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Abstract

Pre-history History Present Future?

Pre-history

Before there was R, there was S.
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Pre-history History Present Future?

The S language

Developed at AT&T Bell laboratories by Rick Becker, John Chambers, Doug Dunn,
Paul Tukey, Graham Wilkinson.

Version 1 1976–1980 Honeywell GCOS, Fortran-based
Version 2 1980–1988 Unix; Macros, Interface Language

1981–1986 QPE (Quantitative Programming Environment)

1984– General outside licensing; books
Version 3 1988-1998 C-based; S functions and objects

1991– Statistical models;
informal classes and methods

Version 4 1998 Formal class-method model;
connections; large objects

1991– Interfaces to Java, Corba?
Source: Stages in the Evolution of S http://ect.bell-labs.com/sl/S/history.html

Pre-history History Present Future?

The “Blue Book” and the “White Book”

Key features of S version 3 outlined in two books:

• Becker, Chambers and Wilks, The New S
Language: A Programming Environment for
Statistical Analysis and Graphics (1988)

• Functions and objects

• Chambers and Hastie (Eds), Statistical
Models in S (1992)

• Data frames, formulae

These books were later used as a prototype for R.

Pre-history History Present Future?

Programming with Data

“We wanted users to be able to begin in an interactive environment, where
they did not consciously think of themselves as programming. Then as their
needs became clearer and their sophistication increased, they should be able to
slide gradually into programming.” – John Chambers, Stages in the Evolution
of S

This philosophy was later articulated explicitly in Programming With Data (Chambers,
1998) as a kind of mission statement for S

To turn ideas into software, quickly and faithfully
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Pre-history History Present Future?

The “Green Book”

Key features of S version 4 were outlined in Chambers,
Programming with Data (1998).

• S as a programming language

• Introduced formal classes and methods, which were later
introduced into R by John Chambers himself.

Pre-history History Present Future?

S-PLUS

• AT&T was a regulated monopoly with limited ability to exploit creations of Bell
Labs.

• S source code was supplied for free to universities

• After the break up of AT&T in 1984 it became possible for them to sell S.
• S-PLUS was a commercially available form of S licensed to Statistical Sciences
(later Mathsoft, later Insightful) with added features:

• GUI,survival analysis, non-linear mixed effects, Trellis graphics, ...

Pre-history History Present Future?

The Rise and Fall of S-PLUS

• 1988. Statistical Science releases first version of S-PLUS.

• 1993. Acquires exclusive license to distribute S. Merges with Mathsoft.

• 2001. Changes name to Insightful.

• 2004. Purchases S language for $2 million.

• 2008. Insightful sold to TIBCO. S-PLUS incorporated into TIBCO Spotfire.
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Pre-history History Present Future?

History

How R started, and how it turned into an S clone

Pre-history History Present Future?

The Dawn of R

• Ross Ihaka and Robert Gentlemen at the University of
Auckland

• An experimental statistical environment
• Scheme interpreter with S-like syntax

• Replaced scalar type with vector-based types of S
• Added lazy evaluation of function arguments

• Announced to s-news mailing list in August 1993.

Pre-history History Present Future?

A free software project

• June 1995. Martin Maechler (ETH, Zurich) persuades Ross and Robert to release
R under GNU Public License (GPL)

• March 1996. Mailing list r-testers mailing list
• Later split into three r-announce, r-help, and r-devel.

• Mid 1997. Creation of core team with access to central repository (CVS)
• Doug Bates, Peter Dalgaard, Robert Gentleman, Kurt Hornik, Ross Ihaka, Friedrich

Leisch, Thomas Lumley, Martin Maechler, Paul Murrell, Heiner Schwarte, Luke
Tierney

• 1997. Adopted by the GNU Project as “GNU S”.
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Pre-history History Present Future?

The draw of S

“Early on, the decision was made to use S-like syntax. Once that decision was
made, the move toward being more and more like S has been irresistible”
– Ross Ihaka, R: Past and Future History (Interface ’98)

R 1.0.0, a complete and stable implementation of S version 3, was released in 2000.

Pre-history History Present Future?

A Souvenir

Pre-history History Present Future?

