Who needs the Cox model anyway

Bendix Carstensen Steno Diabetes Center Copenhagen
Gentofte, Denmark
http://BendixCarstensen.com

SDC Epi and Biostat Network, 11 March 2020

From /home/bendix/teach/AdvCoh/talks/Aarhus2020/slides.tex

1/ 47

The dogma [1]

- do not condition on the future - indisputable
- do not count people after they are dead - disputable
- stick to this world - expandable
P. K. Andersen and N. Keiding:

Interpretability and importance of functionals in competing risks and multistate models Stat Med, 31:1074-1088, 2012

2/ 47

(further) dogma for "sticking to this world"

- rates are continuous in time (and "smooth")
- rates may depend on more than one time scale
- ... which timescales is an empirical question
- But first we look at the machinery for modeling simple occurence rates from follow-up studies (mortality, incidence, ...)
- In follow-up studies we estimate rates from:
- D - events, deaths
- Y - person-years
- $\hat{\lambda}=D / Y$ rates
- ...empirical counterpart of intensity - an estimate
- Rates differ between persons.
- Rates differ within persons:
- by age
- by calendar time
- by disease duration
- ...
- Multiple timescales - later

4/ 47

Representation of follow-up data

A cohort or follow-up study records events and risk time
The outcome (response) is thus bivariate: (d, y)
Follow-up data for each individual must therefore have (at least) three pieces of information recorded:

Date of entry	entry	date variable
Date of exit	exit	date variable
Status at exit	event	indicator (mostly $0 / 1$)

5/ 47

From representation to likelihood

- Target is estimates of occurrence rates (mortality rates, incidence rates)
- ... and how these depend on covariates
- If we assume that mortality, λ is constant over time, then the log-likelihood from one person based on (d, y) :
- d - event, 0 or 1 (event)
- y - risk time (exit-entry)

$$
\ell(\lambda)=d \log (\lambda)-\lambda y
$$

- This formula is not derived here - see note on website

Probability

$$
\mathrm{P}\left(d \text { at } t_{\mathrm{x}} \mid \text { entry } t_{0}\right)
$$

$$
d \log (\lambda)-\lambda y
$$

$$
=\mathrm{P}\left(\text { surv } t_{0} \rightarrow t_{1} \mid \text { entry } t_{0}\right) \quad=0 \log (\lambda)-\lambda y_{1}
$$

$$
\times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right) \quad+0 \log (\lambda)-\lambda y_{2}
$$

$$
\times \mathrm{P}\left(d \text { at } t_{x} \mid \text { entry } t_{2}\right) \quad+d \log (\lambda)-\lambda y_{3}
$$

Probability
$\mathrm{P}\left(\right.$ surv $t_{0} \rightarrow t_{\times} \mid$entry $\left.t_{0}\right)$

$$
\left.\begin{array}{ll}
=\mathrm{P}\left(\text { surv } t_{0} \rightarrow t_{1} \mid \text { entry } t_{0}\right) & \\
\times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right) & \\
\times \mathrm{log}(\lambda)-\lambda y_{1} \\
\left.\times \mathrm{P} \text { surv } t_{2} \rightarrow t_{\times} \mid \text {entry } t_{2}\right) & \\
& +0 \log (\lambda)-\lambda y_{2} \\
\hline
\end{array} \lambda\right)-\lambda y_{3} .
$$

log-Likelihood
$0 \log (\lambda)-\lambda y$

Probability
$\mathrm{P}\left(\right.$ event at $t_{\mathrm{x}} \mid$ entry $\left.t_{0}\right)$
$=\mathrm{P}\left(\right.$ surv $t_{0} \rightarrow t_{1} \mid$ entry $\left.t_{0}\right)$
$\times \mathrm{P}\left(\right.$ surv $t_{1} \rightarrow t_{2} \mid$ entry $\left.t_{1}\right)$
$\times \mathrm{P}\left(\right.$ event at $t_{\times} \mid$entry $\left.t_{2}\right)$
log-Likelihood
$1 \log (\lambda)-\lambda y$
$=0 \log (\lambda)-\lambda y_{1}$
$+0 \log (\lambda)-\lambda y_{2}$
$+1 \log (\lambda)-\lambda y_{3}$

