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1 Mortality and insulin use in DM patients

We use the example dataset of mortality from the Epi package, and set up the follow-up in
a Lexis object.

> library( Epi )

> library( popEpi )

> library( survival )

> print( sessionInfo(), 1=F )

R version 3.6.0 (2019-04-26)

Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.6 LTS

Matrix products: default
BLAS:  /usr/lib/openblas-base/libopenblas.so.0
LAPACK: /usr/lib/lapack/liblapack.so0.3.0

attached base packages:
[1] utils datasets graphics grDevices stats methods  base

other attached packages:

[1] survival_2.44-1.1 popEpi_0.4.4 Epi_2.37
loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 lattice_0.20-38 zoo_1.8-4 MASS_7.3-51.1
[5] grid_3.6.0 plyr_1.8.4 nlme_3.1-139 etm_1.0.4
[9] data.table_1.12.0 Matrix_1.2-17 splines_3.6.0 to00ls_3.6.0
[13] cmprsk_2.2-7 numDeriv_2016.8-1 parallel_3.6.0 compiler_3.6.0

[17] mgcv_1.8-28

> data( DMlate )
> dml <- Lexis( entry=list(Per=dodm, Age=dodm-dobth, DMdur=0 ),

+ exit=1list (Per=dox),
+ exit.status=factor(!is.na(dodth),labels=c("DM", "Dead")),
+ data=DMlate )

NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 4 rows with duration of follow up < tol

The 4 patients dropped are persons dead on the day of diagnosis.
We the cut the follow-up at insulin start, and introduce a new timescale, but do not split
the (non-precursor) state Dead.

> system.time(
+ dmi <- cutLexis( dml, cut = dml$doins,
+ pre = ”DM",
+ new.state = "Ins",
+ new.scale = "tsI",
+ split.states = FALSE ) )
user system elapsed
0.685 0.012 0.697
> summary( dmi, t=T )
Transitions:
To
From DM Ins Dead Records: Events: Risk time: Persons:
DM 6157 1694 2048 9899 3742 45885.49 9899
Ins 0 1340 451 1791 451 8387.77 1791
Sum 6157 3034 2499 11690 4193 54273.27 9996
Timescales:

Per Age DMdur  tsI
nn nn nn on Ins n
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We see that the time scale tsI is defined as time since entry into the state Ins. This

implies that the value of tsI is NA for the follow-up before insulin start.
Also we make a graphical overview of the data and transitions:

> boxes( dmi, boxpos=TRUE, scale.R=1000, hmult=1.5 )

DM
45,885.5

2,048
(44.6)

v

Dead

1,694
36.9)

Ins
8,387.8

451
(53.8)

Figure 1: Overview of the states and transitions.

1.1 Splitting follow-up in intervals

We can the split the FU in smaller intervals of say, 2 months (1/6 year) using either

splitLexis (from Epi) or splitMulti (from popEpi), the latter slightly faster and more

convenient:

> system.time( dma <- splitLexis( dmi, breaks=seq(0,100,1/6), time.scale='Age' ) )

system elapsed
3.751

user

3.219 0.532

> system.time( dms <- splitMulti( dmi, Age=seq(0,100,1/6) ) )

user
2.441 1.241

> summary( dma )

Transitions:
To
From DM Ins
DM 281394 1694
Ins 0 51647
Sum 281394 53341

> summary( dms )

Transitions:
To
From DM Ins
DM 281392 1694
Ins 0 51647
Sum 281392 53341

system elapsed
3.257

Dead
2048

451
2499

Dead
2045

450
2495

Records: Events:
285136 3742
52098 451
337234 4193
Records: Events:
285131 3739
52097 450
337228 4189

Risk time:
45885.49
8387.77
54273.27

Risk time:
45879.34
8386.80
54266.14

Persons:
9899
1791
9996

Persons:
9898
1791
9995



Main-effects model for mortality 3

Note that the latter—the result from splitMulti— loses a bit of the follow-up; this is
because splitMulti by default excludes follow-up (risk time and events) outside the range
of the specified breaks, so follow-up beyond 100 years of age is excluded.

2 Main-effects model for mortality

We now model mortality by age and time since insulin, as main effects, additive on the
log-scale, multiplicative on the rate-scale. Hence, this is often termed a proportional
hazards model.

