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Survival and rate data

Rates and Survival
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Survival data

Persons enter the study at some date.

Persons exit at a later date, either dead or alive.

Observation:
Actual time span to death (�event�)
or

Some time alive (�at least this long�)
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Examples of time-to-event measurements

▶ Time from diagnosis of cancer to death.

▶ Time from randomisation to death in a cancer clinical trial

▶ Time from HIV infection to AIDS.

▶ Time from marriage to 1st child birth.

▶ Time from marriage to divorce.

▶ Time to re-o�ending after being released from jail
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Each line a person

Each blob a death

Study ended at 31
Dec. 2003

Calendar time

●

●

●

● ●
●

●

●

●

● ●

●●

●
●

●

●

●

● ●

●
●● ●●

●

●

●

1993 1995 1997 1999 2001 2003

Survival and rate data (surv-rate) 5/ 131



Ordered by date of
entry

Most likely the
order in your
database.
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Timescale changed
to
�Time since
diagnosis�.

Time since diagnosis
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Patients ordered by
survival time.

Time since diagnosis
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Survival times
grouped into bands
of survival.

Year of follow−up
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Patients ordered by
survival status
within each band.

Year of follow−up
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Survival after Cervix cancer
Stage I Stage II

Year N D L N D L

1 110 5 5 234 24 3
2 100 7 7 207 27 11
3 86 7 7 169 31 9
4 72 3 8 129 17 7
5 61 0 7 105 7 13
6 54 2 10 85 6 6
7 42 3 6 73 5 6
8 33 0 5 62 3 10
9 28 0 4 49 2 13
10 24 1 8 34 4 6

Life-table estimator of death probability: D/(N − L/2)

Estimated risk of death in year 1 for Stage I women is 5/107.5 = 0.0465

Estimated 1 year survival is 1− 0.0465 = 0.9535
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Survival after Cervix cancer

Stage I Stage II

Year N D L N D L

1 110 5 5 234 24 3
2 100 7 7 207 27 11
3 86 7 7 169 31 9

Estimated risk in year 1 for Stage I women is 5/107.5 = 0.0465
Estimated risk in year 2 for Stage I women is 7/96.5 = 0.0725
Estimated risk in year 3 for Stage I women is 7/82.5 = 0.0848

Estimated 1 year survival is 1− 0.0465 = 0.9535
Estimated 2 year survival is 0.9535× (1− 0.0725) = 0.8843
Estimated 3 year survival is 0.8843× (1− 0.0848) = 0.8093

This is the life-table estimator of the survival curve.
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▶ no need to use 1 year intervals: 1 day intervals could be used

▶ very small intervals will leave at most 1 censoring or 1 death in
each

▶ interval with 1 death and nt persons at risk:
P {Death} = 1/nt

▶ corresponding survival probability 1− 1/nt = (nt − 1)/nt

▶ interval with 0 deaths has survival probability 1

▶ multiply these over times with event to get survival function:

S(t) =
∏

t with event

(nt − 1)/nt

. . . you have the Kaplan-Meier estimator
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Multistate models

introduction
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A multistate model
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A multistate model: data

▶ Not really a model

▶ Data (observations)
▶ sequence of transitions: (when, from state, to state)
▶ sequence of: (current state, time, next state)

▶ Time: covariate or response? . . . both, actually:
▶ when something happens

�is a covariate for rates:
how large are rates at a given age, say

▶ risk time: how long has the person been at risk
�this is the part of the outcome

▶ risk time is the di�erence between two whens
▶ whens are usually dates
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A multistate model

▶ Target parameters:
▶ Rates (the arrows)
▶ State probabilities (being in a state at a given time)
▶ Survival probability (being alive)
▶ Sojourn times (how long time do you spend in a state)
▶ Expected life time
▶ Probability of ever visiting a state
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Data and parameter realms

▶ Data: events / (person)time
� the rate dimension (time−1)

▶ Target parameter dimensions:
▶ rates (dimension time−1)
▶ probabilities:

integrals of rates w.r.t. time, requires starting point
�dimension time−1 × time =<none>

▶ sojourn times:
integrals of probabilities w.r.t. time.
�dimension <none>×time = time
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What is a statistical model

▶ Speci�cation of a statistical machinery that could have
generated data

▶ . . . so with a statistical model we can simulate a data set

▶ The basis for the likelihood of data is the statistical model

⇒ Estimation of parameters in the model

▶ Parameter estimates needed for prediction of rates (hazards)

▶ So we need the likelihood of

the observed data
given the model

�a function of (the parameters of) the rates.
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Data assumptions

▶ Individual, accurate data:

▶ Exact time of transition between states for all persons
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Lung cancer survival

computations
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Prerequisites

> library(Epi)
> library(popEpi)
> # popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
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The lung data set

> library(survival)
> data(lung)
> lung$sex <- factor(lung$sex,
+ levels = 1:2,
+ labels = c("M", "W"))
> lung$time <- lung$time / (365.25/12)
> head(lung)

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1 3 10.053388 2 74 M 1 90 100 1175 NA
2 3 14.948665 2 68 M 0 90 90 1225 15
3 3 33.182752 1 56 M 0 90 90 NA 15
4 5 6.899384 2 57 M 1 90 60 1150 11
5 1 29.010267 2 60 M 0 100 90 NA 0
6 12 33.577002 1 74 M 1 50 80 513 0

Lung cancer survival (surv) 21/ 131



Survival function

▶ Use survfit to construct the Kaplan-Meier estimator of overall
survival:
> ?Surv
> ?survfit

> km <- survfit(Surv(time, status == 2) ~ 1, data = lung)
> km
Call: survfit(formula = Surv(time, status == 2) ~ 1, data = lung)

n events median 0.95LCL 0.95UCL
[1,] 228 165 10.2 9.36 11.9
> # summary(km) # very long output

Lung cancer survival (surv) 22/ 131



We can plot the survival curve�this is the default plot for a
survfit object:

> plot(km)

What is the median survival? What does it mean? Explore if survival
patterns between men and women are di�erent:

> kms <- survfit(Surv(time, status == 2) ~ sex, data = lung)
> kms

Call: survfit(formula = Surv(time, status == 2) ~ sex, data = lung)

n events median 0.95LCL 0.95UCL
sex=M 138 112 8.87 6.97 10.2
sex=W 90 53 14.00 11.43 18.1
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We see that men have worse survival than women, but they are also
a bit older (age is age at diagnosis of lung cancer):

> with(lung, tapply(age, sex, mean))

M W
63.34058 61.07778

Formally there is a signi�cant di�erence in survival between men and
women

> survdiff(Surv(time, status==2) ~ sex, data = lung)

Call:
survdiff(formula = Surv(time, status == 2) ~ sex, data = lung)

N Observed Expected (O-E)^2/E (O-E)^2/V
sex=M 138 112 91.6 4.55 10.3
sex=W 90 53 73.4 5.68 10.3

Chisq= 10.3 on 1 degrees of freedom, p= 0.001

What is the null hypothesis tested here?
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Rates and rate-ratios

▶ Occurrence rate:

λ(t) = limh→0 P {event in (t, t+ h] | alive at t} /h

�measured in probability per time: time−1

▶ observation in a survival study: (exit status, time alive)
▶ empirical rate (d, y) = (deaths, time)
▶ the Cox model is a model for rates as function of

time (t) and covariates (x1, x2):