Probability
log-Likelihood

$$
\mathrm{P}\left(d \text { at } t_{\times} \mid \text {entry } t_{0}\right)
$$

$$
=\mathrm{P}\left(\text { surv } t_{0} \rightarrow t_{1} \mid \text { entry } t_{0}\right) \quad=0 \log (\lambda)-\lambda y_{1}
$$

$$
\times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right) \quad+0 \log (\lambda)-\lambda y_{2}
$$

$$
\times \mathrm{P}\left(d \text { at } t_{x} \mid \text { entry } t_{2}\right) \quad+d \log (\lambda)-\lambda y_{3}
$$

10/ 47

Probability

$$
\mathrm{P}\left(d \text { at } t_{\times} \mid \text {entry } t_{0}\right)
$$

$$
=\mathrm{P}\left(\text { surv } t_{0} \rightarrow t_{1} \mid \text { entry } t_{0}\right) \quad=0 \log \left(\lambda_{1}\right)-\lambda_{1} y_{1}
$$

$$
\times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right) \quad+0 \log \left(\lambda_{2}\right)-\lambda_{2} y_{2}
$$

$$
\times \mathrm{P}\left(d \text { at } t_{\times} \mid \text {entry } t_{2}\right) \quad+d \log \left(\lambda_{3}\right)-\lambda_{3} y_{3}
$$

- allows different rates $\left(\lambda_{i}\right)$ in each interval

Likelihood for time-split data

- The setup is for a situation where it is assumed that rates are constant in each of the intervals
- Each record in the data set represents follow-up for one person in one (small) interval - many records for each person
- Each record in the data set contributes a term to the likelihood
- Each term looks like a contribution from a Poisson variate (albeit with values only 0 or 1), with mean λy
- \Rightarrow Likelihood for one person's FU (rate likelihood) is the same as the likelihood for several independent Poisson variates:
- Two models, one likelihood.

Analysis of time-split data

Observations classified by p-person and i-interval

- $d_{p i}$ - In the model as response
- $y_{p i}$ - risk time

In the model as offset $\log (y) \ldots$ or as part of the response

- Covariates are:
- timescales (age, period, time in study)
- other variables for this person (constant in each interval).
- Model rates using the covariates in glm:
- no difference in how time-scales and other covariates are modeled

13/47

A look at the Cox model

$$
\lambda(t, x)=\lambda_{0}(t) \times \exp \left(x^{\prime} \beta\right)
$$

A model for the rate as a function of t and x.
Covariates:

- x
- t
- ... often the effect of t is ignored (forgotten?)
- i.e. left unreported

14/ 47

Cox-likelihood

The (partial) log-likelihood for the regression parameters:

$$
\ell(\beta)=\sum_{\text {death times }} \log \left(\frac{\mathrm{e}^{\eta_{\text {death }}}}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}}\right)
$$

is also a profile likelihood in the model where observation time has been subdivided in small pieces (empirical rates) and each small piece provided with its own parameter:

$$
\log (\lambda(t, x))=\log \left(\lambda_{0}(t)\right)+x^{\prime} \beta=\alpha_{t}+\eta
$$

The Cox-likelihood as profile likelihood

- One parameter per death time to describe the effect of time (i.e. the chosen timescale).

$$
\log \left(\lambda\left(t, x_{i}\right)\right)=\log \left(\lambda_{0}(t)\right)+\underbrace{\beta_{1} x_{1 i}+\cdots+\beta_{p} x_{p i}}_{\eta_{i}}=\alpha_{t}+\eta_{i}
$$

- Profile likelihood:
- Derive estimates of α_{t} as function of data and $\beta \mathbf{s}$ - assuming constant rate between death/censoring times
- Insert in likelihood, now only a function of data and $\beta \mathrm{s}$
- This turns out to be Cox's partial likelihood
- Cumulative intensity $\left(\Lambda_{0}(t)\right)$ obtained via the Breslow-estimator

Mayo Clinic

lung cancer data:

60 year old woman

17/ 47

The Cox-likelihood: mechanics of computing

- The likelihood is computed by suming over risk-sets:

$$
\ell(\eta)=\sum_{t} \log \left(\frac{\mathrm{e}^{\eta_{\text {death }}}}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}}\right)
$$

- this is essentially splitting follow-up time at event- (and censoring) times
- ... repeatedly in every cycle of the iteration
- . . . simplified by not keeping track of risk time
- . . . but only works along one time scale

$$
\log \left(\lambda\left(t, x_{i}\right)\right)=\log \left(\lambda_{0}(t)\right)+\underbrace{\beta_{1} x_{1 i}+\cdots+\beta_{p} x_{p i}}_{\eta_{i}}=\alpha_{t}+\eta_{i}
$$