We first set tsI to 0 for the Alive state, and then define knots for the modeling:

> dms$tsI <- ifelse( is.na(dms$tsI), 0, dms$tsI )

> nk <- 5
> ( a.kn <- ¢c(40, with( subset(dms,lex.Xst=="Dead"),
+ quantile (Age+lex.dur, (1:nk-0.5)/nk) ) ) )

10% 30% 50% 70% 90%
40.00000 60.27817 71.30732 77.66461 82.69897 89.80479

> (i.kn <- ¢( 0, with( subset(dms,lex.Xst=="Dead" & lex.Cst=="Ins"),
+ quantile(tsI+lex.dur,1:(nk-1)/nk ) ) ) )

20% 40% 60% 80%
0.0000000 0.3088296 1.1241615 2.5472964 4.9171800

2.1 Poisson

A Poisson model approach to mortality by insulin status using the poisreg family from
the Epi package:

> pm <- glm( cbind(lex.Xst=="Dead",lex.dur) ~ Ns(Age,knots=a.kn)
+ + Ns(tsI,knots=i.kn)
+ + lex.Cst + sex,

+ family=poisreg, data = dms )

There is a wrapper for this exploiting the structure of Lexis objects; there are also from
and to arguments, but the default for these is all (de facto) absorbing states as to and all
immediately preceding states as from states, but you will be notified. Although it is called
glm.Lexis it is not as S3 method for Lexis objects.

> Pm <- glm.Lexis( dms, form = ~ Ns(Age,knots=a.kn)
+ + Ns(tsI,knots=i.kn)
+ + lex.Cst + sex )

stats::glm Poisson analysis of Lexis object dms with log link:
Rates for transitions: DM->Dead, Ins->Dead

> c¢( deviance(Pm), deviance(pm) )
[1] 26794.99 26794.99
> identical( model.matrix(Pm), model.matrix(pm) )

[1] TRUE
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2.2 Cox

Note that in the Cox-model the age is used as response variable, slightly counter-intuitive.

Hence the age part of the linear predictors is not in the model:

> cm <- coxph( Surv(Age,Age+lex.dur,lex.Xst=="Dead") ~
+ Ns(tsI,knots=i.kn) + factor(lex.Cst) + sex,

+ data = dms )

There is also a Lexis wrapper for Cox models:

> Cm <- coxph.Lexis( dms, form= Age ~ Ns(tsI,knots=i.kn) + factor(lex.Cst) + sex )

model survival::coxph analysis of Lexis object dms:
Rates for transitions DM->Dead, Ins->Dead

> ci.exp( cm ) / ci.exp( Cm )
exp(Est.) 2.5% 97.5%

Ns(tsI, knots = i.kn)1 1 1 1
Ns(tsI, knots = i.kn)2 1 1 1
Ns(tsI, knots = i.kn)3 1 1 1
Ns(tsI, knots = i.kn)4 1 1 1
factor(lex.Cst)Ins 1 1 1
sexF 1 1 1

> round( cbind( ci.exp( Pm, subset=c("tsI","Ins","F") ),

+ ci.exp( Cm, subset=c("tsI","Ins","F") ) ), 3)
exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
Ns(tsI, knots = i.kn)1 0.277 0.181 0.426 0.281 0.183 0.432
Ns(tsI, knots = i.kn)2 0.362 0.271 0.483 0.365 0.273 0.488
Ns(tsI, knots = i.kn)3 0.104 0.052 0.210 0.103 0.051 0.210
Ns(tsI, knots = i.kn)4 0.420 0.333 0.529 0.425 0.336 0.536
lex.CstIns 6.189 4.803 7.976 6.187 4.791 7.990
sexF 0.674 0.622 0.731 0.675 0.623 0.731

Thus we see that the Poisson and Cox gives pretty much the same results for the regression
parameters. You may argue that Cox requires a smaller dataset, because there is no need
to subdivide data in small intervals before insulin use. But certainly the time after insulin
inception need to be if the effect of time since insulin should be modeled properly as here.