λ(t, x) = λ0(t)exp(β1x1 + β2x2)

�mortality depends on the person's sex and age, say.
▶ Data looks like data for a K-M analysis plus covariate values
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Rates and rate-ratios: Simple Cox model

Now explore how sex and age (at diagnosis) in�uence the
mortality�note that in a Cox-model we are addressing the mortality
rate and not the survival:

> c0 <- coxph(Surv(time, status == 2) ~ sex , data = lung)
> c1 <- coxph(Surv(time, status == 2) ~ sex + age, data = lung)
> summary(c1)
> ci.exp(c0)
> ci.exp(c1)

What variables from lung are we using?
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> c0 <- coxph(Surv(time, status == 2) ~ sex , data = lung)
> c1 <- coxph(Surv(time, status == 2) ~ sex + age, data = lung)
> summary(c1)

Call:
coxph(formula = Surv(time, status == 2) ~ sex + age, data = lung)

n= 228, number of events= 165

coef exp(coef) se(coef) z Pr(>|z|)
sexW -0.513219 0.598566 0.167458 -3.065 0.00218 **
age 0.017045 1.017191 0.009223 1.848 0.06459 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
sexW 0.5986 1.6707 0.4311 0.8311
age 1.0172 0.9831 0.9990 1.0357

Concordance= 0.603 (se = 0.025 )
Likelihood ratio test= 14.12 on 2 df, p=9e-04
Wald test = 13.47 on 2 df, p=0.001
Score (logrank) test = 13.72 on 2 df, p=0.001
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> ci.exp(c0)

exp(Est.) 2.5% 97.5%
sexW 0.5880028 0.4237178 0.8159848

> ci.exp(c1)

exp(Est.) 2.5% 97.5%
sexW 0.598566 0.4310936 0.8310985
age 1.017191 0.9989686 1.0357467

What do these estimates mean?

λ(t, x) = λ0(t)exp(β1x1 + β2x2)

Where is β1 ? Where is β2 ? Where is λ0(t) ?

What is the mortality RR for a 10 year age di�erence?
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If mortality is assumed constant (λ(t) = λ), then the likelihood for
the Cox-model is equivalent to a Poisson likelihood, which can be
�tted using the poisreg family from the Epi package:

> ?poisreg

> p1 <- glm(cbind(status == 2, time) ~ sex + age,
+ family = poisreg,
+ data = lung)
> ci.exp(p1) # Poisson

exp(Est.) 2.5% 97.5%
(Intercept) 0.03255152 0.01029228 0.1029511
sexW 0.61820515 0.44555636 0.8577537
age 1.01574132 0.99777446 1.0340317

> ci.exp(c1) # Cox

exp(Est.) 2.5% 97.5%
sexW 0.598566 0.4310936 0.8310985
age 1.017191 0.9989686 1.0357467
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Sex and age e�ects are quite close between the Poisson and the Cox
models.

Poisson model has an intercept term, the estimate of the (assumed)
constant underlying mortality.

The risk time part of the response (second argument in the cbind)
was entered in units of months (remember we rescaled in the
beginning?), the (Intercept) (taken from the ci.exp) is a rate
per 1 person-month.

What age and sex does the (Intercept) refer to?

> ci.exp(p1) # Poisson

exp(Est.) 2.5% 97.5%
(Intercept) 0.03255152 0.01029228 0.1029511
sexW 0.61820515 0.44555636 0.8577537
age 1.01574132 0.99777446 1.0340317
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poisreg and poisson

poisreg: cbind(d,y) � ...

> p1 <- glm(cbind(status == 2, time) ~ sex + age,
+ family = poisreg,
+ data = lung)

poisson: d � ... + offset(log(y))

> px <- glm(status == 2 ~ sex + age + offset(log(time)),
+ family = poisson,
+ data = lung)
> ## or:
> px <- glm(status == 2 ~ sex + age,
+ offset = log(time),
+ family = poisson,
+ data = lung)
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Likelihood and records

Suppose a person is alive from te (entry) to tx (exit) and that the
person's status at tx is d, where d = 0 means alive and d = 1 means
dead. If we choose, say, two time points, t1, t2 between te and tx,
standard use of conditional probability (formally, repeated use of
Bayes' formula) gives

P {d at tx | entry at te} =P {survive (te, t1] | alive at te}×
P {survive (t1, t2] | alive at t1}×
P {survive (t2, tx] | alive at t2}×
P {d at tx | alive just before tx}
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Rates and likelihood

For a start assume that the mortality is constant over time λ(t) = λ:

P {death during (t, t+ h]} ≈ λh (1)

⇒ P {survive (t, t+ h]} ≈ 1− λh

where the approximation gets better the smaller h is.
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Dividing follow-up time

▶ Survival for a time span: y = tx − te
▶ Subdivided in N intervals, each of length h = y/N

▶ Survival probability for the entire span from te to tx is the
product of probabilities of surviving each of the small intervals,
conditional on being alive at the beginning each interval:

P {survive te to tx} ≈ (1− λh)N =

(
1− λy

N

)N
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Dividing follow-up time

▶ From mathematics it is known that (1 + x/n)n → exp(x) as
n → ∞ (some de�ne exp(x) this way).

▶ So if we divide the time span y in small pieces we will have that
N → ∞:

P {survive te to tx} ≈
(
1− λy

N

)N

→ exp(−λy), N → ∞

(2)

▶ The contribution to the likelihood from a person observed for a
time span of length y is exp(−λy), and the contribution to the
log-likelihood is therefore −λy.
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Dividing follow-up time

▶ A person dying at the end of the last interval, the contribution
to the likelihood from the last interval will be

▶ the probability surviving till just before the end of the interval,

▶ multiplied by

▶ the probability of dying in the last tiny instant (of length ϵ) of
the interval

▶ The probability of dying in this tiny instant is λϵ

▶ log-likelihood contribution from this last instant is
log(λϵ) = log(λ) + log(ϵ).
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Total likelihood

The total likelihood for one person is the product of all these terms
from the follow-up intervals (i) for the person; and the log-likelihood
(ℓ) is therefore the sum of the log-likelihood terms:

ℓ(λ) =
∑
i

(−λyi + dilog(λ) + dilog(ϵ))

=
∑
i

(
dilog(λ)− λyi

)
+
∑
i

dilog(ϵ)

The last term does not depend on λ, so it can be ignored
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Total log-likelihood

▶ . . . for the follow up of 1 person is (the rate likelihood):∑
i

(
dilog(λ)− λyi

)
▶ this is also the likelihood for independent Poisson variates di

with means λyi.