- Suppose the time scale has been divided into small intervals with at most one death in each:
- Empirical rates: $\left(d_{i t}, y_{i t}\right)$ - each t has at most one $d_{i t}=1$.
- Assume w.l.o.g. the y s in the empirical rates all are 1.
- Log-likelihood contributions that contain information on a specific time-scale parameter α_{t} will be from:
- the (only) empirical rate $(1,1)$ with the death at time t.
- all other empirical rates $(0,1)$ from those who were at risk at time t.

19/ 47

Note: There is one contribution from each person at risk to the part of the log-likelihood at t :

$$
\begin{aligned}
\ell_{t}\left(\alpha_{t}, \beta\right) & =\sum_{i \in \mathcal{R}_{t}} d_{i} \log \left(\lambda_{i}(t)\right)-\lambda_{i}(t) y_{i} \\
& =\sum_{i \in \mathcal{R}_{t}}\left\{d_{i}\left(\alpha_{t}+\eta_{i}\right)-\mathrm{e}^{\alpha_{t}+\eta_{i}}\right\} \\
& =\alpha_{t}+\eta_{\text {death }}-\mathrm{e}^{\alpha_{t}} \sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}
\end{aligned}
$$

where $\eta_{\text {death }}$ is the linear predictor for the person that died at t.

20/47

The derivative w.r.t. α_{t} is:

$$
\mathrm{D}_{\alpha_{t}} \ell_{t}\left(\alpha_{t}, \beta\right)=1-\mathrm{e}^{\alpha_{t}} \sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}=0 \quad \Leftrightarrow \quad \mathrm{e}^{\alpha_{t}}=\frac{1}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}}
$$

If this estimate is fed back into the log-likelihood for α_{t}, we get the profile likelihood (with α_{t} "profiled out"):

$$
\log \left(\frac{1}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}}\right)+\eta_{\text {death }}-1=\log \left(\frac{\mathrm{e}^{\eta_{\text {death }}}}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}}\right)-1
$$

which is the same as the contribution from time t to Cox's partial likelihood.

Splitting the dataset a priori

- The Poisson approach needs a dataset of empirical rates (d, y) with suitably small values of y.
- - each individual contributes many empirical rates
- (one per risk-set contribution in Cox-modelling)
- From each empirical rate we get:
- Poisson-response d
- Risk time $y \rightarrow \log (y)$ as offset
- time scale covariates: current age, current date, ...
- other covariates
- Contributions not independent, but likelihood is a product
- Same likelihood as for independent Poisson variates
- Poisson glm with spline/factor effect of time

History

This is not new, the profile likelihood was pointed out by Holford [2] in 1976, and the practical implementation was demonstrated by Whitehead in 1980 [3], using GLIM. ... so I am telling an old story here.

Example: Mayo Clinic lung cancer

- Survival after lung cancer
- Covariates:
- Age at diagnosis
- Sex
- Time since diagnosis
- Cox model
- Split data:
- Poisson model, time as factor
- Poisson model, time as spline

Mayo Clinic
 lung cancer
 60 year old woman

Example: Mayo Clinic lung cancer I

```
> library( survival )
> library( Epi )
> library( popEpi )
> Lung <- Lexis( exit = list( tfe=time ),
+ exit.status = factor(status,labels=c("Alive","Dead")),
+ data = lung )
NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfe timescale.
> summary( Lung )
Transitions:
            To
From Alive Dead Records: Events: Risk time: Persons:
    Alive 63 165 228 165 69593 228
```


Example: Mayo Clinic lung cancer II

> system.time (

+ mL.cox <- coxph (Surv(tfe, tfe+lex.dur, lex.Xst=="Dead") ~
+ age + factor (sex),
+ method="breslow", data=Lung))

user	system	elapsed
0.027	0.021	0.020

> Lung.s <- splitMulti(Lung, tfe=c (O,sort(unique (Lung\$time))))
> summary(Lung.s)
Transitions:

| To | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| From | Alive Dead | Records: | Events: Risk time: | Persons: | |
| Alive 19857 165 | 20022 | 165 | 69593 | 228 | |
| | | | | | |

