## Multistate models:

Occurrence rates, cumulative risks, competing risks, state probabilities with multiple states and time scales using R and Epi: :Lexis

Bendix Carstensen Steno Diabetes Center Copenhagen Herlev, Denmark<br>http://BendixCarstensen.com

Baker HDI, 22-23 February 2023
http://bendixcarstensen.com/AdvCoh/courses/Melb-2023

## Acknowledgement

I acknowledge the Traditional Owners of the land on which Baker Institute (Melbourne) resides, the Boon Wurrung peoples of the Yaluk-ut Weelam clan.

I pay my respects to all Elders past, present and future.

## Survival and rate data

## Rates and Survival

Multistate models:
Occurrence rates, cumulative risks, competing risks, state probabilities with multiple states and time scales using R and Epi: :Lexis Baker HDI, 22-23 February 2023
http://bendixcarstensen.com/AdvCoh/courses/Melb-2023

## Survival data

Persons enter the study at some date.
Persons exit at a later date, either dead or alive.
Observation:
Actual time span to death ("event")
or
Some time alive ("at least this long")

## Examples of time-to-event measurements

- Time from diagnosis of cancer to death.
- Time from randomisation to death in a cancer clinical trial
- Time from HIV infection to AIDS.
- Time from marriage to 1st child birth.
- Time from marriage to divorce.
- Time to re-offending after being released from jail

Each line a person
Each blob a death
Study ended at 31 Dec. 2003


## Ordered by date of entry

Most likely the order in your database.


## Timescale changed

 to
## "Time since diagnosis".



Patients ordered by survival time.


## Survival times grouped into bands of survival.




## Survival after Cervix cancer

|  | Stage I |  |  |  | Stage II |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Year | $N$ | $D$ | $L$ |  | $N$ | $D$ | $L$ |
| 1 | 110 | 5 | 5 |  | 234 | 24 | 3 |
| 2 | 100 | 7 | 7 |  | 207 | 27 | 11 |
| 3 | 86 | 7 | 7 |  | 169 | 31 | 9 |
| 4 | 72 | 3 | 8 |  | 129 | 17 | 7 |
| 5 | 61 | 0 | 7 |  | 105 | 7 | 13 |
| 6 | 54 | 2 | 10 |  | 85 | 6 | 6 |
| 7 | 42 | 3 | 6 |  | 73 | 5 | 6 |
| 8 | 33 | 0 | 5 |  | 62 | 3 | 10 |
| 9 | 28 | 0 | 4 |  | 49 | 2 | 13 |
| 10 | 24 | 1 | 8 |  | 34 | 4 | 6 |

Life-table estimator of death probability: $D /(N-L / 2)$
Estimated risk of death in year 1 for Stage I women is $5 / 107.5=0.0465$
Estimated 1 year survival is $1-0.0465=0.9535$

## Survival after Cervix cancer

|  | Stage I |  |  |  | Stage II |  |  |
| ---: | ---: | ---: | ---: | :--- | :--- | :--- | ---: |
| Year | $N$ | $D$ | $L$ |  | $N$ | $D$ | $L$ |
| 1 | 110 | 5 |  | 234 | 24 | 3 |  |
| 2 | 100 | 7 |  |  | 207 | 27 | 11 |
| 3 | 86 | 7 | 7 |  | 169 | 31 | 9 |

Estimated risk in year 1 for Stage I women is $5 / 107.5=0.0465$
Estimated risk in year 2 for Stage I women is $7 / 96.5=0.0725$
Estimated risk in year 3 for Stage I women is $7 / 82.5=0.0848$
Estimated 1 year survival is $1-0.0465=0.9535$
Estimated 2 year survival is $0.9535 \times(1-0.0725)=0.8843$
Estimated 3 year survival is $0.8843 \times(1-0.0848)=0.8093$
This is the life-table estimator of the survival curve.

- no need to use 1 year intervals: 1 day intervals could be used
- very small intervals will leave at most 1 censoring or 1 death in each
- interval with 1 death and $n_{t}$ persons at risk:
$\mathrm{P}\{$ Death $\}=1 / n_{t}$
- corresponding survival probability $1-1 / n_{t}=\left(n_{t}-1\right) / n_{t}$
- interval with 0 deaths has survival probability 1
- multiply these over times with event to get survival function:

$$
S(t)=\prod_{t \text { with event }}\left(n_{t}-1\right) / n_{t}
$$

you have the Kaplan-Meier estimator

## Multistate models

## introduction

Multistate models:
Occurrence rates, cumulative risks, competing risks, state probabilities with multiple states and time scales using R and Epi: :Lexis Baker HDI, 22-23 February 2023
http://bendixcarstensen.com/AdvCoh/courses/Melb-2023

## A multistate model



## A multistate model: data

- Not really a model
- Data (observations)
- sequence of transitions: (when, from state, to state)
- sequence of: (current state, time, next state)
- Time: covariate or response? . . . both, actually:
- when something happens
-is a covariate for rates:
how large are rates at a given age, say
- risk time: how long has the person been at risk
-this is the part of the outcome
- risk time is the difference between two whens
- whens are usually dates


## A multistate model

- Target parameters:
- Rates (the arrows)
- State probabilities (being in a state at a given time)
- Survival probability (being alive)
- Sojourn times (how long time do you spend in a state)
- Expected life time
- Probability of ever visiting a state


## Data and parameter realms

- Data: events / (person)time
— the rate dimension (time ${ }^{-1}$ )
- Target parameter dimensions:
- rates (dimension time ${ }^{-1}$ )
- probabilities:
integrals of rates w.r.t. time, requires starting point —dimension time ${ }^{-1} \times$ time $=<$ none $>$
- sojourn times:
integrals of probabilities w.r.t. time.
- dimension $<$ none $>\times$ time $=$ time


## What is a statistical model

- Specification of a statistical machinery that could have generated data
- ...so with a statistical model we can simulate a data set
- The basis for the likelihood of data is the statistical model $\Rightarrow$ Estimation of parameters in the model
- Parameter estimates needed for prediction of rates (hazards)
- So we need the likelihood of
the observed data given the model
-a function of (the parameters of) the rates.


## Data assumptions

- Individual, accurate data:
- Exact time of transition between states for all persons


## Lung cancer survival

## computations

Multistate models:
Occurrence rates, cumulative risks, competing risks, state probabilities with multiple states and time scales using R and Epi: :Lexis Baker HDI, 22-23 February 2023
http://bendixcarstensen.com/AdvCoh/courses/Melb-2023

## Prerequisites

```
> library(Epi)
> library(popEpi)
> # popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
```


## The lung data set

```
> library(survival)
> data(lung)
> lung$sex <- factor(lung$sex,
+ levels = 1:2,
+ labels = c("M", "W"))
> lung$time <- lung$time / (365.25/12)
> head(lung)
    inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1 3 10.053388 2 % 74 M M 1 0
```



```
3 3 33.182752 1 56 M M 0 0
4 5rllllllllll
5 1 29.010267 2 % 60 M M 0 0
6 12 33.577002 1 1 74 M 
```


## Survival function

- Use survfit to construct the Kaplan-Meier estimator of overall survival:
> ?Surv
> ?survfit
> km <- survfit(Surv(time, status == 2) ~ 1, data = lung)
$>\mathrm{km}$
Call: survfit(formula $=\operatorname{Surv}($ time, status $==2) \sim 1$, data $=$ lung)
n events median 0.95LCL 0.95UCL
$\begin{array}{llllll}{[1,]} & 228 & 165 & 10.2 & 9.36 & 11.9\end{array}$
> \# summary(km) \# very long output

We can plot the survival curve-this is the default plot for a survfit object:
> plot(km)
What is the median survival? What does it mean? Explore if survival patterns between men and women are different:

```
> kms <- survfit(Surv(time, status == 2) ~ sex, data = lung)
> kms
Call: survfit(formula = Surv(time, status == 2) ~ sex, data = lung)
\begin{tabular}{lrrrrr} 
& \(n\) & events & median & \(0.95 L C L\) & \(0.95 U C L\) \\
sex \(=\mathrm{M}\) & 138 & 112 & 8.87 & 6.97 & 10.2 \\
sex \(=W\) & 90 & 53 & 14.00 & 11.43 & 18.1
\end{tabular}
```

We see that men have worse survival than women, but they are also a bit older (age is age at diagnosis of lung cancer):
> with(lung, tapply(age, sex, mean))
$\begin{array}{rr}\text { M } & \text { W } \\ 63.34058 & 61.07778\end{array}$
Formally there is a significant difference in survival between men and women

```
> survdiff(Surv(time, status==2) ~ sex, data = lung)
Call:
survdiff(formula = Surv(time, status == 2) ~ sex, data = lung)
\begin{tabular}{rrrrrr} 
& N & Observed & Expected & \((0-E) \sim 2 / E(0-E) ~ 2 / V\) \\
sex \(=\mathrm{M}\) & 138 & 112 & 91.6 & 4.55 & 10.3 \\
sex \(=W\) & 90 & 53 & 73.4 & 5.68 & 10.3
\end{tabular}
Chisq= 10.3 on 1 degrees of freedom, p= 0.001
```


## Rates and rate-ratios

- Occurrence rate:

$$
\lambda(t)=\lim _{h \rightarrow 0} \mathrm{P}\{\text { event in }(t, t+h] \mid \text { alive at } t\} / h
$$

—measured in probability per time: time ${ }^{-1}$

- observation in a survival study: (exit status, time alive)
- empirical rate $(d, y)=$ (deaths, time)
- the Cox model is a model for rates as function of time $(t)$ and covariates $\left(x_{1}, x_{2}\right)$ :

$$
\lambda(t, x)=\lambda_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
$$

—mortality depends on the person's sex and age, say.