▶ even though the dis are neither Poisson nor independent

▶ Di�erent models can have the same (log)likelihood:
▶ model for follow-up of a person (di, yi), constant rate λ
▶ model for independent Poisson variates (di), mean λyi
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y d

te t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry te) d log(λ)− λy

= P(surv te → t1|entry te) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(d at tx|entry t2) + d log(λ)− λy3
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y ed = 0

te t1 t2 tx

y1 y2 y3
e

Probability log-Likelihood

P(surv te → tx|entry te) 0 log(λ)− λy

= P(surv te → t1|entry te) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(surv t2 → tx|entry t2) + 0 log(λ)− λy3
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y ud = 1

te t1 t2 tx

y1 y2 y3
u

Probability log-Likelihood

P(event at tx|entry te) 1 log(λ)− λy

= P(surv te → t1|entry te) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(event at tx|entry t2) + 1 log(λ)− λy3
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y d

te t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry te) d log(λ)− λy

= P(surv te → t1|entry te) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(d at tx|entry t2) + d log(λ)− λy3
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y d

te t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry te) d log(λ)− λy

= P(surv te → t1|entry te) = 0 log(λ1)− λ1y1
×P(surv t1 → t2|entry t1) + 0 log(λ2)− λ2y2
×P(d at tx|entry t2) + d log(λ3)− λ3y3

� allows di�erent rates (λi) in each interval
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Representation of follow-up: Lexis object

> Ll <- Lexis(exit = list(tfl = time),
+ exit.status = factor(status,
+ levels = 1:2,
+ labels = c("Alive","Dead")),
+ data = lung)

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfl timescale.

> head(Ll)

lex.id tfl lex.dur lex.Cst lex.Xst inst time status age sex ph.ecog ph.karno
1 0 10.05 Alive Dead 3 10.053 2 74 M 1 90
2 0 14.95 Alive Dead 3 14.949 2 68 M 0 90
3 0 33.18 Alive Alive 3 33.183 1 56 M 0 90
4 0 6.90 Alive Dead 5 6.899 2 57 M 1 90
5 0 29.01 Alive Dead 1 29.010 2 60 M 0 100
6 0 33.58 Alive Alive 12 33.577 1 74 M 1 50

pat.karno meal.cal wt.loss
100 1175 NA
90 1225 15
90 NA 15
60 1150 11
90 NA 0
80 513 0
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New variables in a Lexis object

tfl: time from lung cancer at the time of entry, therefore
it is 0 for all persons; the entry time is 0 from the date of
lung cancer. De�nes a timescale with name tfl.

lex.dur: the length of time a person is in state lex.Cst, here
measured in months, because time is.

lex.Cst: Current state, the state in which the lex.dur time is
spent.

lex.Xst: eXit state, the state to which the person moves after the
lex.dur time in lex.Cst.

lex.id: an id of each record in the source dataset. Can be
explicitly set by id=.
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Lexis object: Overview of follow-up

Overkill?
The point is that the machinery generalizes to multistate data.

> summary(Ll)

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 63 165 228 165 2286.42 228

What is the average follow-up time for persons?

surv 46/ 131



> boxes(Ll, boxpos = TRUE, scale.Y = 12, digits.R = 2)

Alive
190.5

Dead

165
(0.87)

Alive
190.5

Dead

Alive
190.5

Dead

Explain the numbers in the graph.
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Cox model using the Lexis-speci�c variables:

> cl <- coxph(Surv(tfl,
+ tfl + lex.dur,
+ lex.Xst == "Dead") ~ sex + age,
+ data = Ll)

Surv(from-time, to-time, event indicator)

Using the Lexis features:

> cL <- coxph.Lexis(Ll, tfl ~ sex + age)

survival::coxph analysis of Lexis object Ll:
Rates for the transition:
Alive->Dead
Baseline timescale: tfl

> round(cbind(ci.exp(cL),
+ ci.exp(cl)), 3)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
sexW 0.599 0.431 0.831 0.599 0.431 0.831
age 1.017 0.999 1.036 1.017 0.999 1.036
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The crude Poisson model:

> pc <- glm(cbind(lex.Xst == "Dead", lex.dur) ~ sex + age,
+ family = poisreg,
+ data = Ll)

or even simpler, by using the Lexis features:

> pL <- glm.Lexis(Ll, ~ sex + age)

stats::glm Poisson analysis of Lexis object Ll with log link:
Rates for the transition:
Alive->Dead

> round(cbind(ci.exp(pL),
+ ci.exp(pc)), 3)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
(Intercept) 0.033 0.010 0.103 0.033 0.010 0.103
sexW 0.618 0.446 0.858 0.618 0.446 0.858
age 1.016 0.998 1.034 1.016 0.998 1.034
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Poisson and Cox model

The crude Poisson model is a Cox-model with the (quite brutal)
assumption that baseline rate is constant over time.

But results are similar:

> round(cbind(ci.exp(cL),
+ ci.exp(pL)[-1,]), 3)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
sexW 0.599 0.431 0.831 0.618 0.446 0.858
age 1.017 0.999 1.036 1.016 0.998 1.034
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Baseline hazard: splitting time

> Sl <- splitMulti(Ll, tfl = 0:36)
> summary(Ll)

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 63 165 228 165 2286.42 228

> summary(Sl)

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 2234 165 2399 165 2286.42 228

What happended to no. records?

What happended to amount of risk time?

What happended to no. events?
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> wh <- names(Ll)[1:10] # names of variables in some order
> subset(Ll, lex.id == 10)[,wh]

lex.id tfl lex.dur lex.Cst lex.Xst inst time status age sex
10 0 5.45 Alive Dead 7 5.454 2 61 M

> subset(Sl, lex.id == 10)[,wh]

lex.id tfl lex.dur lex.Cst lex.Xst inst time status age sex
10 0 1.00 Alive Alive 7 5.454 2 61 M
10 1 1.00 Alive Alive 7 5.454 2 61 M
10 2 1.00 Alive Alive 7 5.454 2 61 M
10 3 1.00 Alive Alive 7 5.454 2 61 M
10 4 1.00 Alive Alive 7 5.454 2 61 M
10 5 0.45 Alive Dead 7 5.454 2 61 M

In Sl each record now represents a small interval of follow-up for a
person, so each person has many records.
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Natural splines for baseline hazard

> ps <- glm(cbind(lex.Xst == "Dead", lex.dur)
+ ~ Ns(tfl, knots = seq(0, 36, 12)) + sex + age,
+ family = poisreg,
+ data = Sl)

or even simpler:

> ps <- glm.Lexis(Sl, ~ Ns(tfl, knots = seq(0, 36, 12)) + sex + age)

stats::glm Poisson analysis of Lexis object Sl with log link:
Rates for the transition:
Alive->Dead

> ci.exp(ps)

exp(Est.) 2.5% 97.5%
(Intercept) 0.0189837 0.005700814 0.06321569
Ns(tfl, knots = seq(0, 36, 12))1 2.4038681 0.809442081 7.13896863
Ns(tfl, knots = seq(0, 36, 12))2 4.1500822 0.436273089 39.47798357
Ns(tfl, knots = seq(0, 36, 12))3 0.8398973 0.043928614 16.05849662
sexW 0.5987171 0.431232662 0.83124998
age 1.0165872 0.998377104 1.03512945
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Comparing with estimates from the Cox-model and from the model
with constant baseline:

> round(cbind(ci.exp(cl),
+ ci.exp(ps, subset = c("sex","age")),
+ ci.exp(pc, subset = c("sex","age"))), 3)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
sexW 0.599 0.431 0.831 0.599 0.431 0.831 0.618 0.446 0.858
age 1.017 0.999 1.036 1.017 0.998 1.035 1.016 0.998 1.034

surv 54/ 131



But where is the baseline hazard?

ps is a model for the hazard so we can predict the value of it at
de�ned values for the covariates in the model:

> prf <- data.frame(tfl = seq(0, 30, 0.2),
+ sex = "W",
+ age = 60)

We can over-plot with the predicted rates from the model where
mortality rates are constant, the only change is the model (pc
instead of ps):

> matshade(prf$tfl, ci.pred(ps, prf),
+ plot = TRUE, log = "y", lwd = 3)
> matshade(prf$tfl, ci.pred(pc, prf), lty = 3, lwd = 3)
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Here is the baseline hazard!
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Survival function and hazard function

S(t) = exp(−
∫ t

0

λ(u) du)

Simple, but the CI for S(t) not so simple. . .

