Who needs the Cox model anyway

Bendix Carstensen Steno Diabetes Center Copenhagen Gentofte, Denmark http://BendixCarstensen.com

SDC Epi and Biostat Network, 11 March 2020

From /home/bendix/teach/AdvCoh/talks/Aarhus2020/slides.tex

Thursday 12th March, 2020, 10:38

1/47

The dogma [1]

- do not condition on the future indisputable
- do not count people after they are dead disputable
- stick to this world expandable

P. K. Andersen and N. Keiding: Interpretability and importance of functionals in competing risks and multistate models Stat Med. 31:1074–1088, 2012

2/47

(further) dogma for "sticking to this world"

- rates are continuous in time (and "smooth")
- rates may depend on more than one time scale
-which timescales is an empirical question
- But first we look at the machinery for modeling simple occurence rates from follow-up studies (mortality, incidence, ...)

- ▶ In follow-up studies we estimate rates from:
 - D events, deaths
 - Y person-years
 - $\hat{\lambda} = D/Y$ rates
 - ▶ ... empirical counterpart of intensity an estimate
- Rates differ between persons.
- Rates differ within persons:
 - by age
 - by calendar time
 - by disease duration
 - ► ...
- Multiple timescales later

```
4/47
```

Representation of follow-up data

A cohort or follow-up study records events and risk time

The outcome (response) is thus **bivariate**: (d, y)

Follow-up **data** for each individual must therefore have (at least) three pieces of information recorded:

Date of entry	entry	date variable
Date of exit	exit	date variable
Status at exit	event	indicator (mostly $0/1$)

5/47

From representation to likelihood

- Target is estimates of occurrence rates (mortality rates, incidence rates)
- ... and how these depend on covariates
- If we assume that mortality, λ is constant over time, then the log-likelihood from one person based on (d, y):
 - d event, 0 or 1 (event)
 - y risk time (exit-entry)

$$\ell(\lambda) = d \log(\lambda) - \lambda y$$

► This formula is not derived here — see note on website

7/47

Probability

log-Likelihood

$\mathrm{P}(surv\ t_0 o t_x entry\ t_0)$	$0\log(\lambda) - \lambda y$
$= \mathrm{P}(surv \ t_0 o t_1 entry \ t_0)$	$= 0 \log(\lambda) - \lambda y_1$
$ imes \mathrm{P}(survt_1 o t_2 entryt_1)$	$+ 0 \log(\lambda) - \lambda y_2$
$ imes \mathrm{P}(survt_2 o t_{x} entryt_2)$	$+ 0 \log(\lambda) - \lambda y_3$

8/47

Probabilitylog-LikelihoodP(event at $t_x | entry t_0$) $1 \log(\lambda) - \lambda y$ $= P(surv t_0 \rightarrow t_1 | entry t_0)$ $= 0 \log(\lambda) - \lambda y_1$ $\times P(surv t_1 \rightarrow t_2 | entry t_1)$ $+ 0 \log(\lambda) - \lambda y_2$ $\times P(event at t_x | entry t_2)$ $+ 1 \log(\lambda) - \lambda y_3$

10/47

<u> </u>		y		d
t_0	1	t_1	t_2	t_{x}
 	y_1	$+$ y_2		y_3

Probability

log-Likelihood

$$\begin{split} & \mathrm{P}(d \text{ at } t_{\mathsf{x}} | \mathsf{entry } t_0) & d \log(\lambda) - \lambda y \\ & = \mathrm{P}(\mathsf{surv } t_0 \to t_1 | \mathsf{entry } t_0) & = 0 \log(\lambda_1) - \lambda_1 y_1 \\ & \times \mathrm{P}(\mathsf{surv } t_1 \to t_2 | \mathsf{entry } t_1) & + 0 \log(\lambda_2) - \lambda_2 y_2 \\ & \times \mathrm{P}(d \text{ at } t_{\mathsf{x}} | \mathsf{entry } t_2) & + d \log(\lambda_3) - \lambda_3 y_3 \end{split}$$

— allows different rates (λ_i) in each interval

11/ 47

Likelihood for time-split data

- The setup is for a situation where it is assumed that rates are constant in each of the intervals
- Each record in the data set represents follow-up for one person in one (small) interval — many records for each person
- Each record in the data set contributes a term to the likelihood
- Each **term** looks like a contribution from a Poisson variate (albeit with values only 0 or 1), with mean λy
- ► ⇒ Likelihood for **one** person's FU (rate likelihood) is the same as the likelihood for **several** independent Poisson variates:
- **Two** models, **one** likelihood.