3 Marginal effect of time since insulin

When we plot the marginal effect of tsI from the two models we get almost exactly the

sale:

> nd <- data.frame( tsI=seq(0,15,,151), lex.Cst="Ins", sex="M" )
> nr <- data.frame( tsI= 2 , lex.Cst="Ins", sex="M" )
> ppr <- ci.exp( pm, list(nd,nr), xvars="Age" )

> cpr <- ci.exp( cm, list(ad,nr) )

> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, las=1, bty="n"

> matshade( nd$tsI, cbind(ppr,cpr), lty=c(1,2), log="y", plot=T,
+ ylab="Mortality RR", xlab="Time since insulin" )

> abline( v=2, h=1, 1ty=3 )

So the duration effect is the same from the two modeling approaches.

We will also want the RR relative to the non-insulin users — recall these are coded 0 on

the tsI variable:



Joint effects of age and duration 5

5.0

Mortality RR

0.5

[ : I I |
0 5 10 15

Time since insulin

Figure 2: The naked duration effects relative to 2 years of duration, black from Poisson
model, red from Cox model. The two sets of estimates are identical.

nd <- data.frame( tsI=seq(0,15,,151), lex.Cst="Ins", sex="M" )

nr <- data.frame( tsI= 0 , lex.Cst="DM" , sex="M" )

ppr <- ci.exp( pm, list(nd,nr), xvars="Age" )

cpr <- ci.exp( cm, list(nd,nr) )

par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, las=1, bty="n"

matshade ( nd$tsI, cbind(ppr,cpr), lty=c(1,2), log="y", plot=T,
ylab="Mortality RR, Ins vs. nolns", xlab="Time since insulin" )

+VVVyVyVvVyVv

This is the effect of increasing duration of insulin use for a fized age which is a bit
artificial, so we would like to see the joint effects of age and insulin duration. What we
cannot see is how the duration affects mortality relative to current age, so in the absence of
a baseline mortality we cannot see how mortality changes by age in absolute terms.

4 Joint effects of age and duration

This is however only readily available from the Poisson-model; the age-effect is profiled out
of the Cox-model so not available from that without serious complications. But from the
Poisson model we can easily get the joint effects of age and insulin duration.
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Figure 3: Insulin duration effect (state Ins) relative to no insulin (state DM), black from
Poisson model, red from Cox model. The shape is the same as the previous figure, but the
RR is now relative to non-insulin, instead of relative to insulin users at 2 years duration.

Note here that we define a data frame by age at insulin, ain (which not in the model)
and time since insulin tsI (a variable in the model). From these two we compute the
current age, Age (a variable in the model). Note that in order to get predictions of rates we
need to specify all variables in the model, including sex:

> ndI <- transform( data.frame( expand.grid(tsI=c(NA,seq(0,15,0.1)),
+ ain=seq(40,70,5)),
+ sex="M",
+ lex.Cst="Ins"),
+ Age = ain + tsI )
> ndD <- data.frame( tsI=0,
+ Age=seq(40,85,0.5),
+ sex="M",
+ lex.Cst="DM" )
> head( ndI )
tsI ain sex lex.Cst Age
1 NA 40 M Ins NA
2 0.0 40 M Ins 40.0
3 0.1 40 M Ins 40.1
4 0.2 40 M Ins 40.2
5 0.3 40 M Ins 40.3



Joint effects of age and duration

6 0.4 40 M Ins 40.4
> head( ndD )

tsI Age sex lex.Cst
0 40.0 M DM
0 40.5 M DM
041.0 M DM
041.5 M DM
0 42.0 M DM
42.5 M DM

pprI <- ci.pred( Pm, ndI )

pprD <- ci.pred( Pm, ndD )

par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, las=1, bty="n"

matshade ( ndI$Age, pprI*1000, 1ty=1, log="y", plot=TRUE,
ylim=c(2,500), ylab="Mortality per 1000 PY", xlab="Age" )
matshade ( ndD$Age, pprD*1000, lty=1, col="red", plot=FALSE )
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Figure 4: The joint effect of age and duration of insulin use on mortality. Black curves are
for perosn starting isulin at ages 40, 45, ..., and the red curve is for persons not on insulin.

