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Abstract

The Lee–Carter modelling framework is extended through the introduction of a wider class of generalised, parametric, non-linear
models. This permits the modelling and extrapolation of age-specific cohort effects as well as the more familiar age-specific period
effects. The choice of error distribution is generalised.
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1. Introduction

The projection of mortality trends is an important issue in a wide number of areas: for example, planning for social
security and health care systems and for the funding of retirement income systems and, in actuarial applications, for
the pricing and reserving of annuity portfolios. The Lee–Carter methodology has proved to be an elegant and effective
method of forecasting demographic variables including mortality (Lee and Carter, 1992), which are gaining wide
acceptance: for example, it is used as a benchmark methodology by the US Bureau of the Census.

Mortality reduction factors (CMI, 1999) are seen as an important means of capturing and projecting historic mortality
trends (Renshaw and Haberman, 2003b). They are central to the extrapolation of mortality trends using the Lee–Carter
methodology (Lee, 2000) and its Poisson based equivalent (Brouhns et al., 2002a). These methods, as originally
constituted, consider the modelling and projection of age–period effects, to the exclusion of possibly noteworthy
cohort effects-identified, for example, by the analysis of UK data by Willets (2004). We also recall that the Lee–Carter
age–period model does not always fit empirical data well: see, for example, Renshaw and Haberman (2003a). Our
objective in the paper is to investigate the feasibility of extending the methodology to the modelling and projection of
age–period–cohort effects. The main contribution of this paper is the incorporation of cohort effects into the Lee–Carter
methodology.

We begin (Section 2) by presenting the Lee–Carter approach in a wider setting. Given the central role played by the
mortality reduction factors in generating mortality projections, we emphasise the targeting of the mortality reduction
factor, as opposed to the force of mortality. Thus, while the parametric structure is expanded to allow for age–cohort
as well as the familiar age–period effects, the error structure is imposed by specifying the second moment properties
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Fig. 1. Observed and projected age–period domains with typical cohort.

of the model. This allows for a range of options for the choice of error distribution including Poisson, both with and
without dispersion, as well as Gaussian, as used in the original Lee–Carter approach. Methods of fitting such models
are reviewed and expanded. Extrapolation is conducted using the standard approach advocated by Lee and Carter of
parametric time series forecasting. The proposed age–period–cohort methodology is applied to the 1961–2000 UK
population mortality experience for each gender (Section 3). The patterns in the parameter estimates and the resulting
projections are particularly informative and differ appreciably from the results obtained using the standard Lee–Carter
approach. A critical appraisal of the methods is presented in Section 4. This includes a study of age specific secular
trends (actual and projected) in the rates of change of the logarithms of the force of mortality.

2. Methodology

2.1. Model structure formulation

Let the random variable Dxt denote the number of deaths in a population at age x and time t. A rectangular data
array (dxt, ext) is available for analysis where dxt is the actual number of deaths and ext is the matching exposure to the
risk of death. The force of mortality and empirical mortality rates are denoted by µxt and m̂xt(= dxt/ext), respectively.
Cross-classification is by individual calendar year t ∈ [t1, tn] (range n) and by age x ∈ [x1, xk], either grouped into k
(ordered) categories, or by individual year (range k), in which case year-of-birth or cohort year z = t − x ∈ [t1 − xk,
tn − x1] (range n + k − 1) is defined. We assume that this is the case throughout. See Fig. 1.

In terms of the force of mortality (as opposed to the central rate of mortality), the Lee–Carter (LC) model structure
is

µxt = exp(αx + βxκt),
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subject to the usual (non-unique) constraints

tn∑
t=t1

κt = 0,
∑

x

βx = 1 (1)

The LC model structure reduces the dimensionality of the problem by identifying a single time index, which affects the
force of mortality at time t at all ages simultaneously. The first constraint under (1) has the effect of centring the κt values
over the range t ∈ [t1, tn]. The structure is designed to capture age–period effects with the αx terms incorporating the
main age effects, averaged over time, and the bilinear terms βxκt incorporating the age specific period trends (relative
to the main age effects). We write