Implemented in the ci.surv function

Arguments: 1:model, 2:prediction data frame, 3:equidistance

Prediction data frame must correspond to a sequence of equidistant
time points:

> matshade(prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)
> lines(prf$tfl, ci.surv(pc, prf, intl = 0.2)[,1], col="blue")
> lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ lwd = 2, lty = 1, col="magenta")
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Survival functions
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Hazard and survival functions

> par(mfrow = c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6)
> #
> # hazard scale
> matshade(prf$tfl, ci.pred(ps, prf),
+ plot = TRUE, log = "y", lwd = 3)
> matshade(prf$tfl, ci.pred(pc, prf), lty = 3, lwd = 3)
> #
> # survival
> matshade(prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)
> lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ col = "forestgreen", lwd = 3, conf.int = FALSE)
> lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ col = "forestgreen", lwd = 1, lty = 1)
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Hazard and survival functions
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K-M estimator and smooth Poisson model

Kaplan-Meier estimator and compared to survival from corresponding
Poisson-model, which is one with time (tfl) as the only covariate:

> par(mfrow=c(1,2))
> pk <- glm(cbind(lex.Xst == "Dead",
+ lex.dur) ~ Ns(tfl, knots = seq(0, 36, 12)),
+ family = poisreg,
+ data = Sl)
> # hazard
> matshade(prf$tfl, ci.pred(pk, prf),
+ plot = TRUE, log = "y", lwd = 3, ylim = c(0.01,1))
> # survival from smooth model
> matshade(prf$tfl, ci.surv(pk, prf, intl = 0.2) ,
+ plot = TRUE, lwd = 3, ylim = 0:1)
> # K-M estimator
> lines(km, lwd = 2)
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K-M estimator and smooth Poisson model
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K-M estimator and smooth Poisson model

We can explore how the tightness of the knots in the smooth model
in�uence the underlying hazard and the resulting survival function:

> zz <- function(dk) # distance between knots
+ {
+ par(mfrow=c(1,2))
+ kn <- seq(0, 36, dk)
+ pk <- glm(cbind(lex.Xst == "Dead",
+ lex.dur) ~ Ns(tfl, knots = kn),
+ family = poisreg,
+ data = Sl)
+ matshade(prf$tfl, ci.pred(pk, prf),
+ plot = TRUE, log = "y", lwd = 3, ylim = c(0.01,1))
+ rug(kn, lwd=3)
+
+ matshade(prf$tfl, ci.surv(pk, prf, intl = 0.2) ,
+ plot = TRUE, lwd = 3, ylim = 0:1)
+ lines(km, lwd = 2, col = "forestgreen")
+ }
> zz(12)surv 63/ 131



K-M estimator and smooth Poisson model
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K-M estimator and smooth Poisson model
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K-M estimator and smooth Poisson model
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K-M estimator and smooth Poisson model
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K-M estimator and smooth Poisson model
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K-M estimator and smooth Poisson model
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Survival analysis summary

▶ 1 to 1 correspondence between
▶ hazard function and starting point
▶ survival function

▶ K-M and Cox use a very detailed baseline hazard (omits it)

▶ Smooth parametric hazard function more credible:
▶ De�ne Lexis object
▶ Split along time
▶ Fit Poisson model
▶ Prediction data frame
▶ ci.pred to get baseline rates
▶ ci.surv to get baseline survival
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> data(lung)
> lung$sex <- factor(lung$sex, labels=c("M", "F"))
> Lx <- Lexis(exit = list(tfe=time),
+ exit.status = factor(status,labels = c("Alive", "Dead")),
+ data = lung)
> sL <- splitMulti(Lx, tfe=seq(0, 1200, 10))

Smooth parametric hazard function
> m0 <- glm.Lexis(sL, ~ Ns(tfe, knots = seq(0, 1000, 200)) + sex + age)

Prediction data frame
> nd <- data.frame(tfe = seq(0, 900, 20) + 10, sex = "M", age = 65)

Predictions
> rate <- ci.pred(m0, nd) * 365.25 # per year, not per day
> surv <- ci.surv(m0, nd, int = 20)

Plot the rates
> matshade(nd$tfe, rate, log = "y", plot = TRUE)

Plot the survival function
> matshade(nd$tfe - 10, surv, ylim = c(0, 1), plot = TRUE)
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> library(survival)
> library(Epi)
> library(popEpi)
> # popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
> library(tidyverse)
> clear()

> data(DMlate)
> # str(DMlate)
> set.seed(1952)
> DMlate <- DMlate[sample(1:nrow(DMlate), 2000),]
> str(DMlate)

'data.frame': 2000 obs. of 7 variables:
$ sex : Factor w/ 2 levels "M","F": 2 1 2 1 1 1 1 1 1 1 ...
$ dobth: num 1964 1944 1957 1952 1952 ...
$ dodm : num 2003 2006 2008 2007 2003 ...
$ dodth: num NA NA NA NA NA NA NA NA NA NA ...
$ dooad: num NA 2006 NA 2007 2006 ...
$ doins: num NA NA NA 2008 NA ...
$ dox : num 2010 2010 2010 2010 2010 ...

> head(DMlate)

sex dobth dodm dodth dooad doins dox
70126 F 1963.591 2003.481 NA NA NA 2009.997
235221 M 1944.127 2005.644 NA 2005.778 NA 2009.997
230872 F 1956.790 2007.886 NA NA NA 2009.997
138167 M 1952.355 2006.969 NA 2006.969 2008.026 2009.997
406109 M 1952.240 2003.361 NA 2005.852 NA 2009.997
72438 M 1978.758 2001.948 NA NA 2001.967 2009.997
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Lexis object from DM to Death

> Ldm <- Lexis(entry = list(per = dodm,
+ age = dodm - dobth,
+ tfd = 0),
+ exit = list(per = dox),
+ exit.status = factor(!is.na(dodth),
+ labels = c("DM","Dead")),
+ data = DMlate)

NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 1 rows with duration of follow up < tol

> summary(Ldm)

Transitions:
To

From DM Dead Records: Events: Risk time: Persons:
DM 1521 478 1999 478 10742.34 1999
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Cut follow-up at the date of Ins

> Ldm <- sortLexis(Ldm)
> Cdm <- cutLexis(Ldm,
+ cut = Ldm$doins,
+ timescale = "per",
+ new.state = "Ins")
> summary(Cdm)

Transitions:
To

From DM Ins Dead Records: Events: Risk time: Persons:
DM 1258 330 398 1986 728 9015.5 1986
Ins 0 263 80 343 80 1726.8 343
Sum 1258 593 478 2329 808 10742.3 1999
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Cut follow-up at the date of Ins, doins

