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0.0 Preface 1
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0.0 Preface

This course draws to some extent on the content of the book “Epidemiology with R” [?],
(http://bendixcarstensen.com/EwR), but in particular on the draft of book (which by no
means is sure ever to appear as a book) “Practical multistate modeling with R and
Epi:Lexis”. The former is available through Oxford University Press, the latter as a draft
(updated at unpredictable times) as http://bendixcarstensen.com/MSbook.pdf.

� The target audience is statisticians and epidemiologists working in epidemiological
research

� The prerequisites are

1. a basic knowledge of R,

2. a working installation of R(4.2.2)

3. a working installation of Epi_2.47

4. a working installation of popEpi_0.4.10

5. some epidemiological practice

� The format of the course will be short lectures closely aligned with the topics in the
exercises. The exercises will be run in chunks between the short lectures.

Exercises are given including most of the solutions. You can get the exercise code chunks
from the course website http://bendixcarstensen.com/AdvCoh/courses/Melb-2023

http://bendixcarstensen.com/EwR
http://bendixcarstensen.com/MSbook.pdf
http://bendixcarstensen.com/AdvCoh/courses/Melb-2023
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0.1 Program

Program

Wednesday 22 February 2023

10:00–10:30 L: Introduction to multistate models
10:30–11:30 P: Survival analysis: rates
11:30–12:15 Lunch
12:15–13:15 L: Introduction to competing risks
13:15–16:00 P: Cause-specific rates and competing risks

Thursday 23 February 2023

10:00–11:00 L: Multistate models in practice
11:00–12:30 P: Multistate models
12:30–13:15 Lunch
13:15–15:30 P: State probabilities
15:30–16:00 Q: Wrap-up and questions

Within each of the the topics (see the table of contents) there will be a short
introductury lecture, introducing the practical.



Chapter 1

Survival and rates: lung

Paraphernalia

It is advisable to load all packages needed at the start:

> library(survival)
> library(Epi)
> library(popEpi)
> # popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
> clear()

[1] R version 4.2.0 (2022-04-22 ucrt)

Version Built
Epi 2.47 4.2.1
popEpi 0.4.9 4.2.0

1.1 Data and simple survival

1. Load the lung data from the survival package, and convert sex to a factor (always
do that with categorical variables). Also we rescale time from days to months:

> data(lung)
> lung$sex <- factor(lung$sex,
+ levels = 1:2,
+ labels = c("M", "W"))
> lung$time <- round(lung$time / (365.25/12), 3)
> head(lung)

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1 3 10.053 2 74 M 1 90 100 1175 NA
2 3 14.949 2 68 M 0 90 90 1225 15
3 3 33.183 1 56 M 0 90 90 NA 15
4 5 6.899 2 57 M 1 90 60 1150 11
5 1 29.010 2 60 M 0 100 90 NA 0
6 12 33.577 1 74 M 1 50 80 513 0

3
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2. Use survfit to construct the Kaplan-Meier estimator of overall survival:

> ?Surv
> ?survfit

> km <- survfit(Surv(time, status == 2) ~ 1, data = lung)
> km

Call: survfit(formula = Surv(time, status == 2) ~ 1, data = lung)

n events median 0.95LCL 0.95UCL
[1,] 228 165 10.2 9.36 11.9

> # summary(km) # very long output

The standard print method just prints the number of events and the median survival,
while the summary prints the entire survival function estimate.

We can plot the survival curve—this is the default plot for a survfit object:

> plot(km)

What is the median survival? What does it mean?

3. Explore if survival patterns between men and women are different:

> kms <- survfit(Surv(time, status == 2) ~ sex, data = lung)
> kms

Call: survfit(formula = Surv(time, status == 2) ~ sex, data = lung)

n events median 0.95LCL 0.95UCL
sex=M 138 112 8.87 6.96 10.2
sex=W 90 53 14.00 11.43 18.1

We can plot the two resulting survival curves with confidence limits:

> plot(kms, col = c("blue", "red"), lwd = 1, conf.int = TRUE)
> lines(kms, col = c("blue", "red"), lwd = 3)

e see that men have worse survival than women, but they are also a bit older (age is
age at diagnosis of lung cancer):

> with(lung, tapply(age, sex, mean))

M W
63.34058 61.07778

Formally there is a significant difference in survival between men and women

> ?survdiff
> survdiff(Surv(time, status==2) ~ sex, data = lung)

What is the null hypothesis tested here?

Assumptions: We are actually testing whether the rate-ratio is 1, assuming
proportional hazards (the log-rank test)
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Figure 1.1: Kaplan-Meier estimators of survival for men (blue) and women (red). W
../graph/surv-kms

1.2 Rates and rate-ratios: Simple Cox model

4. Now explore how much sex and age (at diagnosis) influence the mortality—note that
we are now addressing the mortality rate and not the survival in a Cox-model:

> c0 <- coxph(Surv(time, status == 2) ~ sex , data = lung)
> c1 <- coxph(Surv(time, status == 2) ~ sex + I(age/10), data = lung)
> summary(c1)

Call:
coxph(formula = Surv(time, status == 2) ~ sex + I(age/10), data = lung)

n= 228, number of events= 165

coef exp(coef) se(coef) z Pr(>|z|)
sexW -0.51322 0.59857 0.16746 -3.065 0.00218 **
I(age/10) 0.17045 1.18584 0.09223 1.848 0.06459 .
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
sexW 0.5986 1.6707 0.4311 0.8311
I(age/10) 1.1858 0.8433 0.9897 1.4208

Concordance= 0.603 (se = 0.025 )
Likelihood ratio test= 14.12 on 2 df, p=9e-04
Wald test = 13.47 on 2 df, p=0.001
Score (logrank) test = 13.72 on 2 df, p=0.001

> ci.exp(c0)

exp(Est.) 2.5% 97.5%
sexW 0.5880028 0.4237178 0.8159848

> ci.exp(c1)

exp(Est.) 2.5% 97.5%
sexW 0.598566 0.4310936 0.8310985
I(age/10) 1.185842 0.9897335 1.4208086

We see that there is not much confounding by age; the W/M mortality rate-ration
(RR) (hazard ratio, HR, is another word for this) is slightly below 0.6 whether age is
included or not.

The age effect is formally non-significant, the estimate corresponds to a 19% higher
mortality rate per 10 years of age at diagnosis (mortality RR or hazard ratio of
1.1858).

5. We can check if the assumption of proportional hazards holds, cox.zph provides a
test, and the plot method shows the Schoenfeld residuals and a smooth of them;
interpretable as an estimate of the interaction effect; that is how the W/M (log)
rate-ratio depends on time:

> ?cox.zph

> cox.zph(c0)

chisq df p
sex 2.86 1 0.091
GLOBAL 2.86 1 0.091

> (z1 <- cox.zph(c1))

chisq df p
sex 2.608 1 0.11
I(age/10) 0.209 1 0.65
GLOBAL 2.771 2 0.25

> par(mfrow = c(1, 2)) ; plot(z1)
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If the proportional hazards model holds, then the resulting lines in he plots should be
approximately horizontal. But we shall return to a more explicit way of addressing
this.

6. We see that there is no systematic pattern for age, but an increase by sex. The
cox.zph really gives a test for an interaction between each covariate and the time
scale.

We will keep that in mind so we can assess this through proper modeling of the
interaction—the Cox model does not provide an estimate of the effect of time on
mortality, and the by that token it is impossible to estimate any interactions with
time either.

7. Above we showed the Kaplan-Meier estimator for each of the two sexes. We can also
show the estimated survival curves for the two sexes as derived from the Cox-model.
This requires a prediction data frame—a data frame with the same variables as in the
Cox-model and values of these representing the persons for whom we want
predictions:

> prs <- survfit(c0, newdata = data.frame(sex = c("M","W")))
> plot(prs, col = c("blue", "red"))

How is the shape of the two curves relative to each other?

How is the shape of the two curves relative to the two Kaplan-Meier curves?

8. Try to over-plot the Cox-prediction on the Kaplan-Meier curves:

> plot(prs, col = c("blue", "red"), lwd = 1, lty = 1, conf.int = FALSE)
> lines(prs, col = c("blue", "red"), lty = 1, lwd=3)
> lines(kms, col = c("blue", "red"), lty = "11", lwd = 2, lend = "butt")

Do they agree? What does that mean?

So far we have only seen the rates through the glasses of survival curves—it is a little
odd to try and judge hazards (rates) on a transformed sace, instaed of looking at the
hazards directly.

1.3 Simple Poisson model

But we do not know how the mortality per se looks as a function of time (since diagnosis).
That function is not available from the Cox-model or from the survfit object. To that
end we must provide a model for the effect of time on mortality; the simplest is of course to
assume that it is constant or a simple linear function of time.
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9. For a start we assume that the mortality is constant over time. If it is so, then the
likelihood for the model is equivalent to a Poisson likelihood, which can be fitted
using the poisreg family from the Epi package—note in poarticular the the response
is a two-column matrix (created with cbind) of events count and person-time (here
time, because every one starts at 0):

> ?poisreg

> with(lung, cbind(status == 2, time)[1:10,])

time
[1,] 1 10.053
[2,] 1 14.949
[3,] 0 33.183
[4,] 1 6.899
[5,] 1 29.010
[6,] 0 33.577
[7,] 1 10.185
[8,] 1 11.860
[9,] 1 7.162
[10,] 1 5.454

> p1 <- glm(cbind(status == 2, time) ~ sex + I(age/10),
+ family = poisreg,
+ data = lung)
> ci.exp(p1) # estimates form Poisson

exp(Est.) 2.5% 97.5%
(Intercept) 0.03255173 0.01029235 0.1029518
sexW 0.61820344 0.44555514 0.8577513
I(age/10) 1.16904426 0.97796555 1.3974567

> ci.exp(c1) # estimates from Cox

exp(Est.) 2.5% 97.5%
sexW 0.598566 0.4310936 0.8310985
I(age/10) 1.185842 0.9897335 1.4208086

We see that the estimates of sex and age effects are quite close between the Poisson
and the Cox models, but also that the Poisson model has an intercept term, the
estimate of the (assumed) constant underlying mortality. Since we entered the risk
time part of the response (second argument in the cbind) in units of months
(remember we rescaled in the beginning?), the (Intercept) (taken from the ci.exp)
is a rate per 1 person-month.

What age and sex does the (Intercept) refer to?

10. The syntax for poisreg is a bit different from that for poisson, which would be:
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> px <- glm(status == 2 ~ sex + age + offset(log(time)),
+ family = poisson,
+ data = lung)
> ## or:
> px <- glm(status == 2 ~ sex + age,
+ offset = log(time),
+ family = poisson,
+ data = lung)
> ci.exp(px)

The formulation with the offset is the reason that papers use the description ”. . . we
fitted a Poisson model with log person years as offset”.

The drawback of the poisson approach is that you need the (risk) time
(person-years) as a variable in the prediction frame. This is not the case for poisreg,
where you get the predicted rates per unit in which you entered the person years
when specifying the model.

We shall return to prediction of rates.

1.4 Representation of follow-up: Lexis object

If we want to see how mortality varies by age we must split the follow-up of each person in
small intervals of say, 30 days. This is most easily done using a Lexis object. That is
basically just taking the lung dataset and adding a few features that defines times and
states. The point is that it makes life a lot easier when things get more complex than just
simple survival. It can be seen as an expansion of the stset facility in Stata.

11. First make a Lexis object—make sure you know what Lexis does:

> ?Lexis

> Ll <- Lexis(exit = list(tfl = time),
+ exit.status = factor(status,
+ levels = 1:2,
+ labels = c("Alive","Dead")),
+ data = lung)

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfl timescale.

> head(Ll)

lex.id tfl lex.dur lex.Cst lex.Xst inst time status age sex ph.ecog ph.karno pat.karno
1 0 10.05 Alive Dead 3 10.053 2 74 M 1 90 100
2 0 14.95 Alive Dead 3 14.949 2 68 M 0 90 90
3 0 33.18 Alive Alive 3 33.183 1 56 M 0 90 90
4 0 6.90 Alive Dead 5 6.899 2 57 M 1 90 60
5 0 29.01 Alive Dead 1 29.010 2 60 M 0 100 90
6 0 33.58 Alive Alive 12 33.577 1 74 M 1 50 80

meal.cal wt.loss
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1175 NA
1225 15
NA 15

1150 11
NA 0
513 0

We see that 5 variables have been added to the dataset:

lex.id: a numerical id of each record in the dataset (normally this will be a person
id). Can be set explicitly with the id= argument of Lexis.

tfl: time from lung cancer at the time of entry, therefore it is 0 for all persons; the
entry time is 0 from the entry time. The name of this variable was taken from
the exit= argument to Lexis.

lex.dur: the length of time a person is in state lex.Cst, here measured in months,
because time is.

lex.Cst: Current state, the state in which the lex.dur time is spent.
lex.Xst: eXit state, the state to which the person moves after the lex.dur time in

lex.Cst.

This seems a bit of an overkill for keeping track of time and death for the lung cancer
patients, but the point here is that this generalizes to multistate data too.

It also gives a handy overview of the follow-up:

> summary(Ll)

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 63 165 228 165 2286.42 228

What is the average follow-up time for persons?

For a graphical representation, try:

> ?boxes

> boxes(Ll, boxpos = TRUE)

Explain the numbers in the resulting graph. Redo the graph with risk time counted
in years.

12. We can make the Cox-analysis using the Lexis-specific variables by:

> ?Surv
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> cl <- coxph(Surv(tfl,
+ tfl + lex.dur,
+ lex.Xst == "Dead") ~ sex + age,
+ data = Ll)

but even simpler, by using the Lexis features:

> ?coxph.Lexis

> cL <- coxph.Lexis(Ll, tfl ~ sex + age)

survival::coxph analysis of Lexis object Ll:
Rates for the transition:
Alive->Dead
Baseline timescale: tfl

> ci.exp(cL)

exp(Est.) 2.5% 97.5%
sexW 0.598566 0.4310936 0.8310985
age 1.017191 0.9989686 1.0357467

> ci.exp(cl)

exp(Est.) 2.5% 97.5%
sexW 0.598566 0.4310936 0.8310985
age 1.017191 0.9989686 1.0357467

13. And we can make the Poisson-analysis by:

> pc <- glm(cbind(lex.Xst == "Dead", lex.dur) ~ sex + age,
+ family = poisreg,
+ data = Ll)

or even simpler, by using the Lexis features:

> pL <- glm.Lexis(Ll, ~ sex + age)

stats::glm Poisson analysis of Lexis object Ll with log link:
Rates for the transition:
Alive->Dead

> ci.exp(pL)

exp(Est.) 2.5% 97.5%
(Intercept) 0.03255173 0.01029235 0.1029518
sexW 0.61820344 0.44555514 0.8577513
age 1.01574126 0.99777440 1.0340317

> ci.exp(pc)

exp(Est.) 2.5% 97.5%
(Intercept) 0.03255173 0.01029235 0.1029518
sexW 0.61820344 0.44555514 0.8577513
age 1.01574126 0.99777440 1.0340317

Remember that the Poisson-model fitted is a pretty brutal approximation to the
Cox-model—it assumes that the baseline hazard is constant, whereas the Cox-model
allows the baseline hazard to vary arbitrarily by time.
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1.5 Estimating the hazard function: splitting time

If we want a more detailed version of the baseline hazard we split follow-up time in small
intervals, assume that the hazard is constant in each small interval, and assume the the
size of the hazard varies smoothly with time, tfl:

14. We can subdivide the follow-up in small intervals by survival:::survSplit,
Epi:::splitLexis or popEpi:::splitMulti (and possibly many more). The
splitMulti is by far the easiest to use (and fastest as well). Recall we rescaled time
to months, so we split in 1 month intervals (at times 0 to 36 months):

> Sl <- splitMulti(Ll, tfl = 0:36)

This will split the follow-up along the time-scale tfl at times 0, 1, . . . , 36 months; we
see that the follow-up time is the same, but there are now about 10 times as many
records:

> summary(Ll)

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 63 165 228 165 2286.42 228

> summary(Sl)

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 2234 165 2399 165 2286.42 228

We can see how the follow up for person, 10 say, is in the original and the split
dataset:

> wh <- names(Ll)[1:10] # names of variables in some order
> subset(Ll, lex.id == 10)[,wh]

lex.id tfl lex.dur lex.Cst lex.Xst inst time status age sex
10 0 5.45 Alive Dead 7 5.454 2 61 M

> subset(Sl, lex.id == 10)[,wh]

lex.id tfl lex.dur lex.Cst lex.Xst inst time status age sex
10 0 1.00 Alive Alive 7 5.454 2 61 M
10 1 1.00 Alive Alive 7 5.454 2 61 M
10 2 1.00 Alive Alive 7 5.454 2 61 M
10 3 1.00 Alive Alive 7 5.454 2 61 M
10 4 1.00 Alive Alive 7 5.454 2 61 M
10 5 0.45 Alive Dead 7 5.454 2 61 M
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In Sl each record now represents a small interval of follow-up for a person, so each
person has many records. The main thing to note here is tfl, which represents the
time since lung cancer diagnosis at the beginning of each interval, and lex.dur

representing the risk time (“person-years”, in months though)—the length of the
interval. The reason we need to split follow-up in small pieces is that the modeling
implicitly assumes that the mortality rate is constant within each interval. If intervals
are too long, this assumption is a bad approximation.