Analysis of time-split data

Observations classified by p—person and i—interval

- d_{pi} In the model as response
- *y_{pi}* risk time
 In the model as offset log(*y*) ... or as part of the response
- Covariates are:
 - timescales (age, period, time in study)
 - other variables for this person (constant in each interval).
- Model rates using the covariates in glm:
 no difference in how time-scales and other covariates are modeled

13/ 47

A look at the Cox model

$$\lambda(t, x) = \lambda_0(t) \times \exp(x'\beta)$$

A model for the rate as a function of t and x. Covariates:

- ► x
- ► t
- ... often the effect of t is ignored (forgotten?)
- ▶ *i.e.* left unreported

14/47

Cox-likelihood

The (partial) log-likelihood for the regression parameters:

$$\ell(\beta) = \sum_{\text{death times}} \log\left(\frac{\mathrm{e}^{\eta_{\text{death}}}}{\sum_{i \in \mathcal{R}_t} \mathrm{e}^{\eta_i}}\right)$$

is also a **profile likelihood** in the model where observation time has been subdivided in small pieces (empirical rates) and each small piece provided with its own parameter:

$$\log(\lambda(t,x)) = \log(\lambda_0(t)) + x'\beta = \alpha_t + \eta$$

The Cox-likelihood as profile likelihood

One parameter per death time to describe the effect of time (i.e. the chosen timescale).

$$\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \underbrace{\beta_1 x_{1i} + \dots + \beta_p x_{pi}}_{\eta_i} = \alpha_t + \eta_i$$

- Profile likelihood:
 - Derive estimates of α_t as function of data and β s — assuming constant rate between death/censoring times
 - Insert in likelihood, now only a function of data and β s
 - This turns out to be Cox's partial likelihood
- Cumulative intensity $(\Lambda_0(t))$ obtained via the **Breslow-estimator**

16/47

17/47

The Cox-likelihood: mechanics of computing

The likelihood is computed by suming over risk-sets:

$$\ell(\eta) = \sum_{t} \log\left(\frac{\mathrm{e}^{\eta_{\mathsf{death}}}}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}}\right)$$

- this is essentially splitting follow-up time at event- (and censoring) times
- ... repeatedly in every cycle of the iteration
- ... simplified by not keeping track of risk time
- ... but only works along one time scale

$$\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \underbrace{\beta_1 x_{1i} + \dots + \beta_p x_{pi}}_{\eta_i} = \alpha_t + \eta_i$$

- Suppose the time scale has been divided into small intervals with at most one death in each:
- Empirical rates: (d_{it}, y_{it}) each t has at most one $d_{it} = 1$.
- ▶ Assume w.l.o.g. the *y*s in the empirical rates all are 1.
- Log-likelihood contributions that contain information on a specific time-scale parameter α_t will be from:
 - the (only) empirical rate (1, 1) with the death at time t.
 - all other empirical rates (0,1) from those who were at risk at time t.

19/47

Note: There is one contribution from each person at risk to the part of the log-likelihood at t:

$$\begin{split} \ell_t(\alpha_t, \beta) &= \sum_{i \in \mathcal{R}_t} d_i \log(\lambda_i(t)) - \lambda_i(t) y_i \\ &= \sum_{i \in \mathcal{R}_t} \left\{ d_i(\alpha_t + \eta_i) - e^{\alpha_t + \eta_i} \right\} \\ &= \alpha_t + \eta_{\mathsf{death}} - e^{\alpha_t} \sum_{i \in \mathcal{R}_t} e^{\eta_i} \end{split}$$

where η_{death} is the linear predictor for the person that died at t.

20/47

The derivative w.r.t. α_t is:

$$D_{\alpha_t}\ell_t(\alpha_t,\beta) = 1 - e^{\alpha_t} \sum_{i \in \mathcal{R}_t} e^{\eta_i} = 0 \quad \Leftrightarrow \quad e^{\alpha_t} = \frac{1}{\sum_{i \in \mathcal{R}_t} e^{\eta_i}}$$

If this estimate is fed back into the log-likelihood for α_t , we get the **profile likelihood** (with α_t "profiled out"):

$$\log\left(\frac{1}{\sum_{i\in\mathcal{R}_t} e^{\eta_i}}\right) + \eta_{\mathsf{death}} - 1 = \log\left(\frac{e^{\eta_{\mathsf{death}}}}{\sum_{i\in\mathcal{R}_t} e^{\eta_i}}\right) - 1$$

which is the same as the contribution from time t to Cox's partial likelihood.