> subset(Ldm, lex.id %in% c(2,3,4,34))[,c(1:7,13)]

lex.id per age tfd lex.dur lex.Cst lex.Xst doins
2 2005.6 61.52 0 4.35 DM DM NA
3 2007.9 51.10 0 2.11 DM DM NA
4 2007.0 54.61 0 3.03 DM DM 2008.0

34 2002.8 69.65 0 4.01 DM Dead 2002.9

> subset(Cdm, lex.id %in% c(2,3,4,34))[,c(1:7,13)]

lex.id per age tfd lex.dur lex.Cst lex.Xst doins
2 2005.6 61.52 0.00 4.35 DM DM NA
3 2007.9 51.10 0.00 2.11 DM DM NA
4 2007.0 54.61 0.00 1.06 DM Ins 2008.0
4 2008.0 55.67 1.06 1.97 Ins Ins 2008.0

34 2002.8 69.65 0.00 0.07 DM Ins 2002.9
34 2002.9 69.72 0.07 3.94 Ins Dead 2002.9
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Restrict to those alive in DM

> Adm <- subset(Cdm, lex.Cst == "DM")
> summary(Adm)

Transitions:
To

From DM Ins Dead Records: Events: Risk time: Persons:
DM 1258 330 398 1986 728 9015.5 1986

> par(mfrow=c(1,2))
> boxes(Cdm, boxpos = TRUE, scale.R = 100, show.BE = TRUE)
> boxes(Adm, boxpos = TRUE, scale.R = 100, show.BE = TRUE)
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Transitions in Cdm and Adm
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Survival function?

S(t) = exp

(
−
∫ t

0

λ(u) + µ(u) du

)
S(t) = exp

(
−
∫ t

0

λ(u) du

)
S(t) = exp

(
−
∫ t

0

µ(u) du

)
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Survival function?

▶ Regarding either Dead or Ins as censorings � or neither?

▶ Simple survival: what is the probability of being in each of
the states Alive and Dead

�depends on one rate, Alive → Dead

▶ Competing risks: the probability of being in each of the
states DM, Ins and Dead

�depends on two rates, DM → Ins and DM → Dead
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Survival function and Cumulative risk function

survfit does the trick; the requirements are:

1. (start, stop, event) arguments to Surv

2. the third argument to the Surv function is a factor

3. an id argument is given, pointing to an id variable that links
together records belonging to the same person.

4. the initial state (DM) must be the �rst level of the factor
lex.Xst
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Survival function and Cumulative risk function
> levels(Adm$lex.Xst)

[1] "DM" "Ins" "Dead"

> m3 <- survfit(Surv(tfd, tfd + lex.dur, lex.Xst) ~ 1,
+ id = lex.id,
+ data = Adm)
> # names(m3)
> m3$states

[1] "(s0)" "Ins" "Dead"

> head(cbind(time = m3$time, m3$pstate))

time
[1,] 0.0054757 0.99950 0.0000000 0.00050352
[2,] 0.0082136 0.99748 0.0010070 0.00151057
[3,] 0.0109514 0.99547 0.0025184 0.00201435
[4,] 0.0136893 0.99396 0.0040297 0.00201435
[5,] 0.0164271 0.99295 0.0050373 0.00201435
[6,] 0.0191650 0.98942 0.0085637 0.00201435

�this is called the Aalen-Johansen estimator of state probabilities
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Survival function and cumulative risks�formulae

S(t) = exp

(
−
∫ t

0

λ(u) + µ(u) du
)

RDead(t) =

∫ t

0

µ(u)S(u) du

RIns(t) =

∫ t

0

λ(u)S(u) du)

=

∫ t

0

λ(u)exp
(
−
∫ u

0

λ(s) + µ(s) ds
)
du

S(t) +RIns(t) +RDead(t) = 1, ∀t
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Survival function and cumulative risks
> par( mfrow=c(1,2) )
> matplot(m3$time, m3$pstate,
+ type="s", lty=1, lwd=4,
+ col=c("ForestGreen","red","black"),
+ xlim=c(0,15), xaxs="i",
+ ylim=c(0,1), yaxs="i" )
> stackedCIF(m3, lwd=3, xlim=c(0,15), xaxs="i", yaxs="i" )
> text(rep(12,3), c(0.9,0.3,0.6), levels(Cdm))
> box(bty="o")

> par(mfrow = c(1, 2))
> matshade(m3$time, cbind(m3$pstate,
+ m3$lower,
+ m3$upper)[, c(1, 4, 7, 2, 5, 8, 3, 6, 9)],
+ plot = TRUE, lty = 1, lwd = 2,
+ col = clr <- c("ForestGreen","red","black"),
+ xlim=c(0,15), xaxs="i",
+ ylim = c(0,1), yaxs = "i")
> mat2pol(m3$pstate, perm = 3:1, x = m3$time, col = clr[3:1])
> text(rep(12, 3), c(0.8, 0.5, 0.2), levels(Cdm), col = "white")

Competing risks (cmpr) 83/ 131



Survival and cumulative risk functions
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Survival and cumulative risk functions
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Survival function and cumulative risks�don't

S(t) = exp

(
−
∫ t

0

λ(u) + µ(u) du
)

RDead(t) =

∫ t

0

µ(u)S(u) du

RIns(t) =

∫ t

0

λ(u)S(u) du)

=

∫ t

0

λ(u)exp
(
−
∫ u

0

λ(s) + µ(s) ds
)
du

̸=
∫ t

0

λ(u)exp
(
−
∫ u

0

λ(s) ds
)
du

= 1− exp

(
−
∫ t

0

λ(s) ds
)
� nice formula, but wrong!

Probability of Ins assuming Dead does not exist and rate of Ins unchanged!Competing risks (cmpr) 86/ 131



Survival function and cumulative risks�don't

> m2 <- survfit(Surv(tfd,
+ tfd + lex.dur,
+ lex.Xst == "Ins" ) ~ 1,
+ data = Adm)
> M2 <- survfit(Surv(tfd,
+ tfd + lex.dur,
+ lex.Xst == "Dead") ~ 1,
+ data = Adm)
> par(mfrow = c(1,2))
> mat2pol(m3$pstate, c(2,3,1), x = m3$time,
+ col = c("red", "black", "transparent"),
+ xlim=c(0,15), xaxs="i",
+ yaxs = "i", xlab = "time since DM", ylab = "" )
> lines(m2$time, 1 - m2$surv, lwd = 3, col = "red" )
> mat2pol(m3$pstate, c(3,2,1), x = m3$time, yaxs = "i",
+ col = c("black","red","transparent"),
+ xlim=c(0,15), xaxs="i",
+ yaxs = "i", xlab = "time since DM", ylab = "" )
> lines(M2$time, 1 - M2$surv, lwd = 3, col = "black" )
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Survival and cumulative risk functions
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Cause-speci�c rates

▶ There is nothing wrong with modeling the cause-speci�c
event-rates, the problem lies in how you transform them into
probabilities.

▶ The relevant model for a competing risks situation normally
consists of separate models for each of the cause-speci�c rates.

▶ These models have no common parameters (e�ects of time or
other covariates are not constrained to be the same).