15. We can now include a smooth effect of tfl in the Poisson-model allowing the baseline
hazard to vary by time since lung cancer. That is done by natural splines, Ns:

> ps <- glm(cbind(lex.Xst == "Dead", lex.dur)
+ ~ Ns(tfl, knots = seq(0, 36, 12)) + sex + age,
+ family = poisreg,
+ data = Sl)
> ci.exp(ps)

exp(Est.) 2.5% 97.5%
(Intercept) 0.01898426 0.005700994 0.06321739
Ns(tfl, knots = seq(0, 36, 12))1 2.40380283 0.809425097 7.13873100
Ns(tfl, knots = seq(0, 36, 12))2 4.15015448 0.436289141 39.47790716
Ns(tfl, knots = seq(0, 36, 12))3 0.83994013 0.043932122 16.05885147
sexW 0.59871596 0.431231819 0.83124850
age 1.01658684 0.998376760 1.03512907

or even simpler:

> ?glm.Lexis
> ps <- glm.Lexis(Sl, ~ Ns(tfl, knots = seq(0, 36, 12)) + sex + age)
> ci.exp(ps)

16. Compare these to the regression estimates from the Cox-model and from the model
with constant baseline:

> ests <- cbind(ci.exp(cl),
+ ci.exp(ps, subset = c("sex","age")),
+ ci.exp(pc, subset = c("sex","age")))
> colnames(ests)[1:3*3-2] <- c("Cox","Pois-spline","Pois-const")
> round(ests, 3)

Cox 2.5% 97.5% Pois-spline 2.5% 97.5% Pois-const 2.5% 97.5%
sexW 0.599 0.431 0.831 0.599 0.431 0.831 0.618 0.446 0.858
age 1.017 0.999 1.036 1.017 0.998 1.035 1.016 0.998 1.034

We see that the smooth parametric Poisson model and the Cox model produce
virtually the same estimates of age and sex-effects, whereas the Poisson model with
constant hazard produce slightly different ones.



14 1.5 Estimating the hazard function: splitting time PMM

17. The proportional hazards assumption is the same for the Cox model and both the
Poisson models: The M/W hazard ratio is the same at any time after diagnosis. What
differs between the models is the assumed shape of the hazard (not a hazard ratio).

The Cox model allows the baseline rate to change arbitrarily at every event time, not
using the quantitative nature of time; the spilne Poisson model has a baseline that
varies smoothly by time and the constant Poisson model has a baseline that is
constant over time. The latter is clearly not tenable, whereas the smooth Poisson
model and the Cox model give the same regression estimates.

18. So we now have a parametric model for the baseline hazard which means that we can
show the estimated baseline hazard for, say, a 60 year old woman, by supplying a
suitable prediction frame, i.e. a data frame where each row represents a set of
covariate values (including the time) where we want the predicted mortality—her we
use times from 0 to 30 months in steps of 0.2 months:

> prf <- data.frame(tfl = seq(0, 30, 0.2),
+ sex = "W",
+ age = 60)

The choice of prediction points are totally unrelated to the intervals in which we split
the follow-up for analysis.

We can over-plot with the predicted rates from the model where mortality rates are
constant, the only change is the model (pc instead of ps):

> matshade(prf$tfl, ci.pred(ps, prf), lwd = 3, plot = TRUE, log = "y")
> matshade(prf$tfl, ci.pred(pc, prf), lwd = 3, lty = "21", lend = "butt")

What we see from the plot is that mortality rates are increasing during the first 1.5
years after lung cancer and then leveling off.

Put some sensible axis labels on the plot, and rescale the rates to rates per 1
person-year.

19. We can transform the hazard function, λ(t), to a survival function, S(t) using the
relationship S(t) = exp(−

∫ t

0
λ(u) du). This integration exercise is implemented in the

ci.surv function, which takes a model and a prediction data frame as arguments;
the prediction data frame must correspond to a sequence of equidistant time points
(makes life easier for the coder), so we can use prf for this purpose:

> matshade(prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)

This is the survival function for a 60 year old woman.

We can expand this by overlaying the survival function from the model with constant
hazard (also known as ”exponential(y distributed) survival”) and the KM-estimator
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> matshade(prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)
> lines(prf$tfl, ci.surv(pc, prf, intl = 0.2)[,1], lwd = 2, col = gray(0.5))
> lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ lwd = 2, lty = 1)

We see that the survival function from the constant hazard model is quite a bit off,
but also a good correspondence between the Cox-model based survival and the
survival from the parametric hazard function.

We can bring the plots together in one graph:

> par(mfrow = c(1,2))
> # hazard scale
> matshade(prf$tfl, ci.pred(ps, prf),
+ plot = TRUE, log = "y", lwd = 3, xlim = c(0,30))
> matshade(prf$tfl, ci.pred(pc, prf), lty = 3, lwd = 3)
> #
> # survival
> matshade(prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3, xlim = c(0,30))
> matshade(prf$tfl, ci.surv(pc, prf, intl = 0.2),
+ lty = 3, alpha = 0, lwd = 3)
> lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ col = "forestgreen", lwd = 3)

20. We have compared the predicted survival curve from a Poisson model with age and
sex and time since lung cancer as covariates to that from a Cox-model with age and
sex as covariates and time since lung cancer as underlying time scale.

We now go back to the Kaplan-Meier estimator and compare that to the
corresponding Poisson-model, which is one with time (tfl) as the only covariate:

> par(mfrow=c(1,2))
> pk <- glm(cbind(lex.Xst == "Dead",
+ lex.dur) ~ Ns(tfl, knots = seq(0, 36, 12)),
+ family = poisreg,
+ data = Sl)
> #or
> pk <- glm.Lexis(Sl, ~ Ns(tfl, knots = seq(0, 36, 12)))

stats::glm Poisson analysis of Lexis object Sl with log link:
Rates for the transition:
Alive->Dead

> # hazard
> matshade(prf$tfl, ci.pred(pk, prf),
+ plot = TRUE, log = "y", lwd = 3, ylim = c(0.01,1))
> # survival from smooth model
> matshade(prf$tfl, ci.surv(pk, prf, intl = 0.2) ,
+ plot = TRUE, lwd = 3, ylim = 0:1)
> # K-M estimator
> lines(km, lwd = 2)
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Figure 1.2: Hazards (left) and survival (right) for 60 year old women. The left hand plot is
unavailable from the Cox model.

../graph/surv-ratesurv

21. We can explore how the tightness of the knots in the smooth model influence the
underlying hazard and the resulting survival function. This is easiest done by setting
up a function that does the analysis with different distance between of knots

> zz <-
+ function(dk)
+ {
+ kn <<- seq(0, 36, dk) # must be in global environment...
+ print(kn)
+ pk <<- glm.Lexis(Sl, ~ Ns(tfl, knots = kn))
+ matshade(prf$tfl, ci.pred(pk, prf),
+ plot = TRUE, log = "y", lwd = 2, ylim = c(0.01,1), xlim = c(0,30))
+ rug(kn, lwd=3)
+
+ plot(km, lwd = 2, col = "limegreen", xlim = c(0,30))
+ matshade(prf$tfl, ci.surv(pk, prf, intl = 0.2) ,
+ lwd = 2, ylim = 0:1, xlim = c(0,30))
+ }

> par(mfrow=c(1,2))
> zz(18)
> zz(12)
> zz(6)
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Figure 1.3: Baseline hazard (left), and corresponding survival function from parametric model
and Kaplan-Meier estimator.
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> zz(4)
> zz(3)

> par(mfrow=c(5,2), mar = rep(1,4))
> for (nk in c(18, 12, 6, 4, 3)) zz(nk)

[1] 0 18 36
stats::glm Poisson analysis of Lexis object Sl with log link:
Rates for the transition:
Alive->Dead

[1] 0 12 24 36
stats::glm Poisson analysis of Lexis object Sl with log link:
Rates for the transition:
Alive->Dead

[1] 0 6 12 18 24 30 36
stats::glm Poisson analysis of Lexis object Sl with log link:
Rates for the transition:
Alive->Dead

[1] 0 4 8 12 16 20 24 28 32 36
stats::glm Poisson analysis of Lexis object Sl with log link:
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Rates for the transition:
Alive->Dead

[1] 0 3 6 9 12 15 18 21 24 27 30 33 36
stats::glm Poisson analysis of Lexis object Sl with log link:
Rates for the transition:
Alive->Dead

You will see that the more knots you include, the closer the parametric estimate gets
to the Kaplan-Meier estimator. But also that the estimated underlying hazard
becomes increasingly silly. The ultimate silliness is of course achieved when we arrive
at the Kaplan-Meier estimator.

Fortunately the baseline hazard underlying the Kaplan-Meier and the Breslow
estimator is rarely shown.

1.6 Conclusion

� The Cox-model and the Poisson-model gives the same results for the regression
parameters, provided the baseline is properly modeled.

� The Cox-model is a partial model, it only gives the HRs, not the rates. The baseline
rates are missing.

� The Poisson-model is a full model for the rates. Any set of predicted rates (and
derivatives thereof) can be derived from the Poisson model.

� AN extreme version of the Poisson model is identical to the Cox-model.
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Figure 1.4: Hazard (left) and survival (right) comparing a parametric model with different
number of knots (black) and the Kaplan-Meier estimator (green curve).
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Chapter 2

Competing risks: DMlate

Paraphernalia

It is advisable to load all packages needed at the start:

> library(survival)
> library(Epi)
> library(popEpi)
> # popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
> library(tidyverse)
> clear()

2.1 Data

This exercise follows quite closely the section on competing risks in “Epidemiology with R”,
pp. 207 and 210 ff. With the major exception that we will use the function ci.Crisk,
which was not available in the Epi package when the book was written.
We shall use the DMlate dataset which is a random sample of Danish diabetes patients,

with dates of birth, diabetes, OAD start, insulin start and death, all diagnosed after
1996-1-1.
We want to look at the event “start of insulin use”, which occurs at doins, while taking

death as competing event into account. This means that we want to address the question
of the probability of starting Ins, while taking death into account. Essentially estimating
the probability of being in each of the states DM, Ins and Dead, where Ins means “started
insulin and either alive or dead after this” and Dead means “dead without starting insulin”.

1. Load the DMlate data from the Epi package (and for ease of calculation restrict to a
random sample of 2000 persons while developing):

> data(DMlate)
> # set.seed(1952)
> # DMlate <- DMlate[sample(1:nrow(DMlate), 2000),]
> str(DMlate)

20
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'data.frame': 10000 obs. of 7 variables:
$ sex : Factor w/ 2 levels "M","F": 2 1 2 2 1 2 1 1 2 1 ...
$ dobth: num 1940 1939 1918 1965 1933 ...
$ dodm : num 1999 2003 2005 2009 2009 ...
$ dodth: num NA NA NA NA NA ...
$ dooad: num NA 2007 NA NA NA ...
$ doins: num NA NA NA NA NA NA NA NA NA NA ...
$ dox : num 2010 2010 2010 2010 2010 ...

> head(DMlate)

sex dobth dodm dodth dooad doins dox
50185 F 1940.256 1998.917 NA NA NA 2009.997
307563 M 1939.218 2003.309 NA 2007.446 NA 2009.997
294104 F 1918.301 2004.552 NA NA NA 2009.997
336439 F 1965.225 2009.261 NA NA NA 2009.997
245651 M 1932.877 2008.653 NA NA NA 2009.997
216824 F 1927.870 2007.886 2009.923 NA NA 2009.923

It is always wise to get en overview of the dates represented in the baseline
dataset—preferably at a monthly level:

> par(mfrow=c(2,2))
> hist(DMlate$dobth, breaks = seq(1898, 2010, 1 ), col = "black")
> hist(DMlate$dodm , breaks = seq(1995, 2010, 1/12), col = "black")
> abline(v = 1995:2020, col = "red")
> hist(DMlate$dodth, breaks = seq(1995, 2010, 1/12), col = "black")
> abline(v = 1995:2020, col = "red")
> hist(DMlate$doins, breaks = seq(1995, 2010, 1/12), col = "black")
> abline(v = 1995:2020, col = "red")

rom figure 2.1 we see that there is a tendency to fewer dates of diagnosis and insulin
start in the summer (because of holydays) and more deaths in the winter, precisely as
expected

2. First we define a Lexis object with the total follow up for each person:

> Ldm <- Lexis(entry = list(per = dodm,
+ age = dodm - dobth,
+ tfd = 0),
+ exit = list(per = dox),
+ exit.status = factor(!is.na(dodth),
+ labels = c("DM", "Dead")),
+ data = DMlate)

NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 4 rows with duration of follow up < tol

> summary(Ldm)

Transitions:
To

From DM Dead Records: Events: Risk time: Persons:
DM 7497 2499 9996 2499 54273.27 9996
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Figure 2.1: Histograms of relevant dates. Vertical red lines are at each 1 January. F
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Then subdivide the follow-up at the date of insuin, using dooad:

> Ldm <- sortLexis(Ldm)
> Cdm <- cutLexis(Ldm,
+ cut = Ldm$doins,
+ timescale = "per",
+ new.state = "Ins")
> summary(Cdm)

Transitions:
To

From DM Ins Dead Records: Events: Risk time: Persons:
DM 6157 1694 2048 9899 3742 45885.49 9899
Ins 0 1340 451 1791 451 8387.77 1791
Sum 6157 3034 2499 11690 4193 54273.27 9996

In this context we are not interested in what goes on after Ins so we only keep
follow-up in state DM; we can use either filter or subset:
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> Adm <- filter(Cdm, lex.Cst == "DM")
> Adm <- subset(Cdm, lex.Cst == "DM")
> summary(Adm)

Transitions:
To

From DM Ins Dead Records: Events: Risk time: Persons:
DM 6157 1694 2048 9899 3742 45885.49 9899

> par(mfrow=c(1,2))
> boxes(Cdm, boxpos = TRUE, scale.R = 100, show.BE = TRUE)
> boxes(Adm, boxpos = TRUE, scale.R = 100, show.BE = TRUE)
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Figure 2.2: Competing risks set-up for events Ins and Dead.
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As shown in figure 2.2 we now have a traditional competing risks set-up, with some
7500 DM patients starting without insulin, and where the quantity of interest is the
probability of starting drug treatment, and the Ins state here means “having been on
insulin treatment, disregarding subsequent death”. The other event considered is
Dead which here means “dead without initiating insulin treatment”.

2.2 State probabilities

We can compute the (correct) counterpart of the survival function for this competing risks
setup. The survival function we saw in the previous exercise gives the probability of being
alive, and the complement is the probability of being dead.
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3. survfit can do the corresponding calculation for the three states in the figure; the
requirements are: 1) the third argument to the Surv function is a factor and 2) an id

argument is given, pointing to an id variable that links together records belonging to
the same person. The latter is superfluous in this case because there is only one
record for each person, but even so it is required by the function survfit.

Also note that the initial state (DM) must be the first level of the factor lex.Xst:

> levels(Adm$lex.Xst)

[1] "DM" "Ins" "Dead"

> m3 <- survfit(Surv(tfd,
+ tfd + lex.dur,
+ lex.Xst) ~ 1,
+ id = lex.id,
+ data = Adm)
> names(m3)

[1] "n" "time" "n.risk" "n.event" "n.censor" "pstate"
[7] "p0" "cumhaz" "std.err" "sp0" "logse" "transitions"
[13] "lower" "upper" "conf.type" "conf.int" "states" "type"
[19] "call"

> m3$states

[1] "(s0)" "Ins" "Dead"

> head(cbind(time = m3$time, m3$pstate), 20)

time
[1,] 0.002737851 0.9988888 0.0003030609 0.0008081624
[2,] 0.005475702 0.9982825 0.0005051424 0.0012123254
[3,] 0.008213552 0.9972721 0.0011113869 0.0016164884
[4,] 0.010951403 0.9955543 0.0024250496 0.0020206923
[5,] 0.013689254 0.9939374 0.0038397633 0.0022227943
[6,] 0.016427105 0.9916133 0.0057597319 0.0026269982
[7,] 0.019164956 0.9883793 0.0087915703 0.0028291207
[8,] 0.021902806 0.9858525 0.0108130026 0.0033344788
[9,] 0.024640657 0.9820102 0.0140486211 0.0039411573
[10,] 0.027378508 0.9797855 0.0161722144 0.0040422808
[11,] 0.030116359 0.9774582 0.0182971236 0.0042446531
[12,] 0.032854209 0.9752321 0.0202196605 0.0045482115
[13,] 0.035592060 0.9734104 0.0215353535 0.0050542473
[14,] 0.038329911 0.9704742 0.0242690835 0.0052567458
[15,] 0.041067762 0.9686513 0.0256868690 0.0056618274
[16,] 0.043805613 0.9670301 0.0269027493 0.0060671208
[17,] 0.046543463 0.9653073 0.0280175399 0.0066751884
[18,] 0.049281314 0.9632802 0.0297405789 0.0069792541
[19,] 0.052019165 0.9615571 0.0308554865 0.0075873855
[20,] 0.054757016 0.9608476 0.0313622627 0.0077900960

Because lex.Xst is a factor, survfit will compute the Aalen-Johansen estimator of
being in a given state and place the probabilities in the matrix m3$pstate; the times
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these refer to are in the vector m3$time. These are measured in years since diabetes,
because tfd is in units of years,

Explore the object m3; start by using names(m3).

Compare m3$transitions to summary(Adm).

4. The m3$pstate contains the Aalen-Johansen probabilities of being in the Alive,
having left to the Ins, resp. Dead state.

Plot the three curves in the same graph (use for example matplot). Add the
confidence limits.