µxt = exp(αx + log F (x, t))

in general, where specifically the mortality reduction factor F

LC : log F (x, t) = βxκt

is defined under LC modelling. We subsequently adjust the constraints (1), so that

log F (x, tn) = 0, ∀x

when extrapolating mortality rates, as described in Section 2.3.
We now generalise the model structure in order to include age–period–cohort modelling by formulating the mortality

reduction factor

M : F (x, t) = exp(β(0)
x ιt−x + β(1)

x κt),

with an extra pair of bilinear terms β(0)
x ιt−x to represent additional cohort effects. Other associated (age–period–cohort)

substructures

H0 : β(0)
x = 1, β(1)

x = 1; H1 : β(0)
x = 1; H2 : β(1)

x = 1

for which

H0 ⊂ H1; H2 ⊂ M,

are also of potential interest when the application of age adjustments to one or both of the main period-effects and
cohort-effects terms is not found to be significant. Obviously, LC is the substructure

LC : β(0)
x = 0 (β(1)

x ≡ βx),

and we shall also have occasion to refer to the age–cohort substructure (i.e. with no period effect)

AC : β(1)
x = 0 (β(0)

x ≡ βx).

In formulating these structures, we have partitioned the force of mortality

µxt = exp(αx)F (x, t) (2)

into the product of a static life-table incorporating the main age effects αx and a dynamic parameterised mortality
reduction factor F incorporating the age-specific period (κt) and cohort (ιt − x) effects.

2.2. Error structure and model fitting

Setting aside fitting by single value decomposition (SVD), which is well documented, it is informative to survey
other likelihood fitting methods. Following the general consensus in actuarial modelling, we select the Poisson response
model with the response variable equal to the number of deaths. (Direct modelling of the number is very useful for
practical applications where, for example, we might need to simulate the future cash flows of an annuity or pension
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portfolio.) We allow also for over-dispersion and the allocation of prior weights, which is important in the presence of
empty data cells. This is formalised by specifying the first two moments of the responses Yxt where

Yxt = Dxt, E(Yxt) = extµxt = ext exp(αx)F (x, t), Var(Yxt) = φE(Yxt)

(
= φ

V (E(Yxt))

wxt

)
(3)

with scale parameter φ, variance function V(E(Yxt)) = E(Yxt) and prior weights wxt = 1 (0 if the data cell is empty). Then
under the log link, the non-linear predictor ηxt is defined as

(log E(Yxt) =)ηxt = log ext + αx + log F (x, t).

As a possible alternative error structure it is also of interest to note that the original LC Gaussian error structure is
re-established on replacing (3) with

Yxt = log

(
Dxt

ext

)
, E(Yxt) = αx + log F (x, t), Var(Yxt) = φ

wxt

, (4)

comprising a free standing scale parameter φ(= σ2), variance function V(E(Yxt)) = 1 and prior weights wxt = 1. Then,
under the identity link, the non-linear predictor is given by

(E(Yxt) =)ηxt = αx + βxκt.

Given the non-linear nature of the parametric predictors (ηxt) we focus on two alternative model fitting procedures:
Method A based on an unpublished technical report by Wilmoth (1993), and Method B based on a method of mortality
analysis incorporating age–year interaction with applications to medical statistics by James and Segal (1982), which
predates Lee and Carter (1992). We present Methods A and B in the context of the Lee–Carter model and then go on
to described the fitting procedures for the new models, M and AC, described above.

