns(tfd, knots = c(0, 1, 4, 10))
+ + sex)

stats::glm Poisson analysis of Lexis object sL with log link:
Rates for the transition:
DM->Dead

> round(ci.exp(m1, subset = "sex"), 3)

exp(Est.) 2.5% 97.5%
sexF 0.937 0.723 1.215

▶ Women have a mortality about 6% smaller that that of men

▶ What hazards are proportional here?

RMST (rmst) 108/ 139



Proportional hazards model:

Comparative measures on other possible outcome scales are:

▶ di�erences in survival probabilities at certain times

▶ di�erences in expected life times during certain time intervals

▶ need to specify times and the intervals of interest:
▶ at what times since diagnosis do we want comparison of survival

between men and women
▶ from what time and to what time do we want the expected lifetime

computed?
▶ for what age (adx, age at diagnosis) do we want the comparison
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▶ compare 5 and 10 year survival

▶ for men and women

▶ diagnosed with diabetes at ages 50, 60 and 70

6 survival curves at 150 times, with CI:

> surv.arr <- NArray(list(adx = c(50, 60, 70),
+ sex = c("M", "F"),
+ tfd = tfd <- seq(0, 15, .1),
+ surv = c("surv", "lo", "up")))
> str(surv.arr)

logi [1:3, 1:2, 1:151, 1:3] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 4
..$ adx : chr [1:3] "50" "60" "70"
..$ sex : chr [1:2] "M" "F"
..$ tfd : chr [1:151] "0" "0.1" "0.2" "0.3" ...
..$ surv: chr [1:3] "surv" "lo" "up"
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Survival at 5 and 10 years

> for(adx in c(50, 60, 70))
+ for( sx in c("M", "F"))
+ {
+ nd <- data.frame(tfd = tfd,
+ age = adx + tfd,
+ sex = sx)
+ surv.arr[paste(adx), sx, , ] <- ci.surv(m1, nd)
+ }

NOTE: interval length chosen from as tfd[2] - tfd[1]
NOTE: interval length chosen from as tfd[2] - tfd[1]
NOTE: interval length chosen from as tfd[2] - tfd[1]
NOTE: interval length chosen from as tfd[2] - tfd[1]
NOTE: interval length chosen from as tfd[2] - tfd[1]
NOTE: interval length chosen from as tfd[2] - tfd[1]
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Survival at 5 and 10 years

> round(ftable(surv.arr[,,c("5","10"),] * 100, row.vars = c(1,3)), 1)

sex M F
surv surv lo up surv lo up

adx tfd
50 5 96.0 97.2 94.2 96.2 97.4 94.4

10 90.8 93.3 87.4 91.3 93.8 87.9
60 5 89.7 92.1 86.7 90.3 92.7 87.2

10 77.6 82.2 72.0 78.8 83.5 73.1
70 5 75.3 79.4 70.5 76.7 80.8 71.8

10 51.5 58.2 44.3 53.7 60.4 46.5

> # round(ftable(surv.arr[,,c("5","10"),] * 100, row.vars = c(3,1,2)), 1)

Exercises 14 & 15
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RMST

Use ci.Crisk to get estimates of RMST

> head(nd)

tfd age sex
1 0.0 70.0 F
2 0.1 70.1 F
3 0.2 70.2 F
4 0.3 70.3 F
5 0.4 70.4 F
6 0.5 70.5 F

> msM <- ci.Crisk(list(Mort = m1), mutate(nd, sex = "M"))$Stime

NOTE: Times are assumed to be in the column tfd at equal distances of 0.1

> msF <- ci.Crisk(list(Mort = m1), mutate(nd, sex = "F"))$Stime

NOTE: Times are assumed to be in the column tfd at equal distances of 0.1

> str(msF)

num [1:151, 1:2, 1:3] 0 0.0997 0.199 0.2977 0.396 ...
- attr(*, "dimnames")=List of 3
..$ tfd : chr [1:151] "0" "0.1" "0.2" "0.3" ...
..$ cause: chr [1:2] "Surv" "Mort"
..$ : chr [1:3] "50%" "2.5%" "97.5%"

�sojourn times (the Stime component)
from time (tfd = 0, age = 70)
to the times in �rst dimension of msF

> msM[c("5","10"), "Surv", ]

tfd 50% 2.5% 97.5%
5 4.376054 4.235329 4.493654
10 7.528717 7.119472 7.896698

> msF[c("5","10"), "Surv", ]

tfd 50% 2.5% 97.5%
5 4.410727 4.260937 4.531647
10 7.648984 7.240340 8.026692

> msF[c("5","10"), "Surv", 1] - msM[c("5","10"), "Surv", 1]

5 10
0.03467254 0.12026705
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RMST con�dence intervals

We can get con�dence intervals from (parametric) bootstrap samples
of the cumulative rates.