5. These three curves have sum 1, so basically this is a way of distributing the
probabilities across states at each time. It is therefore natural to stack the
probabilities, which can be done by stackedCIF:

> par(mfrow = c(1, 2))
> matshade(m3$time, cbind(m3$pstate,
+ m3$lower,
+ m3$upper)[, c(1, 4, 7, 2, 5, 8, 3, 6, 9)],
+ plot = TRUE, lty = 1, lwd = 2,
+ col = clr <- c("ForestGreen","red","black"),
+ xlim=c(0,15), xaxs="i",
+ ylim = c(0,1), yaxs = "i")
> mat2pol(m3$pstate, perm = 3:1, x = m3$time, col = clr[3:1])
> text(rep(12, 3), c(0.8, 0.5, 0.2), levels(Cdm), col = "white")

6. What do you get if you replace “~ 1” by “~ sex” in the call to survfit?

2.3 What not to do

A very common error is to use a partial outcome such as Ins, when there is a competing
type of event, in this case Dead. If that is ignored and a traditional survival analysis is
made as if Ins were the only possible event, we will have a substantial overestimate of the
cumulative probability of going on drug. Here is an illustration of this erroneous approach:

> m2 <- survfit(Surv(tfd,
+ tfd + lex.dur,
+ lex.Xst == "Ins" ) ~ 1,
+ data = Adm)
> M2 <- survfit(Surv(tfd,
+ tfd + lex.dur,
+ lex.Xst == "Dead") ~ 1,
+ data = Adm)
> par(mfrow = c(1,2))
> mat2pol(m3$pstate, c(2,3,1), x = m3$time,
+ col = c("red", "black", "transparent"),
+ xlim=c(0,15), xaxs="i",
+ yaxs = "i", xlab = "time since DM", ylab = "" )
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Figure 2.3: Separate state probabilities (left) and stacked state probabilities (right). In the
left panel, Alive is green, Ins is red and Dead is black.
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> lines(m2$time, 1 - m2$surv, lwd = 3, col = "red" )
> mat2pol(m3$pstate, c(3,2,1), x = m3$time, yaxs = "i",
+ col = c("black","red","transparent"),
+ xlim=c(0,15), xaxs="i",
+ yaxs = "i", xlab = "time since DM", ylab = "" )
> lines(M2$time, 1 - M2$surv, lwd = 3, col = "black" )

The first two statements calculate the survival as if only Ins, respectively Dead were the
only way of exiting the state Alive. The mat2pol (matrix to polygon) takes the columns
of state probabilities from the survfit object m3 that contains the correctly modeled
probabilities and plot them as coloured areas stacked; the second argument to mat2pol is
the order in which they should be stacked. The lines plot the wrongly computed
cumulative risks (from m2 and M2) — in order to find these we fish out the surv component
from the survfit objects.
A question frequently asked in competing risk situations is what the probability of being

on Ins is, and it is often (wrongly) believed to be answered by the red curve in the left
panel of figure 2.4. But a highly unrealistic assumption is often forgotten: How the rate of
pharmaceutical treatment would look in the absence of death (or vice versa for that
matter) cannot be deduced from data where both types of risk are present. It is essentially
a theological question as no data is available concerning the situation.
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Figure 2.4: Stacked state probabilities Alive is white, Ins is red and Dead is black. The red
line in the left panel is the wrong (but often computed) “cumulative risk” of Ins, and the
black line in the right panel is the wrong (but often computed) “cumulative risk” of Death.
The black and the red areas in the two plots represent the correctly computed probabilities;
they have the same size in both panels, only they are stacked differently.../graph/cmpr-surv3

2.4 Modeling cause specific rates

There is nothing wrong with modeling the cause-specific event-rates, the problem lies in
how you transform them into probabilities. The relevant model for a competing risks
situation normally consists of separate models for each of the cause-specific rates. Not for
technical or statistical reasons, but for substantial reasons; it is unlikely that rates of
different types of event (Ins initiation and death, say) depend on time in the same way.

7. Now we model the two sets of rates by parametric models; this must be based on a
time-split data set:

> Sdm <- splitMulti(Adm, tfd = seq(0, 20, 0.1))
> summary(Adm)

Transitions:
To

From DM Ins Dead Records: Events: Risk time: Persons:
DM 6157 1694 2048 9899 3742 45885.49 9899

> summary(Sdm)
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Transitions:
To

From DM Ins Dead Records: Events: Risk time: Persons:
DM 460054 1694 2048 463796 3742 45885.49 9899

8. We will use natural splines for the effect of diabetes duration in a model using glm.
The Ns requires a set of pre-specified knots for the time variable, where the
specification should be (partially) guided by the location on the times of the events:

> round(cbind(
+ with(subset(Sdm, lex.Xst == "Ins" ), quantile(tfd + lex.dur, 0:10/10)),
+ with(subset(Sdm, lex.Xst == "Dead"), quantile(tfd + lex.dur, 0:10/10))),
+ 3)

[,1] [,2]
0% 0.003 0.003
10% 0.030 0.272
20% 0.066 0.769
30% 0.172 1.418
40% 0.454 2.133
50% 1.823 3.076
60% 3.288 4.047
70% 4.834 5.153
80% 6.638 6.523
90% 8.663 8.598
100% 13.878 14.609

We see that the Ins occur earlier than Dead, so we choose the knots a bit earlier:

> okn <- c(0,0.5,5,6)
> dkn <- c(0,2.0,5,9)
> Ins.glm <- glm.Lexis(Sdm, ~ Ns(tfd, knots = okn), from = "DM", to = "Ins" )

stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition:
DM->Ins

> Dead.glm <- glm.Lexis(Sdm, ~ Ns(tfd, knots = dkn), from = "DM", to = "Dead")

stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition:
DM->Dead

9. With models for the two rates out of the DM state we can derive the estimated rates
from the two models for rates by time by using a prediction frame, nd:

> int <- 0.01
> nd <- data.frame(tfd = seq(0, 15, int))
> l.glm <- ci.pred( Ins.glm, nd)
> m.glm <- ci.pred(Dead.glm, nd)
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Now plot the estimated rates, in this case the gam models with dotted and glm

models with full lines; mortality with black and Ins rates with red:

> matshade(nd$tfd,
+ cbind(l.glm, m.glm) * 100,
+ plot = TRUE,
+ log = "y", ylim = c(0.5, 50),
+ col = rep(c("red","black"), 2), lwd = 3,
+ xlab = "Time since DM (years)",
+ ylab = "Rates per 100 PY")
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Figure 2.5: Mortality rates (black) and rates of insukin start (red), from a glm model with
natural splines.

../graph/cmpr-Ins-mort

2.5 Integrals with R

Based on these parametric models we can estimate the cumulative risks of being in each of
the states, but also the expected time time spent in each state. The theory of these
involves calculation of integrals of the rate functions. Integrals looks scary to many people,
but they are really just areas under curves. So here is a digression showing how to calculate
integrals as areas under a curve.
The key is to understand how a curve is represented in R. A curve representing the

function µ is just a set of two vectors, one vector of ts and one vector y = µ(t)s. When we
have a model such as the gam or glm above that estimates the mortality as a function of
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time (tfd), we can get a representation of the mortality as a funtion of time by first
choosing the timepoints, say from 0 to 15 years in steps of 0.01 year (≈ 4 days). Then put
this in a dataframe (nd, newdata) with the variable name from the model to get the
function values at the chosen time points:

> t <- seq(0, 15, 0.01)
> nd <- data.frame(tfd = t)
> mu <- ci.pred(Dead.glm, nd)[,1]
> head(cbind(t, mu))

t mu
1 0.00 0.06681677
2 0.01 0.06657067
3 0.02 0.06632549
4 0.03 0.06608123
5 0.04 0.06583789
6 0.05 0.06559547

> plot(t, mu, type="l", lwd = 3,
+ xlim = c(0, 7), xaxs = "i",
+ ylim = c(0, max(mu)), yaxs = "i")
> polygon(t[c(1:501,501:1)], c(mu[1:501], rep(0, 501)),
+ col = "gray", border = "transparent")
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Figure 2.6: Mortality function and integral from 0 to 5 years.
../graph/cmpr-int-ill

This is a representaion of the points (t, µ(t)); if we want the integral of mu over the interval

[0, 5], say, M(5) =
∫ 5

0
µ(s) ds, we are just asking for the area under the curve. Each t
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represents an endpoint of an interval, but what we want in order to compute the area under
the curve is the width of each interval, diff(t), multiplied by the average of the function
values at the ends of each interval (this goes under the name of the ”trapezoidal formula”).
So we need a small function to compute midpoints between successive values in a vector:

> mid <- function(x) x[-1] - diff(x) / 2
> (x <- c(1:5, 7, 10, 17))
[1] 1 2 3 4 5 7 10 17

> mid(x)

[1] 1.5 2.5 3.5 4.5 6.0 8.5 13.5

Note that mid(x) is a vector that is 1 shorter than the vector x, just as diff(x) is.
So if we want the integral over the period 0 to 5 years, we want the sum over the first

500 intervals, corresponding to the first 501 interval endpoints:

> sum(diff(t[1:501]) * mid(mu[1:501]))
[1] 0.2085188

So now we have computed
∫ 5

0
µ(s) d(s). This is called the cumulative rate over the interval

[0, 5] years, even if it is not a rate—it is dimensionless (why?).
It is important to get the units right. In the modeling we entered the risk time

(“person-years”) in units of 1 year, so the unit of predicted mortality function, mu, is events
per 1 person-year. Therefore, the units of t must be year too; otherwise we will introduce a
scaling.
In pratice we will want the integral as function of µ, so for every t we want

M(t) =
∫ t

0
µ(s) d(s). This is easily accomplished by the function cumsum:

> Mu <- c(0, cumsum(diff(t) * mid(mu)))
> head(cbind(t, Mu))

t Mu
0.00 0.0000000000

2 0.01 0.0006669372
3 0.02 0.0013314180
4 0.03 0.0019934516
5 0.04 0.0026530472
6 0.05 0.0033102141

Note that the first value is the integral from 0 to 0, so by definition 0.

2.6 Cumulative risks from parametric models

Here is the theory where we need integration: The cumulative risk of Ins at time t is:

RIns(t) =

∫ t

0

λ(u)S(u) du =

∫ t

0

λ(u) exp
(
−
∫ u

0

λ(s) + µ(s) ds
)
du

where λ is the rate of Ins (lam), and µ the mortality rate (mrt). A similar formula is
obtained for the cumulative risk of Dead (that is “dead without insulin use”), by exchanging
λ and µ.
The practical calculation of these quantities are on pages 214–5 of “Epidemiology with R”.
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10. This means that if we have estimates of λ and µ as functions of time, we can derive
the cumulative risks. In practice this will be by numerical integration; compute the
rates at closely spaced intervals and evaluate the integrals as sums. This is easy, but
what is not so easy is to come up with confidence intervals for the cumulative risks.

Confidence intervals are most conveniently produced by simulation (“parametric
bootstrap” as some say):

(a) generate a random vector from the multivariate normal distribution with mean
equal to the parameters of the model, and variance-covariance equal to the
estimated variance-covariance of the parameter estimates (the Hessian as it is
called).

(b) use this to generate a simulated set of rates (λ(t), µ(t)), evaluated a closely
spaced times.

(c) use these in numerical integration to derive state probabilities at these times.

(d) repeat 1000 times, say, to obtain 1000 sets of state probabilities at these times.

(e) use these to derive confidence intervals for the state. probabilities as the 2.5 and
97.5 percentiles of the simulated state probabilities at each time point.

This machinery is implemented in the function ci.Crisk

> cR <- ci.Crisk(mods = list(Ins = Ins.glm,
+ Dead = Dead.glm),
+ nd = nd)

NOTE: Times are assumed to be in the column tfd at equal distances of 0.01

> str(cR)

List of 4
$ Crisk: num [1:1501, 1:3, 1:3] 1 0.997 0.994 0.991 0.988 ...
..- attr(*, "dimnames")=List of 3
.. ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
.. ..$ cause: chr [1:3] "Surv" "Ins" "Dead"
.. ..$ : chr [1:3] "50%" "2.5%" "97.5%"
$ Srisk: num [1:1501, 1:2, 1:3] 0 0.000665 0.001326 0.001982 0.002633 ...
..- attr(*, "dimnames")=List of 3
.. ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
.. ..$ cause: chr [1:2] "Dead" "Dead+Ins"
.. ..$ : chr [1:3] "50%" "2.5%" "97.5%"
$ Stime: num [1:1501, 1:3, 1:3] 0 0.00998 0.01994 0.02987 0.03976 ...
..- attr(*, "dimnames")=List of 3
.. ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
.. ..$ cause: chr [1:3] "Surv" "Ins" "Dead"
.. ..$ : chr [1:3] "50%" "2.5%" "97.5%"
$ time : num [1:1501] 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...
- attr(*, "int")= num 0.01

There are 4 components of the results, the three first are simply arrays with 2 or 3
functions of time with confidence intervals.
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So now plot the cumulative risks of being in each of the states (the Crisk
component):

> matshade(as.numeric(dimnames(cR$Crisk)[[1]]),
+ cbind(cR$Crisk[,1,],
+ cR$Crisk[,2,],
+ cR$Crisk[,3,]), plot = TRUE,
+ lwd = 2, col = c("limegreen","red","black"))
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Figure 2.7: Cumulative risks of being in each of the states DM (green), Ins (red) and Dead

(black).
../graph/cmpr-crisk

11. Plot the stacked probabilities (use for example matrix 2 polygons):

> str(cR$Crisk)

num [1:1501, 1:3, 1:3] 1 0.997 0.994 0.991 0.988 ...
- attr(*, "dimnames")=List of 3
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..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...

..$ cause: chr [1:3] "Surv" "Ins" "Dead"

..$ : chr [1:3] "50%" "2.5%" "97.5%"

> mat2pol(cR$Crisk[,3:1,1], col = c("forestgreen","red","black")[3:1])

The component Srisk has the confidence limits of the stacked probabilities, add
these to the plot, for example by semi-transparent shades or dotted lines. If you are
really entrepreneurial, devise a function that will take the Srisk component of cR
and produce a stacked plot with shaded confidence limits; here is the stacked plot:

> matshade(as.numeric(dimnames(cR$Srisk)[[1]]),
+ cbind(cR$Srisk[,1,],
+ cR$Srisk[,2,]), plot = TRUE,
+ lwd = 2, col = c("black","red"),
+ ylim = 0:1, yaxs = "i")

You may want to look at adjustcolor or rgb to see how to make semi-transparent
colours.

2.7 Expected life time: using simulated objects

12. It is not only the cumulative risks of being in different states that my be of interest,
the integrals — area under the cumulative risk curves are of interest too. The
cumulative risks are probabilities, so dimensionless, which means that integrals of
these along the time-axis will have dimension time; they will represent the expected
time spent in each of the states.

The areas between the lines (up to say 10 years) are expected sojourn times, that is:

� expected years alive without insulin

� expected years lost to death without insulin

� expected years after insulin, including years dead after insulin

Not all of these are of direct relevance; actually only the first may be so. They are
available (with simulation-based confidence intervals) in the component of cR, Stime
(Sojourn time).

A relevant quantity would be the expected time alive without insulin during the first
5, 10 and 15 years (remember that the first dimension of Stime is in units of 1/100
year):

> str(cR$Stime)

num [1:1501, 1:3, 1:3] 0 0.00998 0.01994 0.02987 0.03976 ...
- attr(*, "dimnames")=List of 3
..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
..$ cause: chr [1:3] "Surv" "Ins" "Dead"
..$ : chr [1:3] "50%" "2.5%" "97.5%"
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> round(cR$Stime[1:3 * 500 + 1,"Surv",], 1)

tfd 50% 2.5% 97.5%
5 4.1 4.0 4.1
10 6.9 6.9 7.0
15 8.8 8.7 8.9

13. We can also compute the expected fraction of the first 5, 10, 15 years spent alive
without insulin therapy:

> (mY <- matrix(1:3 * 5, 3, 3)) # using the recycling rule

[,1] [,2] [,3]
[1,] 5 5 5
[2,] 10 10 10
[3,] 15 15 15

> round(cR$Stime[1:3*500+1,"Surv",] / mY * 100, 1)

tfd 50% 2.5% 97.5%
5 81.5 80.8 82.2
10 69.4 68.7 70.3
15 58.6 57.7 59.6

This can also be shown as a function of time; how large a fraction of the first t time
can a person expect to be alive, for t ranging from 0 to 15 years:

> time <- as.numeric(dimnames(cR$Stime)[[1]])
> matshade(time, cR$Stime[,"Surv",] /
+ cbind(time,
+ time,
+ time) * 100,
+ plot=TRUE,
+ ylim = 0:1*100, yaxs = "i", xaxs = "i")

Amend the plot with proper axis labels.



Chapter 3

Multistate models: steno2

Paraphernalia

First we load the relevant packages and set some options:

> library(survival)
> library(Epi)
> library(popEpi)
> # popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
> library(tidyverse)
> setwd("c:/bendix/teach/AdvCoh/courses/Melb.2023/pracs")
> getwd()

[1] "c:/bendix/teach/AdvCoh/courses/Melb.2023/pracs"

> clear()

3.1 Lexis object for steno2

1. Bring in the steno2 dataset, and convert dates to cal.yr to get a natural unit of
time (years—365.25 days, that is). Because of the way data were anonymized, the
doEnd is not perfectly aligned to doDth, which we remedy on the fly by resetting
doEnd if a doDth is known.