Splitting the dataset a priori

- ► The Poisson approach needs a dataset of empirical rates (d, y) with suitably small values of y.
- each individual contributes many empirical rates
- (one per risk-set contribution in Cox-modelling)
- From each empirical rate we get:
 - Poisson-response d
 - Risk time $y \to \log(y)$ as offset
 - time scale covariates: current age, current date, ...
 - other covariates
- Contributions not independent, but likelihood is a product
- Same likelihood as for independent Poisson variates
- Poisson glm with spline/factor effect of time

22/47

History

This is not new, the profile likelihood was pointed out by Holford [2] in 1976, and the practical implementation was demonstrated by Whitehead in 1980 [3], using GLIM. ... so I am telling an old story here.

23/47

Example: Mayo Clinic lung cancer

- Survival after lung cancer
- ► Covariates:
 - Age at diagnosis
 - Sex
 - Time since diagnosis
- Cox model
- Split data:
 - Poisson model, time as factor
 - Poisson model, time as spline

Mayo Clinic lung cancer 60 year old woman

25/47

Example: Mayo Clinic lung cancer I

26/47

Example: Mayo Clinic lung cancer II

```
> system.time(
+ mL.cox <- coxph( Surv( tfe, tfe+lex.dur, lex.Xst=="Dead" ) ~
                   age + factor( sex ),
                   method="breslow", data=Lung ) )
+
   user system elapsed
  0.027
        0.021
                 0.020
> Lung.s <- splitMulti( Lung, tfe=c(0,sort(unique(Lung$time))) )</pre>
> summary( Lung.s )
Transitions:
     То
       Alive Dead Records: Events: Risk time: Persons:
From
  Alive 19857 165
                       20022
                                  165
                                           69593
                                                       228
> nlevels( factor( Lung.s$tfe ) )
[1] 186
```

Example: Mayo Clinic lung cancer III

> subset(Lung.s, lex.id==96)[,1:11]

		tie	lex.dur	lex.Cst	lex.Xst		time	status	age	sex	ph.ecog
1:	96	0	5	Alive	Alive	12	30	2	72	1	2
2:	96	5	6	Alive	Alive	12	30	2	72	1	2
3:	96	11	1	Alive	Alive	12	30	2	72	1	2
4:	96	12	1	Alive	Alive	12	30	2	72	1	2
5:	96	13	2	Alive	Alive	12	30	2	72	1	2
6:	96	15	11	Alive	Alive	12	30	2	72	1	2
7:	96	26	4	Alive	Dead	12	30	2	72	1	2
	+ family=poisreg, data=Lung.s, eps=10 ⁻⁸ , maxit=25)										
1		syste 19.10	em elaps 08 9.23								

28/47

Example: Mayo Clinic lung cancer IV

```
29/47
```

Example: Mayo Clinic lung cancer V

> round(cmp, 7)

```
age2.5%97.5%sex2.5%97.5%Cox1.0171580.99893881.0357100.59895740.43137200.8316487Poisson-factor1.0171580.99893881.0357100.59895740.43137200.8316487Poisson-spline1.0161890.99803211.0346770.59982870.43198540.8328858
```


Deriving the survival function

```
> nd <- data.frame( tfe=seq(10,1000,10)-5, age=60, sex=1 )
> lambda <- ci.pred( mLs.pois.sp, nd )
> survP <- ci.surv( mLs.pois.sp, nd, int=10 )</pre>
```

Code and output for the entire example available in http://bendixcarstensen.com/AdvCoh/WNtCMa/

What the Cox-model really is

Taking the life-table approach *ad absurdum* by:

- dividing time very finely and
- modeling one covariate, the time-scale, with one parameter per distinct value.
- the model for the time scale is really with exchangeable time-intervals.
- \blacktriangleright \Rightarrow difficult to access the baseline hazard (which looks terrible)
- ightarrow ightarrow uninitiated tempted to show survival curves where irrelevant

33/ 47

Models of this world

<u>►</u>

- Replace the α_ts by a parametric function f(t) with a limited number of parameters, for example:
 - Piecewise constant
 - Splines (linear, quadratic or cubic)
 - Fractional polynomials
- ▶ the two latter brings model into "this world":
 - smoothly varying rates
 - parametric closed form representation of baseline hazard
 - finite no. of parameters
- ▶ Makes it really easy to use rates directly in calculations of
 - expected residual life time
 - state occupancy probabilities in multistate models

34/47

The baseline hazard and survival functions

Using a parametric function to model the baseline hazard gives the possibility to plot this with confidence intervals for a given set of covariate values, x_0

The survival function in a multiplicative Poisson model has the form:

$$S(t) = \exp\left(-\sum_{\tau < t} \exp(g(\tau) + x'_0 \gamma)\right)$$

This is just a non-linear function of the parameters in the model, g and γ . So the variance can be computed using the δ -method.