▶ . . . not for technical or statistical reasons, but for substantial
reasons:
it is unlikely that rates of di�erent types of event (Insulin
initiation and death, say) depend on time in the same way.
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Cause-speci�c rates
> Sdm <- splitMulti(Adm, tfd = seq(0, 20, 0.1))
> summary(Adm)

Transitions:
To

From DM Ins Dead Records: Events: Risk time: Persons:
DM 1258 330 398 1986 728 9015.5 1986

> summary(Sdm)

Transitions:
To

From DM Ins Dead Records: Events: Risk time: Persons:
DM 90419 330 398 91147 728 9015.5 1986
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Cause-speci�c rates
> round(cbind(
+ with(subset(Sdm, lex.Xst == "Ins" ), quantile(tfd + lex.dur, 0:4/4)),
+ with(subset(Sdm, lex.Xst == "Dead"), quantile(tfd + lex.dur, 0:4/4))), 2)

[,1] [,2]
0% 0.01 0.01
25% 0.07 1.15
50% 1.07 3.01
75% 5.19 5.69
100% 13.74 14.38

> ikn <- c(0, 0.5, 3, 10)
> dkn <- c(0, 2.0, 5, 9)
> Ins.glm <- glm.Lexis(Sdm, ~ Ns(tfd, knots = ikn), to = "Ins" )

stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition:
DM->Ins

> Dead.glm <- glm.Lexis(Sdm, ~ Ns(tfd, knots = dkn), to = "Dead")

stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition:
DM->Dead
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Cause-speci�c rates

> int <- 0.01
> nd <- data.frame(tfd = seq(0, 15, int))
> l.glm <- ci.pred( Ins.glm, nd)
> m.glm <- ci.pred(Dead.glm, nd)
> matshade(nd$tfd,
+ cbind(l.glm, m.glm) * 100,
+ plot = TRUE,
+ yaxs="i", ylim = c(0, 20),
+ # log = "y", ylim = c(2, 20),
+ col = rep(c("red","black"), 2), lwd = 3,
+ xlab = "Time since DM (years)",
+ ylab = "Rates per 100 PY")
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Survival and cumulative risk functions
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Survival and cumulative risk functions
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Integrals with R

▶ Integrals look scary to many people, but they are really just
areas under curves.

▶ In R, a curve of the function µ(t) is a set of two vectors:
one vector of ts and one vector y = µ(t)s.

▶ When we have a model such as the glm above that estimates
the mortality as a function of time (tfd), we can get the
mortality as a funtion of time by �rst choosing the timepoints,
say from 0 to 15 years in steps of 0.01 year (≈ 4 days)

▶ Using ci.pred on this gives the predicted rates

▶ Then use the formuale with all the integrals to get the state
probabilities.
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Integrals with R

> t <- seq(0, 15, 0.01)
> nd <- data.frame(tfd = t)
> mu <- ci.pred(Dead.glm, nd)[,1]
> head(cbind(t, mu))

t mu
1 0.00 0.061567
2 0.01 0.061372
3 0.02 0.061177
4 0.03 0.060983
5 0.04 0.060790
6 0.05 0.060597

> plot(t, mu, type="l", lwd = 3,
+ xlim = c(0, 7), xaxs = "i",
+ ylim = c(0, 0.1), yaxs = "i")
> polygon(t[c(1:501,501:1)], c(mu[1:501], rep(0, 501)),
+ col = "gray", border = "transparent")
> abline(v=0:50/10, col="white")
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Integrals with R
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Numerical integration with R

> mid <- function(x) x[-1] - diff(x) / 2
> (x <- c(1:5, 7, 10))

[1] 1 2 3 4 5 7 10

> mid(x)

[1] 1.5 2.5 3.5 4.5 6.0 8.5

mid(x) is a vector that is 1 shorter than the vector x, just as diff(x) is.

So if we want the integral over the period 0 to 5 years, we want the sum over the
�rst 500 intervals, corresponding to the �rst 501 interval endpoints:

> cbind(diff(t), mid(mu))[1:5,]

[,1] [,2]
2 0.01 0.061470
3 0.01 0.061275
4 0.01 0.061080
5 0.01 0.060887
6 0.01 0.060694

> sum(diff(t[1:501]) * mid(mu[1:501]))

[1] 0.20692

So now we have computed
∫ 5

0
µ(s) d(s). This is called the cumulative rate over

the interval [0, 5] years.
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Numerical integration with R

In practice we will want the integral function of µ, so for every t we want
M(t) =

∫ t

0
µ(s) d(s). This is easily accomplished by the function cumsum:

> Mu <- c(0, cumsum(diff(t) * mid(mu)))
> head(cbind(t, Mu))

t Mu
0.00 0.0000000

2 0.01 0.0006147
3 0.02 0.0012274
4 0.03 0.0018383
5 0.04 0.0024471
6 0.05 0.0030541

Note the �rst value which is the integral from 0 to 0, so by de�nition 0.
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Cumulative risks from parametric models

If we have estimates of λ and µ as functions of time, we can derive
the cumulative risks.

In practice this will be by numerical integration; compute the rates at
closely spaced intervals and evaluate the integrals as sums. This is
easy.

What is not so easy is to come up with con�dence intervals for the
cumulative risks.
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Simulation of cumulative risks: ci.Crisk

1. a random vector from the multivariate normal distribution with
▶ mean equal to the parameters of the model,
▶ variance-covariance equal to the estimated variance-covariance of the

parameter estimates

2. use this to generate a simulated set of rates (λ(t), µ(t)),
evaluated a closely spaced times

3. derive state probabilities at these times by numerical integration
4. repeat to obtain, say, 1000 sets of state probabilities at these

times
5. derive con�dence intervals for the state probabilities as the 2.5

and 97.5 percentiles of the state probabilities at each time

This machinery is implemented in the function ci.Crisk in Epi
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Cumulative risks from parametric models

> cR <- ci.Crisk(mods = list(Ins = Ins.glm,
+ Dead = Dead.glm),
+ nd = nd)

NOTE: Times are assumed to be in the column tfd at equal distances of 0.01

> str(cR)

List of 4
$ Crisk: num [1:1501, 1:3, 1:3] 1 0.996 0.993 0.989 0.986 ...
..- attr(*, "dimnames")=List of 3
.. ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
.. ..$ cause: chr [1:3] "Surv" "Ins" "Dead"
.. ..$ : chr [1:3] "50%" "2.5%" "97.5%"

$ Srisk: num [1:1501, 1:2, 1:3] 0 0.000618 0.001232 0.001841 0.002447 ...
..- attr(*, "dimnames")=List of 3
.. ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
.. ..$ cause: chr [1:2] "Dead" "Dead+Ins"
.. ..$ : chr [1:3] "50%" "2.5%" "97.5%"

$ Stime: num [1:1501, 1:3, 1:3] 0 0.00998 0.01993 0.02984 0.03972 ...
..- attr(*, "dimnames")=List of 3
.. ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
.. ..$ cause: chr [1:3] "Surv" "Ins" "Dead"
.. ..$ : chr [1:3] "50%" "2.5%" "97.5%"

$ time : num [1:1501] 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...
- attr(*, "int")= num 0.01

There are 4 components of the results, the three �rst are simply
arrays with 2 or 3 functions of time with con�dence intervals.