> data(steno2)
> steno2 <- cal.yr(steno2)
> steno2 <- transform(steno2,
+ doEnd = pmin(doEnd, doDth, na.rm = TRUE))
> str(steno2)

'data.frame': 160 obs. of 14 variables:
$ id : num 1 2 3 4 5 6 7 8 9 10 ...
$ allo : Factor w/ 2 levels "Int","Conv": 1 1 2 2 2 2 2 1 1 1 ...
$ sex : Factor w/ 2 levels "F","M": 2 2 2 2 2 2 1 2 2 2 ...
$ baseCVD : num 0 0 0 0 0 1 0 0 0 0 ...
$ deathCVD: num 0 0 0 0 1 0 0 0 1 0 ...
$ doBth : 'cal.yr' num 1932 1947 1943 1945 1936 ...

36



Multistate models: steno2 3.1 Lexis object for steno2 37

$ doDM : 'cal.yr' num 1991 1982 1983 1977 1986 ...
$ doBase : 'cal.yr' num 1993 1993 1993 1993 1993 ...
$ doCVD1 : 'cal.yr' num 2014 2009 2002 1995 1994 ...
$ doCVD2 : 'cal.yr' num NA 2009 NA 1997 1995 ...
$ doCVD3 : 'cal.yr' num NA 2010 NA 2003 1998 ...
$ doESRD : 'cal.yr' num NaN NaN NaN NaN 1998 ...
$ doEnd : 'cal.yr' num 2015 2015 2002 2003 1998 ...
$ doDth : 'cal.yr' num NA NA 2002 2003 1998 ...

2. Start by setting up a Lexis data frame for the entire observation time for each
person; from entry (doBase, date of baseline) to exit, doEnd. Note that we call the
initial state Mic(roalbuminuria), because all patients in the Steno2 study had this
status at entry—it was one of the inclusion criteria:

> L2 <- Lexis(entry = list(per = doBase,
+ age = doBase - doBth,
+ tfi = 0),
+ exit = list(per = doEnd),
+ exit.status = factor(deathCVD + !is.na(doDth),
+ labels=c("Mic","D(oth)","D(CVD)")),
+ id = id,
+ data = steno2)

NOTE: entry.status has been set to "Mic" for all.

> summary(L2, t = TRUE)

Transitions:
To

From Mic D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 67 55 38 160 93 2416.59 160

Timescales:
per age tfi
"" "" ""

> boxes(L2, boxpos = TRUE, show.BE = TRUE, scale.R = 100)

How many deaths are there in the cohort?

Explain the coding of exit.status.

How many person-years are in the follow-up?

What are the time scales defined?

3. In this set-up we can study the CVD and the non-CVD mortality rates, a classical
competing risks problem, but we want in particular to see how the mortality rates
depend on albuminuria status.

In order to allocate follow-up (person-time and events) to current albuminuria status
we need to know when the persons change status; this is recorded in the data frame
st2alb.
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We will cut the follow-up at each date of albuminuria measurement allowing the
patients to change between states Normoalbuminuria, Microalbuminuria and
Macroalbuminuria at each of these dates, possibly several times per person. To this
end we use the function rcutLexis (recurrent cuts), which requires a data frame of
transitions with columns lex.id, cut and new.state — see ?rcutLexis.

We change the scale of the date of transition to year by cal.yr (to align with the
per variable in L2), and in order to comply with the requirements of rcutLexis
rename the id variable id to lex.id, the date variable doTr to cut and the state
variable state to new.state:

> data(st2alb)
> cut2 <- cal.yr(st2alb)
> names(cut2)

[1] "id" "doTr" "state"

> names(cut2) <- c("lex.id", "cut", "new.state")
> str(cut2)

'data.frame': 563 obs. of 3 variables:
$ lex.id : num 1 1 1 1 1 2 2 2 2 2 ...
$ cut : 'cal.yr' num 1993 1995 2000 2002 2007 ...
$ new.state: Factor w/ 3 levels "Norm","Mic","Mac": 2 1 2 1 2 1 2 3 2 2 ...

> head(cut2)

lex.id cut new.state
1 1 1993.444 Mic
2 1 1995.361 Norm
3 1 2000.067 Mic
4 1 2001.984 Norm
5 1 2007.317 Mic
6 2 1993.786 Norm

How many persons are in the cut2 data frame? We can do this in two different ways,
illustrating the tidyverse philosophy

> addmargins(table(table(cut2$lex.id)))

1 2 3 4 5 Sum
4 25 40 46 41 156

> cut2$lex.id %>% table %>% table %>% addmargins

.
1 2 3 4 5 Sum
4 25 40 46 41 156

Explain the entries in this table.

4. Now cut the follow-up at intermediate transition times (note that rcutLexis assumes
that values in the cut column refer to the first timescale by default, and the first of
the timescales in L2 is per):
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> L3 <- rcutLexis(L2, cut2)
> summary(L3)

Transitions:
To

From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 299 72 65 27 13 476 177 1381.57 160
Norm 31 90 5 14 7 147 57 607.86 69
Mac 20 3 44 14 18 99 55 427.16 64
Sum 350 165 114 55 38 722 289 2416.59 160

> boxes(L3, boxpos = TRUE, cex = 0.8)
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Figure 3.1: The default lay-out of the 5 boxes placed on a circle, including the jumps directly
between Norm and Mac.

../graph/ms-boxL3

5. Note that there are transitions both ways between all three of Norm, Mic and Mac,
which is a bit illogical since we have a natural ordering of states: Norm < Mic < Mac.
Hence, transitions from Norm to Mac (and vice versa) should go through Mic.

In order to remedy this anomaly we find all transitions Norm → Mac and provide a
transition Norm → Mic in between, so that each transition Norm → Mac is replaced by
two: Norm → Mic and Mic → Mac.

And of course similarly for transitions Mac → Norm.
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The relevant “jump” transitions are easily found:

> (jump <-
+ subset(L3, (lex.Cst == "Norm" & lex.Xst == "Mac") |
+ (lex.Xst == "Norm" & lex.Cst == "Mac"))[,
+ c("lex.id", "per", "lex.dur","lex.Cst", "lex.Xst")])

lex.id per lex.dur lex.Cst lex.Xst
70 1999.49 2.67 Mac Norm
86 2001.76 12.82 Norm Mac
130 2000.91 1.88 Mac Norm
131 1997.76 4.24 Norm Mac
136 1997.21 0.47 Mac Norm
136 1997.69 4.24 Norm Mac
171 1996.39 5.34 Norm Mac
175 2004.58 9.88 Norm Mac

6. What we need to do for each of these “jumps” is to provide an extra transition to Mic

at a time during the stay in either lex.Cst (either Norm or Mac), i.e. somewhere
between per and per+ lex.dur in these records. Quite arbitrarily we choose a
random time in the middle 80% between the dates:

> set.seed(1952)
> xcut <- select(transform(jump,
+ cut = per + lex.dur * runif(per, 0.1, 0.9),
+ new.state = "Mic"),
+ c(lex.id, cut, new.state))
> xcut

lex.id cut new.state
70 2001.789 Mic
86 2012.232 Mic
130 2001.488 Mic
131 2001.032 Mic
136 1997.610 Mic
136 2000.780 Mic
171 1997.057 Mic
175 2013.472 Mic

How many extra records will be generated when cutting the follow-up?

7. Now make extra cuts (transitions to Mic) at these dates using rcutLexis with xcut

on the L3 object, and order the levels sensibly:

> L4 <- rcutLexis(L3, xcut)
> L4 <- Relevel(L4, c("Norm","Mic","Mac","D(CVD)","D(oth)"))
> summary(L4)

Transitions:
To

From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 90 35 0 6 13 144 54 581.04 66
Mic 72 312 65 14 30 493 181 1435.14 160
Mac 0 22 41 18 12 93 52 400.41 60
Sum 162 369 106 38 55 730 287 2416.59 160
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We see that there are now no transitions directly between Norm and Mac in L4, so we
can make a more intelligible plot of the transitions (remember to read the help page
for boxes.Lexis):

> clr <- c("forestgreen","orange","red","blue",gray(0.3))
> boxes(L4, boxpos = list(x = c(20,20,20,80,80),
+ y = c(10,50,90,75,25)),
+ show.BE = "nz",
+ scale.R = 100,
+ digits.R = 2,
+ cex = 0.9,
+ pos.arr = 0.3,
+ col.bg = clr,
+ col.border = clr,
+ col.txt = c("white","black")[c(1,2,1,1,1)])

Explain the arguments of boxes.

Explain the numbers in the graph.

Describe the overall effect of albuminuria on the two mortality rates.
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Figure 3.2: Transitions between states in the Steno2 study.
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What we now have in the Lexis object L4 is the follow-up of the 160 persons classified in
the 5 states shown. So with this multistate model (well, there is no model yet) set up we
can look at mortality rates and see how they depend on the current albuminuria state, or
look at the transition rates between the different albuminuria states and assess how these
depend on covariates.
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3.2 Transition rates: multiple time scales

8. We will model the transition rates with parametric functions, so we need to split the
dataset along some time scale; we will use 1 month intervals (they should be
sufficiently small to accommodate an assumption of constant transition rates in each
interval):

> S4 <- splitMulti(L4, tfi = seq(0, 25, 1/12))
> summary(L4)

Transitions:
To

From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 90 35 0 6 13 144 54 581.04 66
Mic 72 312 65 14 30 493 181 1435.14 160
Mac 0 22 41 18 12 93 52 400.41 60
Sum 162 369 106 38 55 730 287 2416.59 160

> summary(S4)

Transitions:
To

From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 7061 35 0 6 13 7115 54 581.04 66
Mic 72 17453 65 14 30 17634 181 1435.14 160
Mac 0 22 4844 18 12 4896 52 400.41 60
Sum 7133 17510 4909 38 55 29645 287 2416.59 160

We see that the number of events (transitions) and person-years are the same, in the
two Lexis objects, but the number of records in S4 is substantially larger than in L4.

9. We can now model the overall mortality rates as functions of age and duration (time
since entry) using the defaults for glm.Lexis (this function call will trigger a
warning):

> ma <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst)

NOTE:
Multiple transitions *from* state ' Mac', 'Mic', 'Norm ' - are you sure?
The analysis requested is effectively merging outcome states.
You may want analyses using a *stacked* dataset - see ?stack.Lexis
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions:
Norm->D(CVD)
Mic->D(CVD)
Mac->D(CVD)
Norm->D(oth)
Mic->D(oth)
Mac->D(oth)
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The warning triggered here just tells you that you are modeling the occurrence of any
type of death, which amounts to modeling of the sum of CVD and non-CVD death
rates—the overall mortality.

We can illustrate the actual model underlying this by collapsing the two causes for
death using Relevel:

> clr <- c("forestgreen","orange","red",gray(0.3))
> summary(Relevel(L4, list("Dead" = 4:5), first = FALSE))

Transitions:
To

From Norm Mic Mac Dead Records: Events: Risk time: Persons:
Norm 90 35 0 19 144 54 581.04 66
Mic 72 312 65 44 493 181 1435.14 160
Mac 0 22 41 30 93 52 400.41 60
Sum 162 369 106 93 730 287 2416.59 160

> boxes(Relevel(L4, list("Dead" = 4:5), first = FALSE),
+ boxpos = list(x = c(20,20,20,80),
+ y = c(10,50,90,50)),
+ show.BE = "nz",
+ scale.R = 100,
+ digits.R = 2,
+ cex = 0.9,
+ pos.arr = 0.3,
+ col.bg = clr,
+ col.border = clr,
+ col.txt = c("white","black")[c(1,2,1,1)])

The model structure with lex.Cst as an additive term is assuming that the overall
mortality rates are proportional between states of albuminuria.

10. The default for glm.Lexis is to model all transitions to absorbing states which in
this case are the two “dead” states, D(oth) and D(CVD).

The glm.Lexis above is just a convenience wrapper for:

> m1 <- glm(cbind(lex.Xst %in% c("D(oth)", "D(CVD)")
+ & lex.Cst != lex.Xst,
+ lex.dur)
+ ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst,
+ family = poisreg,
+ data = subset(S4, lex.Cst %in% c("Norm","Mic","Mac")))

. . . which will also give the same results as:

> m2 <- glm((lex.Xst %in% c("D(oth)", "D(CVD)")
+ & lex.Cst != lex.Xst)
+ ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
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Figure 3.3: Transitions between states in the Steno2 study, using only all-cause mortality.
../graph/ms-b4m

+ lex.Cst,
+ offset = log(lex.dur),
+ family = poisson,
+ data = subset(S4, lex.Cst %in% c("Norm","Mic","Mac")))

—note the difference between the families poisreg and poisson: poisreg enters
events and person-time more logically as part of the outcome, whereas poisson
enters events as the response and person-years (lex.dur) via the offset argument.

11. The parameters from any of the formulations are on the log-scale so we want to see
them exponentiated, so on the rate-scale:

> round(ci.exp(ma), 2)

exp(Est.) 2.5% 97.5%
(Intercept) 0.00 0.00 0.01
Ns(tfi, knots = seq(0, 20, 5))1 6.57 1.23 35.14
Ns(tfi, knots = seq(0, 20, 5))2 4.29 0.97 18.89
Ns(tfi, knots = seq(0, 20, 5))3 45.97 0.93 2265.04
Ns(tfi, knots = seq(0, 20, 5))4 0.52 0.17 1.58
Ns(age, knots = seq(50, 80, 10))1 3.26 1.33 8.00
Ns(age, knots = seq(50, 80, 10))2 11.00 1.34 90.24
Ns(age, knots = seq(50, 80, 10))3 12.41 5.56 27.71
lex.CstMic 0.96 0.56 1.65
lex.CstMac 1.71 0.95 3.06

What are the mortality rate-ratios (hazard ratios), what ratios do they refer to: rates
of what between which groups?
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We see there is a higher mortality in the Mac state but no discernible difference
between the Mic and the Norm states.

12. It can be formally tested whether the three states carry the same mortality using a
Wald test (testing whether the Norm and Mac parameters both are 0 on the log-scale):

> Wald(ma, subset = "lex.Cst")

Chisq d.f. P
6.15752406 2.00000000 0.04601619

What is the meaning of this test (i.e. what is the null hypothesis)?

Do you like the formal 5% significance level? What about 4.5% instead?

13. Now do the same analysis for the two causes of death separately, using the to
argument to glm.Lexis:

> # other causes of death
> mo <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst,
+ to = "D(oth)")

stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions:
Norm->D(oth)
Mic->D(oth)
Mac->D(oth)

> round(ci.exp(mo), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 7.000000e-03
Ns(tfi, knots = seq(0, 20, 5))1 161.560 2.938 8.882984e+03
Ns(tfi, knots = seq(0, 20, 5))2 37.189 1.461 9.467380e+02
Ns(tfi, knots = seq(0, 20, 5))3 39009.388 4.355 3.494245e+08
Ns(tfi, knots = seq(0, 20, 5))4 2.086 0.345 1.263200e+01
Ns(age, knots = seq(50, 80, 10))1 2.684 0.881 8.176000e+00
Ns(age, knots = seq(50, 80, 10))2 1.868 0.185 1.887100e+01
Ns(age, knots = seq(50, 80, 10))3 12.728 4.572 3.543300e+01
lex.CstMic 1.004 0.520 1.937000e+00
lex.CstMac 1.001 0.449 2.232000e+00

> #
> # CVD death
> mC <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst,
+ to = "D(CVD)")

stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions:
Norm->D(CVD)
Mic->D(CVD)
Mac->D(CVD)
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> round(ci.exp(mC), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.001 0.000 0.014
Ns(tfi, knots = seq(0, 20, 5))1 1.171 0.164 8.344
Ns(tfi, knots = seq(0, 20, 5))2 2.008 0.303 13.333
Ns(tfi, knots = seq(0, 20, 5))3 1.493 0.018 126.727
Ns(tfi, knots = seq(0, 20, 5))4 0.144 0.019 1.072
Ns(age, knots = seq(50, 80, 10))1 6.833 1.078 43.327
Ns(age, knots = seq(50, 80, 10))2 486.871 1.658 142982.410
Ns(age, knots = seq(50, 80, 10))3 15.110 3.524 64.789
lex.CstMic 0.919 0.351 2.410
lex.CstMac 3.229 1.271 8.203

What is the conclusion w.r.t. the effect of albuminuria state on the two cause-specific
mortality rates?

14. Now make formal tests of relevant hypotheses using Wald.

> Wald(mo, subset = "Cst")

Chisq d.f. P
0.0001452741 2.0000000000 0.9999273656

> Wald(mC, subset = "Cst")

Chisq d.f. P
13.785510275 2.000000000 0.001015113

What is the conclusion from these w.r.t. mortality dependence on albuminuria status?