Packages

• Comprehensive R Archive Network (CRAN) started in 1997
• Quality assurance tools built into R
• Increasingly demanding with each new R release

• Recommended packages distributed with R
• Third-party packages included with R distribution
• Provide more complete functionality for the R environment
• Starting with release 1.3.0 (completely integrated in 1.6.0)
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Pre-history History Present Future?

Growth of CRAN

Pre-history History Present Future?

Community

• useR! Annual conference
• Toulouse (2019), Online (2020, 2021), Nashville (2022)

• R Journal (http://journal.r-project.org)
• Journal of record, peer-reviewed articles, indexed
• Journal of Statistical Software (JSS) has many articles dedicated to R packages

(http://jstatsoft.org)

• Migration to social media
• Stack Exchange/Overflow, Github, Twitter, Mastodon (#rstats)
• Follow @ R Foundation on Twitter, or @R Foundation@fosstodon.org on Mastodon

Pre-history History Present Future?

Much important R infrastructure is now in package space
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Pre-history History Present Future?

Much important R infrastructure is now in package space

Pre-history History Present Future?

The tidyverse

• Many of the popular packages on CRAN come from the company Posit (formerly
R Studio).

• These packages are known as the “tidyverse” (www.tidyverse.org).
• All packages in the tidyverse have a common design philosophy and work
together. Common features are:

• Non-standard evaluation rules for function calls.
• Use of the pipe operator |> (or %>%) to pass data transparently from one function

call to another.

• The CRAN meta-package tidyverse installs all of these packages.

Pre-history History Present Future?

The R Foundation for Statistical Computing

A non-profit organization working in the public interest, founded in 2002 in order to:

• Provide support for the R project and other innovations in statistical computing.

• Provide a reference point for individuals, institutions or commercial enterprises
that want to support or interact with the R development community.

• Hold and administer the copyright of R software and documentation (This never
happened)
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Pre-history History Present Future?

The R Consortium

In 2015, a group of organizations created a consortium to support the R ecosystem.
Current members (May 2023)

R Foundation A statutory member of The R Consortium

Platinum members Biogen, Genentech, Microsoft, Posit

Gold members ASA, Esri, Google, GSK, Janssen, Lander Analytics, Mango Solutions,
Merck

Silver members Novo Nordisk, Oracle, Parexel, Pfizer, Procogia, Swiss Re

Pre-history History Present Future?

The Future

“Prediction is very difficult, especially about the future” – variously attributed
to Niels Bohr, Piet Hein, Yogi Bera

Pre-history History Present Future?

Trends

We cannot make predictions, but some long-term trends are very visible:

• Average age of R Core Team?

• Younger R developers more closely associated with industry than academia

• Strong competition from Python
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Pre-history History Present Future?

What does all of this mean for the course?

• R incorporates over 40 years of ideas in statistical computing from multiple
contributors.

• There is usually more than one way to do something in R.

• Some of the peculiarities of the R language are there for historical reasons.

• The course does not cover some of the recent additions to the R ecosystem.

Pre-history History Present Future?

Resources

• Chambers J, Stages in the Evolution of S

• Becker, R, A Brief History of S

• Chambers R, Evolution of the S language

• Ihaka, R and Gentleman R, R: A language for Data Analysis and Graphics, J
Comp Graph Stat, 5, 299–314, 1996.

• Ihaka, R, R: Past and Future History, Interface 98.

• Ihaka, R, Temple Lang, D, Back to the Future: Lisp as a Base for a Statistical
Computing System

• Fox, J, Aspects of the Social Organization and Trajectory of the R Project, R
Journal, Vol 1/2, 5–13, 2009.
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Data manipulation with tidyverse

Damien Georges

International Agency for Resarch on Cancer

June 2023 - Tartu

Epidemiological study workflow

Data manipulation tools in R

▶ R core function
▶ tidyverse / dplyr
▶ data.table
▶ ...