- Data looks like data for a K-M analysis plus covariate values


## Rates and rate-ratios: Simple Cox model

Now explore how sex and age (at diagnosis) influence the mortality—note that in a Cox-model we are addressing the mortality rate and not the survival:

```
> c0 <- coxph(Surv(time, status == 2) ~ sex , data = lung)
> c1 <- coxph(Surv(time, status == 2) ~ sex + age, data = lung)
> summary(c1)
> ci.exp(c0)
> ci.exp(c1)
```

What variables from lung are we using?

```
> c0 <- coxph(Surv(time, status == 2) ~ sex , data = lung)
> c1 <- coxph(Surv(time, status == 2) ~ sex + age, data = lung)
> summary(c1)
Call:
coxph(formula = Surv(time, status == 2) ~ sex + age, data = lung)
        n= 228, number of events= 165
\begin{tabular}{lrrrrrr} 
& coef & \(\exp\) (coef) & se(coef) & \(z\) & \(\operatorname{Pr}(>|z|)\) \\
sexW & -0.513219 & 0.598566 & 0.167458 & -3.065 & 0.00218 & \(* *\) \\
age & 0.017045 & 1.017191 & 0.009223 & 1.848 & 0.06459 &
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\begin{tabular}{lrrrr} 
& exp(coef) & \(\exp (-\) coef \()\) & lower .95 & upper .95 \\
sexW & 0.5986 & 1.6707 & 0.4311 & 0.8311 \\
age & 1.0172 & 0.9831 & 0.9990 & 1.0357
\end{tabular}
Concordance \(=0.603\) (se \(=0.025\) )
Likelihood ratio test \(=14.12\) on \(2 \mathrm{df}, \quad \mathrm{p}=9 \mathrm{e}-04\)
Wald test \(=13.47\) on \(2 \mathrm{df}, \quad \mathrm{p}=0.001\)
Score (logrank) test \(=13.72\) on \(2 \mathrm{df}, \quad \mathrm{p}=0.001\)
```

```
> ci.exp(c0)
    exp(Est.) 2.5% 97.5%
sexW 0.5880028 0.4237178 0.8159848
> ci.exp(c1)
    exp(Est.) 2.5% 97.5%
sexW 0.598566 0.4310936 0.8310985
age 1.017191 0.9989686 1.0357467
```

What do these estimates mean?

$$
\lambda(t, x)=\lambda_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
$$

Where is $\beta_{1}$ ? Where is $\beta_{2}$ ? Where is $\lambda_{0}(t)$ ?
What is the mortality RR for a 10 year age difference?

If mortality is assumed constant $(\lambda(t)=\lambda)$, then the likelihood for the Cox-model is equivalent to a Poisson likelihood, which can be fitted using the poisreg family from the Epi package:

```
> ?poisreg
> p1 <- glm(cbind(status == 2, time) ~ sex + age,
+ family = poisreg,
+ data = lung)
> ci.exp(p1) # Poisson
    exp(Est.) 2.5% 97.5%
(Intercept) 0.03255152 0.01029228 0.1029511
sexW 0.61820515 0.44555636 0.8577537
age 1.01574132 0.99777446 1.0340317
> ci.exp(c1) # Cox
\begin{tabular}{lrrr} 
& exp(Est.) & \(2.5 \%\) & \(97.5 \%\) \\
sexW & 0.598566 & 0.4310936 & 0.8310985 \\
age & 1.017191 & 0.9989686 & 1.0357467
\end{tabular}
```

Sex and age effects are quite close between the Poisson and the Cox models.

Poisson model has an intercept term, the estimate of the (assumed) constant underlying mortality.
The risk time part of the response (second argument in the cbind) was entered in units of months (remember we rescaled in the beginning?), the (Intercept) (taken from the ci.exp) is a rate per 1 person-month.
What age and sex does the (Intercept) refer to?

```
> ci.exp(p1) # Poisson
    exp(Est.) 2.5% 97.5%
(Intercept) 0.03255152 0.01029228 0.1029511
sexW 0.61820515 0.44555636 0.8577537
age 1.01574132 0.99777446 1.0340317
```


## poisreg and poisson

```
poisreg: cbind(d,y) ~ ...
> p1 <- glm(cbind(status == 2, time) ~ sex + age,
+ family = poisreg,
+ data = lung)
poisson: d ~ ... + offset(log(y))
> px <- glm(status == 2 ~ sex + age + offset(log(time)),
+ family = poisson,
+ data = lung)
> ## or:
> px <- glm(status == 2 ~ sex + age,
+ offset = log(time),
+ family = poisson,
+ data = lung)
```


## Likelihood and records

Suppose a person is alive from $t_{e}$ (entry) to $t_{x}$ (exit) and that the person's status at $t_{x}$ is $d$, where $d=0$ means alive and $d=1$ means dead. If we choose, say, two time points, $t_{1}, t_{2}$ between $t_{e}$ and $t_{x}$, standard use of conditional probability (formally, repeated use of Bayes' formula) gives

$$
\begin{aligned}
\mathrm{P}\left\{d \text { at } t_{x} \mid \text { entry at } t_{e}\right\}= & \mathrm{P}\left\{\text { survive }\left(t_{e}, t_{1}\right] \mid \text { alive at } t_{e}\right\} \times \\
& \mathrm{P}\left\{\text { survive }\left(t_{1}, t_{2}\right] \mid \text { alive at } t_{1}\right\} \times \\
& \mathrm{P}\left\{\text { survive }\left(t_{2}, t_{x}\right] \mid \text { alive at } t_{2}\right\} \times \\
& \mathrm{P}\left\{d \text { at } t_{x} \mid \text { alive just before } t_{x}\right\}
\end{aligned}
$$

## Rates and likelihood

For a start assume that the mortality is constant over time $\lambda(t)=\lambda$ :

$$
\begin{align*}
& \mathrm{P}\{\text { death during }(t, t+h]\} \approx \lambda h  \tag{1}\\
& \quad \Rightarrow \mathrm{P}\{\text { survive }(t, t+h]\} \approx 1-\lambda h
\end{align*}
$$

where the approximation gets better the smaller $h$ is.

## Dividing follow-up time

- Survival for a time span: $y=t_{x}-t_{e}$
- Subdivided in $N$ intervals, each of length $h=y / N$
- Survival probability for the entire span from $t_{e}$ to $t_{x}$ is the product of probabilities of surviving each of the small intervals, conditional on being alive at the beginning each interval:

$$
\mathrm{P}\left\{\text { survive } t_{e} \text { to } t_{x}\right\} \approx(1-\lambda h)^{N}=\left(1-\frac{\lambda y}{N}\right)^{N}
$$

## Dividing follow-up time

- From mathematics it is known that $(1+x / n)^{n} \rightarrow \exp (x)$ as $n \rightarrow \infty$ (some define $\exp (x)$ this way).
- So if we divide the time span $y$ in small pieces we will have that $N \rightarrow \infty$ :

$$
\begin{equation*}
\mathrm{P}\left\{\text { survive } t_{e} \text { to } t_{x}\right\} \approx\left(1-\frac{\lambda y}{N}\right)^{N} \rightarrow \exp (-\lambda y), \quad N \rightarrow \infty \tag{2}
\end{equation*}
$$

- The contribution to the likelihood from a person observed for a time span of length $y$ is $\exp (-\lambda y)$, and the contribution to the log-likelihood is therefore $-\lambda y$.