This is done by simulation from the distribution of the model
parameters.

Again an array to store the simulated cumulative risks:

> nB <- 10000 # no of bootstrap samples
> ain <- 5:7 * 10 # baseline ages
> sex <- c("M", "F")
> simres <- NArray(list(adx = ain,
+ sex = sex,
+ tfd = nd$tfd,
+ sim = 1:nB))
> str(simres)

logi [1:3, 1:2, 1:151, 1:10000] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 4
..$ adx: chr [1:3] "50" "60" "70"
..$ sex: chr [1:2] "M" "F"
..$ tfd: chr [1:151] "0" "0.1" "0.2" "0.3" ...
..$ sim: chr [1:10000] "1" "2" "3" "4" ...
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RMST con�dence intervals for di�erences

Comparing M and F requires
the same stream of simulated parameters for di�erent predictions:
reset random seed inside loop

> for (adx in ain)
+ for ( sx in sex)
+ {
+ set.seed(20250503)
+ simres[paste(adx), sx, , ] <- ci.Crisk(list(Mort = m1),
+ nd = mutate(nd, sex = sx,
+ age = adx + tfd),
+ nB = nB,
+ sim.res = "crisk")[, "Surv", ]
+ }

Exercises 16 & 17
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Further exercises

▶ Exercise 18 Predicted mortality from PH model

▶ Exercise 19 Interaction model (non-PH)

▶ Exercise 20 M to F di�erences

▶ Exercise 21 Age di�erences in RMST

▶ Exercise 22 Overview of RMST
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Multistate model

simulation

Survival, mortality,
competing risks and
expected lifetime
EDEG 2025 / Umeå University,17 May 2025

http://bendixcarstensen.com/AdvCoh/courses/Um-2025/ msmt
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BAckground: Steno 2 trial

▶ Clinical trial for diabetes ptt. with kidney disease
(micro-albuminuria)

▶ 80 ptt. randomised to either of
▶ Conventional treatment
▶ Intensi�ed multifactorial treament

▶ 1993�2001

▶ follow-up till 2018
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Steno 2 trial: goal

▶ Is there a treatment e�ect on:
▶ CVD mortality
▶ non-CVD mortality

▶ Does the treatment e�ect depend on:
▶ Albuminuria state

▶ Quanti�cation of treatment e�ect:
▶ Rate-ratios
▶ Life times
▶ Changes in clinical parameters
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> data(steno2)
> steno2 <- cal.yr(steno2)
> steno2 <- transform(steno2,
+ doEnd = pmin(doDth, doEnd, na.rm = TRUE))
> str(steno2)

'data.frame': 160 obs. of 14 variables:
$ id : num 1 2 3 4 5 6 7 8 9 10 ...
$ allo : Factor w/ 2 levels "Int","Conv": 1 1 2 2 2 2 2 1 1 1 ...
$ sex : Factor w/ 2 levels "F","M": 2 2 2 2 2 2 1 2 2 2 ...
$ baseCVD : num 0 0 0 0 0 1 0 0 0 0 ...
$ deathCVD: num 0 0 0 0 1 0 0 0 1 0 ...
$ doBth : 'cal.yr' num 1932 1947 1943 1945 1936 ...
$ doDM : 'cal.yr' num 1991 1982 1983 1977 1986 ...
$ doBase : 'cal.yr' num 1993 1993 1993 1993 1993 ...
$ doCVD1 : 'cal.yr' num 2014 2009 2002 1995 1994 ...
$ doCVD2 : 'cal.yr' num NA 2009 NA 1997 1995 ...
$ doCVD3 : 'cal.yr' num NA 2010 NA 2003 1998 ...
$ doESRD : 'cal.yr' num NaN NaN NaN NaN 1998 ...
$ doEnd : 'cal.yr' num 2015 2015 2002 2003 1998 ...
$ doDth : 'cal.yr' num NA NA 2002 2003 1998 ...
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A Lexis object

> L2 <- Lexis(entry = list(per = doBase,
+ age = doBase - doBth,
+ tfi = 0),
+ exit = list(per = doEnd),
+ exit.status = factor(deathCVD + !is.na(doDth),
+ labels=c("Mic","D(oth)","D(CVD)")),
+ id = id,
+ data = steno2)

NOTE: entry.status has been set to "Mic" for all.