What can be seen from this plot is that the older age at insulin uptake, the higher the
mortality at a given age. So there seem to be a positive effect of age at insulin onset,
however only apparently; the model assumes that the difference the black curves and the
red is the same across age at insulin. The linear effects of current age, Age, and insulin
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duration tsI are of course in the model, and by that token also the linear effect of
Age — tsI =age at insulin use.
We can also plot the rate-ratios for the different ages at entry:

ndR <- transform( ndI, tsI=0*tsI, lex.Cst=factor("DM"))
pprR <- ci.exp( Pm, list(ndI,ndR) )
par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, las=1, bty="n"
matshade ( ndI$Age, pprR, 1lty=1, log="y", plot=TRUE,
ylab="RR between Insulin and no Insulin", xlab="Age" )
abline( h=1, 1ty=3 )

vV +VvVVvvVvyvy

RR between Insulin and no Insulin
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Figure 5: The effect of duration of insulin use at different ages of follow-up (for ages at
insulin start 40, 45, ... ). Not surprisingly this is just a lot of identical curves — the model
1s additive in age and duration terms. Essentilly this as just multiple repeats of the curve
shown in figure 5.

5 Agexduration interaction

5.1 Age at insulin start

In order to check the consistency of this additivity assumption across the spectrum of age
at insulin inception, we can fit an interaction model using a non-linear effect of age at



5.2  General interaction 9

insulin use (for convenience we use a simple translation of the knots used for Age):

> im <- glm.Lexis( dms, formula = ~ Ns(Age ,knots=a.kn)

+ + Ns( tsI,knots=i.kn)

+ + Ns(Age-tsI,knots=a.kn-4):lex.Cst
+ + lex.Cst + sex )

stats::glm Poisson analysis of Lexis object dms with log link:
Rates for transitions: DM->Dead, Ins->Dead

Note that we are here introducing an extra age-term in the DM group, because the term
Age-tsI is equal to Age in this group (if not on insulin, time since insulin tsI is scored 0).

pprIi <- ci.pred( im, ndI )
pprDi <- ci.pred( im, ndD )
par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, las=1, bty="n"
matshade ( ndI$Age, cbind(pprI,pprIi)*1000, plot=T,
log="y", lwd=c(2,3,3),
col=c("black", "blue"), alpha=c(0.1,0.1),
ylim=c(2,500), ylab="Mortality rate per 1000 PY", xlab="Age" )
matshade ( ndD$Age, cbind(pprD,pprDi)*1000, lty=c(3,1), col="red", plot=FALSE )

vV+++VVvVvyVy

Here we see that the interaction effect is such that in the older ages the length of insulin
use has an increasing effect on mortality.

With the interaction model it would be illustrative to show the RR as a function of age
at insulin and age at follow-up:
pprRi <- ci.exp( im, ctr.mat=list(ndI,ndR) )
par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, las=1, bty="n"
matshade( ndI$Age, pprRi, 1ty=1, log="y", plot=TRUE,

col="blue", ylab="RR Ins vs. nolns", xlab="Age" )
abline( h=1, 1ty=3 )

V + VvVvyv

5.2 General interaction

As a further illustration we may want to explore a different kind of interaction, not defined
from the duration — here we simplify the interaction by not using the second-last knot in
the interaction terms. Note again that the prediction code is the same:

> xm <- glm.Lexis( dms, formula = ~ Ns(Age,knots=a.kn)

+ + Ns(tsI,knots=i.kn)

+ + Ns(Age,knots=a.kn[-4]) :Ns(tsI,knots=i.kn[-4])
+ + lex.Cst + sex )

stats::glm Poisson analysis of Lexis object dms with log link:
Rates for transitions: DM->Dead, Ins->Dead

> pprx <- ci.pred( xm, ndI )

> pprb <- ci.pred( xm, ndD )

> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, las=1, bty="n"

> matshade( ndI$Age, cbind( pprIi, pprx )*1000,

+ 1ty=1, log="y", plot=T, lwd=2,

+ col=c("blue", "forestgreen"), alpha=c(0.1,0.2),

+ ylim=c(2,500), ylab="Mortality per 1000 PY", xlab="Age" )

> matshade( ndD$Age, cbind( pprDi, pprb )#*1000, plot=F, lwd=2, 1ty="21", lend="butt',
+ col=c("blue", "forestgreen"), alpha=c(0.1,0.2) )

Finally we can compare the two interaction models with the age-duration model, we see
that there are indeed interaction between age and duration of insulin, but it is not
immediately clear which one produces the better fit. From the figure it is pretty evident
that the two types of interaction cannot be destinguished.
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Figure 6: Age at insulin as interaction between age and duration (blue), the black curves are

from the main effects model. The red

curves are for the non insulin users, the dotted curve

1s from the main effects model, the solid curve from the interaction model. We see that the
attenuation of the Ins/nolns RR is more pronounced in the younger ages.