## Dividing follow-up time

- A person dying at the end of the last interval, the contribution to the likelihood from the last interval will be
- the probability surviving till just before the end of the interval,
- multiplied by
- the probability of dying in the last tiny instant (of length $\epsilon$ ) of the interval
- The probability of dying in this tiny instant is $\lambda \epsilon$
- log-likelihood contribution from this last instant is $\log (\lambda \epsilon)=\log (\lambda)+\log (\epsilon)$.


## Total likelihood

The total likelihood for one person is the product of all these terms from the follow-up intervals $(i)$ for the person; and the log-likelihood $(\ell)$ is therefore the sum of the log-likelihood terms:

$$
\begin{aligned}
\ell(\lambda) & =\sum_{i}\left(-\lambda y_{i}+d_{i} \log (\lambda)+d_{i} \log (\epsilon)\right) \\
& =\sum_{i}\left(d_{i} \log (\lambda)-\lambda y_{i}\right)+\sum_{i} d_{i} \log (\epsilon)
\end{aligned}
$$

The last term does not depend on $\lambda$, so it can be ignored

## Total log-likelihood

- ... for the follow up of 1 person is (the rate likelihood):

$$
\sum_{i}\left(d_{i} \log (\lambda)-\lambda y_{i}\right)
$$

- this is also the likelihood for independent Poisson variates $d_{i}$ with means $\lambda y_{i}$.
- even though the $d_{i} \mathrm{~s}$ are neither Poisson nor independent
- Different models can have the same (log)likelihood:
- model for follow-up of a person $\left(d_{i}, y_{i}\right)$, constant rate $\lambda$
- model for independent Poisson variates $\left(d_{i}\right)$, mean $\lambda y_{i}$



## Probability

$$
\begin{aligned}
& \mathrm{P}\left(d \text { at } t_{\mathrm{x}} \mid \text { entry } t_{e}\right) \\
& =\mathrm{P}\left(\text { surv } t_{e} \rightarrow t_{1} \mid \text { entry } t_{e}\right) \\
& \quad \times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right) \\
& \quad \times \mathrm{P}\left(d \text { at } t_{\mathrm{x}} \mid \text { entry } t_{2}\right)
\end{aligned}
$$

log-Likelihood

$$
\begin{aligned}
& d \log (\lambda)-\lambda y \\
& \quad=0 \log (\lambda)-\lambda y_{1} \\
& \quad+0 \log (\lambda)-\lambda y_{2} \\
& \quad+d \log (\lambda)-\lambda y_{3}
\end{aligned}
$$



## Probability

$$
\begin{aligned}
& \mathrm{P}\left(\text { surv } t_{e} \rightarrow t_{\mathrm{x}} \mid \text { entry } t_{e}\right) \\
& \quad=\mathrm{P}\left(\text { surv } t_{e} \rightarrow t_{1} \mid \text { entry } t_{e}\right) \\
& \quad \times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right) \\
& \quad \times \mathrm{P}\left(\text { surv } t_{2} \rightarrow t_{\mathrm{x}} \mid \text { entry } t_{2}\right)
\end{aligned}
$$

log-Likelihood
$0 \log (\lambda)-\lambda y$

$$
=0 \log (\lambda)-\lambda y_{1}
$$

$$
+0 \log (\lambda)-\lambda y_{2}
$$

$$
+0 \log (\lambda)-\lambda y_{3}
$$



## Probability

$$
\begin{aligned}
& \mathrm{P}\left(\text { event at } t_{\mathrm{x}} \mid \text { entry } t_{e}\right) \\
& \quad=\mathrm{P}\left(\text { surv } t_{e} \rightarrow t_{1} \mid \text { entry } t_{e}\right) \\
& \quad \times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right) \\
& \quad \times \mathrm{P}\left(\text { event at } t_{\mathrm{x}} \mid \text { entry } t_{2}\right)
\end{aligned}
$$

log-Likelihood
$1 \log (\lambda)-\lambda y$
$=0 \log (\lambda)-\lambda y_{1}$
$+0 \log (\lambda)-\lambda y_{2}$
$+1 \log (\lambda)-\lambda y_{3}$


## Probability

$$
\begin{aligned}
& \mathrm{P}\left(d \text { at } t_{\mathrm{x}} \mid \text { entry } t_{e}\right) \\
& =\mathrm{P}\left(\text { surv } t_{e} \rightarrow t_{1} \mid \text { entry } t_{e}\right) \\
& \quad \times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right) \\
& \quad \times \mathrm{P}\left(d \text { at } t_{\mathrm{x}} \mid \text { entry } t_{2}\right)
\end{aligned}
$$

log-Likelihood

$$
\begin{aligned}
& d \log (\lambda)-\lambda y \\
& \quad=0 \log (\lambda)-\lambda y_{1} \\
& \quad+0 \log (\lambda)-\lambda y_{2} \\
& \quad+d \log (\lambda)-\lambda y_{3}
\end{aligned}
$$



## Probability

$$
\begin{aligned}
& \mathrm{P}\left(d \text { at } t_{\mathrm{x}} \mid \text { entry } t_{e}\right) \\
& \quad=\mathrm{P}\left(\text { surv } t_{e} \rightarrow t_{1} \mid \text { entry } t_{e}\right) \\
& \quad \times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right) \\
& \quad \times \mathrm{P}\left(d \text { at } t_{\mathrm{x}} \mid \text { entry } t_{2}\right)
\end{aligned}
$$

log-Likelihood

$$
\begin{aligned}
& d \log (\lambda)-\lambda y \\
& \quad=0 \log \left(\lambda_{1}\right)-\lambda_{1} y_{1} \\
& \quad+0 \log \left(\lambda_{2}\right)-\lambda_{2} y_{2} \\
& \quad+d \log \left(\lambda_{3}\right)-\lambda_{3} y_{3}
\end{aligned}
$$

- allows different rates $\left(\lambda_{i}\right)$ in each interval


## Representation of follow-up: Lexis object

```
> Ll <- Lexis(exit = list(tfl = time),
\(+\quad\) exit.status \(=\) factor(status,
\(+\quad\) levels = 1:2,
    labels = c("Alive","Dead")),
data \(=\) lung)
```

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfl timescale.
> head (Ll)
lex.id tfl lex.dur lex. Cst lex. Xst inst time status age sex ph.ecog ph.karno

| 1 | 0 | 10.05 | Alive | Dead | 3 | 10.053 | 2 | 74 | $M$ | 1 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 0 | 14.95 | Alive | Dead | 3 | 14.949 | 2 | 68 | $M$ | 0 |
| 3 | 0 | 33.18 | Alive | Alive | 3 | 33.183 | 1 | 56 | $M$ | 0 |
| 4 | 0 | 6.90 | Alive | Dead | 5 | 6.899 | 2 | 57 | $M$ | 1 |

pat.karno meal.cal wt.loss
1001175 NA
$90 \quad 1225 \quad 15$
90 NA 15

| surv | 60 | 1150 | 11 |
| :--- | :--- | :--- | :--- |

## New variables in a Lexis object

tfl: time from lung cancer at the time of entry, therefore it is 0 for all persons; the entry time is 0 from the date of lung cancer. Defines a timescale with name tfl.
lex.dur: the length of time a person is in state lex. Cst, here measured in months, because time is.
lex.Cst: Current state, the state in which the lex.dur time is spent.
lex. Xst: eXit state, the state to which the person moves after the lex.dur time in lex. Cst.
lex.id: an id of each record in the source dataset. Can be explicitly set by id=.

## Lexis object: Overview of follow-up

## Overkill?

The point is that the machinery generalizes to multistate data.

```
> summary(Ll)
Transitions:
    To
From Alive Dead 
```

What is the average follow-up time for persons?


Explain the numbers in the graph.

## Cox model using the Lexis-specific variables:

```
> cl <- coxph(Surv(tfl,
+ tfl + lex.dur,
    lex.Xst == "Dead") ~ sex + age,
data = Ll)
```

Surv(from-time, to-time, event indicator)

## Using the Lexis features:

```
> cL <- coxph.Lexis(Ll, tfl ~ sex + age)
survival::coxph analysis of Lexis object Ll:
Rates for the transition:
Alive->Dead
Baseline timescale: tfl
> round(cbind(ci.exp(cL),
+ ci.exp(cl)), 3)
sexW 0.599 0.431 0.831 0.599 0.431 0.831
age 1.017 0.999 1.036 1.017 0.999 1.036
```


## The crude Poisson model:

```
> pc <- glm(cbind(lex.Xst == "Dead", lex.dur) ~ sex + age,
+ family = poisreg,
+ data = LI)
```

or even simpler, by using the Lexis features:

```
> pL <- glm.Lexis(Ll, ~ sex + age)
stats::glm Poisson analysis of Lexis object Ll with log link:
Rates for the transition:
Alive->Dead
> round(cbind(ci.exp(pL),
+ ci.exp(pc)), 3)
\begin{tabular}{lrrrrrr} 
& \(\exp (\) Est. ) & \(2.5 \%\) & \(97.5 \%\) & \(\exp (\) Est.) & \(2.5 \%\) & \(97.5 \%\) \\
(Intercept) & 0.033 & 0.010 & 0.103 & 0.033 & 0.010 & 0.103 \\
sexW & 0.618 & 0.446 & 0.858 & 0.618 & 0.446 & 0.858 \\
age & 1.016 & 0.998 & 1.034 & 1.016 & 0.998 & 1.034
\end{tabular}
```


## Poisson and Cox model

The crude Poisson model is a Cox-model with the (quite brutal) assumption that baseline rate is constant over time.

