

What r^2 is and is not

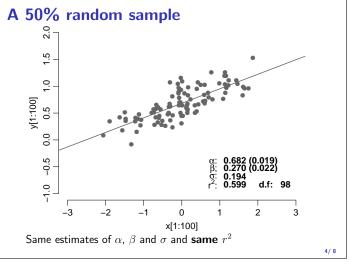
- ▶ r² is related to the **population** analysed: It is the fraction of the **population** variation in y which explained by x.
- r^2 does **not** convey **any** information on the **size** of the relationship. The relationship is judged from the estimates of α and β : Is the effect clinically relevant?.
- r² does **not** convey any information on the **precision of predictions**. This is contained in the residual variation, σ . A 95% prediction interval for given $x = x_0$ is:

$$\hat{y}_0 = \hat{\alpha} + \hat{\beta} \times x_0 \pm 1.96\hat{\sigma}$$

(disregarding the estimation error in α and β). 7/8

Moral:

- ▶ The clinically relevant parameters α , β and σ are the same no matter how the population is sampled.
- ightharpoonup They reflect the relationship between y and x.
- $ightharpoonup r^2$ involves the population distribution, which is alien to the relationship between y and x.
- ightharpoonup Hence, r^2 is mathematical mumbo-jumbo where the link to subject matter relevance has been obscured by mixing in the distribution of y in the study population.



8/8