Explain the coding of exit.status.
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A Lexis object

> summary(L2, t = TRUE)

Transitions:
To

From Mic D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 67 55 38 160 93 2416.59 160

Timescales:
per age tfi
"" "" ""

How many persons are there in the cohort?

How many deaths are there in the cohort?

How much follow-up time is there in the cohort?

How many states are there in the model (so far)?
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Albuminuria status

> data(st2alb) ; head(st2alb, 3)

id doTr state
1 1 1993-06-12 Mic
2 1 1995-05-13 Norm
3 1 2000-01-26 Mic

> cut2 <- rename(cal.yr(st2alb),
+ lex.id = id,
+ cut = doTr,
+ new.state = state)
> with(cut2, addmargins(table(table(lex.id))))

1 2 3 4 5 Sum
4 25 40 46 41 156

What does this table mean?
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Albuminuria status as states

> L3 <- rcutLexis(L2, cut2, time = "per")
> summary(L3)

Transitions:
To

From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 299 72 65 27 13 476 177 1381.57 160
Norm 31 90 5 14 7 147 57 607.86 69
Mac 20 3 44 14 18 99 55 427.16 64
Sum 350 165 114 55 38 722 289 2416.59 160

> boxes(L3, boxpos = TRUE, cex = 0.8)
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What's wrong with this
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What's in jump

> (jump <-
+ subset(L3, (lex.Cst == "Norm" & lex.Xst == "Mac") |
+ (lex.Xst == "Norm" & lex.Cst == "Mac"))[,
+ c("lex.id", "per", "lex.dur","lex.Cst", "lex.Xst")])

lex.id per lex.dur lex.Cst lex.Xst
70 1999.49 2.67 Mac Norm
86 2001.76 12.82 Norm Mac

130 2000.91 1.88 Mac Norm
131 1997.76 4.24 Norm Mac
136 1997.21 0.47 Mac Norm
136 1997.69 4.24 Norm Mac
171 1996.39 5.34 Norm Mac
175 2004.58 9.88 Norm Mac

�and what will you do about it?
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How to �x things

> set.seed(1952)
> xcut <- transform(jump,
+ cut = per + lex.dur * runif(per, 0.1, 0.9),
+ new.state = "Mic")
> xcut <- select(xcut, c(lex.id, cut, new.state))
> L4 <- rcutLexis(L3, xcut)
> L4 <- Relevel(L4, c("Norm","Mic","Mac","D(CVD)","D(oth)"))
> summary(L4)

Transitions:
To

From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 90 35 0 6 13 144 54 581.04 66
Mic 72 312 65 14 30 493 181 1435.14 160
Mac 0 22 41 18 12 93 52 400.41 60
Sum 162 369 106 38 55 730 287 2416.59 160
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Plot the boxes

> boxes(L4, boxpos = list(x = c(20, 20, 20, 80, 80),
+ y = c(10, 50, 90, 75, 25)),
+ show.BE = "nz",
+ scale.R = 100, digits.R = 2,
+ cex = 0.9, pos.arr = 0.3)
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Explain all the numbers in the graph.

Describe the overall e�ect of albuminuria on the two mortality rates.

Multistate model (msmt) 129/ 139



Modeling transition rates

▶ A model with a smooth e�ect of timescales on the rates require
follow-up in small bits

▶ Achieved by splitLexis (or splitMulti from popEpi)

▶ Compare the Lexis objects
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> S4 <- splitMulti(L4, tfi = seq(0, 25, 1/2))
> summary(L4)

Transitions:
To

From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 90 35 0 6 13 144 54 581.04 66
Mic 72 312 65 14 30 493 181 1435.14 160
Mac 0 22 41 18 12 93 52 400.41 60
Sum 162 369 106 38 55 730 287 2416.59 160

> summary(S4)

Transitions:
To

From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 1252 35 0 6 13 1306 54 581.04 66
Mic 72 3101 65 14 30 3282 181 1435.14 160
Mac 0 22 844 18 12 896 52 400.41 60
Sum 1324 3158 909 38 55 5484 287 2416.59 160
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How the split works:

> subset(L4, lex.id == 96)[,1:7]

lex.id per age tfi lex.dur lex.Cst lex.Xst
96 1993.65 51.53 0.00 0.45 Mic Norm
96 1994.10 51.99 0.45 2.58 Norm Norm
96 1996.68 54.57 3.03 1.90 Norm Norm
96 1998.59 56.47 4.94 2.90 Norm D(CVD)

