
Who needs the Cox model anyway

Bendix Carstensen Steno Diabetes Center Copenhagen
Gentofte, Denmark
http://BendixCarstensen.com

SDC Epi and Biostat Network, 11 March 2020

From /home/bendix/teach/AdvCoh/talks/Aarhus2020/slides.tex Thursday 12th March, 2020, 10:38

1/ 47

The dogma [1]

I do not condition on the future — indisputable

I do not count people after they are dead — disputable

I stick to this world — expandable

P. K. Andersen and N. Keiding:
Interpretability and importance of functionals in competing risks and multistate models

Stat Med, 31:1074–1088, 2012
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(further) dogma for “sticking to this world”

I rates are continuous in time (and “smooth”)

I rates may depend on more than one time scale

I . . . which timescales is an empirical question

I But first we look at the machinery for modeling simple
occurence rates from follow-up studies
(mortality, incidence, . . . )
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I In follow-up studies we estimate rates from:

I D — events, deaths
I Y — person-years
I λ̂ = D/Y rates
I . . . empirical counterpart of intensity — an estimate

I Rates differ between persons.

I Rates differ within persons:

I by age
I by calendar time
I by disease duration
I . . .

I Multiple timescales — later
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Representation of follow-up data

A cohort or follow-up study records events and risk time

The outcome (response) is thus bivariate: (d , y)

Follow-up data for each individual must therefore have (at least)
three pieces of information recorded:

Date of entry entry date variable
Date of exit exit date variable
Status at exit event indicator (mostly 0/1)
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From representation to likelihood

I Target is estimates of occurrence rates
(mortality rates, incidence rates)

I . . . and how these depend on covariates

I If we assume that mortality, λ is constant over time, then the
log-likelihood from one person based on (d , y):

I d — event, 0 or 1 (event)
I y — risk time (exit−entry)

`(λ) = d log(λ)− λy
I This formula is not derived here — see note on website
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y d

t0 t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry t0) d log(λ)− λy
= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(d at tx|entry t2) + d log(λ)− λy3
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y ed = 0

t0 t1 t2 tx

y1 y2 y3
e

Probability log-Likelihood

P(surv t0 → tx|entry t0) 0 log(λ)− λy
= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(surv t2 → tx|entry t2) + 0 log(λ)− λy3
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y ud = 1

t0 t1 t2 tx

y1 y2 y3
u

Probability log-Likelihood

P(event at tx|entry t0) 1 log(λ)− λy
= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(event at tx|entry t2) + 1 log(λ)− λy3
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y d

t0 t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry t0) d log(λ)− λy
= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(d at tx|entry t2) + d log(λ)− λy3
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y d

t0 t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry t0) d log(λ)− λy
= P(surv t0 → t1|entry t0) = 0 log(λ1)− λ1y1
×P(surv t1 → t2|entry t1) + 0 log(λ2)− λ2y2
×P(d at tx|entry t2) + d log(λ3)− λ3y3

— allows different rates (λi) in each interval
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Likelihood for time-split data

I The setup is for a situation where it is assumed that rates are
constant in each of the intervals

I Each record in the data set represents follow-up for one
person in one (small) interval — many records for each person

I Each record in the data set contributes a term to the
likelihood

I Each term looks like a contribution from a Poisson variate
(albeit with values only 0 or 1), with mean λy

I ⇒ Likelihood for one person’s FU (rate likelihood) is the same
as the likelihood for several independent Poisson variates:

I Two models, one likelihood.
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Analysis of time-split data

Observations classified by p—person and i—interval

I dpi — In the model as response

I ypi — risk time
In the model as offset log(y) . . . or as part of the response

I Covariates are:

I timescales (age, period, time in study)
I other variables for this person (constant in each interval).

I Model rates using the covariates in glm:
— no difference in how time-scales and other covariates are
modeled
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A look at the Cox model

λ(t , x ) = λ0(t)× exp(x ′β)

A model for the rate as a function of t and x .

Covariates:

I x

I t

I . . . often the effect of t is ignored (forgotten?)

I i.e. left unreported
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Cox-likelihood

The (partial) log-likelihood for the regression parameters:

`(β) =
∑

death times

log

(
eηdeath∑
i∈Rt

eηi

)

is also a profile likelihood in the model where observation time
has been subdivided in small pieces (empirical rates) and each small
piece provided with its own parameter:

log
(
λ(t , x )

)
= log

(
λ0(t)

)
+ x ′β = αt + η
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The Cox-likelihood as profile likelihood

I One parameter per death time to describe the effect of time
(i.e. the chosen timescale).

log
(
λ(t , xi)

)
= log

(
λ0(t)

)
+ β1x1i + · · ·+ βpxpi︸ ︷︷ ︸

ηi

= αt + ηi

I Profile likelihood:
I Derive estimates of αt as function of data and βs

— assuming constant rate between death/censoring times
I Insert in likelihood, now only a function of data and βs
I This turns out to be Cox’s partial likelihood

I Cumulative intensity (Λ0(t)) obtained via the
Breslow-estimator
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Mayo Clinic
lung cancer data:
60 year old woman
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The Cox-likelihood: mechanics of computing

I The likelihood is computed by suming over risk-sets:

`(η) =
∑

t

log

(
eηdeath∑
i∈Rt

eηi

)

I this is essentially splitting follow-up time at event- (and
censoring) times

I . . . repeatedly in every cycle of the iteration

I . . . simplified by not keeping track of risk time

I . . . but only works along one time scale
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log
(
λ(t , xi)

)
= log

(
λ0(t)

)
+ β1x1i + · · ·+ βpxpi︸ ︷︷ ︸

ηi

= αt + ηi

I Suppose the time scale has been divided into small intervals
with at most one death in each:

I Empirical rates: (dit , yit) — each t has at most one dit = 1.