15. We can show how fitted mortality rates look for persons currently in state Mic
entering the study at a set of specific ages. The entry ages are in the vector L2$age
(L2 is the initial Lexis object with one record per person):

> summary(L2$age)

Min. 1st Qu. Median Mean 3rd Qu. Max.
37.39 48.52 56.60 55.13 61.06 67.50

Based on this we shall use ages (at entry) 45, 55 and 65, and show mortality rates for
persons entering at these ages. We will show the rates as functions of their current
age. We need a prediction data frame, with values for all variables in the model,
(current) age and time from entry, tfi. Here expand.grid is our friend; note we are
using ain for age at entry:

> expand.grid(tfi = c(NA, seq(0, 20, 5)),
+ ain = c(45, 55, 65))
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tfi ain
1 NA 45
2 0 45
3 5 45
4 10 45
5 15 45
6 20 45
7 NA 55
8 0 55
9 5 55
10 10 55
11 15 55
12 20 55
13 NA 65
14 0 65
15 5 65
16 10 65
17 15 65
18 20 65

—it will give all combinations of the values in the vectors supplied as a data.frame.
The NAs are there for plotting purposes— we get a break in plotted curves if there is
an NA in the data. We want the tfi points to be closer than in the illustrative
example:

> prf <- transform(expand.grid(tfi = c(NA, seq(0, 19, 0.5)),
+ ain = c(45, 55, 65))[-1,],
+ age = ain + tfi,
+ lex.Cst = "Mic")
> prf[ 1: 5,]

tfi ain age lex.Cst
2 0.0 45 45.0 Mic
3 0.5 45 45.5 Mic
4 1.0 45 46.0 Mic
5 1.5 45 46.5 Mic
6 2.0 45 47.0 Mic

> prf[40:44,]

tfi ain age lex.Cst
41 NA 55 NA Mic
42 0.0 55 55.0 Mic
43 0.5 55 55.5 Mic
44 1.0 55 56.0 Mic
45 1.5 55 56.5 Mic

> matshade(prf$age, cbind(ci.pred(mo, prf),
+ ci.pred(mC, prf)) * 100,
+ lwd = 3, col = c("black","blue"),
+ log = "y", ylim = c(0.02,20), plot = TRUE,
+ xlab = "Age at follow-up (years)",
+ ylab = "Mortality rate per 100 PY")
> abline(v = c(45, 55, 65), lty = 3)
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Figure 3.4: CVD mortality rates (blue) and non-CVD mortality rates (black), with 95%
confidence intervals as shades. Curve represent persons entering the study at ages 45, 55
and 65 respectively. T ../graph/ms-mort1

he rates of death from other causes is very small at the beginning and increases
steeply over the first 5 years of follow-up, while the CVD mortality rates are pretty
stable with a foreseeable increase by age.

Give an informal description of the curves, and a possible reason for the shape of the
curves.

16. We can show the impact of albuminuria state on the mortality rates in a 3-panel
layout:

> par(mfrow=c(1,3))
> for(st in c("Norm","Mic","Mac"))
+ {
+ matshade(prf$age, pmin(pmax(
+ cbind(ci.pred(mo, transform(prf, lex.Cst = st)),
+ ci.pred(mC, transform(prf, lex.Cst = st))) * 100,
+ 0.05), 60),
+ lwd = 3, col = c("black","blue"),
+ log = "y", ylim = c(0.1,50), plot = TRUE)
+ text(60, 50, st, adj = 0)
+ }
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How are the curves in the three panels related?

Describe the effect of albuminuria status on the two types of mortality.

How can you see this from the model parameters of the models mo and mC?

3.3 State probabilities

We would like to see how the probabilities of being in each of the states in figure 3.2 look
as a function of time since entry, and we will in particular be interested in how this
depends on allo, the allocation to intensified or standard treatment.

3.3.1 Models for transition rates

Thus we will need models for 1) the cause-specific mortality rates and 2) transition rates
between albuminuria states. And of course models which all include the effect of allo
(treatment allocation).
We already fitted models for the mortality rates, but here we refit them in a slightly

different guise, namely including the treatment allocation (allo) as covariate too.

3.3.1.1 Mortality rates

17. We first model the mortality rates using a proportional hazards model, but allowing
different levels of mortality between the two allocation groups (in allo), and the
three albuminuria states (in lex.Cst):

> mix <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst * allo,
+ to = "D(oth)")

stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions:
Norm->D(oth)
Mic->D(oth)
Mac->D(oth)

> round(ci.exp(mix), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 5.000000e-03
Ns(tfi, knots = seq(0, 20, 5))1 195.021 3.367 1.129679e+04
Ns(tfi, knots = seq(0, 20, 5))2 43.667 1.644 1.159968e+03
Ns(tfi, knots = seq(0, 20, 5))3 59106.199 5.928 5.893319e+08
Ns(tfi, knots = seq(0, 20, 5))4 2.617 0.429 1.595000e+01
Ns(age, knots = seq(50, 80, 10))1 2.673 0.884 8.081000e+00
Ns(age, knots = seq(50, 80, 10))2 1.479 0.141 1.552500e+01
Ns(age, knots = seq(50, 80, 10))3 11.747 4.215 3.274000e+01
lex.CstMic 0.967 0.361 2.593000e+00
lex.CstMac 1.630 0.532 5.000000e+00
alloConv 1.797 0.591 5.463000e+00
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lex.CstMic:alloConv 1.072 0.281 4.092000e+00
lex.CstMac:alloConv 0.362 0.072 1.821000e+00

We would however like to see the allocation effect on mortality separately for each
albuminuria state; this is done by the “/” operator in the model formula (pronounced:
allo effect within lex.Cst):

> mox <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo,
+ to = "D(oth)")

stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions:
Norm->D(oth)
Mic->D(oth)
Mac->D(oth)

> round(ci.exp(mox), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 5.000000e-03
Ns(tfi, knots = seq(0, 20, 5))1 195.021 3.367 1.129679e+04
Ns(tfi, knots = seq(0, 20, 5))2 43.667 1.644 1.159968e+03
Ns(tfi, knots = seq(0, 20, 5))3 59106.199 5.928 5.893319e+08
Ns(tfi, knots = seq(0, 20, 5))4 2.617 0.429 1.595000e+01
Ns(age, knots = seq(50, 80, 10))1 2.673 0.884 8.081000e+00
Ns(age, knots = seq(50, 80, 10))2 1.479 0.141 1.552500e+01
Ns(age, knots = seq(50, 80, 10))3 11.747 4.215 3.274000e+01
lex.CstMic 0.967 0.361 2.593000e+00
lex.CstMac 1.630 0.532 5.000000e+00
lex.CstNorm:alloConv 1.797 0.591 5.463000e+00
lex.CstMic:alloConv 1.927 0.925 4.013000e+00
lex.CstMac:alloConv 0.651 0.205 2.071000e+00

> c(deviance(mox), deviance(mix))

[1] 734.0855 734.0855

The use of the deviance gives a good indication that the models fitted actually are
the same model, just differently parametrized.

What is the meaning of the parameters for the allo effect?

18. We also need a similar model for the CVD-mortality:

> mCx <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo,
+ to = "D(CVD)")

stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions:
Norm->D(CVD)
Mic->D(CVD)
Mac->D(CVD)
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> round(ci.exp(mCx), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 0.013
Ns(tfi, knots = seq(0, 20, 5))1 1.004 0.140 7.179
Ns(tfi, knots = seq(0, 20, 5))2 2.291 0.354 14.834
Ns(tfi, knots = seq(0, 20, 5))3 1.361 0.016 115.800
Ns(tfi, knots = seq(0, 20, 5))4 0.125 0.016 0.988
Ns(age, knots = seq(50, 80, 10))1 7.289 1.122 47.353
Ns(age, knots = seq(50, 80, 10))2 641.288 1.868 220199.762
Ns(age, knots = seq(50, 80, 10))3 20.847 4.730 91.871
lex.CstMic 0.808 0.199 3.275
lex.CstMac 1.250 0.245 6.373
lex.CstNorm:alloConv 1.399 0.278 7.047
lex.CstMic:alloConv 1.682 0.579 4.889
lex.CstMac:alloConv 4.856 1.367 17.250

What is the conclusion for the intervention effect on CVD mortality rates?

3.3.1.2 Albuminuria state rates

For a complete description of transitions in the model we also need models for the
transitions between albuminuria states (the vertical arrows in figure 3.2):

19. We will use different models for deterioration (arrows up) and improvement (arrows
down) in albuminuria in figure 3.2). Again the model specification is a simplified by
glm.Lexis, but now requires specification of both from and to arguments:

> det <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo,
+ from = c("Norm","Mic"),
+ to = c("Mic","Mac"))

stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions:
Norm->Mic
Mic->Mac

> imp <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo,
+ from = c("Mac","Mic"),
+ to = c("Mic","Norm"))

stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions:
Mac->Mic
Mic->Norm

> round(ci.exp(det), 3)
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exp(Est.) 2.5% 97.5%
(Intercept) 0.071 0.032 0.158
Ns(tfi, knots = seq(0, 20, 5))1 0.648 0.248 1.692
Ns(tfi, knots = seq(0, 20, 5))2 0.276 0.079 0.961
Ns(tfi, knots = seq(0, 20, 5))3 0.281 0.043 1.823
Ns(tfi, knots = seq(0, 20, 5))4 0.218 0.065 0.738
Ns(age, knots = seq(50, 80, 10))1 1.977 0.839 4.656
Ns(age, knots = seq(50, 80, 10))2 3.588 0.948 13.574
Ns(age, knots = seq(50, 80, 10))3 2.728 0.795 9.358
lex.CstMic 0.393 0.223 0.695
lex.CstNorm:alloConv 0.490 0.222 1.082
lex.CstMic:alloConv 1.965 1.178 3.278

> round(ci.exp(imp), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.208 0.128 0.339
Ns(tfi, knots = seq(0, 20, 5))1 0.239 0.075 0.759
Ns(tfi, knots = seq(0, 20, 5))2 0.069 0.011 0.420
Ns(tfi, knots = seq(0, 20, 5))3 0.046 0.008 0.277
Ns(tfi, knots = seq(0, 20, 5))4 0.172 0.034 0.859
Ns(age, knots = seq(50, 80, 10))1 0.844 0.292 2.444
Ns(age, knots = seq(50, 80, 10))2 0.342 0.069 1.690
Ns(age, knots = seq(50, 80, 10))3 0.580 0.073 4.624
lex.CstMac 1.055 0.465 2.393
lex.CstMic:alloConv 0.526 0.324 0.855
lex.CstMac:alloConv 1.341 0.545 3.303

> round(ci.exp(det, subset="al"), 1)

exp(Est.) 2.5% 97.5%
lex.CstNorm:alloConv 0.5 0.2 1.1
lex.CstMic:alloConv 2.0 1.2 3.3

> round(ci.exp(imp, subset="al"), 1)

exp(Est.) 2.5% 97.5%
lex.CstMic:alloConv 0.5 0.3 0.9
lex.CstMac:alloConv 1.3 0.5 3.3

What was the meaning of “different models for det and imp”?

What do the parameters in the models represent?

What are the assumptions in the models?

Label the transitions in figure 3.2 with the models for each of the transitions.

3.3.2 Simulation of state probabilities

We now have statistical models for all transitions, two models for the cause specific
mortality rates, and two models for transitions between albuminuria states.
The state probabilities that in principle can be derived from these are not trivial to

compute, essentially they can only be computed by simulation1.

1A detailed description of the use of simLexis is available in the vignette in the Epi package, also available
as http://bendixcarstensen.com/Epi/simLexis.pdf

http://bendixcarstensen.com/Epi/simLexis.pdf
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20. First we need an explicit specification of what transitions are decribed by what the
model, since the simulated transitions will be using predictions from these models.
This is specified in a list of lists (remember what a list is??).

There must be one element in the list for each transient state (of which we have 3):

> Tr <- list(Norm = list("Mic" = det,
+ "D(oth)" = mox,
+ "D(CVD)" = mCx),
+ Mic = list("Mac" = det,
+ "Norm" = imp,
+ "D(oth)" = mox,
+ "D(CVD)" = mCx),
+ Mac = list("Mic" = imp,
+ "D(oth)" = mox,
+ "D(CVD)" = mCx))
> lapply(Tr, names)

$Norm
[1] "Mic" "D(oth)" "D(CVD)"

$Mic
[1] "Mac" "Norm" "D(oth)" "D(CVD)"

$Mac
[1] "Mic" "D(oth)" "D(CVD)"

For example, the object Tr$Norm$Mic is the model det; the model for the transition
rate Norm → Mic; we see that there are 10 entries in the specification of Tr,
corresponding to each of the 10 transitions in the diagram in figure 3.2. Some of the
entries in Tr point to the same model. All the models fitted were actually joint
models for more than one transition, but with specific parameters representing
differences between the specific transition rates modeled.

21. We can use the estimated rates to simulate the transition between states in a group
of people with a given set of covariates—the initial cohort.

The simulated data can the be used to assess the probability of being in each of the
states at a given time after entry to the study, by simply counting how many of the
persons from the initial cohort are simulated to be in each state.

These probabilities depend on the covariates used for modeling of transition rates,
that is any of the covariates in mox, mCx, det and imp.

We can choose our initial cohort in (at least) two different ways:

� Use a population with the same covariate distribution as the entire study
population at entry (“population-averaged”)

� Use a population with a prespecified set of covariates at entry (“conditional”).

Either way, what is needed is a data frame of persons indicating their initial status.
simLexis will then simulate their individual trajectories through states (what
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transition takes place when) and produce a simulated cohort of persons in the form of
a Lexis object. The initial (baseline) data frame should also be a Lexis object, but
the values of lex.Xst and lex.dur need not be given, since these will be simulated.

3.3.2.1 Study population cohort

22. First construct a cohort with the same covariate distribution as the entire study for
each of the allocation groups:

> ini <- L2[,c("per", "age", "tfi")]
> ini <- rbind(transform(ini, lex.Cst = factor("Mic"), allo = factor("Int")),
+ transform(ini, lex.Cst = factor("Mic"), allo = factor("Conv")))
> str(ini)

Classes 'Lexis' and 'data.frame': 320 obs. of 5 variables:
$ per : 'cal.yr' num 1993 1993 1993 1993 1993 ...
$ age : 'cal.yr' num 61.1 46.6 49.9 48.5 57.3 ...
$ tfi : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.Cst: Factor w/ 1 level "Mic": 1 1 1 1 1 1 1 1 1 1 ...
$ allo : Factor w/ 2 levels "Int","Conv": 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "breaks")=List of 3
..$ per: NULL
..$ age: NULL
..$ tfi: NULL
- attr(*, "time.scales")= chr [1:3] "per" "age" "tfi"
- attr(*, "time.since")= chr [1:3] "" "" ""

This will be the initial values in the cohort we follow through states—we have the
starting state in lex.Cst and the covariates (at start): timescales ( per, age, tfi)
and the other covariates allo

23. First we simulate transitions from a large cohort that looks like the study population,
say 10 copies of each person in the original data set (see ?simLexis):

> set.seed(1952)
> system.time(
+ Sorg <- simLexis(Tr = Tr, # models for each transition
+ init = ini, # cohort of straters
+ N = 100, # how many copies of each person in ini
+ t.range = 21, # how long should we simulate before censoring
+ n.int = 200))# how many intervals for evaluating rates

user system elapsed
200.53 36.29 240.66

There is no guaranteed order of the states in the Sorg object, so we explicitly reorder
the states:

> Sorg <- Relevel(Sorg, c("Norm", "Mic", "Mac", "D(CVD)", "D(oth)"))
> summary(Sorg, by = "allo")
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$Int

Transitions:
To

From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 2293 5472 0 648 1324 9737 7444 76184.55 8601
Mic 9737 4202 4916 1258 2590 22703 18501 151493.64 16000
Mac 0 1231 1523 619 1543 4916 3393 33953.90 4674
Sum 12030 10905 6439 2525 5457 37356 29338 261632.09 16000

$Conv

Transitions:
To

From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 1460 1574 0 597 1457 5088 3628 47906.47 4927
Mic 5088 2237 8302 1479 3169 20275 18038 129297.70 16000
Mac 0 2701 1439 3154 1008 8302 6863 45188.18 7404
Sum 6548 6512 9741 5230 5634 33665 28529 222392.35 16000

> subset(Sorg, lex.id %in% 28:32)

lex.id per age tfi lex.dur lex.Cst lex.Xst allo cens
28 1993.33 61.05 0.00 1.16 Mic Norm Int 2014.326
28 1994.49 62.21 1.16 2.31 Norm Mic Int 2014.326
28 1996.79 64.52 3.47 3.13 Mic D(oth) Int 2014.326
29 1993.33 61.05 0.00 3.17 Mic Norm Int 2014.326
29 1996.50 64.22 3.17 14.87 Norm Mic Int 2014.326
29 2011.37 79.10 18.04 2.96 Mic Mic Int 2014.326
30 1993.33 61.05 0.00 8.20 Mic D(CVD) Int 2014.326
31 1993.33 61.05 0.00 9.08 Mic Norm Int 2014.326
31 2002.40 70.13 9.08 3.40 Norm Mic Int 2014.326
31 2005.80 73.53 12.48 1.90 Mic D(CVD) Int 2014.326
32 1993.33 61.05 0.00 3.15 Mic Mac Int 2014.326
32 1996.48 64.20 3.15 0.84 Mac Mic Int 2014.326
32 1997.32 65.05 4.00 11.54 Mic D(CVD) Int 2014.326

24. Describe in words how the simulated data looks, and what each record represents.
What is it really we simulated?

> addmargins(table(table(Sorg$lex.id)))

1 2 3 4 5 6 7 8 9 Sum
8416 13680 5765 3125 708 248 44 12 2 32000

What does this table mean?

25. Now we can just count how many of the original 1600 persons are in each of the
states at each of a set of times; this is done by the function nState:

> system.time(
+ Nst <- nState(Sorg,
+ at = seq(0, 20, 0.2),
+ from = 0,
+ time.scale = "tfi"))



56 3.3 State probabilities PMM

user system elapsed
13.62 0.32 14.02

> str(Nst)

'table' int [1:101, 1:5] 0 873 1625 2346 2985 3547 4056 4585 5055 5477 ...
- attr(*, "dimnames")=List of 2
..$ when : chr [1:101] "0" "0.2" "0.4" "0.6" ...
..$ State: chr [1:5] "Norm" "Mic" "Mac" "D(CVD)" ...