> s4 <- subset(S4, lex.id == 96)[,1:7]
> s4[c(1:4,NA,nrow(s4)+(-3:0)),]

lex.id per age tfi lex.dur lex.Cst lex.Xst
96 1993.65 51.53 0.00 0.45 Mic Norm
96 1994.10 51.99 0.45 0.05 Norm Norm
96 1994.15 52.03 0.50 0.50 Norm Norm
96 1994.65 52.53 1.00 0.50 Norm Norm
NA NA NA NA NA <NA> <NA>
96 1999.65 57.53 6.00 0.50 Norm Norm
96 2000.15 58.03 6.50 0.50 Norm Norm
96 2000.65 58.53 7.00 0.50 Norm Norm
96 2001.15 59.03 7.50 0.33 Norm D(CVD)
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> subset(L4, lex.id == 159)[,1:7]

lex.id per age tfi lex.dur lex.Cst lex.Xst
159 1994.02 67.50 0.00 0.13 Mic Mic
159 1994.16 67.63 0.13 2.66 Mic Norm
159 1996.82 70.29 2.80 2.37 Norm Mic
159 1999.20 72.67 5.17 7.32 Mic Mac
159 2006.52 79.99 12.49 3.95 Mac D(CVD)

> subset(S4, lex.id == 159)[c(1:2,NA,6:7,NA,12:13,NA,27:28,NA,36:37),1:7]

lex.id per age tfi lex.dur lex.Cst lex.Xst
159 1994.02 67.50 0.00 0.13 Mic Mic
159 1994.16 67.63 0.13 0.37 Mic Mic
NA NA NA NA NA <NA> <NA>

159 1996.02 69.50 2.00 0.50 Mic Mic
159 1996.52 70.00 2.50 0.30 Mic Norm
NA NA NA NA NA <NA> <NA>

159 1998.52 72.00 4.50 0.50 Norm Norm
159 1999.02 72.50 5.00 0.17 Norm Mic
NA NA NA NA NA <NA> <NA>

159 2005.52 79.00 11.50 0.50 Mic Mic
159 2006.02 79.50 12.00 0.49 Mic Mac
NA NA NA NA NA <NA> <NA>

159 2009.52 83.00 15.50 0.50 Mac Mac
159 2010.02 83.50 16.00 0.44 Mac D(CVD)
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How the split works

Same amount of follow-up

Same transitions

More intervals (5, resp. 37)

Di�erent value of time scales between intervals
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Purpose of the split

▶ Assumption of constant rate in each interval

▶ All intervals are (shorter than) 0.5 years

▶ Magnitude of the rates depend on covariates:
▶ �xed covariates
▶ time scales
▶ randomly varying covariates (not now)

▶ values of covariates di�er between intervals

▶ each interval contributes to the (log-)likelihood for a speci�c rate
from a given origin state (lex.Cst)
to a given destination state (lex.Xst).

▶ �looks as the likelihood for a single Poisson observation
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Modeling the rate: Mic -> D(CVD)

> mr <- glm(cbind(lex.Xst == "D(CVD)" & lex.Cst != lex.Xst,
+ lex.dur)
+ ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)),
+ family = poisreg,
+ data = subset(S4, lex.Cst == "Mic"))

. . . the same as:

> mp <- glm((lex.Xst == "D(CVD)" & lex.Cst != lex.Xst)
+ ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)),
+ offset = log(lex.dur),
+ family = poisson,
+ data = subset(S4, lex.Cst == "Mic"))
> summary(coef(mr) - coef(mp))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.296e-12 -2.295e-13 -2.509e-14 -1.521e-13 -6.745e-15 6.697e-13
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Modeling the rate: Mic -> D(CVD)

A convenient wrapper for Lexis objects simpli�es things
substantially:

> mL <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)),
+ from = "Mic",
+ to = "D(CVD)")

stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for the transition:
Mic->D(CVD)

> summary(coef(mr) - coef(mL))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 0 0 0 0 0

> summary(coef(mp) - coef(mL))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-6.697e-13 6.745e-15 2.509e-14 1.521e-13 2.295e-13 1.296e-12
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glm.Lexis by default models all transitions to absorbing states,
from states preceding these

> mX <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst)

NOTE:
Multiple transitions *from* state ' Mac', 'Mic', 'Norm ' - are you sure?
The analysis requested is effectively merging outcome states.
You may want analyses using a *stacked* dataset - see ?stack.Lexis
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions:
Norm->D(CVD)
Mic->D(CVD)
Mac->D(CVD)
Norm->D(oth)
Mic->D(oth)
Mac->D(oth)
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Describe the model(s) in mX (look at the �gure with the boxes)

▶ What rates are modeled ?

▶ How are they modeled (assumptions about shapes) ?

▶ What are the di�erences between the rates modeled?

▶ What would you rather do?
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