## But results are similar:

```
> round(cbind(ci.exp(cL),
+ ci.exp(pL)[-1,]), 3)
\begin{tabular}{lrrrrrr} 
& \(\exp (\) Est. ) & \(2.5 \%\) & \(97.5 \%\) & \(\exp\) (Est.) & \(2.5 \%\) & \(97.5 \%\) \\
sexW & 0.599 & 0.431 & 0.831 & 0.618 & 0.446 & 0.858 \\
age & 1.017 & 0.999 & 1.036 & 1.016 & 0.998 & 1.034
\end{tabular}
```


## Baseline hazard: splitting time

```
> Sl <- splitMulti(Ll, tfl = 0:36)
> summary(Ll)
Transitions:
    To
From Alive Dead Records: Events: Risk time: Persons:
    Alive 63 165 228 165 2286.42 
> summary(Sl)
Transitions:
    To
From Alive Dead Records: Events: Risk time: Persons:
    Alive }\begin{array}{llllll}{2234}&{165}&{2399}&{165}&{2286.42}&{228}
```

What happended to no. records?
What happended to amount of risk time?
What happended to no. events?

```
> wh <- names(Ll) [1:10] # names of variables in some order
> subset(Ll, lex.id == 10)[,wh]
lex.id tfl lex.dur lex.Cst lex.Xst inst time status age sex
> subset(Sl, lex.id == 10)[,wh]
lex.id tfl lex.dur lex.Cst lex.Xst inst rererereratus age sex
    10
    10 2 1.00 Alive Alive 7 5.454 2 61 M
    10 3 1.00 Alive Alive 7 5.454 2 61 M
    10 4 1.00 Alive Alive 7 5.454 2 61 M
    10 5 0.45 Alive Dead 7 5.454 2 61 M
In S1 each record now represents a small interval of follow-up for a person, so each person has many records.
```


## Natural splines for baseline hazard

```
> ps <- glm(cbind(lex.Xst == "Dead", lex.dur)
+ ~ Ns(tfl, knots = seq(0, 36, 12)) + sex + age,
+ family = poisreg,
+ data = Sl)
or even simpler:
```

```
> ps <- glm.Lexis(Sl, ~ Ns(tfl, knots = seq(0, 36, 12)) + sex + age)
```

stats::glm Poisson analysis of Lexis object $S l$ with log link:
Rates for the transition:
Alive->Dead
> ci.exp(ps)
(Intercept)

| $\exp$ (Est.) | $2.5 \%$ | $97.5 \%$ |
| :--- | ---: | ---: |
| 0.0189837 | 0.005700814 | 0.06321569 |
| 2.4038681 | 0.809442081 | 7.13896863 |
| 4.1500822 | 0.436273089 | 39.47798357 |
| 0.8398973 | 0.043928614 | 16.05849662 |
| 0.5987171 | 0.431232662 | 0.83124998 |
| 1.0165872 | 0.998377104 | 1.03512945 |

Comparing with estimates from the Cox-model and from the model with constant baseline:

```
> round(cbind(ci.exp(cl),
+ ci.exp(ps, subset = c("sex","age")),
+ ci.exp(pc, subset = c("sex","age"))), 3)
\begin{tabular}{lrrrrrrrrr} 
& \(\exp (\) Est. \()\) & \(2.5 \%\) & \(97.5 \%\) & \(\exp\) (Est.) & \(2.5 \%\) & \(97.5 \%\) & \(\exp\) (Est.) & \(2.5 \%\) & \(97.5 \%\) \\
sexW & 0.599 & 0.431 & 0.831 & 0.599 & 0.431 & 0.831 & 0.618 & 0.446 & 0.858 \\
age & 1.017 & 0.999 & 1.036 & 1.017 & 0.998 & 1.035 & 1.016 & 0.998 & 1.034
\end{tabular}
```


## But where is the baseline hazard?

ps is a model for the hazard so we can predict the value of it at defined values for the covariates in the model:

```
> prf <- data.frame(tfl = seq(0, 30, 0.2),
+ sex = "W",
+ age = 60)
```

We can over-plot with the predicted rates from the model where mortality rates are constant, the only change is the model (pc instead of ps):

```
> matshade(prf$tfl, ci.pred(ps, prf),
+ plot = TRUE, log = "y", lwd = 3)
> matshade(prf$tfl, ci.pred(pc, prf), lty = 3, lwd = 3)
```


## Here is the baseline hazard!



## Survival function and hazard function

$$
S(t)=\exp \left(-\int_{0}^{t} \lambda(u) \mathrm{d} u\right)
$$

Simple, but the Cl for $S(t)$ not so simple...
Implemented in the ci.surv function
Arguments: 1:model, 2:prediction data frame, 3:equidistance
Prediction data frame must correspond to a sequence of equidistant time points:

```
> matshade(prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)
> lines(prf$tfl, ci.surv(pc, prf, intl = 0.2)[,1], col="blue")
> lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ lwd = 2, lty = 1, col="magenta")
```


## Survival functions



## Hazard and survival functions

```
> par(mfrow = c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6)
> #
> # hazard scale
> matshade(prf$tfl, ci.pred(ps, prf),
+ plot = TRUE, log = "y", lwd = 3)
> matshade(prf$tfl, ci.pred(pc, prf), lty = 3, lwd = 3)
> #
> # survival
> matshade(prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)
> lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ col = "forestgreen", lwd = 3, conf.int = FALSE)
> lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ col = "forestgreen", lwd = 1, lty = 1)
```


## Hazard and survival functions



## K-M estimator and smooth Poisson model

Kaplan-Meier estimator and compared to survival from corresponding Poisson-model, which is one with time ( tfl ) as the only covariate:

```
> par(mfrow=c(1,2))
> pk <- glm(cbind(lex.Xst == "Dead",
+ lex.dur) ~ Ns(tfl, knots = seq(0, 36, 12)),
+ family = poisreg,
+ data = Sl)
> # hazard
> matshade(prf$tfl, ci.pred(pk, prf),
+ plot = TRUE, log = "y", lwd = 3, ylim = c(0.01,1))
> # survival from smooth model
> matshade(prf$tfl, ci.surv(pk, prf, intl = 0.2) ,
+ plot = TRUE, lwd = 3, ylim = 0:1)
> # K-M estimator
> lines(km, lwd = 2)
```


## K-M estimator and smooth Poisson model




|  | 1 | 1 | 1 | 1 | 1 |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 0 | 5 | 10 | 15 | 20 | 25 | 30 |

## K-M estimator and smooth Poisson model

We can explore how the tightness of the knots in the smooth model influence the underlying hazard and the resulting survival function:

```
> zz <- function(dk) # distance between knots
+ {
+ par(mfrow=c(1,2))
+ kn <- seq(0, 36, dk)
+ pk <- glm(cbind(lex.Xst == "Dead",
+ lex.dur) ~ Ns(tfl, knots = kn),
+ family = poisreg,
data = Sl)
+ matshade(prf$tfl, ci.pred(pk, prf),
+ plot = TRUE, log = "y", lwd = 3, ylim = c(0.01,1))
+ rug(kn, lwd=3)
+
+ matshade(prf$tfl, ci.surv(pk, prf, intl = 0.2) ,
+ plot = TRUE, lwd = 3, ylim = 0:1)
+ lines(km, lwd = 2, col = "forestgreen")
+ }

K-M estimator and smooth Poisson model



K-M estimator and smooth Poisson model


K-M estimator and smooth Poisson model


K-M estimator and smooth Poisson model


K-M estimator and smooth Poisson model


\section*{K-M estimator and smooth Poisson model}



\section*{Survival analysis summary}
- 1 to 1 correspondence between
- hazard function and starting point
- survival function
- K-M and Cox use a very detailed baseline hazard (omits it)
- Smooth parametric hazard function more credible:
- Define Lexis object
- Split along time
- Fit Poisson model
- Prediction data frame
- ci.pred to get baseline rates
- ci.surv to get baseline survival
```