> head(Nst)

State
when Norm Mic Mac D(CVD) D(oth)
0 0 32000 0 0 0
0.2 873 30754 350 23 0
0.4 1625 29711 611 53 0
0.6 2346 28678 889 84 3
0.8 2985 27739 1160 113 3
1 3547 26903 1408 136 6

This is however not necessarily a relevant summary; we would be interested in seeing
how things look in each of the allocation groups, Int and Conv.

> Nint <- nState(subset(Sorg, allo == "Int"),
+ at = seq(0, 20.2, 0.1),
+ from = 0,
+ time.scale = "tfi")
> Nconv<- nState(subset(Sorg, allo == "Conv"),
+ at = seq(0, 20.2, 0.1),
+ from = 0,
+ time.scale = "tfi")
> cbind(
+ head(Nint), NA,
+ head(Nconv))

Norm Mic Mac D(CVD) D(oth) Norm Mic Mac D(CVD) D(oth)
0 0 16000 0 0 0 NA 0 16000 0 0 0
0.1 294 15629 71 6 0 NA 157 15723 115 5 0
0.2 575 15287 129 9 0 NA 298 15467 221 14 0
0.3 820 14995 170 15 0 NA 405 15270 304 21 0
0.4 1091 14656 232 21 0 NA 534 15055 379 32 0
0.5 1327 14364 278 29 2 NA 676 14793 491 39 1

If we divide each of these by the number of persons, we get the probabilities of being
in each if the states at the different times since entry.

26. If we want the state probabilities cumulated over states we can derive these by
pState, that yields a matrix with the cumulative state probabilities.

> Pint <- pState(Nint )
> Pconv <- pState(Nconv)
> str(Pint)
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'pState' num [1:203, 1:5] 0 0.0184 0.0359 0.0512 0.0682 ...
- attr(*, "dimnames")=List of 2
..$ when : chr [1:203] "0" "0.1" "0.2" "0.3" ...
..$ State: chr [1:5] "Norm" "Mic" "Mac" "D(CVD)" ...

> head(Pint)

State
when Norm Mic Mac D(CVD) D(oth)
0 0.0000000 1.0000000 1.0000000 1.000000 1
0.1 0.0183750 0.9951875 0.9996250 1.000000 1
0.2 0.0359375 0.9913750 0.9994375 1.000000 1
0.3 0.0512500 0.9884375 0.9990625 1.000000 1
0.4 0.0681875 0.9841875 0.9986875 1.000000 1
0.5 0.0829375 0.9806875 0.9980625 0.999875 1

Describe the structure of Pint.

27. There is a standard plotting method for a pState object; it will plot the stacked state
probabilities stacked in the order given by the perm argument (not used here because
they are already in the order we want):

> clr <- c("forestgreen", "orange", "red", "blue", gray(0.4))
> par(mfrow = c(1,2), mar=c(3,3,2,2))
> plot(Pint , col = clr, xlim = c(0, 20))
> plot(Pconv, col = clr, xlim = c(20, 0))

. . . and slightly more sophisticated:

> clr <- c("forestgreen", "orange", "red", "blue", gray(0.4))
> par(mfrow = c(1,2), mar=c(3,3,2,2))
> plot(Pint, col = clr, xlim = c(0, 20))
> # the survival curve
> lines(as.numeric(rownames(Pint)), Pint[,"Mac"], lwd = 3, col = "black")
> lines(as.numeric(rownames(Pint)), Pint[,"Mac"], lwd = 1, col = "white")
> text(rownames(Pint)[150],
+ Pint[150,] - diff(c(0, Pint[150,]))/2,
+ colnames(Pint), col = "white", cex = 0.8)
> plot(Pconv, col = clr, xlim = c(20, 0))
> # the survival curve
> lines(as.numeric(rownames(Pconv)), Pconv[,"Mac"], lwd = 3, col = "black")
> lines(as.numeric(rownames(Pconv)), Pconv[,"Mac"], lwd = 1, col = "white")
> text(rownames(Pconv)[150],
+ Pconv[150,] - diff(c(0, Pconv[150,]))/2,
+ colnames(Pint), col = "white", cex = 0.8)
> mtext(c("Intensive care","Conventional care"),
+ side = 3, at = c(1,3)/4, outer = TRUE, line = -2)

Redo the plot with proper labeling of axes, including units where needed.

28. Describe the results and conclude on the probabilities shown.
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Figure 3.5: State probabilities for the two intervention groups, for populations of the same
structure as the original total Steno2 population.

../graph/ms-pStates

29. The plot 3.5 may be of limited interest; the probabilities here are really “the
probability that a randomly chosen person from the Steno 2 study. . . ”. So we are
referring to a universe that is not generalizable, the reference is to a particular
distribution of ages at entry etc. into the study. The plot is only partially relevant for
showing the intervention effect, the absolute sizes of the state probabilities are
strictly speaking irrelevant.

3.3.2.2 Initiation cohort with predefined variables

30. Even if we take the modeling background deeply serious and accept that occurrence
rates depend only on current age (age), time since entry (tfi) and treatment
allocation (allo), the assumption of age-distribution as in the Steno 2 study is quite
absurd; who wants to refer to this? Often this is disguised in terms such as
“population averaged”.

Therefore, it would be more relevant to show the results for a homogeneous
population of persons at select ages at entry. This would just require a different init
data frame. But note that it must be a Lexis object, easiest obtained by copying
from S4:

> ini <- S4[1:10,c("lex.id", "per", "age", "tfi", "lex.Cst", "allo")]
> ini[,"lex.id"] <- 1:10
> ini[,"per"] <- 1993 # not used but it is a time scale in S4
> ini[,"age"] <-
+ ini[,"ain"] <- rep(seq(45,65,5), 2)
> ini[,"tfi"] <- 0
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> ini[,"lex.Cst"] <- factor("Mic",
+ levels = c("Norm","Mic","Mac","D(CVD)","D(oth)"))
> ini[,"allo"] <- factor(rep(c("Int","Conv"), each = 5))
> ini

lex.id per age tfi lex.Cst allo ain
1 1993 45 0 Mic Int 45
2 1993 50 0 Mic Int 50
3 1993 55 0 Mic Int 55
4 1993 60 0 Mic Int 60
5 1993 65 0 Mic Int 65
6 1993 45 0 Mic Conv 45
7 1993 50 0 Mic Conv 50
8 1993 55 0 Mic Conv 55
9 1993 60 0 Mic Conv 60
10 1993 65 0 Mic Conv 65

> str(ini)

Classes 'Lexis' and 'data.frame': 10 obs. of 7 variables:
$ lex.id : int 1 2 3 4 5 6 7 8 9 10
$ per : num 1993 1993 1993 1993 1993 ...
$ age : num 45 50 55 60 65 45 50 55 60 65
$ tfi : num 0 0 0 0 0 0 0 0 0 0
$ lex.Cst: Factor w/ 5 levels "Norm","Mic","Mac",..: 2 2 2 2 2 2 2 2 2 2
$ allo : Factor w/ 2 levels "Conv","Int": 2 2 2 2 2 1 1 1 1 1
$ ain : num 45 50 55 60 65 45 50 55 60 65
- attr(*, "time.scales")= chr [1:3] "per" "age" "tfi"
- attr(*, "time.since")= chr [1:3] "" "" ""
- attr(*, "breaks")=List of 3
..$ per: NULL
..$ age: NULL
..$ tfi: num [1:301] 0 0.0833 0.1667 0.25 0.3333 ...

Note that it is important that we enter the variable lex.Cst as a factor with the
same levels as in the Lexis object S4, in the order we want the states when reporting
results, because we will be using ini as basis for predictions of rates needed to do the
simulations. Further, allo must also be entered as a factor, otherwise it is not
possible to compute predictions from the models, because allo were included as a
factor in the models.

31. For each of these combinations of age (at entry) and treatment allocation we will
simulate 100 persons (note that we are using the same transition rates, the models in
Tr):

> system.time(
+ Sdef <- simLexis(Tr = Tr,
+ init = ini,
+ N = 1000,
+ t.range = 21,
+ n.int = 200))

user system elapsed
58.27 7.86 66.22
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> summary(Sdef, by = "allo")

$Conv

Transitions:
To

From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 455 496 0 175 426 1552 1097 14534.05 1498
Mic 1552 726 2591 432 1021 6322 5596 41195.79 5000
Mac 0 826 520 941 304 2591 2071 14578.57 2316
Sum 2007 2048 3111 1548 1751 10465 8764 70308.41 5000

$Int

Transitions:
To

From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 706 1648 0 216 396 2966 2260 22922.78 2652
Mic 2966 1362 1553 381 775 7037 5675 48019.31 5000
Mac 0 389 493 186 485 1553 1060 11131.40 1488
Sum 3672 3399 2046 783 1656 11556 8995 82073.49 5000

> subset(Sdef, lex.id < 5)

lex.id per age tfi lex.dur lex.Cst lex.Xst allo ain cens
1 1993.00 45.00 0.00 2.76 Mic Norm Int 45 2014
1 1995.76 47.76 2.76 0.29 Norm D(oth) Int 45 2014
2 1993.00 45.00 0.00 4.50 Mic Mac Int 45 2014
2 1997.50 49.50 4.50 2.33 Mac D(oth) Int 45 2014
3 1993.00 45.00 0.00 2.51 Mic Norm Int 45 2014
3 1995.51 47.51 2.51 18.49 Norm Norm Int 45 2014
4 1993.00 45.00 0.00 7.19 Mic Norm Int 45 2014
4 2000.19 52.19 7.19 13.81 Norm Norm Int 45 2014

In real applications we would use 5000 or 10,000 replicates of each to minimize the
simulation error.

32. Now we will repeat the graph above, but for the 10 combinations of age at enrollment
(ain), and allocation; we start with the 45 year old allocated to Int:

> P45i <- nState(subset(Sdef, ain == 45 & allo == "Int"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi")
> head(P45i)

State
when Norm Mic Mac D(CVD) D(oth)
0 0 1000 0 0 0
0.1 20 980 0 0 0
0.2 44 953 3 0 0
0.3 57 939 4 0 0
0.4 78 915 7 0 0
0.5 93 900 7 0 0
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> head(pState(P45i))

State
when Norm Mic Mac D(CVD) D(oth)
0 0.000 1.000 1 1 1
0.1 0.020 1.000 1 1 1
0.2 0.044 0.997 1 1 1
0.3 0.057 0.996 1 1 1
0.4 0.078 0.993 1 1 1
0.5 0.093 0.993 1 1 1

This should then be repeated for 4 other ages at enrollment and the two allocations,
plus we will only store the state probabilities:

> P45c <- pState(nState(subset(Sdef, ain == 45 & allo == "Conv"),
+ at = seq(0, 21, 0.1),
+ from = 0,
+ time.scale = "tfi"))
> P45i <- pState(nState(subset(Sdef, ain == 45 & allo == "Int"),
+ at = seq(0, 21, 0.1),
+ from = 0,
+ time.scale = "tfi"))
> P50c <- pState(nState(subset(Sdef, ain == 55 & allo == "Conv"),
+ at = seq(0, 21, 0.1),
+ from = 0,
+ time.scale = "tfi"))
> P50i <- pState(nState(subset(Sdef, ain == 55 & allo == "Int"),
+ at = seq(0, 21, 0.1),
+ from = 0,
+ time.scale = "tfi"))
> P55c <- pState(nState(subset(Sdef, ain == 55 & allo == "Conv"),
+ at = seq(0, 21, 0.1),
+ from = 0,
+ time.scale = "tfi"))
> P55i <- pState(nState(subset(Sdef, ain == 55 & allo == "Int"),
+ at = seq(0, 21, 0.1),
+ from = 0,
+ time.scale = "tfi"))
> P60c <- pState(nState(subset(Sdef, ain == 55 & allo == "Conv"),
+ at = seq(0, 21, 0.1),
+ from = 0,
+ time.scale = "tfi"))
> P60i <- pState(nState(subset(Sdef, ain == 55 & allo == "Int"),
+ at = seq(0, 21, 0.1),
+ from = 0,
+ time.scale = "tfi"))
> P65c <- pState(nState(subset(Sdef, ain == 65 & allo == "Conv"),
+ at = seq(0, 21, 0.1),
+ from = 0,
+ time.scale = "tfi"))
> P65i <- pState(nState(subset(Sdef, ain == 65 & allo == "Int"),
+ at = seq(0, 21, 0.1),
+ from = 0,
+ time.scale = "tfi"))
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33. Then we can plot these in a multiple lay-out:

> par(mfrow = c(5,2), mar = c(1,1,0,0),
+ oma = c(3,3,1,0), mgp=c(3,1,0)/1.6)
> plot(P45i, col = clr, xlim = c(0,20))
> plot(P45c, col = clr, xlim = c(20,0))
> plot(P50i, col = clr, xlim = c(0,20))
> plot(P50c, col = clr, xlim = c(20,0))
> plot(P55i, col = clr, xlim = c(0,20))
> plot(P55c, col = clr, xlim = c(20,0))
> plot(P60i, col = clr, xlim = c(0,20))
> plot(P60c, col = clr, xlim = c(20,0))
> plot(P65i, col = clr, xlim = c(0,20))
> plot(P65c, col = clr, xlim = c(20,0))
> mtext(c("Int","Conv"), side = 3, at = c(1,3)/4, outer = TRUE, line = 0)
> mtext(paste(seq(45,65,5)), side = 2, at = (5:1*2-1)/10,
+ outer = TRUE, line = 0)

e see that the curves are quite ragged; this is due to the simulation errors, it would be
nicer if we simulated 1000 copies of each instead of only 100.

34. Digression: The previous is a lot of hard-coding, we would like to be able to easily
get a plot with only a subset of the ages. To this end it is more convenient to collect
the state probabilities in an array:

> (ain <- seq(45, 65, 5))

[1] 45 50 55 60 65

> (alo <- levels(S4$allo))

[1] "Int" "Conv"

> pdef <- NArray(c(list(ain = ain,
+ allo = alo),
+ dimnames(P45i)))
> str(pdef)

logi [1:5, 1:2, 1:211, 1:5] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 4
..$ ain : chr [1:5] "45" "50" "55" "60" ...
..$ allo : chr [1:2] "Int" "Conv"
..$ when : chr [1:211] "0" "0.1" "0.2" "0.3" ...
..$ State: chr [1:5] "Norm" "Mic" "Mac" "D(CVD)" ...

But when we stick the results in an array we lose the pState class of the results: so
we resort to the mat2pol function that stacks probabilities and plots them, so we
simply take the result from nState and divide by the number in the initial state
(Mic) using sweep:
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Figure 3.6: Predicted probabilities of being in each of the states for persons aged 45, 50, 55,
60 and 65 at entry, separately for the two intervention groups. W ../graph/ms-panel5

> for(aa in ain)
+ for(gg in alo)
+ pdef[paste(aa), gg, ,] <-
+ nState(subset(Sdef, ain == aa & allo == gg),
+ at = as.numeric(dimnames(pdef)[["when"]]),
+ from = 0,
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+ time.scale = "tfi")
> pdef <- sweep(pdef, 1:2, pdef[,,1,"Mic"], "/")
> str(pdef)

num [1:5, 1:2, 1:211, 1:5] 0 0 0 0 0 0 0 0 0 0 ...
- attr(*, "dimnames")=List of 4
..$ ain : chr [1:5] "45" "50" "55" "60" ...
..$ allo : chr [1:2] "Int" "Conv"
..$ when : chr [1:211] "0" "0.1" "0.2" "0.3" ...
..$ State: chr [1:5] "Norm" "Mic" "Mac" "D(CVD)" ...

Then we have the state probabilities in the array pdef

> ain <- seq(45, 65, 10)
> par(mfrow = c(length(ain),2),
+ mar = c(1,2,1,2)/5,
+ oma = c(2,4,2,3),
+ mgp = c(3,1,0) / 1.6)
> for(aa in ain)
+ {
+ mat2pol(pdef[paste(aa),"Int" ,,], col = clr, xlim = c(0,20),
+ xaxs = "i", yaxs = "i", xaxt = "n", yaxt = "n")
+ axis(side = 2)
+ axis(side = 4, labels = NA)
+ mat2pol(pdef[paste(aa),"Conv",,], col = clr, xlim = c(20,0),
+ xaxs = "i", yaxs = "i", xaxt = "n", yaxt = "n")
+ axis(side = 2, labels = NA)
+ axis(side = 4)
+ }
> mtext(c("Int","Conv"), side = 3, at = c(1,3)/4, outer = TRUE, line = 0)
> mtext(ain, side = 2, at = (length(ain):1 * 2 - 1) / (length(ain) * 2),
+ outer = TRUE, line = 2)

3.4 State probabilities using the Aalen-Johansen approach

from survival

The survival package allows estimation of state probabilities by the Aalen-Johansen
estimator similar to what we did in competing risks. The Aalen-Johansen estimator is the
multi-state counterpart of the Kaplan-Meier estimator of survival probability in a 2-state
(alive/dead) model.
As mentioned under competing risks, the results will refer to a population of the same

structure as the study population, and so the absolute sizes of the state probabilities will
not be generalizable to other populations. The results here correspond to the results we
derived using the original Steno2 population cohort in section 3.3.2.1 on page 54 ff.
The estimates of state probabilities in section 3.3.2.1 are based on parametric models for

the transition probabilities, where some of the transition rates depend on age and duration
in the same way. The estimates from the Aalen-Johansen approach is non-parametric in
the sense that the transition rates can have any shape; the down side is that they cannot
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Figure 3.7: Predicted probabilities of being in each of the states for persons aged 45, 55 and
65 at entry, separately for the two intervention groups.