I Assume w.l.o.g. the ys in the empirical rates all are 1.

I Log-likelihood contributions that contain information on a
specific time-scale parameter αt will be from:

I the (only) empirical rate (1, 1) with the death at time t .
I all other empirical rates (0, 1) from those who were at risk at time t .
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Note: There is one contribution from each person at risk to the
part of the log-likelihood at t :

`t(αt , β) =
∑

i∈Rt

di log(λi(t))− λi(t)yi

=
∑

i∈Rt

{
di(αt + ηi)− eαt+ηi

}

= αt + ηdeath − eαt

∑

i∈Rt

eηi

where ηdeath is the linear predictor for the person that died at t .
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The derivative w.r.t. αt is:

Dαt
`t(αt , β) = 1− eαt

∑

i∈Rt

eηi = 0 ⇔ eαt =
1∑

i∈Rt
eηi

If this estimate is fed back into the log-likelihood for αt , we get the
profile likelihood (with αt “profiled out”):

log

(
1∑

i∈Rt
eηi

)
+ ηdeath − 1 = log

(
eηdeath∑
i∈Rt

eηi

)
− 1

which is the same as the contribution from time t to Cox’s partial
likelihood.
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Splitting the dataset a priori

I The Poisson approach needs a dataset of empirical rates (d , y)
with suitably small values of y .

I — each individual contributes many empirical rates
I (one per risk-set contribution in Cox-modelling)
I From each empirical rate we get:

I Poisson-response d
I Risk time y → log(y) as offset
I time scale covariates: current age, current date, . . .
I other covariates

I Contributions not independent, but likelihood is a product
I Same likelihood as for independent Poisson variates
I Poisson glm with spline/factor effect of time
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History

This is not new, the profile likelihood was pointed out by Holford
[2] in 1976, and the practical implementation was demonstrated by
Whitehead in 1980 [3], using GLIM. . . . so I am telling an old story
here.
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Example: Mayo Clinic lung cancer

I Survival after lung cancer

I Covariates:

I Age at diagnosis
I Sex
I Time since diagnosis

I Cox model

I Split data:

I Poisson model, time as factor
I Poisson model, time as spline
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Mayo Clinic
lung cancer
60 year old woman
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Example: Mayo Clinic lung cancer I
> library( survival )
> library( Epi )
> library( popEpi )
> Lung <- Lexis( exit = list( tfe=time ),
+ exit.status = factor(status,labels=c("Alive","Dead")),
+ data = lung )

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfe timescale.

> summary( Lung )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 63 165 228 165 69593 228
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Example: Mayo Clinic lung cancer II
> system.time(
+ mL.cox <- coxph( Surv( tfe, tfe+lex.dur, lex.Xst=="Dead" ) ~
+ age + factor( sex ),
+ method="breslow", data=Lung ) )

user system elapsed
0.027 0.021 0.020

> Lung.s <- splitMulti( Lung, tfe=c(0,sort(unique(Lung$time))) )
> summary( Lung.s )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 19857 165 20022 165 69593 228

> nlevels( factor( Lung.s$tfe ) )

[1] 186
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Example: Mayo Clinic lung cancer III
> subset( Lung.s, lex.id==96 )[,1:11]

lex.id tfe lex.dur lex.Cst lex.Xst inst time status age sex ph.ecog
1: 96 0 5 Alive Alive 12 30 2 72 1 2
2: 96 5 6 Alive Alive 12 30 2 72 1 2
3: 96 11 1 Alive Alive 12 30 2 72 1 2
4: 96 12 1 Alive Alive 12 30 2 72 1 2
5: 96 13 2 Alive Alive 12 30 2 72 1 2
6: 96 15 11 Alive Alive 12 30 2 72 1 2
7: 96 26 4 Alive Dead 12 30 2 72 1 2

> system.time(
+ mLs.pois.fc <- glm( cbind(lex.Xst=="Dead",lex.dur) ~ - 1 + factor( tfe ) +
+ age + factor( sex ),
+ family=poisreg, data=Lung.s, eps=10^-8, maxit=25 )
+ )

user system elapsed
12.789 19.108 9.286
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Example: Mayo Clinic lung cancer IV
> length( coef(mLs.pois.fc) )

[1] 188

> t.kn <- c(0,25,100,500,1000)
> dim( Ns(Lung.s$tfe,knots=t.kn) )