> data(lung)
> lung$sex <- factor(lung$sex, labels=c("M", "F"))
> Lx <- Lexis(exit = list(tfe=time),

+ exit.status = factor(status,labels = c("Alive", "Dead")),
+ data = lung)
> sL <- splitMulti(Lx, tfe=seq(0, 1200, 10))

```

\section*{Smooth parametric hazard function}
\(>m 0<-g l m . L e x i s(s L, \quad \sim N s(t f e, k n o t s=\operatorname{seq}(0,1000,200))+s e x+\) age \()\)
```

Prediction data frame
> nd <- data.frame(tfe = seq(0, 900, 20) + 10, sex = "M", age = 65)

```

\section*{Predictions}
> rate <- ci.pred(m0, nd) * 365.25 \# per year, not per day
> surv <- ci.surv(m0, nd, int = 20)

\section*{Plot the rates}
> matshade (nd\$tfe, rate, log = "y", plot = TRUE)

\section*{Plot the survival function}
\(>\) matshade (nd\$tfe - 10, surv, ylim \(=c(0,1), p l o t=T R U E)\)

\section*{Competing risks}

\section*{estimation}

Multistate models:
Occurrence rates, cumulative risks, competing risks, state probabilities with multiple states and time scales using R and Epi: :Lexis Baker HDI, 22-23 February 2023
http://bendixcarstensen.com/AdvCoh/courses/Melb-2023
```

> library(survival)
> library(Epi)
> library(popEpi)
> \# popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
> library(tidyverse)
> clear()
> data(DMlate)
> \# str(DMlate)
> set.seed(1952)
> DMlate <- DMlate[sample(1:nrow(DMlate), 2000),]
> str(DMlate)
'data.frame': 2000 obs. of 7 variables:
\$ sex : Factor w/ 2 levels "M","F": 2 1 2 1 1 1 1 1 1 1 ...
\$ dobth: num 1964 1944 1957 1952 1952 ...
\$ dodm : num 2003 2006 2008 2007 2003 ...
\$ dodth: num NA ...
\$ dooad: num NA 2006 NA 2007 2006 ...
\$ doins: num NA NA NA 2008 NA ...
\$ dox : num 2010 2010 2010 2010 2010 ...

## Lexis object from DM to Death

```
> Ldm <- Lexis(entry = list(per = dodm,
\(+\quad\) age \(=\) dodm - dobth,
    \(t f d=0)\),
    exit \(=\) list \((p e r=\) dox \()\),
    exit.status \(=\) factor(!is.na(dodth),
    labels = c("DM","Dead")),
    data = DM1ate)
NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 1 rows with duration of follow up < tol
> summary (Ldm)
Transitions:
    To
From DM Dead Records: Events: Risk time: Persons:
    \(\begin{array}{llllll}\text { DM } & 1521 & 478 & 1999 & 478 & 10742.34\end{array}\)
```


## Cut follow-up at the date of Ins

```
> Ldm <- sortLexis(Ldm)
> Cdm <- cutLexis(Ldm,
\(+\quad\) cut \(=\) Ldm\$doins,
+ timescale = "per",
+ new.state = "Ins")
> summary (Cdm)
Transitions:
    To
From DM Ins Dead Records: Events: Risk time: Persons:
    \(\begin{array}{llllllll}\text { DM } & 1258 & 330 & 398 & 1986 & 728 & 9015.5 & 1986\end{array}\)
    \(\begin{array}{lllllll}\text { Ins } & 0 & 263 & 80 & 343 & 80 & 1726.8\end{array}\)
    \(\begin{array}{llllll}\text { Sum } & 1258 & 593 & 478 & 2329 & 808 \\ 1099\end{array}\)
```


## Cut follow-up at the date of Ins, doins

```
> subset(Ldm, lex.id \%in\% c(2,3,4,34))[,c(1:7,13)]
    lex.id per age tfd lex.dur lex.Cst lex.Xst doins
        22005.6 61.52 \(0 \quad 4.35\) DM DM NA
        \(32007.951 .10 \quad 0 \quad 2.11 \quad\) DM \(\quad\) DM \(\quad\) NA
        \(42007.054 .61 \quad 0 \quad 3.03\) DM DM 2008.0
        34 2002.8 69.65 0 4.01 DM Dead 2002.9
\(>\) subset (Cdm, lex.id \%in\% c(2,3,4,34))[,c(1:7,13)]
    lex.id per age tfd lex.dur lex.Cst lex.Xst doins
        \(22005.661 .520 .00 \quad 4.35\) DM DM NA
        \(32007.951 .100 .00 \quad 2.11\) DM DM NA
        4 2007.0 54.61 0.00 1.06 DM Ins 2008.0
        42008.055 .67 1.06 1.97 Ins Ins 2008.0
        \(342002.869 .650 .00 \quad 0.07 \quad\) DM Ins 2002.9
        \(342002.969 .720 .07 \quad 3.94\) Ins Dead 2002.9
```


## Restrict to those alive in DM

```
> Adm <- subset(Cdm, lex.Cst == "DM")
> summary(Adm)
Transitions:
    To
From DM Ins Dead Records: Events: Risk time: Persons:
    DM 1258 330 398 1986 728 9015.5 1986
> par(mfrow=c(1,2))
> boxes(Cdm, boxpos = TRUE, scale.R = 100, show.BE = TRUE)
> boxes(Adm, boxpos = TRUE, scale.R = 100, show. BE = TRUE)
```


## Transitions in Cdm and Adm



## Survival function?

$$
\begin{aligned}
& S(t)=\exp \left(-\int_{0}^{t} \lambda(u)+\mu(u) \mathrm{d} u\right) \\
& S(t)=\exp \left(-\int_{0}^{t} \lambda(u) \mathrm{d} u\right) \\
& S(t)=\exp \left(-\int_{0}^{t} \mu(u) \mathrm{d} u\right)
\end{aligned}
$$

## Survival function?

- Regarding either Dead or Ins as censorings - or neither?
- Simple survival: what is the probability of being in each of the states Alive and Dead
-depends on one rate, Alive $\rightarrow$ Dead
- Competing risks: the probability of being in each of the states DM, Ins and Dead
—depends on two rates, DM $\rightarrow$ Ins and DM $\rightarrow$ Dead


## Survival function and Cumulative risk function

survfit does the trick; the requirements are:

1. (start, stop, event) arguments to Surv
2. the third argument to the Surv function is a factor
3. an id argument is given, pointing to an id variable that links together records belonging to the same person.
4. the initial state (DM) must be the first level of the factor lex. Xst

## Survival function and Cumulative risk function

> levels(Adm\$lex.Xst)

```
[1] "DM" "Ins" "Dead"
> m3 <- survfit(Surv(tfd, tfd + lex.dur, lex.Xst) ~ 1,
+ id = lex.id,
+ data = Adm)
> # names(m3)
> m3$states
```

```
[1] "(s0)" "Ins" "Dead"
> head(cbind(time = m3$time, m3$pstate))
    time
[1,] 0.0054757 0.99950 0.0000000 0.00050352
[2,] 0.0082136 0.99748 0.0010070 0.00151057
[3,] 0.0109514 0.99547 0.0025184 0.00201435
[4,] 0.0136893 0.99396 0.0040297 0.00201435
[5,] 0.0164271 0.99295 0.0050373 0.00201435
[6,] 0.0191650 0.98942 0.0085637 0.00201435
```

- this is called the Aalen-Johansen estimator of state probabilities


## Survival function and cumulative risks-formulae

$$
\begin{aligned}
S(t) & =\exp \left(-\int_{0}^{t} \lambda(u)+\mu(u) \mathrm{d} u\right) \\
R_{\text {Dead }}(t) & =\int_{0}^{t} \mu(u) S(u) \mathrm{d} u \\
R_{\text {Ins }}(t) & \left.=\int_{0}^{t} \lambda(u) S(u) \mathrm{d} u\right) \\
& =\int_{0}^{t} \lambda(u) \exp \left(-\int_{0}^{u} \lambda(s)+\mu(s) \mathrm{d} s\right) \mathrm{d} u \\
S(t) & +R_{\text {Ins }}(t)+R_{\text {Dead }}(t)=1, \quad \forall t
\end{aligned}
$$