2.2.1. LC Model
2.2.1.1. Method A. Adapting Wilmoth (1993) and Brouhns et al. (2002a), maximum likelihood estimates are obtained
under the original Lee–Carter Gaussian error structure (4) using an iterative process, which can be re-expressed as
follows:

Set starting values α̂x, β̂x, κ̂t ; compute ŷxt

↓
update α̂x; compute ŷxt

update κ̂t , adjust s.t.
tn∑

t=t1

κt = 0; compute ŷxt

update β̂x; compute ŷxt

compute D(yxt, ŷxt)

↓
Repeat the updating cycle; stop when D(yxt, ŷxt) converges

where

yxt = log m̂xt, ŷxt = α̂x + β̂xκ̂t,

D(yxt, ŷxt) =
∑
x,t

dev(x, t) =
∑
x,t

2wxt

∫ yxt

ŷxt

yxt − u

V (u)
du =

∑
x,t

wxt(yxt − ŷxt)
2

with weights

wxt =
{

1, ext > 0

0, ext = 0
. (5)
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The updating of a typical parameter θ proceeds according to

updated (θ) = u(θ) = θ − ∂D/∂θ

∂2D/∂θ2

where D is the deviance of the current model. See Table 1 for details. Effective starting values, conforming to the usual
Lee–Carter constraints (1) are κ̂t = 0, β̂x = 1/k, coupled with the SVD estimate

α̂x = log
tn∏

t=t1

m̂
1/n
xt (6)

so that αx is estimated by the logarithm of the geometric mean of the empirical mortality rates. The model has
ν = (k − 1)(n − 2) degrees of freedom. This iterative fitting process generates maximum likelihood estimates under the
Poisson error structure (3) (Alho, 2000; Brouhns et al., 2002a; Wilmoth, 1993) on setting

yxt = dxt, ŷxt = d̂xt = ext exp(α̂x + β̂xκ̂t)

D(yxt, ŷxt) =
∑
x,t

dev(x, t) =
∑
x,t

2wxt

∫ yxt

ŷxt

yxt − u

V (u)
du =

∑
x,t

2wxt

{
yxt log

(
yxt

ŷxt

)
− (yxt − ŷxt)

}

Brouhns et al. (2002a) attribute the iterative method for estimating log-linear models with bilinear terms to Goodman
(1979). See Table 1 for details of the parameter updating relationships.

2.2.1.2. Method B. Following James and Segal (1982), we use the iterative procedure:

Set starting values β̂x

↓
given β̂x, update α̂x, κ̂t

given κ̂t , update α̂x, β̂x

compute D(yxt, ŷxt)

↓
Repeat the updating cycle; stop when D(yxt, ŷxt) converges

Given β̂x or κ̂t , updating is by selecting the desired generalised linear model and fitting the predictor, which is linear
in the respective remaining parameters. Thus, log-link Poisson responses yxt = dxt with offsets log ext are declared in
order to generate the same results as the iterative fitting process of Brouhns et al. (2002a). The respective predictors
are declared by accessing the model formulae (design matrices), a feature available in GLIM (Francis et al., 1993), for
example. In specifying the model formulae, we impose the constraints

κt1 = 0,
∑

x

βx = 1,

reverting back to the Lee–Carter constraints (1) once convergence is attained.

2.2.2. M Model (H0, H1, H2)
It is well known that age–period–cohort modelling is problematic, since the three factors are constrained by the

relationship

cohort = period − age.

In order to ensure a unique set of parameter estimates, we resort to a two-stage fitting strategy in which αx is estimated
first, typically as in (6) corresponding to the original Lee–Carter SVD approach. Then, the remaining parameters,
those of F, may be estimated by suitably adapting Method B by declaring log-link Poisson responses yxt = dxt and the
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Table 1
Parameter updating relationships