Competing risks (cmpr) 102/ 131



Cumulative risks from parametric models

So now plot the cumulative risks of being in each of the states (the
Crisk component):

> matshade(as.numeric(dimnames(cR$Crisk)[[1]]),
+ cbind(cR$Crisk[,1,],
+ cR$Crisk[,2,],
+ cR$Crisk[,3,]), plot = TRUE,
+ lwd = 2, col = c("limegreen","red","black"))
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Survival and cumulative risk functions
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Stacked probabilities: (matrix 2 polygons)

> mat2pol(cR$Crisk[,3:1,1], col = c("forestgreen","red","black")[3:1])

1st argument to mat2pol must be a 2-dimensional matrix, with rows
representing the x-axis of the plot, and columns states.

The component Srisk has the con�dence limits of the stacked
probabilities:

> mat2pol(cR$Crisk[,3:1,1], col = c("forestgreen","red","black")[3:1])
> matlines(as.numeric(dimnames(cR$Srisk)[[1]]),
+ cbind(cR$Srisk[,"Dead" ,2:3],
+ cR$Srisk[,"Dead+Ins",2:3]),
+ lty = "32", lwd = 2, col = gray(0.7))
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Survival and cumulative risk functions
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Expected life time: using simulated objects

The areas between the lines (up to say 10 years) are expected
sojourn times, that is:

▶ expected years alive without Ins

▶ expected years lost to death without Ins

▶ expected years after Ins, including years dead after Ins

Not all of direct relevance; actually only the �rst may be so.

They are available (with simulation-based con�dence intervals) in the
component of cR, Stime (Sojourn time).
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Expected life time: using simulated objects

A relevant quantity would be the expected time alive without Ins
during the �rst 5, 10 and 15 years:

> str(cR$Stime)

num [1:1501, 1:3, 1:3] 0 0.00998 0.01993 0.02984 0.03972 ...
- attr(*, "dimnames")=List of 3
..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
..$ cause: chr [1:3] "Surv" "Ins" "Dead"
..$ : chr [1:3] "50%" "2.5%" "97.5%"

> round(cR$Stime[c("5","10","15"),"Surv",], 1)

tfd 50% 2.5% 97.5%
5 4.1 4.0 4.2
10 7.0 6.8 7.2
15 8.9 8.5 9.2
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Multistate model

simulation

Multistate models:
Occurrence rates, cumulative risks, competing risks,
state probabilities with multiple states and time scales using R and Epi::Lexis

Baker HDI, 22-23 February 2023

http://bendixcarstensen.com/AdvCoh/courses/Melb-2023 msmt

http://bendixcarstensen.com/AdvCoh/courses/Melb-2023


BAckground: Steno 2 trial

▶ Clinical trial for diabetes ptt. with kidney disease
(micro-albuminuria)

▶ 80 ptt. randomised to either of
▶ Conventional treatment
▶ Intensi�ed multifactorial treament

▶ 1993�2001

▶ follow-up till 2018
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Steno 2 trial: goal

▶ Is there a treatment e�ect on:
▶ CVD mortality
▶ non-CVD mortality

▶ Does the treatment e�ect depend on:
▶ Albuminuria state

▶ Quanti�cation of treatment e�ect:
▶ Rate-ratios
▶ Life times
▶ Changes in clinical parameters
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> data(steno2)
> steno2 <- cal.yr(steno2)
> steno2 <- transform(steno2,
+ doEnd = pmin(doDth, doEnd, na.rm = TRUE))
> str(steno2)

'data.frame': 160 obs. of 14 variables:
$ id : num 1 2 3 4 5 6 7 8 9 10 ...
$ allo : Factor w/ 2 levels "Int","Conv": 1 1 2 2 2 2 2 1 1 1 ...
$ sex : Factor w/ 2 levels "F","M": 2 2 2 2 2 2 1 2 2 2 ...
$ baseCVD : num 0 0 0 0 0 1 0 0 0 0 ...
$ deathCVD: num 0 0 0 0 1 0 0 0 1 0 ...
$ doBth : 'cal.yr' num 1932 1947 1943 1945 1936 ...
$ doDM : 'cal.yr' num 1991 1982 1983 1977 1986 ...
$ doBase : 'cal.yr' num 1993 1993 1993 1993 1993 ...
$ doCVD1 : 'cal.yr' num 2014 2009 2002 1995 1994 ...
$ doCVD2 : 'cal.yr' num NA 2009 NA 1997 1995 ...
$ doCVD3 : 'cal.yr' num NA 2010 NA 2003 1998 ...
$ doESRD : 'cal.yr' num NaN NaN NaN NaN 1998 ...
$ doEnd : 'cal.yr' num 2015 2015 2002 2003 1998 ...
$ doDth : 'cal.yr' num NA NA 2002 2003 1998 ...
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A Lexis object

> L2 <- Lexis(entry = list(per = doBase,
+ age = doBase - doBth,
+ tfi = 0),
+ exit = list(per = doEnd),
+ exit.status = factor(deathCVD + !is.na(doDth),
+ labels=c("Mic","D(oth)","D(CVD)")),
+ id = id,
+ data = steno2)

NOTE: entry.status has been set to "Mic" for all.

Explain the coding of exit.status.

Multistate model (msmt) 112/ 131



A Lexis object

> summary(L2, t = TRUE)

Transitions:
To

From Mic D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 67 55 38 160 93 2416.59 160

Timescales:
per age tfi
"" "" ""

How many persons are there in the cohort?

How many deaths are there in the cohort?

How much follow-up time is there in the cohort?

How many states are there in the model (so far)?
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Albuminuria status

> data(st2alb) ; head(st2alb, 3)

id doTr state
1 1 1993-06-12 Mic
2 1 1995-05-13 Norm
3 1 2000-01-26 Mic

> cut2 <- rename(cal.yr(st2alb),
+ lex.id = id,
+ cut = doTr,
+ new.state = state)
> with(cut2, addmargins(table(table(lex.id))))

1 2 3 4 5 Sum
4 25 40 46 41 156

What does this table mean?
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Albuminuria status as states

> L3 <- rcutLexis(L2, cut2, time = "per")
> summary(L3)

Transitions:
To

From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 299 72 65 27 13 476 177 1381.57 160
Norm 31 90 5 14 7 147 57 607.86 69
Mac 20 3 44 14 18 99 55 427.16 64
Sum 350 165 114 55 38 722 289 2416.59 160

> boxes(L3, boxpos = TRUE, cex = 0.8)
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What's wrong with this
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What's in jump

> (jump <-
+ subset(L3, (lex.Cst == "Norm" & lex.Xst == "Mac") |
+ (lex.Xst == "Norm" & lex.Cst == "Mac"))[,
+ c("lex.id", "per", "lex.dur","lex.Cst", "lex.Xst")])

lex.id per lex.dur lex.Cst lex.Xst
70 1999.49 2.67 Mac Norm
86 2001.76 12.82 Norm Mac

130 2000.91 1.88 Mac Norm
131 1997.76 4.24 Norm Mac
136 1997.21 0.47 Mac Norm
136 1997.69 4.24 Norm Mac
171 1996.39 5.34 Norm Mac
175 2004.58 9.88 Norm Mac

�and what will you do about it?
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How to �x things

> set.seed(1952)
> xcut <- transform(jump,
+ cut = per + lex.dur * runif(per, 0.1, 0.9),
+ new.state = "Mic")
> xcut <- select(xcut, c(lex.id, cut, new.state))
> L4 <- rcutLexis(L3, xcut)
> L4 <- Relevel(L4, c("Norm","Mic","Mac","D(CVD)","D(oth)"))
> summary(L4)

Transitions:
To

From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 90 35 0 6 13 144 54 581.04 66
Mic 72 312 65 14 30 493 181 1435.14 160
Mac 0 22 41 18 12 93 52 400.41 60
Sum 162 369 106 38 55 730 287 2416.59 160
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Plot the boxes

> boxes(L4, boxpos = list(x = c(20, 20, 20, 80, 80),
+ y = c(10, 50, 90, 75, 25)),
+ show.BE = "nz",
+ scale.R = 100, digits.R = 2,
+ cex = 0.9, pos.arr = 0.3)
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Explain all the numbers in the graph.