## Survival function and cumulative risks

```
> par( mfrow=c (1,2) )
> matplot(m3\$time, m3\$pstate,
\(+\quad\) type="s", lty=1, lwd=4,
+ col=c("ForestGreen", "red", "black"),
\(+\quad x \lim =c(0,15), x a x s=" i "\),
\(+\quad y \lim =c(0,1)\), yaxs="i" )
> stackedCIF(m3, lwd=3, xlim=c (0,15), xaxs="i", yaxs="i" )
\(>\operatorname{text}(r e p(12,3), c(0.9,0.3,0.6)\), levels(Cdm))
> box(bty="o")
\(>\operatorname{par}(m f r o w=c(1,2))\)
> matshade(m3\$time, cbind(m3\$pstate,
+ m3\$lower,
\(+\quad\) m3\$upper \([, c(1,4,7,2,5,8,3,6,9)]\),
\(+\quad\) plot \(=\) TRUE, \(\operatorname{lty}=1,1 \mathrm{wd}=2\),
\(+\quad c o l=c l r<-c(" F o r e s t G r e e n ", " r e d ", " b l a c k ")\),
\(+\quad x \lim =c(0,15), x a x s=" i "\),
\(+\quad\) ylim \(=c(0,1)\), yaxs \(=" i ")\)
```



```
\(>\) text (rep(12, 3), c(0.8, 0.5, 0.2), levels(Cdm), col = "white")
```


## Survival and cumulative risk functions <br>  <br> 

## Survival and cumulative risk functions <br>  <br> 

## Survival function and cumulative risks-don't

$$
\begin{aligned}
S(t) & =\exp \left(-\int_{0}^{t} \lambda(u)+\mu(u) \mathrm{d} u\right) \\
R_{\text {Dead }}(t) & =\int_{0}^{t} \mu(u) S(u) \mathrm{d} u \\
R_{\text {Ins }}(t) & \left.=\int_{0}^{t} \lambda(u) S(u) \mathrm{d} u\right) \\
& =\int_{0}^{t} \lambda(u) \exp \left(-\int_{0}^{u} \lambda(s)+\mu(s) \mathrm{d} s\right) \mathrm{d} u \\
& \neq \int_{0}^{t} \lambda(u) \exp \left(-\int_{0}^{u} \lambda(s) \mathrm{d} s\right) \mathrm{d} u \\
& =1-\exp \left(-\int_{0}^{t} \lambda(s) \mathrm{d} s\right)-\text { nice formula, but wrong! }
\end{aligned}
$$

Compecingrababilility of Ins assuming Dead does not exist and rate of Ins unchanged!

## Survival function and cumulative risks-don't

```
> m2 <- survfit(Surv(tfd,
+ tfd + lex.dur,
+ data = Adm)
> M2 <- survfit(Surv(tfd,
+ tfd + lex.dur,
+ lex.Xst == "Dead") ~ 1,
+ data = Adm)
> par(mfrow = c(1,2))
> mat2pol(m3$pstate, c(2,3,1), x = m3$time,
+ col = c("red", "black", "transparent"),
    xlim=c(0,15), xaxs="i",
    yaxs = "i", xlab = "time since DM", ylab = "" )
        lines(m2$time, 1 - m2$surv, lwd = 3, col = "red" )
> mat2pol(m3$pstate, c(3,2,1), x = m3$time, yaxs = "i",
    col = c("black","red","transparent"),
    xlim=c(0,15), xaxs="i",
    yaxs = "i", xlab = "time since DM", ylab = "" )
    lines(M2$time, 1 - M2$surv, lwd = 3, col = "black" )
```


## Survival and cumulative risk functions




## Cause-specific rates

- There is nothing wrong with modeling the cause-specific event-rates, the problem lies in how you transform them into probabilities.
- The relevant model for a competing risks situation normally consists of separate models for each of the cause-specific rates.
- These models have no common parameters (effects of time or other covariates are not constrained to be the same).
- ...not for technical or statistical reasons, but for substantial reasons:
it is unlikely that rates of different types of event (Insulin initiation and death, say) depend on time in the same way.


## Cause-specific rates

```
> Sdm <- splitMulti(Adm, tfd = seq(0, 20, 0.1))
> summary(Adm)
Transitions:
    To
From DM Ins Dead Records: Events: Risk time: Persons:
    DM 1258 330 398 1986 728 9015.5 1986
> summary(Sdm)
Transitions:
    To
From DM Ins Dead Records: Events: Risk time: Persons:
    DM 90419 330 398 91147 728 9015.5 1986
```


## Cause-specific rates

> round(cbind(

+ with(subset(Sdm, lex.Xst == "Ins" ), quantile(tfd + lex.dur, 0:4/4)),
+ with(subset(Sdm, lex.Xst == "Dead"), quantile(tfd + lex.dur, 0:4/4))), 2)

$$
[, 1] \quad[, 2]
$$

$0 \% \quad 0.01 \quad 0.01$
$25 \% \quad 0.07 \quad 1.15$
$50 \% \quad 1.07 \quad 3.01$
$75 \% \quad 5.19 \quad 5.69$
$100 \% 13.7414 .38$
$>$ ikn <- c $(0,0.5,3,10)$
$>d k n<-c(0,2.0,5,9)$
> Ins.glm <- glm.Lexis (Sdm, ~ Ns(tfd, knots = ikn), to = "Ins" )
stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition:
DM->Ins
> Dead.glm <- glm.Lexis(Sdm, ~ Ns(tfd, knots = dkn), to = "Dead")
stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition:
DM->Dead

## Cause-specific rates

```
> int <- 0.01
> nd <- data.frame(tfd = seq(0, 15, int))
> l.glm <- ci.pred( Ins.glm, nd)
> m.glm <- ci.pred(Dead.glm, nd)
> matshade(nd$tfd,
+ cbind(l.glm, m.glm) * 100,
+ plot = TRUE,
+
+
+
+
+
    yaxs="i", ylim = c(0, 20),
# log = "y", ylim = c(2, 20),
    col = rep(c("red","black"), 2), lwd = 3,
    xlab = "Time since DM (years)",
    ylab = "Rates per 100 PY")
```


## Survival and cumulative risk functions



## Survival and cumulative risk functions



## Integrals with R

- Integrals look scary to many people, but they are really just areas under curves.
- In R , a curve of the function $\mu(t)$ is a set of two vectors: one vector of $t \mathrm{~s}$ and one vector $y=\mu(t) \mathrm{s}$.
- When we have a model such as the glm above that estimates the mortality as a function of time ( tfd ), we can get the mortality as a funtion of time by first choosing the timepoints, say from 0 to 15 years in steps of 0.01 year ( $\approx 4$ days)
- Using ci.pred on this gives the predicted rates
- Then use the formuale with all the integrals to get the state probabilities.


## Integrals with R

```
> t <- seq(0, 15, 0.01)
> nd <- data.frame(tfd = t)
> mu <- ci.pred(Dead.glm, nd) [,1]
> head(cbind(t, mu))
\begin{tabular}{lrr} 
& t & mu \\
1 & 0.00 & 0.061567 \\
2 & 0.01 & 0.061372 \\
3 & 0.02 & 0.061177 \\
4 & 0.03 & 0.060983 \\
5 & 0.04 & 0.060790 \\
6 & 0.05 & 0.060597
\end{tabular}
> plot(t, mu, type="l", lwd = 3,
+ xlim = c(0, 7), xaxs = "i",
+ ylim = c(0, 0.1), yaxs = "i")
> polygon(t[c(1:501,501:1)],c(mu[1:501], rep(0, 501)),
+ col = "gray", border = "transparent")
> abline(v=0:50/10, col="white")
```


## Integrals with R



## Numerical integration with R

```
> mid <- function(x) x[-1] - diff(x) / 2
> (x <- c(1:5, 7, 10))
[1] 1
> mid(x)
[1] 1.5 2.5 3.5 4.5 6.0 8.5
```

$\operatorname{mid}(x)$ is a vector that is 1 shorter than the vector $x$, just as $\operatorname{diff}(x)$ is.
So if we want the integral over the period 0 to 5 years, we want the sum over the first 500 intervals, corresponding to the first 501 interval endpoints:

```
> cbind(diff(t), mid(mu))[1:5,]
    [,1] [,2]
2 0.01 0.061470
3 0.01 0.061275
40.01 0.061080
50.01 0.060887
6 0.01 0.060694
```


## Numerical integration with R

In practice we will want the integral function of $\mu$, so for every $t$ we want $M(t)=\int_{0}^{t} \mu(s) \mathrm{d}(s)$. This is easily accomplished by the function cumsum:

```
>Mu <- c(0, cumsum(diff(t) * mid(mu)))
> head(cbind(t, Mu))
\begin{tabular}{rrr} 
& t & Mu \\
& 0.00 & 0.0000000 \\
2 & 0.01 & 0.0006147 \\
3 & 0.02 & 0.0012274 \\
4 & 0.03 & 0.0018383 \\
5 & 0.04 & 0.0024471 \\
6 & 0.05 & 0.0030541
\end{tabular}
```

Note the first value which is the integral from 0 to 0 , so by definition 0 .