Gaussian Poisson

LC u(α̂x) = α̂x +

∑
t

wxt(yxt − ŷxt)∑
t

wxt

u(α̂x) = α̂x +

∑
t

wxt (yxt−ŷxt )∑
t

wxt ŷxt

u(κ̂t) = κ̂t +

∑
x

wxt (yxt−ŷxt )β̂x∑
x

wxt β̂
2
x

u(κ̂t) = κ̂t +

∑
x

wxt (yxt−ŷxt )β̂x∑
x

wxt ŷxt β̂
2
x

u(β̂x) = β̂x +

∑
t

wxt (yxt−ŷxt )κ̂t∑
t

wxt κ̂
2
t

u(β̂x) = β̂x +

∑
t

wxt (yxt−ŷxt )κ̂t∑
t

wxt ŷxt κ̂
2
t

M u(ι̂z) = ι̂z +

∑
x,t

t−x=z

wxt(yxt − ŷxt)β̂
(0)
x

∑
x,t

t−x=z

wxt β̂
(0)2

x

u(ι̂z) = ι̂z +

∑
x,t

t−x=z

wxt(yxt − ŷxt)β̂
(0)
x

∑
x,t

t−x=z

wxt ŷxt β̂
(0)2

x

u(β̂(0)
x ) = β̂

(0)
x +

∑
t

wxt (yxt−ŷxt )ι̂t−x∑
t

wxt ι̂
2
t−x

u(β̂(0)
x ) = β̂

(0)
x +

∑
t

wxt (yxt−ŷxt )ι̂t−x∑
t

wxt ŷxt ι̂
2
t−x

u(κ̂t) = κ̂t +

∑
x

wxt (yxt−ŷxt )β̂
(1)
x∑

x

wxt β̂
(1)2
x

u(κ̂t) = κ̂t +

∑
x

wxt (yxt−ŷxt )β̂
(1)
x∑

x

wxt ŷxt β̂
(1)2
x

u(β̂(1)
x ) = β̂

(1)
x +

∑
t

wxt (yxt−ŷxt )κ̂t∑
t

wxt κ̂
2
t

u(β̂(1)
x ) = β̂

(1)
x +

∑
t

wxt (yxt−ŷxt )κ̂t∑
t

wxt ŷxt κ̂
2
t

AC u(α̂x) computed as above u(α̂x) computed as above

u(ι̂z) = ι̂z +

∑
x,t

t−x=z

wxt(yxt − ŷxt)β̂x

∑
x,t

t−x=z

wxt β̂2
x

u(ι̂z) = ι̂z +

∑
x,t

t−x=z

wxt(yxt − ŷxt)β̂x

∑
x,t

t−x=z

wxt ŷxt β̂2
x

u(β̂x) = β̂x +

∑
t

wxt (yxt−ŷxt )ι̂t−x∑
t

wxt ι̂
2
t−x

u(β̂x) = β̂x +

∑
t

wxt (yxt−ŷxt )ι̂t−x∑
t

wxt ŷxt ι̂
2
t−x
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augmented offsets log ext + α̂x and adapting the design matrices, together with the constraints∑
x

β(0)
x = 1,

∑
x

β(1)
x = 1 and either ιt1−xk

= 0 (or κt1 = 0).

Obvious simplifications to the design matrices are needed when fitting the associated sub-models H1 and H2,
while the iterative element in the fitting procedure is redundant when fitting H0. We note that the model M has
ν = k(n − 3) − 2(n − 2) degrees of freedom (excluding any provision for the first stage modelling of αx). Effective
starting values are β(0)

x = β(1)
x = 1/k. Fitting is also possible under Method A, once αx has been estimated, using

the extended definitions of ŷxt and adapting the core of the iterative cycle in accordance with the relevant updating
relationships (Table 1). Effective starting values are obtained on setting β(0)

x = β(1)
x = 1 and fitting H0 to generate

starting values for ιz and κt.

2.2.2.1. AC Model. Model identification is conveniently achieved by means of the parameter constraints

ιt1−xk
= 0,

∑
x

βx = 1.

Model fitting is then possible by reformulation of Method A in terms ofαx,βx and ιt − x. Thus, ιt − x instead ofκt is updated
in the core of the iterative cycle (subject to the adjustment ιt1−xk

= 0), using the replacement updating relationships
of Table 1. Fitting is also possible using Method B by replacing κt with ιt − x and modifying the design matrices
accordingly. A possible strategy for generating starting values is to set β̂x = 1 and additionally fit the main effects
structure αx + ιt − x in accordance with the distributional assumptions under Method A. There are ν = (k − 1)(n − 3)
degrees of freedom in this model.