=> The best tool is the one you feel the most comfortable with
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Tidyverse (from www.tidyverse.org)
R packages for data science
The tidyverse is an opinionated collection of R packages designed
for data science. All packages share an underlying design
philosophy, grammar, and data structures.

pipe functions %>% or |>

chill(fold(add(melt(add(chocolate, butter)),
beat(add(eggs.white, cream))))

pipe functions %>%

chill(fold(add(melt(add(chocolate, butter)),
beat(add(eggs.white, cream))))

chocolate %>%
add(butter) %>%
melt() %>%
add(

eggs.white %>%
add(cream) %>%
beat()

) %>%
fold() %>%
chill()
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Non-standard evaluation rules for function calls
▶ used in different R packages
▶ provide flexibility and ease of use
▶ more concise and expressive programming in R

dat <- data.frame(x = 1:10)
## subset supports NSE
subset(dat, x < 5)
## and SE
subset(dat, data$x < 5)

data manipulation with
Code as you speak: Data manipulation with dplyr is done using
a limited number of verbs corresponding to an action to be
applied to a table.

▶ select rows (slice)

▶ filter rows (filter)
▶ arrange rows (arrange)
▶ select columns (select)
▶ create/modify columns (mutate)
▶ group and summarize data (group_by and summarise)
▶ bind different tables (bind_rows, bind_cols)
▶ merge different tables (left_join, right_join,

inner_join, full_join)

data manipulation with
Code as you speak: Data manipulation with dplyr is done using
a limited number of verbs corresponding to an action to be
applied to a table.

▶ select rows (slice)
▶ filter rows (filter)

▶ arrange rows (arrange)
▶ select columns (select)
▶ create/modify columns (mutate)
▶ group and summarize data (group_by and summarise)
▶ bind different tables (bind_rows, bind_cols)
▶ merge different tables (left_join, right_join,

inner_join, full_join)
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discovering other tidyverse packages features

▶ data visualization with (ggplot, geom_bars, . . . )

▶ pivoting data with (pivot_wider, pivo_longer)

▶ reading data with (read_table, read_csv)

▶ manipulating lists with (map, map_chr, reduce, . . . )

▶ manipulating strings with (str_length, str_remove,
. . . )
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Poisson and Binary Regression

Janne Pitkäniemi

Finnish Cancer Registry

Tampere university

Statistical Practice in Epidemiology (2023, Tartu)

1 / 19

Points to be covered

▶ Incidence rates, rate ratios and rate di�erences from
follow-up studies can be computed by �tting Poisson regression models.

▶ Risk ratios and di�erences can be computed from binary data by �tting
Logistic regression models.

▶ Both models are special instances of
Generalized linear models.

▶ There are various ways to do these tasks in R.

2 / 19

The Estonian Biobank cohort: survival among the elderly

Follow-up of 60 random individuals aged 75-103 at recruitment, until death (•)
or censoring (o) in April 2014 (linkage with the Estonian Causes of Death
Registry). (time-scale: calendar time).
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The Estonian Biobank cohort: survival among the elderly

Follow-up time for 60 random individuals aged 75-103 at recruitment (time-scale:
time in study).
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Events, dates and risk time

▶ Mortality as the outcome:

d: indicator for status at exit:
1: death observed
0: censored alive

▶ Dates:

doe = date of Entry to follow-up,

dox = date of eXit, end of follow-up.

▶ Follow-up time (years) computed as:

y = (dox - doe)/365.25

5 / 19

Crude overall rate computed by hand and model
Total no. cases, person-years & rate (/1000 y):

> D <= sum( d ); Y <= sum(y) ; R <= D/(Y/1000)
> round( c(D=D, Y=Y, R=R), 2)

D Y R
884.00 11678.24 75.70

R-implementation of the rate estimation with Poisson regression:

A model with o�set term
> m1 <= glm( D ~ 1, family=poisson,

o�set=log(Y))

> coef(m1)
( Intercept )
=2.581

A model with poisreg=family (Epi package)

> glm(cbind(D, Y) ~1, family=poisreg)

Coe�cients :
( Intercept )

=2.581

From the coe�cient we get estimate of the rate exp(−2.581) ∗ 1000 = 75.70

6 / 19
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Constant hazard � Poisson model

Let Y ∼ exp(λ), then f (y ;λ) = λe−λy I (y > 0)

Constant rate model: λ(y) = f (y ;λ)
S(y ;λ)

= λ and observed data {(yi , δi); i = 1, ..., n}.