[1] 186

Example: Mayo Clinic lung cancer III

> subset(Lung.s, lex.id==96) [,1:11]

	lex.id tfe lex. dur	lex.Cst	lex. Xst	inst	time	status	age	sex	ph.ecog	
$1:$	96	0	5	Alive	Alive	12	30	2	72	1
$2:$	96	5	6	Alive	Alive	12	30	2	72	1

> system.time(

+ mLs.pois.fc <- glm(cbind(lex.Xst=="Dead",lex.dur) ~ - 1 + factor (tfe) +
age + factor (sex),
family=poisreg, data=Lung.s, eps=10^-8, maxit=25)
$+\quad$)
user system elapsed
$12.789 \quad 19.108 \quad 9.286$

28/ 47

Example: Mayo Clinic lung cancer IV
 > length(coef(mLs.pois.fc))

[1] 188

```
> t.kn <- c(0,25,100,500,1000)
> dim( Ns(Lung.s$tfe,knots=t.kn) )
```

[1] 200224
> system.time(

+ mLs.pois.sp <- glm(cbind(lex.Xst=="Dead",lex.dur) ~ Ns(tfe, knots=t.kn) + $+\quad$ age + factor (sex),
$+$
family=poisreg, data=Lung.s))
user system elapsed
$0.252 \quad 0.454 \quad 0.221$

```
Example: Mayo Clinic lung cancer V
    > ests <-
    + rbind( ci.exp(mL.cox),
    + ci.exp(mLs.pois.fc,subset=c("age","sex")),
    + ci.exp(mLs.pois.sp,subset=c("age","sex")) )
    > cmp <- cbind( ests[c(1,3,5) ,],
    + ests[c(1,3,5)+1,] )
    > rownames( cmp ) <- c("Cox", "Poisson-factor", "Poisson-spline")
    > colnames( cmp )[c(1,4)] <- c("age","sex")
```

> round (cmp, 7)

	age	2.5%	97.5%	sex	2.5%	97.5%
Cox	1.017158	0.9989388	1.035710	0.5989574	0.4313720	0.8316487
Poisson-factor	1.017158	0.9989388	1.035710	0.5989574	0.4313720	0.8316487
Poisson-spline	1.016189	0.9980321	1.034677	0.5998287	0.4319854	0.8328858

Deriving the survival function

```
> mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +
+ age + factor( sex ),
    offset = log(lex.dur),
    family=poisson, data=Lung.s, eps=10^-8, maxit=25 )
```

```
> nd <- data.frame( tfe=seq(10,1000,10)-5, age=60, sex=1 )
> lambda <- ci.pred( mLs.pois.sp, nd )
> survP <- ci.surv( mLs.pois.sp, nd, int=10 )
```

Code and output for the entire example available in http://bendixcarstensen.com/AdvCoh/WNtCMa/

What the Cox-model really is

Taking the life-table approach ad absurdum by:

- dividing time very finely and
- modeling one covariate, the time-scale, with one parameter per distinct value.
- the model for the time scale is really with exchangeable time-intervals.
- \Rightarrow difficult to access the baseline hazard (which looks terrible)
- \Rightarrow uninitiated tempted to show survival curves where irrelevant

33/ 47

Models of this world

- Replace the $\alpha_{t} \mathrm{~s}$ by a parametric function $f(t)$ with a limited number of parameters, for example:
- Piecewise constant
- Splines (linear, quadratic or cubic)
- Fractional polynomials
- the two latter brings model into "this world":
- smoothly varying rates
- parametric closed form representation of baseline hazard
- finite no. of parameters
- Makes it really easy to use rates directly in calculations of
- expected residual life time
- state occupancy probabilities in multistate models
- ...

34/ 47

The baseline hazard and survival functions

Using a parametric function to model the baseline hazard gives the possibility to plot this with confidence intervals for a given set of covariate values, x_{0}
The survival function in a multiplicative Poisson model has the form:

$$
S(t)=\exp \left(-\sum_{\tau<t} \exp \left(g(\tau)+x_{0}^{\prime} \gamma\right)\right)
$$

This is just a non-linear function of the parameters in the model, g and γ. So the variance can be computed using the δ-method.