2.3. Mortality rate projections

Projected mortality rates

ṁx,tn+s = m̂x,tn Ḟ (x, tn + s), s > 0 (7)

are computed by alignment with the latest available mortality rates m̂x,tn . Here,

Ḟ (x, tn + s) = exp
{

β̂(0)
x (ι̃tn−x+s − ι̂tn−x) + β̂(1)

x (κ̇tn+s − κ̂tn )
}

, s > 0

for which

lim
s→0

Ḟ (x, tn + s) = 1

is based on the parameter estimates β̂(i)
x , ι̂z, κ̂

(i)
t and the time series forecasts

{ι̂z : z ∈ [t1 − xk, tn − x1]} �→ {ι̇tn−x1+s : s > 0}

{κ̂t : t ∈ [t1, tn]} �→ {κ̇tn+s : s > 0}
where

ι̃tn−x+s =
{

ι̂tn−x+s, 0 < s ≤ x − x1

ι̇tn−x+s, s > x − x1
.

The time series forecasts are typically generated using univariate ARIMA processes. The random walk with drift
(or ARIMA(0,1,0) process) features prominently in the published applications of LC. If no provision for alignment
with the latest available mortality rates is made (see Eq. (7)), as originally in Lee and Carter (1992), the extrapolated
mortality rates decompose multiplicatively as

ṁx,tn+s = exp(α̂x + β̂(0)
x ι̂tn−x + β̂(1)

x κ̂tn )Ḟ (x, tn + s), s > 0,

which has the same functional form as (2), and can be directly compared with (7).
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2.4. Discussion

By specifying the second moment distributional properties when defining the model error structure, the choice
of distribution is not restricted to the Poisson and Gaussian distributions, and may indeed be expanded by selecting
different variance functions. Empirical evidence suggests that, for all practical purposes, maximum likelihood estimates
obtained for LC using the iterative fitting processes under the Gaussian error structure (4), are the same as those obtained
under fitting by SVD. Unlike modelling by SVD, however, the choice of weights (5) means that estimation can proceed,
in the presence of empty data cells, under the Gaussian, Poisson and any other of the viable error settings. Wilmoth
(1993) uses weights wxt = dxt in combination with the Gaussian error setting. Empirical studies reveal that this has
the effect of bringing the parameter estimates into close agreement with the Poisson response based estimates. When
comparing a range of results obtained under both modelling approaches (with identical model structures), we have
found that the same number of iterations is required in order to induce convergence. Convergence is slow when
fitting M.

Fig. 2. Female study, residual plots: (a) model LC; (b) model AC; (c) model M.
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Diagnostic checks on the fitted model are conducted by plotting the standardised deviance residuals

rxt = sign(yxt − ŷxt)

√
dev(x, t)

φ̂
, φ̂ = D(yxt, ŷxt)

ν
.

The sole use of the proportion of the total temporal variance, as measured by the ratio of the first singular value to the
sum of singular values under SVD, is not a satisfactory diagnostic indicator, in our experience. However, this index is
widely quoted in the demographic literature: see, for example, Tuljapurkar et al. (2000).

The parameters αx are estimated simultaneously with the parameters of F in both LC and AC modelling. A two-stage
estimation process is necessary, however, in which αx is estimated separately in order to condition on the estimation
of F, when fitting M (and its substructures). This two-stage approach can also be applied when fitting LC and AC. For
LC modelling, empirical studies show that this has little practical material effect, due to the robust nature of the αx

estimate (6).

3. England and Wales mortality projections

In order to explore the potential of the age–period–cohort model M, we present results for the England and Wales
(EW) 1961–2003 mortality experiences for each gender, with cross-classification by individual year of age from 0 to
99. A direct comparison is made with the standard age–period Lee–Carter model LC and the age–cohort model AC,
with all models fitted under the Poisson error setting (3).