The likelihood L(λ) =
∏n

i=1 λ
δi e−λyi and

log(L) =
n∑

i=1

[δi log(λ)− λyi ]

Solving the score equations:

∂ log L(λ)
∂λ

=
∑[

δi

λ
− yi

]
= D

λ
− Y = 0 and D − λY = 0

→ maximum likelihood estimator (MLE) of λ:

λ̂ =
D

Y
=

number of cases

total person-time
= empirical rate!

7 / 19

o�set term � Poisson model

▶ Previous model without o�set: Intercept 6.784=log(884)

▶ We should use an o�set if we suspect that the underlying population sizes
(person-years) di�er for each of the observed counts � For example
varying person-years by sex,age,treatment group,...

▶ We need a term in the model that "scales" the likelihood, but does not
depend on model parameters ( include a term with reg. coef. �xed to
1) � o�set term is log(y)

▶ This is all taken care of by family=poisreg � recommend to use

log(µ
y
) = β0 + β1x1

log(µ) = 1× log(y) + β0 + β1x1

8 / 19

Comparing rates: The Thorotrast Study

▶ Cohort of seriously ill patients in Denmark on whom angiography of brain
was performed.

▶ Exposure: contrast medium used in angiography,

1. thor = thorotrast (with 232Th), used 1935-50

2. ctrl = other medium (?), used 1946-63

▶ Outcome of interest: death

doe = date of Entry to follow-up,

dox = date of eXit, end of follow-up.

▶ data(thoro) in the Epi package.

9 / 19
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Tabulating rates: thorotrast vs. control

Tabulating cases, person-years & rates by group

> stat. table ( contrast ,
+ list ( N = count(),
+ D = sum(d),
+ Y = sum(y),
+ rate = ratio(d,y,1000) ) )
============================================

contrast N D Y rate
============================================

ctrl 1236 797.00 30517.56 26.12
thor 807 748.00 19243.85 38.87
============================================

10 / 19

Rate ratio estimation with Poisson regression

▶ Include contrast as the explanatory variable (factor).
▶ Insert person years in units that you want rates in

> m2 <= glm( cbind(d,y/1000) ~ contrast,family = poisreg(link="log") )
> round( summary(m2)$coef, 4)[, 1:2]

Estimate Std. Error
( Intercept ) 3.2626 0.0354
contrast thor 0.3977 0.0509

▶ Rate ratio and CI?
Call function ci.exp() in Epi

> round( ci.exp( m2 ), 3 )

exp(Est.) 2.5% 97.5%

(Intercept) 26.116 24.364 27.994

contrast thor 1.488 1.347 1.644

11 / 19

Rates in groups with Poisson regression

▶ Include contrast as the explanatory variable (factor).
▶ Remove the intercept (-1)
▶ Insert person-years in units that you want rates in

> m3 <- glm( cbind(d,y/1000) ~ factor(contrast)-1,family = poisreg)

> round( summary(m3)$coef, 4)[, 1:2]

Estimate Std. Error

contrast ctrl 3.2626 0.0354

contrast thor 3.6602 0.0366

> round( ci.exp( m3 ), 3 )

exp(Est.) 2.5% 97.5%

contrast ctrl 26.116 24.364 27.994

contrast thor 38.870 36.181 41.757

12 / 19
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Rate di�erence estimation with Poisson regression

▶ The approach with d/y enables additive rate models too:

> contrast<-c(0,1)

> m5 <-glm(cbind(d,y/1000) ~contrast,

family=poisreg(link="identity") )

> round( ci.exp(m5,Exp=F), 3 )

Estimate 2.5% 97.5%

(Intercept) 26.116 24.303 27.929

contrast thor 12.753 9.430 16.077
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Binary data: Treatment success Y/N

85 diabetes-patients with foot-wounds:
▶ Dalterapin (Dal)
▶ Placebo (Pl)

Treatment/Placebo given to diabetes patients, the design is prospective and
outcome is measured better(Y)/worse(N). Is the probability of outcome more
than 15% � yes, then use the risk di�erence or risk ratio (RR)