Describe the overall e�ect of albuminuria on the two mortality rates.

Multistate model (msmt) 121/ 131



Modeling transition rates

▶ A model with a smooth e�ect of timescales on the rates require
follow-up in small bits

▶ Achieved by splitLexis (or splitMulti from popEpi)

▶ Compare the Lexis objects
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> S4 <- splitMulti(L4, tfi = seq(0, 25, 1/2))
> summary(L4)

Transitions:
To

From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 90 35 0 6 13 144 54 581.04 66
Mic 72 312 65 14 30 493 181 1435.14 160
Mac 0 22 41 18 12 93 52 400.41 60
Sum 162 369 106 38 55 730 287 2416.59 160

> summary(S4)

Transitions:
To

From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 1252 35 0 6 13 1306 54 581.04 66
Mic 72 3101 65 14 30 3282 181 1435.14 160
Mac 0 22 844 18 12 896 52 400.41 60
Sum 1324 3158 909 38 55 5484 287 2416.59 160
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How the split works:

> subset(L4, lex.id == 96)[,1:7]

lex.id per age tfi lex.dur lex.Cst lex.Xst
96 1993.65 51.53 0.00 0.45 Mic Norm
96 1994.10 51.99 0.45 2.58 Norm Norm
96 1996.68 54.57 3.03 1.90 Norm Norm
96 1998.59 56.47 4.94 2.90 Norm D(CVD)

> s4 <- subset(S4, lex.id == 96)[,1:7]
> s4[c(1:4,NA,nrow(s4)+(-3:0)),]

lex.id per age tfi lex.dur lex.Cst lex.Xst
96 1993.65 51.53 0.00 0.45 Mic Norm
96 1994.10 51.99 0.45 0.05 Norm Norm
96 1994.15 52.03 0.50 0.50 Norm Norm
96 1994.65 52.53 1.00 0.50 Norm Norm
NA NA NA NA NA <NA> <NA>
96 1999.65 57.53 6.00 0.50 Norm Norm
96 2000.15 58.03 6.50 0.50 Norm Norm
96 2000.65 58.53 7.00 0.50 Norm Norm
96 2001.15 59.03 7.50 0.33 Norm D(CVD)

Multistate model (msmt) 124/ 131



> subset(L4, lex.id == 159)[,1:7]

lex.id per age tfi lex.dur lex.Cst lex.Xst
159 1994.02 67.50 0.00 0.13 Mic Mic
159 1994.16 67.63 0.13 2.66 Mic Norm
159 1996.82 70.29 2.80 2.37 Norm Mic
159 1999.20 72.67 5.17 7.32 Mic Mac
159 2006.52 79.99 12.49 3.95 Mac D(CVD)

> subset(S4, lex.id == 159)[c(1:2,NA,6:7,NA,12:13,NA,27:28,NA,36:37),1:7]

lex.id per age tfi lex.dur lex.Cst lex.Xst
159 1994.02 67.50 0.00 0.13 Mic Mic
159 1994.16 67.63 0.13 0.37 Mic Mic
NA NA NA NA NA <NA> <NA>

159 1996.02 69.50 2.00 0.50 Mic Mic
159 1996.52 70.00 2.50 0.30 Mic Norm
NA NA NA NA NA <NA> <NA>

159 1998.52 72.00 4.50 0.50 Norm Norm
159 1999.02 72.50 5.00 0.17 Norm Mic
NA NA NA NA NA <NA> <NA>

159 2005.52 79.00 11.50 0.50 Mic Mic
159 2006.02 79.50 12.00 0.49 Mic Mac
NA NA NA NA NA <NA> <NA>

159 2009.52 83.00 15.50 0.50 Mac Mac
159 2010.02 83.50 16.00 0.44 Mac D(CVD)
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How the split works

Same amount of follow-up

Same transitions

More intervals (5, resp. 37)

Di�erent value of time scales between intervals
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Purpose of the split

▶ Assumption of constant rate in each interval

▶ All intervals are (shorter than) 0.5 years

▶ Magnitude of the rates depend on covariates:
▶ �xed covariates
▶ time scales
▶ randomly varying covariates (not now)

▶ values of covariates di�er between intervals

▶ each interval contributes to the (log-)likelihood for a speci�c rate
from a given origin state (lex.Cst)
to a given destination state (lex.Xst).

▶ �looks as the likelihood for a single Poisson observation
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Modeling the rate: Mic -> D(CVD)

> mr <- glm(cbind(lex.Xst == "D(CVD)" & lex.Cst != lex.Xst,
+ lex.dur)
+ ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)),
+ family = poisreg,
+ data = subset(S4, lex.Cst == "Mic"))

. . . the same as:

> mp <- glm((lex.Xst == "D(CVD)" & lex.Cst != lex.Xst)
+ ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)),
+ offset = log(lex.dur),
+ family = poisson,
+ data = subset(S4, lex.Cst == "Mic"))
> summary(coef(mr) - coef(mp))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.368e-12 -2.364e-13 -2.887e-14 -1.625e-13 -7.883e-15 6.839e-13
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Modeling the rate: Mic -> D(CVD)

A convenient wrapper for Lexis objects simpli�es things
substantially:

> mL <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)),
+ from = "Mic",
+ to = "D(CVD)")

stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for the transition:
Mic->D(CVD)

> summary(coef(mr) - coef(mL))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 0 0 0 0 0

> summary(coef(mp) - coef(mL))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-6.839e-13 7.883e-15 2.887e-14 1.625e-13 2.364e-13 1.368e-12
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glm.Lexis by default models all transitions to absorbing states,
from states preceding these

> mX <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst)

NOTE:
Multiple transitions *from* state ' Mac', 'Mic', 'Norm ' - are you sure?
The analysis requested is effectively merging outcome states.
You may want analyses using a *stacked* dataset - see ?stack.Lexis
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions:
Norm->D(CVD)
Mic->D(CVD)
Mac->D(CVD)
Norm->D(oth)
Mic->D(oth)
Mac->D(oth)
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Describe the model(s) in mX (look at the �gure with the boxes)

▶ What rates are modeled ?

▶ How are they modeled (assumptions about shapes) ?

▶ What are the di�erences between the rates modeled?

▶ What would you rather do?
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