The implications of the choice of model structure are immediately apparent from the respective residual plots,
illustrated for the EW female experience (Fig. 2). Here the distinctive ripple effects in the year-of-birth residual plots
under age–period modelling (Fig. 2a, RH frame), signifying a failure to capture cohort effects, is transferred to the
calendar-year residual plots under age–cohort modelling (Fig. 2b, LH frame), signifying a reciprocal failure to capture

Fig. 3. Latest and projected log µxt age profiles: (a) LC and AC modelling; (b) LC and M modelling.
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period effects. However, the distinctive ripple effects are largely removed under age–period–cohort modelling (Fig. 2c),
indicating the relatively successful capture of all three main effects and representing a significant improvement over the
fitted Lee–Carter model. Similar patterns are observed in the residual plots for the EW male experience (not reproduced
here but the details are available from the authors).

The implications for mortality projections are illustrated (Fig. 3) by plotting the latest available log crude mortality
rates (computed by averaging over the last three years) against age for each gender, coupled with the superim-
posed 2025 projections under the respective age–period (LC) and age–cohort (AC) modelling formulations (Fig. 3a),
and under the respective age–period (LC) and age–period–cohort (M) modelling formulations (Fig. 3b). The social
and financial implications of these diverse sets of projections are considerable: we attempt to quantify the latter
shortly.

Turning first to the parameter estimates for the age–period–cohort modelling approach (Fig. 4), it is informative to
compare matching frames between sexes. Thus the main age effect plots (α̂x versus x) display the familiar characteristics,
including ‘accident’ humps, of static cross-sectional life-tables (on the log scale), with a more pronounced accident

Fig. 4. Parameter estimates, model M: (a) females; (b) males.
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hump and heavier mortality for males than for females. Recall that these effects are estimated separately, by averaging
crude mortality rates over t for each x, in order to condition for both period and cohort effects.

The main period effect plot (κ̂t versus t) is linear for females but exhibits mild curvature for males, which can
be characterised as piece-wise linear with a knot or hinge positioned in the first half of the 1970s. This effect is also
present in the separate Lee–Carter analysis of mortality data of the G7 countries (Tuljapurkar et al. (2000)) and has been
discussed further for the UK by Renshaw and Haberman (2003a). The forecasts for κt are based on the auto-regressive
time series

yt = a0 + a1t +
p∑

i=1

φiyt−i + εt, yt = κt − κt−1

with p = 1 for females, p = 2 for males, and with a1 = 0 for both: the equivalent of ARIMA(1,1,0) and ARIMA(2,1,0)
modelling, respectively. There are noteworthy differences in the β̂(1)

x patterns, which control the rate of decline by
period of the age specific rates of mortality in the projections. In particular, the trough in the male β̂(1)

x pattern in the
20–40 age range is consistent with similar findings in the reanalysis of the male England and Wales mortality rates
(Renshaw and Haberman (2003a)).

The plots of the main cohort effect (ι̂z versus z = t − x) are particularly revealing. Thus, noteworthy discontinuities
occur corresponding to the ending of hostilities in World Wars I and II. While it is possible to identify the first of
these with the 1919 influenza epidemic, we are not aware of the likely cause of the second discontinuity. (The 1887
discontinuity can be traced to a set of outliers, and is possibly due to mis-stated exposures for this particular cohort.) The
pronounced decline in the ι̂z profile in the inter-war years is consistent with the reported rapid mortality improvements
experienced by generations born between 1925 and 1945 (for both sexes) and reported by Willets (2004). The apparent

Fig. 5. Life expectancies at age 65 for a range of periods, computed by period and by cohort under age–period (LC) and age–period–cohort (M)
modelling.
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Fig. 6. Annuities, 5% fixed rate interest at age 65 for a range of periods, computed by period and by cohort under age–period (LC) and
age–period–cohort (M) modelling.

stable linear trends in the ι̂z profiles, present since the late 1940’s, form the basis of the depicted time series forecasts,
generated using ARIMA(1,1,0) processes. The β̂(0)

x patterns, which control the age specific cohort contributions to the
mortality projections, are similar, for both sexes, for ages up to 65.