## Cumulative risks from parametric models

If we have estimates of $\lambda$ and $\mu$ as functions of time, we can derive the cumulative risks.
In practice this will be by numerical integration; compute the rates at closely spaced intervals and evaluate the integrals as sums. This is easy.
What is not so easy is to come up with confidence intervals for the cumulative risks.

## Simulation of cumulative risks: ci.Crisk

1. a random vector from the multivariate normal distribution with

- mean equal to the parameters of the model,
- variance-covariance equal to the estimated variance-covariance of the parameter estimates

2. use this to generate a simulated set of rates $(\lambda(t), \mu(t))$, evaluated a closely spaced times
3. derive state probabilities at these times by numerical integration
4. repeat to obtain, say, 1000 sets of state probabilities at these times
5. derive confidence intervals for the state probabilities as the 2.5 and 97.5 percentiles of the state probabilities at each time
This machinery is implemented in the function ci. Crisk in Epi

## Cumulative risks from parametric models

```
> cR <- ci.Crisk(mods = list(Ins = Ins.glm,
+ Dead = Dead.glm),
+ nd = nd)
```

NOTE: Times are assumed to be in the column tfd at equal distances of 0.01
$>\operatorname{str}(c R)$
List of 4
\$ Crisk: num [1:1501, 1:3, 1:3] $10.9960 .9930 .9890 .986 \ldots$ ..- attr(*, "dimnames")=List of 3 .. .. \$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ... .. ..\$ cause: chr [1:3] "Surv" "Ins" "Dead"

\$ Srisk: num [1:1501, 1:2, 1:3] $00.0006180 .0012320 .0018410 .002447 \ldots$ ..- attr(*, "dimnames")=List of 3 .. .. \$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ... .. .. \$ cause: chr [1:2] "Dead" "Dead+Ins"

\$ Stime: num [1:1501, 1:3, 1:3] $00.009980 .019930 .029840 .03972 \ldots$ ..- attr(*, "dimnames")=List of 3
.... $\$$ tfd $: \operatorname{chr}[1: 1501]$ "0" "0.01" "0.02" "0.03" ...
Competing risks (cmpr) cause: chr $[1: 3]$ "Surv" "Ins" "Dead"

## Cumulative risks from parametric models

So now plot the cumulative risks of being in each of the states (the Crisk component):

```
> matshade(as.numeric(dimnames(cR$Crisk)[[1]]),
+ cbind(cR$Crisk[,1,],
    cR$Crisk[,2,],
    cR$Crisk[,3,]), plot = TRUE,
    lwd = 2, col = c("limegreen","red","black"))
```


## Survival and cumulative risk functions



## Stacked probabilities: (matrix 2 polygons)

```
> mat2pol(cR$Crisk[,3:1,1], col = c("forestgreen","red","black")[3:1])
```

1st argument to mat2pol must be a 2-dimensional matrix, with rows representing the $x$-axis of the plot, and columns states.

The component Srisk has the confidence limits of the stacked probabilities:

```
> mat2pol(cR$Crisk[,3:1,1], col = c("forestgreen","red","black")[3:1])
> matlines(as.numeric(dimnames(cR$Srisk)[[1]]),
+ cbind(cR$Srisk[,"Dead" ,2:3],
+ cR$Srisk[,"Dead+Ins",2:3]),
+ lty = "32", lwd = 2, col = gray(0.7))
```


## Survival and cumulative risk functions



## Expected life time: using simulated objects

The areas between the lines (up to say 10 years) are expected sojourn times, that is:

- expected years alive without Ins
- expected years lost to death without Ins
- expected years after Ins, including years dead after Ins

Not all of direct relevance; actually only the first may be so.
They are available (with simulation-based confidence intervals) in the component of cR, Stime (Sojourn time).

## Expected life time: using simulated objects

A relevant quantity would be the expected time alive without Ins during the first 5, 10 and 15 years:

```
> str(cR$Stime)
    num [1:1501, 1:3, 1:3] 0 0.00998 0.01993 0.02984 0.03972 ...
    - attr(*, "dimnames")=List of 3
        ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
    ..$ cause: chr [1:3] "Surv" "Ins" "Dead"
    ..$ : chr [1:3] "50%" "2.5%" "97.5%"
> round(cR$Stime[c("5","10","15"),"Surv",], 1)
tfd 50% 2.5% 97.5%
    5 4.1 4.0 4.2
    10}7.0\quad6.8 7.2
    15 8.9 8.5 9.2
```


## Multistate model

## simulation

Multistate models:
Occurrence rates, cumulative risks, competing risks, state probabilities with multiple states and time scales using R and Epi: :Lexis Baker HDI, 22-23 February 2023
http://bendixcarstensen.com/AdvCoh/courses/Melb-2023

## BAckground: Steno 2 trial

- Clinical trial for diabetes ptt. with kidney disease (micro-albuminuria)
- 80 ptt . randomised to either of
- Conventional treatment
- Intensified multifactorial treament
- 1993-2001
- follow-up till 2018


## Steno 2 trial: goal

- Is there a treatment effect on:
- CVD mortality
- non-CVD mortality
- Does the treatment effect depend on:
- Albuminuria state
- Quantification of treatment effect:
- Rate-ratios
- Life times
- Changes in clinical parameters

```
> data(steno2)
> steno2 <- cal.yr(steno2)
> steno2 <- transform(steno2,
+ doEnd = pmin(doDth, doEnd, na.rm = TRUE))
> str(steno2)
'data.frame': 160 obs. of 14 variables:
    $ id : num 1 2 3 4 5 6 7 8 9 10 ...
    $ allo : Factor w/ 2 levels "Int","Conv": 1 1 2 2 2 2 2 1 1 1...
    $ sex : Factor w/ 2 levels "F","M": 2 2 2 2 2 2 1 2 2 2 ...
    $ baseCVD : num 0 0 0 0 0 1 0 0 0 0 ...
    $ deathCVD: num 0 0 0 0 1 0 0 0 1 0 ...
    $ doBth : 'cal.yr' num 1932 1947 1943 1945 1936 ...
    $ doDM : 'cal.yr' num 1991 1982 1983 1977 1986 ...
    $ doBase : 'cal.yr' num 1993 1993 1993 1993 1993 ...
    $ doCVD1 : 'cal.yr' num 2014 2009 2002 1995 1994 ...
    $ doCVD2 : 'cal.yr' num NA 2009 NA 1997 1995 ...
    $ doCVD3 : 'cal.yr' num NA 2010 NA 2003 1998 ...
    $ doESRD : 'cal.yr' num NaN NaN NaN NaN 1998 ...
    $ doEnd : 'cal.yr' num 2015 2015 2002 2003 1998 ...
    $ doDth : 'cal.yr' num NA NA 2002 2003 1998 ...
```


## A Lexis object

```
> L2 <- Lexis(entry = list(per = doBase,
            age \(=\) doBase - doBth,
            tfi \(=0\) ),
            exit \(=\) list \((\) per \(=\) doEnd \()\),
        exit.status \(=\) factor (deathCVD + !is.na(doDth),
            labels=c("Mic", "D(oth)", "D(CVD)")),
        id \(=\) id,
    data \(=\) steno2)
```

NOTE: entry.status has been set to "Mic" for all.

Explain the coding of exit.status.

## A Lexis object

```
> summary(L2, t = TRUE)
Transitions:
    To
From Mic D(oth) D(CVD) 
Timescales:
per age tfi
```

How many persons are there in the cohort?
How many deaths are there in the cohort?
How much follow-up time is there in the cohort?
How many states are there in the model (so far)?

## Albuminuria status

```
> data(st2alb) ; head(st2alb, 3)
id 1 doTr state
2 1 1995-05-13 Norm
1 2000-01-26 Mic
> cut2 <- rename(cal.yr(st2alb),
+ lex.id = id,
+ cut = doTr,
+ new.state = state)
> with(cut2, addmargins(table(table(lex.id))))
    1 2 3 4 5 Sum
    4
```

What does this table mean?

## Albuminuria status as states

```
> L3 <- rcutLexis(L2, cut2, time = "per")
> summary(L3)
Transitions:
    To
From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
    Mic 299 72 65 127 27 13 13 476 
    Norm
    Mac
    Sum }\begin{array}{lllllllll}{350}&{165}&{114}&{55}&{38}&{722}&{289}&{2416.59}&{160}
> boxes(L3, boxpos = TRUE, cex = 0.8)
```


## What's wrong with this



## What's in jump

```
> (jump <-
+ subset(L3, (lex.Cst == "Norm" & lex.Xst == "Mac") |
+ (lex.Xst == "Norm" & lex.Cst == "Mac"))[,
+ c("lex.id", "per", "lex.dur","lex.Cst", "lex.Xst")])
    lex.id per lex.dur lex.Cst lex.Xst
    70 1999.49 2.67 Mac Norm
    86 2001.76 12.82 Norm Mac
    130 2000.91 1.88 Mac Norm
    131 1997.76 4.24 Norm Mac
    136 1997.21 0.47 Mac Norm
    136 1997.69 4.24 Norm Mac
    171 1996.39 5.34 Norm Mac
    175 2004.58 9.88 Norm Mac
```

—and what will you do about it?