Note that these curves are the combination of two timescales (as well as their difference),
and therefore, if we consider one of them the baseline time scale, these quantities will not be

available from a Cox model.

> anova( xm, Pm, im, test="Chisq")
Analysis of Deviance Table

Model 1: cbind(trt(Lx$lex.Cst, Lx$lex
knots a.kn) + Ns(tsI, knots i
knots i.kn[-4]) + lex.Cst + sex

Model 2: cbind(trt(Lx$lex.Cst, Lx$lex
knots a.kn) + Ns(tsI, knots i

Model 3: cbind(trt(Lx$lex.Cst, Lx$lex.

knots a.kn) + Ns(tsI, knots = i

4):lex.Cst + lex.Cst + sex

Resid. Df Resid. Dev Df Deviance P
1 337204 26775
2 337216 26795 -12 -20.062
3 337207 26778 9 17.081

.Xst) %in% trnam, Lx$lex.dur) ~ Ns(Age,
.kn) + Ns(Age, knots a.kn[-4]) :Ns(tsI,

.Xst) %in% trnam, Lx$lex.dur) ~ Ns(Age,
.kn) + lex.Cst + sex

Xst) %inj, trnam, Lx$lex.dur) ~ Ns(Age,
.kn) + Ns(Age - tsI, knots = a.kn -

r(>Chi)

0.06592
0.04746
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Figure 7: The effect of duration of insulin use at different ages of follow-up, for different
ages at insulin start). Note that this is the only thing you could derive from a Coz-model,
the absolute rates as shown in figure 6 are not available. So we from a Cox model we will
not know how mortality changes jointly by age and duration.
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Figure 8: General spline-by-spline interaction between age and duration (red), and the inter-
action through age at entry (green). The broken linea are mortality among patients not on
nsulin.
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6 Estimation and reporting of multiple timescales —
practical hints and advice

Bendix Carstensen, Senior Statistician, Steno Diabetes Center Copenhagen, Denmark,
bendix.carstensen@regionh.dk

Vivian Viallon, Senior Statistician, International Agency for Research on Cancer, Lyon,
France, ViallonV@iarc.fr

6.1 Context

When modeling transition rates between heath states, be that in clinical or epidemiological
studies, it seems to be a widespread practice to use only one timescale for description of
rates. While this represents a huge advantage over primitive Markov models with constant
transition intensities, it is hardly ever a biologically sensible approach in general.

For example would mortality typically depend not only on current age but likely also on
current disease duration (possibly for several diseases), so practical models for transition
rates must necessarily include effects of several time scales. And preferably defined from a
clinical and/or epidemiological perspective and not from simple technical deliberations as
clock forward or clock reset.

6.2 Methods

This can indeed be accommodated using a Cox-model, the practical consequence being a
subdivision of follow-up over several records to allow timescales other than the primary,
typically by some parametric functions (splines or fractional polynomials, typically). One
the other hand, once the data has been subdivided, it is more logical to use a Poisson
model to model all timescales the same way.

This approach further allows to report the effect of several timescales simultaneously —
age and duration of diabetes normally advance at the same pace, for example.

6.3 Results

We illustrate the practical procedures needed to model several time scales (and the
difference between these), and show how the joint effects of more than one time scale can
be reported either longitudinally or cross-sectionally.

We will illustrate points with data from an international multi-morbidity study as well as
a Danish mortality study of diabetes patients. We shall demonstrate some of the Lexis
tools from the Epi package in R that facilitates this type of analyses, both aimed at the
realm of rates but also the realm of probability and sojourn times.

6.4 Conclusion

With the advent of modern computing speed the practical problems associated with
analysis of the very large data sets the emerging from this approach, a proper continuous
modeling of time-effects on has become feasible. The major challenge is reporting several
time-scales simultaneously (as the do advance simultaneously in real life). This invariably
requires graphical reporting.
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