In order to illustrate the impact of such diverse projections under age–period LC and age–period–cohort M modelling,
we have calculated complete life expectancies e65(t) at age 65 (Fig. 5) and immediate annuity values a65(t) at age 65
assuming a 5% pa fixed interest rate (Fig. 6) for a range of years t using both the cohort and period method of computing.
(We note that the annuity values represent the expected present value of an income of one paid annually in arrears
while the individual initially aged 65 remains alive.) Under the cohort method of computing using the formulae

ex(t) =

∑
i≥0

lx+i(t + i)
{

1 − 1
2qx+i(t + i)

}
lx(t)

, ax(t) =

∑
i≥1

lx+i(t + i)vi

lx(t)
(8)

where

qx(t) ≈ 1 − exp(−µxt), lx+1(t + 1) = {1 − qx(t)}lx(t) (9)

with discount factor v, the dynamic aspect of the mortality rates is fully allowed for with the summations proceeding
(diagonally) along a cohort. We illustrate values up to the year 2005 calculated by the cohort method and this requires
extrapolation up to the year 2040. In contrast, under the period method of calculation, the mortality rates are treated
as a sequence of (annual) static life tables, and computing proceeds by suppressing the variation in t in expressions
(8) and (9), with (marginal) summation over age (≥x) for each fixed t. We illustrate values up to the year 2025 using
this method based solely on empirical mortality rates µ̂xt = m̂xt in the period up to 2003 and requiring extrapolation
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Fig. 7. Secular trends in ((1/µxt)(∂µxt/∂t)) for selected ages x, incorporating model M projections: (a) females; (b) males.
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only to the year 2025. On one hand, the period method of computing fails to capture the full dynamic impact of the
evolving mortality rates under the modelling assumptions but, on the other hand, generates less uncertainty than the
cohort method of computing which requires more lengthy extrapolations and this contributes a source of increasing
uncertainty. One means of quantifying this uncertainty is through the adaptation of a Monte Carlo parametric simulation
method described by Brouhns et al. (2002b) in the context of LC modelling. This and other methods are currently under
investigation. The reserves that insurance companies selling annuities and pension funds would have to hold in order
to meet their future contractual liabilities are directly related to terms like a65(t): Booth et al. (2005). The financial
implications of the upward trends in Fig. 6 are clear and significant and indicate the burden that increasing longevity
may place on such institutions.

4. Critical appraisal

In a reference to the possibility of complicating LC, for example, by adding cohort effects resulting in an improved
fit, Lee (2000) comments as follows: ‘The question is whether such additional effects would represent fundamental
and enduring aspects of mortality patterns such that the forecasts would be improved’. We use this as a basis on which
to conduct a critical appraisal of the methodology.

Turning first to the modelling stage and the question of whether the additional structural effects are fundamental
aspects of mortality patterns, answers are provided by the analysis of residuals. Thus, on the basis of the residual plots
(e.g. Fig. 2), the age–period–cohort model M is shown (Fig. 4) to have captured characteristic and systematic mortality
patterns, directly attributable to age, period and cohort effects. Then, if modelling were restricted to LC, distinctive
patterns directly attributable to cohort effects would be lost. The question of pattern durability in the future is, however,
a matter for conjecture, while established patterns, preferably linear, in the period and cohort parameters are amenable
to forecasting.

We turn next to the complication of the extrapolation process through the inclusion of additional age–cohort effects.
There is a need to check that the dynamics of the relative contributions from the different sources are maintained in the
projections, typically from the age–period and age–cohort effects. In order to do this, we monitor the rate of change of
log µxt over t, for each age x, viz.

∂ log µxt

∂t
= ∂ log F (x, t)

∂t
= β(0)

x

∂ιz

∂z
+

c∑
i=1

β(i)
x

∂κ
(i)
t

∂t
≈ β(0)

x ∆
z
ιz +

c∑
i=1

β(i)
x ∆

t
κ

(i)
t

where ∆ is the differencing operator. A representative selection of such rates of change is depicted in Fig. 7. For both
data sets, these plots are consistently linear over the combined data and forecast periods displayed, with the exception
of a noteworthy (partially illustrated) trough, which is transmitted by period with increasing age in excess of 65 in
the female experience. This departure from linearity for females is associated with the relatively large projected life
expectancies and annuities under model M (Figs. 5 and 6).
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