## How to fix things

```
> set.seed(1952)
> xcut <- transform(jump,
+ cut = per + lex.dur * runif(per, 0.1, 0.9),
+ new.state = "Mic")
> xcut <- select(xcut, c(lex.id, cut, new.state))
> L4 <- rcutLexis(L3, xcut)
> L4 <- Relevel(L4, c("Norm","Mic","Mac","D(CVD)","D(oth)"))
> summary(L4)
Transitions:
\begin{tabular}{lrrrrrrrr}
\multicolumn{10}{c}{ To } & & & & & & & \\
From & Norm & Mic & Mac & D(CVD) & D (oth) & Records: & Events: & Risk time:
\end{tabular} Persons:
```


## Plot the boxes

```
> boxes(L4, boxpos \(=\) list \((x=c(20,20,20,80,80)\),
\(+\)
+ show. \(B E=" n z "\),
\(+\)
scale. \(R=100\), digits. \(R=2\),
cex \(=0.9\), pos.arr \(=0.3\) )
```




Explain all the numbers in the graph.
Describe the overall effect of albuminuria on the two mortality rates.

## Modeling transition rates

- A model with a smooth effect of timescales on the rates require follow-up in small bits
- Achieved by splitLexis (or splitMulti from popEpi)
- Compare the Lexis objects

```
> S4 <- splitMulti(L4, tfi = seq(0, 25, 1/2))
```

> summary (L4)

Transitions:
To

| From | Norm | Mic | Mac | D (CVD) | D(oth) | Records: | Events: | Risk time: |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Persons:

> summary(S4)
Transitions:
To

| From | Norm | Mic | Mac | D (CVD) | D (oth) | Records: | Events: Risk time: | Persons: |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Norm | 1252 | 35 | 0 | 6 | 13 | 1306 | 54 | 581.04 |
| Mic | 72 | 3101 | 65 | 14 | 30 | 3282 | 181 | 1435.14 |

## How the split works:

```
> subset(L4, lex.id == 96)[,1:7]
    lex.id per age tfi lex.dur lex.Cst lex.Xst
        \(961993.6551 .530 .00 \quad 0.45\) Mic Norm
        \(961994.1051 .99 \quad 0.45 \quad 2.58\) Norm Norm
        961996.6854 .57 3.03 1.90 Norm Norm
        \(961998.5956 .474 .94 \quad 2.90\) Norm D (CVD)
> s4 <- subset(S4, lex.id == 96) [,1:7]
\(>s 4[c(1: 4, N A, \operatorname{nrow}(s 4)+(-3: 0))\),
    lex.id per age tfi lex.dur lex.Cst lex.Xst
        \(961993.6551 .530 .00 \quad 0.45\) Mic Norm
        96 1994.10 \(51.99 \quad 0.45 \quad 0.05\) Norm Norm
        \(961994.1552 .030 .50 \quad 0.50\) Norm Norm
        961994.6552 .53 1.00 0.50 Norm Norm
        NA NA NA NA NA <NA> <NA>
        96 1999.65 57.53 6.00 0.50 Norm Norm
        96 2000.15 58.03 6.50 0.50 Norm Norm
        \(962000.6558 .537 .00 \quad 0.50 \quad\) Norm Norm
        \(962001.1559 .037 .50 \quad 0.33\) Norm D(CVD)
```

$>\operatorname{subset}(L 4$, lex.id $==159)[, 1: 7]$

| lex.id | per | age | tfi | lex.dur | lex.Cst | lex.Xst |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 159 | 1994.02 | 67.50 | 0.00 | 0.13 | Mic | Mic |
| 159 | 1994.16 | 67.63 | 0.13 | 2.66 | Mic | Norm |
| 159 | 1996.82 | 70.29 | 2.80 | 2.37 | Norm | Mic |
| 159 | 1999.20 | 72.67 | 5.17 | 7.32 | Mic | Mac |
| 159 | 2006.52 | 79.99 | 12.49 | 3.95 | Mac | D(CVD) |

$>\operatorname{subset}(S 4$, lex.id $==159)[c(1: 2, N A, 6: 7, N A, 12: 13, N A, 27: 28, N A, 36: 37), 1: 7]$
lex.id per age tfi lex.dur lex.Cst lex.Xst $1591994.0267 .50 \quad 0.00 \quad 0.13$ Mic Mic 159 1994.16 67.63 0.13 0.37 Mic Mic NA NA NA NA NA <NA> <NA> $1591996.0269 .50 \quad 2.00 \quad 0.50$ Mic Mic 159 1996.52 70.00 2.50 0.30 Mic Norm NA NA NA NA NA <NA> <NA>
159 1998.52 72.00 4.50 0.50 Norm Norm
159 1999.02 72.50 5.00 0.17 Norm Mic
NA NA NA NA NA <NA> <NA>
159 2005.52 79.00 11.50 0.50 Mic Mic
159 2006.02 79.50 12.00 0.49 Mic Mac
NA NA NA NA NA <NA> <NA>
159 2009.52 83.00 15.50 0.50 Mac Mac $1592010.0283 .50 \quad 16.00 \quad 0.44$ Mac D(CVD)

## How the split works



Same amount of follow-up
Same transitions
More intervals (5, resp. 37)
Different value of time scales between intervals

## Purpose of the split

- Assumption of constant rate in each interval
- All intervals are (shorter than) 0.5 years
- Magnitude of the rates depend on covariates:
- fixed covariates
- time scales
- randomly varying covariates (not now)
- values of covariates differ between intervals
- each interval contributes to the (log-) likelihood for a specific rate from a given origin state (lex.Cst) to a given destination state (lex.Xst).
- —looks as the likelihood for a single Poisson observation


## Modeling the rate: Mic -> D(CVD)

```
> mr <- glm(cbind(lex.Xst == "D(CVD)" & lex.Cst != lex.Xst,
+ lex.dur)
+ ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)),
+ family = poisreg,
+ data = subset(S4, lex.Cst == "Mic"))
```


## the same as:

```
> mp <- glm((lex.Xst == "D(CVD)" & lex.Cst != lex.Xst)
+ ~ Ns(tfi, knots = seq( 0, 20, 5)) +
    Ns(age, knots = seq(50, 80, 10)),
    offset = log(lex.dur),
    family = poisson,
    data = subset(S4, lex.Cst == "Mic"))
> summary(coef(mr) - coef(mp))
```

| Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $-1.368 e-12$ | $-2.364 e-13$ | $-2.887 e-14$ | $-1.625 e-13$ | $-7.883 e-15$ | $6.839 e-13$ |

## Modeling the rate: Mic -> D(CVD)

## A convenient wrapper for Lexis objects simplifies things

 substantially:```
> mL <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
    Ns(age, knots = seq(50, 80, 10)),
+ to = "D(CVD)")
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for the transition:
Mic->D(CVD)
> summary(coef(mr) - coef(mL))
\begin{tabular}{rrrrrr} 
Min. 1st Qu. & Median & Mean 3rd Qu. & Max. \\
0 & 0 & 0 & 0 & 0 & 0
\end{tabular}
> summary(coef(mp) - coef(mL))
```

| Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $-6.839 \mathrm{e}-13$ | $7.883 \mathrm{e}-15$ | $2.887 \mathrm{e}-14$ | $1.625 \mathrm{e}-13$ | $2.364 \mathrm{e}-13$ | $1.368 \mathrm{e}-12$ |

glm. Lexis by default models all transitions to absorbing states, from states preceding these

```
> mX <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+
NOTE:
Multiple transitions *from* state ' Mac', 'Mic', 'Norm ' - are you sure?
The analysis requested is effectively merging outcome states.
You may want analyses using a *stacked* dataset - see ?stack.Lexis
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions:
Norm->D (CVD)
Mic->D(CVD)
Mac->D(CVD)
Norm->D(oth)
Mic->D(oth)
Mac->D(oth)
```

Describe the model(s) in $m X$ (look at the figure with the boxes)

- What rates are modeled ?
- How are they modeled (assumptions about shapes) ?
- What are the differences between the rates modeled?
- What would you rather do?