[1] 20022 4

> system.time(
+ mLs.pois.sp <- glm( cbind(lex.Xst=="Dead",lex.dur) ~ Ns( tfe, knots=t.kn ) +
+ age + factor( sex ),
+ family=poisreg, data=Lung.s ) )

user system elapsed
0.252 0.454 0.221
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Example: Mayo Clinic lung cancer V
> ests <-
+ rbind( ci.exp(mL.cox),
+ ci.exp(mLs.pois.fc,subset=c("age","sex")),
+ ci.exp(mLs.pois.sp,subset=c("age","sex")) )
> cmp <- cbind( ests[c(1,3,5) ,],
+ ests[c(1,3,5)+1,] )
> rownames( cmp ) <- c("Cox","Poisson-factor","Poisson-spline")
> colnames( cmp )[c(1,4)] <- c("age","sex")

> round( cmp, 7 )

age 2.5% 97.5% sex 2.5% 97.5%
Cox 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487
Poisson-factor 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487
Poisson-spline 1.016189 0.9980321 1.034677 0.5998287 0.4319854 0.8328858
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Deriving the survival function

> mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10^-8, maxit=25 )

> nd <- data.frame( tfe=seq(10,1000,10)-5, age=60, sex=1 )
> lambda <- ci.pred( mLs.pois.sp, nd )
> survP <- ci.surv( mLs.pois.sp, nd, int=10 )

Code and output for the entire example available in
http://bendixcarstensen.com/AdvCoh/WNtCMa/
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What the Cox-model really is

Taking the life-table approach ad absurdum by:

I dividing time very finely and

I modeling one covariate, the time-scale, with one parameter per
distinct value.

I the model for the time scale is really with exchangeable
time-intervals.

I ⇒ difficult to access the baseline hazard (which looks terrible)

I ⇒ uninitiated tempted to show survival curves where irrelevant
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Models of this world

I Replace the αts by a parametric function f (t) with a limited
number of parameters, for example:

I Piecewise constant
I Splines (linear, quadratic or cubic)
I Fractional polynomials

I the two latter brings model into “this world”:
I smoothly varying rates
I parametric closed form representation of baseline hazard
I finite no. of parameters

I Makes it really easy to use rates directly in calculations of
I expected residual life time
I state occupancy probabilities in multistate models
I . . .
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The baseline hazard and survival functions

Using a parametric function to model the baseline hazard gives the
possibility to plot this with confidence intervals for a given set of
covariate values, x0

The survival function in a multiplicative Poisson model has the
form:

S (t) = exp
(
−
∑

τ<t

exp(g(τ) + x ′0γ)
)

This is just a non-linear function of the parameters in the model, g
and γ. So the variance can be computed using the δ-method.
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δ-method for survival function

1. Select timepoints ti (fairly close).

2. Get estimates of log-rates f (ti) = g(ti) + x ′0γ for these points:

f̂ (ti) = B β̂

where β is the total parameter vector in the model.

3. Variance-covariance matrix of β̂: Σ̂.

4. Variance-covariance of f̂ (ti): BΣB′.

5. Transformation to the rates is the coordinate-wise exponential
function, with derivative diag

[
exp
(
f̂ (ti)

)]
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6. Variance-covariance matrix of the rates at the points ti :

diag(ef̂ (ti))B Σ̂B′ diag(ef̂ (ti))′

7. Transformation to cumulative hazard (` is interval length):

`×




1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0







ef̂ (t1))

ef̂ (t2))

ef̂ (t3))

ef̂ (t4))


 = L




ef̂ (t1))

ef̂ (t2))

ef̂ (t3))

ef̂ (t4))
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8. Variance-covariance matrix for the cumulative hazard is:

L diag(ef̂ (ti))B Σ̂B′ diag(ef̂ (ti))′L′

This is all implemented in the ci.cum() function in Epi.
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EBMT transplant data
Iacobelli & Carstensen: Multistate Models with Multiple Timescales, Stat Med 2013, [4]

Trans
30,504.1

Relap
6,106.5

Dead(Tr) Dead(Relap)

2,246
(7.4)

3,683
(12.1)

1,076
(17.6)

Trans
30,504.1

Relap
6,106.5

Dead(Tr) Dead(Relap)

Trans
30,504.1

Relap
6,106.5

Dead(Tr) Dead(Relap)

µT(t) µR(t, r, tR)

λ(t)

other covariates: Age and date at Tx, sex, donor type, CML type39/ 47
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Markov property: Empirical question

Model for mortality rates (with and without relapse):

I t time since transplant

I r time since relapse (if relapsed)

I tr time from transplant to relapse

I Fit the model for all transitions:

I split follow-up time
I fit Poisson model with covariates
I and spline terms for each time scale.

I Lexis machinery [5, 6] from the Epi package for R

I . . . for representation and manipulation of follow-up data.
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log(µ) = h(t)+k(r)+g(t − r) + Xβ
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log(µ) = h(t)+k(r)+g(t − r) + Xβ
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Direct link to these slides and to a document with details is at:
bendixcarstensen.com

Examples of this type of modeling at:
bendixcarstensen.com/AdvCoh/Lexis-ex

Thanks for your attention