δ-method for survival function

1. Select timepoints t_{i} (fairly close).
2. Get estimates of log-rates $f\left(t_{i}\right)=g\left(t_{i}\right)+x_{0}^{\prime} \gamma$ for these points:

$$
\hat{f}\left(t_{i}\right)=\mathbf{B} \hat{\beta}
$$

where β is the total parameter vector in the model.
3. Variance-covariance matrix of $\hat{\beta}: \hat{\Sigma}$.
4. Variance-covariance of $\hat{f}\left(t_{i}\right): \mathbf{B} \Sigma \mathbf{B}^{\prime}$.
5. Transformation to the rates is the coordinate-wise exponential function, with derivative $\operatorname{diag}\left[\exp \left(\hat{f}\left(t_{i}\right)\right)\right]$

36/ 47
6. Variance-covariance matrix of the rates at the points t_{i} :

$$
\operatorname{diag}\left(\mathrm{e}^{\hat{f}\left(t_{i}\right)}\right) \mathbf{B} \hat{\Sigma} \mathbf{B}^{\prime} \operatorname{diag}\left(\mathrm{e}^{\hat{f}\left(t_{i}\right)}\right)^{\prime}
$$

7. Transformation to cumulative hazard (ℓ is interval length):

$$
\ell \times\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{e}^{\left.\hat{f}\left(t_{1}\right)\right)} \\
\mathrm{e}^{\left.\hat{f}\left(t_{2}\right)\right)} \\
\mathrm{e}_{\left.\hat{f}\left(t_{3}\right)\right)}^{\mathrm{e}} \\
\mathrm{e}^{\left.\hat{f}\left(t_{4}\right)\right)}
\end{array}\right]=\mathbf{L}\left[\begin{array}{c}
\left.\hat{\mathrm{e}}\left(t_{1}\right)\right) \\
\mathrm{e}^{\left.\hat{f}\left(t_{2}\right)\right)} \\
\mathrm{e}^{\left.\hat{f}\left(t_{3}\right)\right)} \\
\mathrm{e}^{\left.\hat{f}\left(t_{4}\right)\right)}
\end{array}\right]
$$

37/ 47
8. Variance-covariance matrix for the cumulative hazard is:

$$
\mathbf{L} \operatorname{diag}\left(\mathrm{e}^{\hat{f}\left(t_{i}\right)}\right) \mathbf{B} \hat{\Sigma} \mathbf{B}^{\prime} \operatorname{diag}\left(\mathrm{e}^{\hat{f}\left(t_{i}\right)}\right)^{\prime} \mathbf{L}^{\prime}
$$

This is all implemented in the ci.cum() function in Epi.

EBMT transplant data

lacobelli \& Carstensen: Multistate Models with Multiple Timescales, Stat Med 2013, [4]

39/o4finer covariates: Age and date at Tx, sex, donor type, CML type

40/ 47

Markov property: Empirical question

Model for mortality rates (with and without relapse):

- t time since transplant
- r time since relapse (if relapsed)
- t_{r} time from transplant to relapse
- Fit the model for all transitions:
- split follow-up time
- fit Poisson model with covariates
- and spline terms for each time scale.
- Lexis machinery [5, 6] from the Epi package for \mathbf{R}
- ... for representation and manipulation of follow-up data.

$$
\log (\mu)=h(t)+k(r)+g(t-r)+X \beta
$$

42/47 $\quad t$: time since transplant r : time since relapse

43/ 47

$$
\log (\mu)=h(t) \quad+g(t-r)+X \beta
$$

45／ 47
t ：time since transplant
r ：time since relapse

References I

P．K．Andersen and N．Keiding．
Interpretability and importance of functionals in competing risks and multistate models． Stat Med，31：1074－1088， 2012.
囯 T R Holford． Life table with concomitant information． Biometrics，32：587－597， 1976.
Whitehead J．
Fitting Cox＇s regression model to survival data using GLIM．
Applied Statistics，29（3）：268－275， 1980.
S．lacobelli and B．Carstensen． Multiple time scales in multi－state models． Stat Med，32（30）：5315－5327，Dec 2013.
國 Martyn Plummer and Bendix Carstensen． Lexis：An R class for epidemiological studies with long－term follow－up． Journal of Statistical Software，38（5）：1－12， 12011.

References II

Bendix Carstensen and Martyn Plummer． Using Lexis objects for multi－state models in R． Journal of Statistical Software，38（6）：1－18， 12011.

Direct link to these slides and to a document with details is at： bendixcarstensen．com

Examples of this type of modeling at：
bendixcarstensen．com／AdvCoh／Lexis－ex

