Analysis of multistate data with realistic rate models and multiple time scales: A dogmatic approach

Bendix Carstensen Steno Diabetes Center Copenhagen Gentofte, Denmark
http://BendixCarstensen.com
ISCB 39, Melbourne, Australia, 29 August 2018

The dogma [1]

- do not condition on the future - indisputable
- do not count people after they are dead - disputable (artifact)
- stick to this world - expandable
P. K. Andersen and N. Keiding:

Interpretability and importance of functionals in competing risks and multistate models Stat Med, 31:1074-1088, 2012

stick to this world

- the "net" survival or "cause specific survival" for cause c :

$$
S_{c}(t)=\exp \left(-\int_{0}^{t} \lambda_{c}(s) \mathrm{d} s\right)
$$

- not a proper probability
- the probability of survival if
- all other causes of death than c were absent
- c-specific mortality rate were still the same
- merely a transformation of the cause-specific rate - but with no real world interpretation
- Do not label quantities "survival" or "probability" if they are not

sticking to this world - time scales

- rates are continuous (i.e. smooth) functions of time
- rates may depend on more than one time scale
- ... which and how are empirical questions
- there is no such thing as primary or secondary time scale - time scales (and other quantitative covariates) should be modeled using the same machinery
- effects of multiple time scales should be reported jointly - silly to report the effect of increasing disease duration for a fixed age
- facilitated by parametric modeling of rates

Practicalities of parametric analysis of rates

- Split follow-up time in small intervals (length y_{i})
- each interval has a value for each time scale (covariates)
- and an event indicator and length (response)
- Fit Poisson models using time scales as covariates with smooth effects, e.g. splines
- and (event $=A$) as response and $\log \left(y_{i}\right)$ as offset
- This gives a model for the transition rates to state A.

EBMT transplant data[2]

other covariates: Age and date at Tx , sex, donor type, CML type
lacobelli \& Carstensen: Multistate Models with Multiple Timescales, Stat Med 2013

Lexis diagrams

Wilhelm Lexis (1837-1914)

EINLEITUNG

in Die
THEORIE

IER

BEVÖLKERUNGSSTATISTIK

nox
W. LEXIS

+8,

STRASSBCRG
KARLJ.TRCBNER
$1 * 75$.

Markov property: Empirical question

Model for mortality rates:

- t time since transplant
- r time since relapse (if relapsed)
- t_{r} time from transplant to relapse
- ... + other covariates
- Fit the model for both mortality transitions:
- split follow-up time
- fit Poisson model with covariates
- and spline terms for each time scale and $t_{r}=t-r$.
- Lexis machinery [3, 4] from the Epi package for \mathbf{R} used for representation and manipulation of follow-up data.

$$
\log (\mu)=h(t)+k(r)+g(t-r)+X \beta
$$

$$
\log (\mu)=h(t)+k(r)+g(t-r)+X \beta
$$

t : time since transplant $\quad r$: time since relapse

$$
\log (\mu)=h(t) \quad+g(t-r)+X \beta
$$

t : time since transplant $\quad r$: time since relapse

From rates to probabilities in multistate models

- There is a one-to-one correspondence between:
- rates between states + initial state distribution
- state distribution by time
- Model for rates
\Rightarrow probability of being in a given state at any given time
- Single time-scale for all transitions:
- Aalen-Johansen
- Parametrically derived transition probability matrices
- Multiple time-scales:
- Analytically: a nightmare
- Simulation is the answer

Full lines: based on the model with effects of time since transplant and time to relapse Broken lines: based on the Markov model with only time since transplant.

Practical advice for multistate analysis

- Get dates for all events
- Draw boxes and arrows
- Draw Lexis diagrams of follow-up for pairs of time scales
- Divide absorbing states by transition type (origin)
- Transitions out of a state are unlikely to be related
- Transitions into the same state are likely to be related
- Rates are smooth functions of time scales
- Easier to obtain expected sojourn times and other derived measures if rates modeled parametrically.
- Lexis from Epi in \mathbf{R}
multistate in Stata (M Crowther) [5]

Dogma for multistate analysis

- do not condition on the future
- do not label quantities 'probability' or 'survival' if they are not
- do label interactions "interactions" if they are
- stick to this world:
- rates are smooth functions of time scales
- rates are likely to depend on more than one time scale - empirical examination requred
- report time scale effects jointly

Thanks for your attention

References I

P. K. Andersen and N. Keiding.

Interpretability and importance of functionals in competing risks and multistate models.
Stat Med, 31:1074-1088, 2012.
S. lacobelli and B. Carstensen.

Multiple time scales in multi-state models.
Stat Med, 32(30):5315-5327, Dec 2013.Martyn Plummer and Bendix Carstensen.
Lexis: An R class for epidemiological studies with long-term follow-up. Journal of Statistical Software, 38(5):1-12, 12011.Bendix Carstensen and Martyn Plummer.
Using Lexis objects for multi-state models in R.
Journal of Statistical Software, 38(6):1-18, 12011.

M. J. Crowther and P. C. Lambert.

Parametric multistate survival models: Flexible modelling allowing transition-specific distributions with application to estimating clinically useful measures of effect differences.
Stat Med, 36(29):4719-4742, Dec 2017.
http://bendixcarstensen.com