$\delta\text{-method}$ for survival function

- 1. Select timepoints t_i (fairly close).
- 2. Get estimates of log-rates $f(t_i) = g(t_i) + x'_0 \gamma$ for these points:

$$\hat{f}(t_i) = \mathbf{B}\,\hat{\beta}$$

where β is the total parameter vector in the model.

- 3. Variance-covariance matrix of $\hat{\beta}$: $\hat{\Sigma}$.
- 4. Variance-covariance of $\hat{f}(t_i)$: **B** Σ **B**'.
- 5. Transformation to the rates is the coordinate-wise exponential function, with derivative $\operatorname{diag}\left[\exp(\hat{f}(t_i))\right]$

36/47

6. Variance-covariance matrix of the rates at the points t_i :

$$\operatorname{diag}(\mathrm{e}^{\hat{f}(t_i)}) \mathbf{B} \,\hat{\Sigma} \, \mathbf{B}' \operatorname{diag}(\mathrm{e}^{\hat{f}(t_i)})'$$

7. Transformation to cumulative hazard (ℓ is interval length):

$$\ell \times \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} e^{\hat{f}(t_1))} \\ e^{\hat{f}(t_2))} \\ e^{\hat{f}(t_3))} \\ e^{\hat{f}(t_4))} \end{bmatrix} = \mathbf{L} \begin{bmatrix} e^{\hat{f}(t_1))} \\ e^{\hat{f}(t_2))} \\ e^{\hat{f}(t_3))} \\ e^{\hat{f}(t_4))} \end{bmatrix}$$

37/47

8. Variance-covariance matrix for the cumulative hazard is:

$$\mathbf{L}\operatorname{diag}(\mathrm{e}^{\hat{f}(t_i)}) \mathbf{B} \, \hat{\Sigma} \, \mathbf{B}' \operatorname{diag}(\mathrm{e}^{\hat{f}(t_i)})' \, \mathbf{L}'$$

This is all implemented in the ci.cum() function in Epi.

EBMT transplant data

lacobelli & Carstensen: Multistate Models with Multiple Timescales, Stat Med 2013, [4]

39/offer covariates: Age and date at Tx, sex, donor type, CML type

Markov property: Empirical question

Model for mortality rates (with and without relapse):

- t time since transplant
- r time since relapse (if relapsed)
- t_r time from transplant to relapse
- Fit the model for all transitions:
 - split follow-up time
 - fit Poisson model with covariates
 - and spline terms for each time scale.
- Lexis machinery [5, 6] from the Epi package for R
- ... for representation and manipulation of follow-up data.

42/47 *t*: time since transplant *r*: time since relapse

t: time since transplant r: time since relapse

References I

P. K. Andersen and N. Keiding. Interpretability and importance of functionals in competing risks and multistate models. <i>Stat Med</i> , 31:1074–1088, 2012.
T R Holford. Life table with concomitant information. <i>Biometrics</i> , 32:587–597, 1976.
Whitehead J. Fitting Cox's regression model to survival data using GLIM. <i>Applied Statistics</i> , 29(3):268–275, 1980.
S. Iacobelli and B. Carstensen. Multiple time scales in multi-state models. <i>Stat Med</i> , 32(30):5315–5327, Dec 2013.
Martyn Plummer and Bendix Carstensen. Lexis: An R class for epidemiological studies with long-term follow-up. Journal of Statistical Software, 38(5):1–12, 1 2011.

References II

Bendix Carstensen and Martyn Plummer. Using Lexis objects for multi-state models in R. Journal of Statistical Software, 38(6):1–18, 1 2011.

Direct link to these slides and to a document with details is at: bendixcarstensen.com

Examples of this type of modeling at: bendixcarstensen.com/AdvCoh/Lexis-ex

Thanks for your attention