../graph/ms-panel3

depend on more than one time scale (here, sensibly time since entry) and the shape and
size of them are not easily retrievable.

35. In Epi package there is a function, AaJ.Lexis, that does the hard work of reshaping
a Lexis object for use by survfit, and calls survfit to return an object of class
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survfitms.

> AaJepi <- AaJ.Lexis(L4, timeScale = "tfi")

NOTE: Timescale is tfi

> class(AaJepi)

[1] "survfitms" "survfit"

> AaJepi

Call: survfit(formula = form, data = Lx, id = lex.id, istate = lex.Cst)

n nevent rmean*
Norm 730 72 3.718799
Mic 730 57 9.173179
Mac 730 65 2.574825
D(CVD) 730 38 2.855333
D(oth) 730 55 3.580671

*restricted mean time in state (max time = 21.90281 )

We find the same number of transitions in the transitions slot in the result from
AaJ.Lexis as from the summary.Lexis (as we should):

> AaJepi$transitions

to
from Norm Mic Mac D(CVD) D(oth) (censored)
Norm 72 35 0 6 13 18
Mic 72 276 65 14 30 36
Mac 0 22 28 18 12 13
D(CVD) 0 0 0 0 0 0
D(oth) 0 0 0 0 0 0

> summary(L4, simp = FALSE)

Transitions:
To

From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 90 35 0 6 13 144 54 581.04 66
Mic 72 312 65 14 30 493 181 1435.14 160
Mac 0 22 41 18 12 93 52 400.41 60
D(CVD) 0 0 0 0 0 0 0 NA NA
D(oth) 0 0 0 0 0 0 0 NA NA
Sum 162 369 106 38 55 730 287 2416.59 160

36. The predicted state probabilities are in the slot called pstate, and the confidence
intervals in the corresponding slots lower and upper.

> names(AaJepi)

[1] "n" "time" "n.risk" "n.event" "n.censor" "pstate"
[7] "p0" "cumhaz" "std.err" "sp0" "logse" "transitions"
[13] "lower" "upper" "conf.type" "conf.int" "states" "type"
[19] "call"
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> AaJepi$states

[1] "Norm" "Mic" "Mac" "D(CVD)" "D(oth)"

> head(AaJepi$pstate)

[,1] [,2] [,3] [,4] [,5]
[1,] 0.00000 0.99375 0.00625 0 0
[2,] 0.00625 0.98750 0.00625 0 0
[3,] 0.00625 0.98750 0.00625 0 0
[4,] 0.01250 0.98125 0.00625 0 0
[5,] 0.01250 0.98125 0.00625 0 0
[6,] 0.01250 0.98125 0.00625 0 0

> head(AaJepi$lower)

[,1] [,2] [,3] [,4] [,5]
[1,] NA 0.9816133 0.0008858142 NA NA
[2,] 0.0008858142 0.9704340 0.0008858142 NA NA
[3,] 0.0008858142 0.9704340 0.0008858142 NA NA
[4,] 0.0031535032 0.9604561 0.0008858142 NA NA
[5,] 0.0031535032 0.9604561 0.0008858142 NA NA
[6,] 0.0031535032 0.9604561 0.0008858142 NA NA

> head(AaJepi$upper)

[,1] [,2] [,3] [,4] [,5]
[1,] NA 1 0.04409785 NA NA
[2,] 0.04409785 1 0.04409785 NA NA
[3,] 0.04409785 1 0.04409785 NA NA
[4,] 0.04954807 1 0.04409785 NA NA
[5,] 0.04954807 1 0.04409785 NA NA
[6,] 0.04954807 1 0.04409785 NA NA

We can now show the Aalen-Johansen estimator of the state probabilities:

> par(mfrow = c(1,1))
> mat2pol(AaJepi$pstate, perm = c(1:3,5,4), x = AaJepi$time, col = clr)
> lines(AaJepi$time, apply(AaJepi$pstate[,1:3], 1, sum), lwd = 5)

37. But as above, we are interested in seeing the results from each of the allocation
groups, so we do the calculation for each:

> AaJallo <- AaJ.Lexis(L4, ~ allo, timeScale = "tfi")

NOTE: Timescale is tfi

> AaJallo

Call: survfit(formula = form, data = Lx, id = lex.id, istate = lex.Cst)

n nevent rmean*
allo=Int, Norm 384 47 4.794785
allo=Conv, Norm 346 25 2.640688
allo=Int, Mic 384 34 9.933409
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Figure 3.8: Overall state probabilities from the Aalen-Johansen model
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allo=Conv, Mic 346 23 8.401154
allo=Int, Mac 384 23 2.073443
allo=Conv, Mac 346 42 3.077278
allo=Int, D(CVD) 384 12 2.024196
allo=Conv, D(CVD) 346 26 3.691880
allo=Int, D(oth) 384 26 3.076973
allo=Conv, D(oth) 346 29 4.091806

*restricted mean time in state (max time = 21.90281 )

The result in the AaJallo object is in a long vector of time and pstate, the two
parts corresponding to Int and Conv put after one another, with the length of each
part in strata.

> AaJallo$states

[1] "Norm" "Mic" "Mac" "D(CVD)" "D(oth)"

> AaJallo$strata

allo=Int allo=Conv
375 337
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> wh <- rep(substr(names(AaJallo$strata), 6, 9), AaJallo$strata)
> table(wh)

wh
Conv Int
337 375

So we just make the plots for the two subsets and place them next to each other as
before:

> par(mfrow = c(1,2), mar=c(3,3,2,0), oma = c(0,0,0,3), las = 1, bty = "n")
> mat2pol(AaJallo$pstate[wh=="Int",],
+ x = AaJallo$time[wh=="Int"],
+ col = clr, xlim = c(0,21), xaxs = "i", yaxs = "i")
> lines(AaJallo$time[wh=="Int"],
+ apply(AaJallo$pstate[,1:3], 1, sum)[wh=="Int"], lwd = 4)
> mat2pol(AaJallo$pstate[wh=="Conv",],
+ x = AaJallo$time[wh=="Conv"],
+ col = clr, xlim = c(21,0), xaxs = "i", yaxs = "i")
> lines(AaJallo$time[wh=="Conv"],
+ apply(AaJallo$pstate[,1:3], 1, sum)[wh=="Conv"], lwd = 4)
> axis(side = 4)
> mtext(c("Int","Conv"), side = 3, at = c(1,3)/4, outer = TRUE, line = -2)
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Figure 3.9: Aalen-Johansen estimator of the state probabilities for the two intervention
groups, for the original Steno2 data, subdivided by intervention allocation.
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38. The estimator of state probabilities in figure 3.9 can be considered the empirical
counterpart of figure 3.5; the state probabilities for a population as the one in the
study. But then, not quite so; the models underlying figure 3.5 are proportional
hazards in the sense that the effects of age and time since enrollment are proportional
between state by allocation (6 groups for mortality, 4 groups for albuminuria state),
whereas the figures in 3.9 are based on separate models for each transition and
allocation, but only with time since enrollment as timescale (no age-effect assumed).

39. We have confidence intervals for each of the state probabilities in the slots lower and
upper, but not for the sums of these. And it is (cumulative) sums of state
probabilities we have shown in the graph.

Moreover we would also want confidence intervals for areas under the curves. Neither
are available from the Aalen-Johansen nor from the simulation approach. The
simulation approach does not even give confidence intervals for each of the state
probabilities.

3.5 Time spent in albuminuria states

Besides the state probabilities at different times after entry for groups of patients, we may
also want to assess the time spent in each state, during, say, the first 15 or 20 years after
entry.

40. We may want to compare groups by the expected time spent in the albuminuria
states during the first, say, 20 years. The expected time in a state is simply the
time-integral of the probabilities, so we could compute it from pdef; each probability
represents an interval of length 0.1, so we just take the midpoint of the probabilities
from pstate at the ends of each interval.

This is however a bit like bringing coal to Newcastle, we have the simulated cohort
Sdef, where we have simulated sojourn times in each state; so we can just sum these
and use as estimates of time spent in each state.

> tLive <- xtabs(lex.dur ~ ain + allo + lex.Cst, data = Sdef) /
+ nid(Sdef) * 10
> str(mtLive <- addmargins(tLive, 3))

'table' num [1:5, 1:2, 1:6] 4.69 3.56 3.05 1.94 1.3 ...
- attr(*, "dimnames")=List of 3
..$ ain : chr [1:5] "45" "50" "55" "60" ...
..$ allo : chr [1:2] "Conv" "Int"
..$ lex.Cst: chr [1:6] "Norm" "Mic" "Mac" "D(CVD)" ...

> round(ftable(mtLive , col.vars = c(3,2)), 1)

lex.Cst Norm Mic Mac D(CVD) D(oth) Sum
allo Conv Int Conv Int Conv Int Conv Int Conv Int Conv Int

ain
45 4.7 7.5 9.7 9.5 3.0 1.8 0.0 0.0 0.0 0.0 17.4 18.7
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50 3.6 5.7 9.8 10.5 3.4 2.3 0.0 0.0 0.0 0.0 16.8 18.4
55 3.0 4.1 8.5 10.9 3.2 2.5 0.0 0.0 0.0 0.0 14.8 17.6
60 1.9 3.2 7.4 9.2 2.7 2.6 0.0 0.0 0.0 0.0 12.0 15.0
65 1.3 2.4 5.8 8.0 2.3 2.0 0.0 0.0 0.0 0.0 9.4 12.4

> round(ftable(mtLive[,,-(4:5)], col.vars = c(3,2)), 1)

lex.Cst Norm Mic Mac Sum
allo Conv Int Conv Int Conv Int Conv Int

ain
45 4.7 7.5 9.7 9.5 3.0 1.8 17.4 18.7
50 3.6 5.7 9.8 10.5 3.4 2.3 16.8 18.4
55 3.0 4.1 8.5 10.9 3.2 2.5 14.8 17.6
60 1.9 3.2 7.4 9.2 2.7 2.6 12.0 15.0
65 1.3 2.4 5.8 8.0 2.3 2.0 9.4 12.4

With the results in an array we can also easily show the difference between the
intervention and the control arms of the trial:

> round((mtLive[,"Int",-(4:5)] - mtLive[,"Conv",-(4:5)]), 1)

lex.Cst
ain Norm Mic Mac Sum
45 2.8 -0.2 -1.2 1.3
50 2.2 0.6 -1.1 1.7
55 1.1 2.4 -0.7 2.8
60 1.3 1.8 -0.1 3.0
65 1.1 2.2 -0.3 3.0

41. We might also want to know the lifetime lost (during the first 20 years) to each of the
two causes of death. This timespan is not directly available in Sdef, it is the time
from death till 20 years (the time-frame we have chosen). For persons who die, the
time of death is tfi+ lex.dur from the record with lex.Xst ∈ (D(oth), D(CVD), so
quite easily evaluated with xtabs too:

> tDead <- xtabs((20 - tfi - lex.dur) ~ ain + allo + lex.Xst,
+ data = subset(Sdef, lex.Xst %in% c("D(oth)", "D(CVD)"))) /
+ nid(Sdef) * 10
> str(mtDead <- addmargins(tDead[,,4:5], 3))

'table' num [1:5, 1:2, 1:3] 0.439 1.767 3.069 4.327 5.738 ...
- attr(*, "dimnames")=List of 3
..$ ain : chr [1:5] "45" "50" "55" "60" ...
..$ allo : chr [1:2] "Conv" "Int"
..$ lex.Xst: chr [1:3] "D(CVD)" "D(oth)" "Sum"

> round(ftable(mtDead , col.vars = c(3,2)), 1)

lex.Xst D(CVD) D(oth) Sum
allo Conv Int Conv Int Conv Int

ain
45 0.4 0.3 2.8 1.8 3.3 2.1
50 1.8 0.8 2.0 1.4 3.8 2.3
55 3.1 1.2 2.5 1.8 5.6 3.0
60 4.3 2.1 3.8 3.3 8.1 5.4
65 5.7 2.8 4.9 5.0 10.6 7.8
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> round(ftable(mtDead[,,-(4:5)], col.vars = c(3,2)), 1)

lex.Xst D(CVD) D(oth) Sum
allo Conv Int Conv Int Conv Int

ain
45 0.4 0.3 2.8 1.8 3.3 2.1
50 1.8 0.8 2.0 1.4 3.8 2.3
55 3.1 1.2 2.5 1.8 5.6 3.0
60 4.3 2.1 3.8 3.3 8.1 5.4
65 5.7 2.8 4.9 5.0 10.6 7.8

The difference between these numbers between intervention and control groups are
the years gained from the intervention, subdivided by cause of death:

> round((mtDead[,"Int",] - mtDead[,"Conv",]), 1)

lex.Xst
ain D(CVD) D(oth) Sum
45 -0.2 -1.0 -1.2
50 -0.9 -0.6 -1.5
55 -1.8 -0.7 -2.5
60 -2.3 -0.5 -2.8
65 -3.0 0.1 -2.9

Draw a conclusion from these numbers.

3.6 Clinical variables

So far we have only considered covariates that we know the value of at any time point,
including future time points, that is the allocation status and timescales such as age and
time since inclusion.

42. In the dataset st2clin are clinical measurements taken at different dates, up to six
different occasions per person:

> data(st2clin)
> str(st2clin)

'data.frame': 750 obs. of 5 variables:
$ id : num 1 2 3 4 5 6 7 8 9 10 ...
$ doV : Date, format: "1993-05-07" "1993-05-05" ...
$ a1c : num 87.3 66.5 73 61.2 102.7 ...
$ chol: num 3.9 6.6 5.6 5.2 6 4.8 8.6 5.1 4.2 5.4 ...
$ crea: num 83 83 68 97 149 55 56 78 123 79 ...

> st2clin <- cal.yr(st2clin)
> names(st2clin)

[1] "id" "doV" "a1c" "chol" "crea"

> names(st2clin)[1:2] <- c("lex.id","per")
> summary(st2clin)
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lex.id per a1c chol crea
Min. : 1.00 Min. :1993 Min. : 32.80 Min. : 2.200 Min. : 28.00
1st Qu.: 39.00 1st Qu.:1995 1st Qu.: 54.80 1st Qu.: 4.000 1st Qu.: 67.00
Median : 84.50 Median :1997 Median : 66.35 Median : 4.800 Median : 88.00
Mean : 85.81 Mean :2000 Mean : 68.22 Mean : 4.941 Mean : 99.16
3rd Qu.:131.00 3rd Qu.:2002 3rd Qu.: 79.38 3rd Qu.: 5.700 3rd Qu.: 115.25
Max. :176.00 Max. :2015 Max. :147.60 Max. :14.000 Max. :1067.00

NA's :4 NA's :3 NA's :2

> addmargins(table(table(st2clin$lex.id)))

1 2 3 4 5 6 Sum
2 6 23 38 31 60 160

Explain the contents of the table.

43. We can use addCov.Lexis to amend the follow-up data with the clinical
measurements:

> S5 <- addCov.Lexis(S4, st2clin, "per")
> tt <- table(st2clin$lex.id)
> (who <- names(tt[tt == 3])[1])

[1] "5"

> subset(st2clin, lex.id == who)

lex.id per a1c chol crea
5 5 1993.151 102.7 6.0 149
165 5 1995.511 54.7 8.8 140
321 5 1997.496 41.9 5.8 141

> subset(S5,
+ lex.id == who,
+ select = c(lex.id,per,tfi,tfc,exnam,a1c,chol,crea))

lex.id per tfi tfc exnam a1c chol crea
5 1993.22 0.00 0.07 ex1 102.7 6.0 149
5 1993.31 0.08 0.15 ex1 102.7 6.0 149
5 1993.39 0.17 0.24 ex1 102.7 6.0 149
5 1993.47 0.25 0.32 ex1 102.7 6.0 149
5 1993.56 0.33 0.40 ex1 102.7 6.0 149
5 1993.64 0.42 0.49 ex1 102.7 6.0 149
5 1993.72 0.50 0.57 ex1 102.7 6.0 149
5 1993.77 0.55 0.62 ex1 102.7 6.0 149
5 1993.81 0.58 0.65 ex1 102.7 6.0 149
5 1993.89 0.67 0.74 ex1 102.7 6.0 149
5 1993.97 0.75 0.82 ex1 102.7 6.0 149
5 1994.06 0.83 0.90 ex1 102.7 6.0 149
5 1994.14 0.92 0.99 ex1 102.7 6.0 149
5 1994.22 1.00 1.07 ex1 102.7 6.0 149
5 1994.31 1.08 1.15 ex1 102.7 6.0 149
5 1994.39 1.17 1.24 ex1 102.7 6.0 149
5 1994.47 1.25 1.32 ex1 102.7 6.0 149
5 1994.56 1.33 1.40 ex1 102.7 6.0 149
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5 1994.64 1.42 1.49 ex1 102.7 6.0 149
5 1994.72 1.50 1.57 ex1 102.7 6.0 149
5 1994.81 1.58 1.65 ex1 102.7 6.0 149
5 1994.89 1.67 1.74 ex1 102.7 6.0 149
5 1994.97 1.75 1.82 ex1 102.7 6.0 149
5 1995.06 1.83 1.90 ex1 102.7 6.0 149
5 1995.14 1.92 1.99 ex1 102.7 6.0 149
5 1995.22 2.00 2.07 ex1 102.7 6.0 149
5 1995.31 2.08 2.15 ex1 102.7 6.0 149
5 1995.39 2.17 2.24 ex1 102.7 6.0 149
5 1995.47 2.25 2.32 ex1 102.7 6.0 149
5 1995.51 2.29 0.00 ex2 54.7 8.8 140
5 1995.56 2.33 0.04 ex2 54.7 8.8 140
5 1995.64 2.42 0.13 ex2 54.7 8.8 140
5 1995.72 2.50 0.21 ex2 54.7 8.8 140
5 1995.81 2.58 0.29 ex2 54.7 8.8 140
5 1995.89 2.67 0.38 ex2 54.7 8.8 140
5 1995.97 2.75 0.46 ex2 54.7 8.8 140
5 1996.06 2.83 0.54 ex2 54.7 8.8 140
5 1996.14 2.92 0.63 ex2 54.7 8.8 140
5 1996.22 3.00 0.71 ex2 54.7 8.8 140
5 1996.31 3.08 0.79 ex2 54.7 8.8 140
5 1996.39 3.17 0.88 ex2 54.7 8.8 140
5 1996.47 3.25 0.96 ex2 54.7 8.8 140
5 1996.56 3.33 1.04 ex2 54.7 8.8 140
5 1996.64 3.42 1.13 ex2 54.7 8.8 140
5 1996.72 3.50 1.21 ex2 54.7 8.8 140
5 1996.81 3.58 1.29 ex2 54.7 8.8 140
5 1996.89 3.67 1.38 ex2 54.7 8.8 140
5 1996.97 3.75 1.46 ex2 54.7 8.8 140
5 1997.06 3.83 1.54 ex2 54.7 8.8 140
5 1997.07 3.85 1.56 ex2 54.7 8.8 140
5 1997.14 3.92 1.63 ex2 54.7 8.8 140
5 1997.22 4.00 1.71 ex2 54.7 8.8 140
5 1997.31 4.08 1.79 ex2 54.7 8.8 140
5 1997.39 4.17 1.88 ex2 54.7 8.8 140
5 1997.47 4.25 1.96 ex2 54.7 8.8 140
5 1997.50 4.27 0.00 ex3 41.9 5.8 141
5 1997.56 4.33 0.06 ex3 41.9 5.8 141
5 1997.64 4.42 0.14 ex3 41.9 5.8 141
5 1997.72 4.50 0.23 ex3 41.9 5.8 141
5 1997.81 4.58 0.31 ex3 41.9 5.8 141
5 1997.89 4.67 0.39 ex3 41.9 5.8 141
5 1997.97 4.75 0.48 ex3 41.9 5.8 141

> timeScales(S5)

[1] "per" "age" "tfi" "tfc"

> timeSince(S5)

per age tfi tfc
"" "" "" "X"

We see that tfc is included as a time scale, but it is a not a proper time scale; it is
reset to 0 at every clinical visit, and it also has some missing values, as do the clinical
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variables. The missing values are where there is follow-up before the earliest clinical
measurement for a person.

But tfc needs to be a time scale in the Lexis object in order to be properly handled
when subsequently cutting and splitting a Lexis object.

44. The values of the clinical measurements in st2clin are added to the follow-up data:
extra cut points at the measurement dates are added, and the values of the clinical
variables are propagated as LOCF (Last Observation Carried Forward), so it is
possible to model the effect of these clinical variables on transition rates—creatinine
is traditionally modeled on a log-scale, here we use the base 2 logarithm.

> detc <- glm.Lexis(S5, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo +
+ a1c + chol + log2(crea),
+ from = c("Norm","Mic"),
+ to = c("Mic","Mac"))

stats::glm Poisson analysis of Lexis object S5 with log link:
Rates for transitions:
Norm->Mic
Mic->Mac

> impc <- glm.Lexis(S5, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo +
+ a1c + chol + log2(crea),
+ to = c("Norm","Mic"),
+ from = c("Mic","Mac"))

stats::glm Poisson analysis of Lexis object S5 with log link:
Rates for transitions:
Mic->Norm
Mac->Mic

> round(ci.exp(detc), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.080 0.005 1.337
Ns(tfi, knots = seq(0, 20, 5))1 0.714 0.271 1.880
Ns(tfi, knots = seq(0, 20, 5))2 0.300 0.084 1.067
Ns(tfi, knots = seq(0, 20, 5))3 0.297 0.045 1.967
Ns(tfi, knots = seq(0, 20, 5))4 0.226 0.066 0.776
Ns(age, knots = seq(50, 80, 10))1 2.032 0.862 4.789
Ns(age, knots = seq(50, 80, 10))2 4.453 1.131 17.535
Ns(age, knots = seq(50, 80, 10))3 3.387 0.948 12.106
lex.CstMic 0.390 0.220 0.692
a1c 1.005 0.993 1.018
chol 1.093 0.912 1.311
log2(crea) 0.864 0.582 1.281
lex.CstNorm:alloConv 0.433 0.193 0.975
lex.CstMic:alloConv 1.698 0.974 2.959
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We do not really need to see the first 8 parameter estimates so we omit them:

> round(ci.exp(detc, subset = -(1:8), pval = T), 3)

exp(Est.) 2.5% 97.5% P
lex.CstMic 0.390 0.220 0.692 0.001
a1c 1.005 0.993 1.018 0.398
chol 1.093 0.912 1.311 0.336
log2(crea) 0.864 0.582 1.281 0.466
lex.CstNorm:alloConv 0.433 0.193 0.975 0.043
lex.CstMic:alloConv 1.698 0.974 2.959 0.062

> round(ci.exp(impc, subset = -(1:8), pval = T), 3)

exp(Est.) 2.5% 97.5% P
lex.CstMac 1.053 0.465 2.382 0.902
a1c 0.990 0.978 1.003 0.129
chol 0.964 0.804 1.157 0.697
log2(crea) 0.869 0.578 1.308 0.501
lex.CstMic:alloConv 0.598 0.359 0.996 0.048
lex.CstMac:alloConv 1.525 0.611 3.804 0.366

We also look at the effect of the clinical variables on the mortality rates:

> moc <- glm.Lexis(S5, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo +
+ a1c + chol + log2(crea),
+ to = "D(oth)")

stats::glm Poisson analysis of Lexis object S5 with log link:
Rates for transitions:
Norm->D(oth)
Mic->D(oth)
Mac->D(oth)

> mCc <- glm.Lexis(S5, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo +
+ a1c + chol + log2(crea),
+ to = "D(CVD)")

stats::glm Poisson analysis of Lexis object S5 with log link:
Rates for transitions:
Norm->D(CVD)
Mic->D(CVD)
Mac->D(CVD)

> round(ci.exp(moc, subset = -(1:8), pval = T), 3)

exp(Est.) 2.5% 97.5% P
lex.CstMic 0.972 0.361 2.615 0.955
lex.CstMac 1.304 0.411 4.135 0.652
a1c 1.005 0.987 1.024 0.582
chol 0.839 0.630 1.117 0.229
log2(crea) 1.860 1.145 3.019 0.012
lex.CstNorm:alloConv 1.900 0.606 5.962 0.271
lex.CstMic:alloConv 1.944 0.878 4.306 0.101
lex.CstMac:alloConv 0.777 0.235 2.575 0.680
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> round(ci.exp(mCc, subset = -(1:8), pval = T), 3)

exp(Est.) 2.5% 97.5% P
lex.CstMic 0.806 0.199 3.274 0.763
lex.CstMac 1.144 0.221 5.916 0.873
a1c 0.999 0.980 1.019 0.951
chol 1.002 0.734 1.367 0.990
log2(crea) 1.351 0.757 2.409 0.309
lex.CstNorm:alloConv 1.397 0.272 7.177 0.689
lex.CstMic:alloConv 1.680 0.552 5.113 0.361
lex.CstMac:alloConv 5.067 1.387 18.513 0.014

Only crea has any effect; a doubling of creatinine is associated with a 1.86 times
higher mortality rate from other (non-CVD) causes. Confidence interval is
(1.14,3.02), so not terribly precisely determined.

There are limitations in using clinical measurements as time-dependent variables
without a model for the clinical variables. In order to simulate events based on
models for transition rates we must know all covariates at all (future) times, so
models with non-deterministicly varying are not usable. Timescales are time-varying
covariate, but they vary deterministicly, so their value for each person will be
known at any time of future follow-up.

So the models with effects of clinical variables as presented here cannot be used for
prediction of state probabilities—that would require a model for the change of the
clinical variables over time as well.

3.7 Several transitions from one state: stack

So far, we have only jointly modeled transitions that originated in different states, for
example:
Mic → Mac and Norm → Mic;
Norm → D(CVD), Mic → D(CVD) and Mac → D(CVD).
As long as the different rates modeled are originating in different states, the likelihood

will have at most one contribution from each record in the Lexis follow-up data set.
But if we want to create a joint model for more than one rate originating in a given state

we must repeat some of risk time in different contributions to the likelihood. This means
that the modeling cannot be based on (subsets of) a Lexis object, we must repeat some
records. This is detailed in section on Competing Risks in the chapter on multistate
likelihood in the PMM (Practical Multistate Modeling,
http://bendixcarstensen.com/MSbook.pdf).
This behaviour can be achieved by the stack.Lexis function:

> St4 <- stack(S4)
> c(nrow(S4), nrow(St4))

[1] 29645 106569

> table(S4$lex.Cst)

http://bendixcarstensen.com/MSbook.pdf
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Norm Mic Mac D(CVD) D(oth)
7115 17634 4896 0 0

> table(St4$lex.Tr, St4$lex.Cst)

Norm Mic Mac D(CVD) D(oth)
Mac->D(CVD) 0 0 4896 0 0
Mac->D(oth) 0 0 4896 0 0
Mac->Mic 0 0 4896 0 0
Mic->D(CVD) 0 17634 0 0 0
Mic->D(oth) 0 17634 0 0 0
Mic->Mac 0 17634 0 0 0
Mic->Norm 0 17634 0 0 0
Norm->D(CVD) 7115 0 0 0 0
Norm->D(oth) 7115 0 0 0 0
Norm->Mic 7115 0 0 0 0

> ftable(St4$lex.Tr, St4$lex.Xst, St4$lex.Fail, col.vars = 2:3)

Norm Mic Mac D(CVD) D(oth)
FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE

Mac->D(CVD) 0 0 22 0 4844 0 0 18 12 0
Mac->D(oth) 0 0 22 0 4844 0 18 0 0 12
Mac->Mic 0 0 0 22 4844 0 18 0 12 0
Mic->D(CVD) 72 0 17453 0 65 0 0 14 30 0
Mic->D(oth) 72 0 17453 0 65 0 14 0 0 30
Mic->Mac 72 0 17453 0 0 65 14 0 30 0
Mic->Norm 0 72 17453 0 65 0 14 0 30 0
Norm->D(CVD) 7061 0 35 0 0 0 0 6 13 0
Norm->D(oth) 7061 0 35 0 0 0 6 0 0 13
Norm->Mic 7061 0 0 35 0 0 6 0 13 0

We see that the lex.Fail is only TRUE where lex.Xst is equal to the second part if the
lex.Tr.
The two ways of representing the data for person 102 are quite different:

> subset(S4 , lex.id == 102)[,1:8]
> subset(St4, lex.id == 102)[,1:9]

Suppose we wanted to fit a model for the two types of mortality assuming that, say, the
effect of sex was the same.
Since some of the transitions we put in the same model originate from the same state we

need the stacked data representation where each record corresponds to a likelihood term.

> cbind(with(subset(St4, grepl("D", lex.Tr)), table(lex.Tr)))

[,1]
Mac->D(CVD) 4896
Mac->D(oth) 4896
Mac->Mic 0
Mic->D(CVD) 17634
Mic->D(oth) 17634
Mic->Mac 0
Mic->Norm 0
Norm->D(CVD) 7115
Norm->D(oth) 7115
Norm->Mic 0
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We can then fit a model with common effect of sex for the two types mortality:

> stD <- glm(cbind(lex.Fail, lex.dur)
+ ~ Ns(tfi, knots = seq( 0, 20, 5)) * lex.Tr +
+ Ns(age, knots = seq(50, 80, 10)) * lex.Tr +
+ lex.Tr / allo + sex,
+ family = poisreg,
+ data = subset(St4, grepl("D", lex.Tr)))
> round(ci.exp(stD)[,1,drop=F],3)

exp(Est.)
(Intercept) 0.000000e+00
Ns(tfi, knots = seq(0, 20, 5))1 2.069800e+01
Ns(tfi, knots = seq(0, 20, 5))2 2.756800e+01
Ns(tfi, knots = seq(0, 20, 5))3 7.291900e+01
Ns(tfi, knots = seq(0, 20, 5))4 5.860000e-01
lex.TrMac->D(oth) 0.000000e+00
lex.TrMic->D(CVD) 7.322000e+00
lex.TrMic->D(oth) 9.000000e-03
lex.TrNorm->D(CVD) 0.000000e+00
lex.TrNorm->D(oth) 1.350600e+01
Ns(age, knots = seq(50, 80, 10))1 7.378000e+00
Ns(age, knots = seq(50, 80, 10))2 2.669160e+02
Ns(age, knots = seq(50, 80, 10))3 6.845600e+01
sexM 1.440000e+00
Ns(tfi, knots = seq(0, 20, 5))1:lex.TrMac->D(oth) 5.334862e+72
Ns(tfi, knots = seq(0, 20, 5))2:lex.TrMac->D(oth) 3.913890e+51
Ns(tfi, knots = seq(0, 20, 5))3:lex.TrMac->D(oth) 1.417514e+141
Ns(tfi, knots = seq(0, 20, 5))4:lex.TrMac->D(oth) 2.902424e+30
Ns(tfi, knots = seq(0, 20, 5))1:lex.TrMic->D(CVD) 5.000000e-03
Ns(tfi, knots = seq(0, 20, 5))2:lex.TrMic->D(CVD) 7.600000e-02
Ns(tfi, knots = seq(0, 20, 5))3:lex.TrMic->D(CVD) 3.100000e-02
Ns(tfi, knots = seq(0, 20, 5))4:lex.TrMic->D(CVD) 1.690000e-01
Ns(tfi, knots = seq(0, 20, 5))1:lex.TrMic->D(oth) 2.015738e+03
Ns(tfi, knots = seq(0, 20, 5))2:lex.TrMic->D(oth) 8.679800e+01
Ns(tfi, knots = seq(0, 20, 5))3:lex.TrMic->D(oth) 3.163383e+07
Ns(tfi, knots = seq(0, 20, 5))4:lex.TrMic->D(oth) 3.372500e+01
Ns(tfi, knots = seq(0, 20, 5))1:lex.TrNorm->D(CVD) 4.469074e+04
Ns(tfi, knots = seq(0, 20, 5))2:lex.TrNorm->D(CVD) 5.744664e+04
Ns(tfi, knots = seq(0, 20, 5))3:lex.TrNorm->D(CVD) 1.297133e+11
Ns(tfi, knots = seq(0, 20, 5))4:lex.TrNorm->D(CVD) 1.000000e-03
Ns(tfi, knots = seq(0, 20, 5))1:lex.TrNorm->D(oth) 2.480000e-01
Ns(tfi, knots = seq(0, 20, 5))2:lex.TrNorm->D(oth) 1.960000e-01
Ns(tfi, knots = seq(0, 20, 5))3:lex.TrNorm->D(oth) 1.109700e+01
Ns(tfi, knots = seq(0, 20, 5))4:lex.TrNorm->D(oth) 2.950000e-01
lex.TrMac->D(oth):Ns(age, knots = seq(50, 80, 10))1 2.060000e-01
lex.TrMic->D(CVD):Ns(age, knots = seq(50, 80, 10))1 2.002000e+00
lex.TrMic->D(oth):Ns(age, knots = seq(50, 80, 10))1 2.490000e-01
lex.TrNorm->D(CVD):Ns(age, knots = seq(50, 80, 10))1 1.990000e+00
lex.TrNorm->D(oth):Ns(age, knots = seq(50, 80, 10))1 1.107000e+00
lex.TrMac->D(oth):Ns(age, knots = seq(50, 80, 10))2 1.100000e-02
lex.TrMic->D(CVD):Ns(age, knots = seq(50, 80, 10))2 6.593000e+00
lex.TrMic->D(oth):Ns(age, knots = seq(50, 80, 10))2 5.000000e-03
lex.TrNorm->D(CVD):Ns(age, knots = seq(50, 80, 10))2 1.000000e-03
lex.TrNorm->D(oth):Ns(age, knots = seq(50, 80, 10))2 1.200000e-02
lex.TrMac->D(oth):Ns(age, knots = seq(50, 80, 10))3 1.490000e-01
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lex.TrMic->D(CVD):Ns(age, knots = seq(50, 80, 10))3 2.070000e-01
lex.TrMic->D(oth):Ns(age, knots = seq(50, 80, 10))3 1.650000e-01
lex.TrNorm->D(CVD):Ns(age, knots = seq(50, 80, 10))3 0.000000e+00
lex.TrNorm->D(oth):Ns(age, knots = seq(50, 80, 10))3 2.940000e-01
lex.TrMac->D(CVD):alloConv 8.706000e+00
lex.TrMac->D(oth):alloConv 6.270000e-01
lex.TrMic->D(CVD):alloConv 1.688000e+00
lex.TrMic->D(oth):alloConv 2.096000e+00
lex.TrNorm->D(CVD):alloConv 2.054000e+00
lex.TrNorm->D(oth):alloConv 1.800000e+00

So under the assumption that the sex-effect is the same for all 6 mortality rates in figure
3.2 the M/W rate ratio is 1.46.
But it is only rarely that we want to model different rates out of the same state, so use

of stack(.Lexis) is seldom needed.
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