Treatment group
Dalterapin Placebo

Better 29 20
Worse 14 22
Total 43 42

p̂Dal =
29

43
= 67% p̂Pl =

20

42
= 47%

14 / 19

Binary data: Crosstabulation analysis of 2x2 table

> library(Epi)

> dlt <- rbind( c(29,14), c(20,22) )

> colnames( dlt ) <- c("Better","Worse")

> rownames( dlt ) <- c("Dal","Pl")

> kable(twoby2( dlt ),"latex")

2 by 2 table analysis:

Better Worse P(Better) 95% conf. interval

Dal 29 14 0.6744 0.5226 0.7967

Pl 20 22 0.4762 0.3316 0.6249

95% conf. interval

Relative Risk: 1.4163 0.9694 2.0692

Sample Odds Ratio: 2.2786 0.9456 5.4907

Conditional MLE Odds Ratio: 2.2560 0.8675 6.0405

Probability difference: 0.1982 -0.0110 0.3850

Exact P-value: 0.0808

Asymptotic P-value: 0.0665

15 / 19
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Binary regression � estimation of odds ratio
For grouped binary data, the response is a two-column matrix with columns
(successes,failures).
> library(Epi)

> library(xtable)

> dlt <- data.frame(rbind( c(29,14),c(20,22) ))

> colnames( dlt ) <- c("Better","Worse")

> dlt$trt <- c(1,0)

> b2<-glm(cbind(Better,Worse)~trt,

+ family=binomial(link="logit"),

+ data=dlt)

> xtable(round( ci.exp( b2 ), digits=6 ))

exp(Est.) 2.5% 97.5%
(Intercept) 0.91 0.50 1.67

trt 2.28 0.95 5.49

▶ The default parameters in logistic regression are odds (the intercept:
20/22 = 0.9090) and the odds-ratio ((29/14)/(20/22) = 2.28).

▶ This is NOT what you want, because odds ratio is biased estimate of the
risk ratio.(recall if p>10% p

1−p
̸≈ p)
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Binary regression - Estimation of risk ratio (Relative risk)

> library(Epi)

> library(xtable)

> dlt <- data.frame(rbind( c(29,14),c(20,22) ))

> colnames( dlt ) <- c("Better","Worse")

> dlt$trt <- c(1,0)

> b2<-glm(cbind(Better,Worse)~trt,

+ family=binomial(link="log"),

+ data=dlt)

> xtable(round( ci.exp( b2 ), digits=6 ))

exp(Est.) 2.5% 97.5%
(Intercept) 0.48 0.35 0.65

trt 1.42 0.97 2.07

Diabetics with Dalterapin treatment are 1.4 times likely to get better than those
treated with placebo
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Binary regression - Estimation of risk di�erence

> library(Epi)

> library(xtable)

> dlt <- data.frame(rbind( c(29,14),c(20,22) ))

> colnames( dlt ) <- c("Better","Worse")

> dlt$trt <- c(1,0)

> b2<-glm(cbind(Better,Worse)~trt,

+ family=binomial(link="identity"),

+ data=dlt)

> xtable(round( ci.exp( b2,Exp=F ), digits=6 ))

Estimate 2.5% 97.5%
(Intercept) 0.48 0.33 0.63

trt 0.20 -0.01 0.40

Twenty percent more of the Diabetics with Dalterapin treatment are getting
better compared to Diabetics treated with placebo

18 / 19
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Conclusion: What did we learn?

▶ Rates, their ratio and di�erence can be analysed by Poisson regression

▶ In Poisson models the response can be either:
▶ case indicator d with offset = log(y), or
▶ case and person-years cbind(d,y) with poisreg-family (Epi-package)

▶ Both may be �tted on either grouped data, or individual records.

▶ Binary outcome can be modeled with binary regression.

19 / 19
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Everything you ever wanted to know about splines but were too
afraid to ask

Martyn Plummer

University of Warwick

03 June 2023
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Overview
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Splines in R
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Introduction

• Splines are a flexible class of models that can be helpful for representing
dose-response relationships in epidemiology

• In this course we will be using spline models extensively.

• However, spline models are widely misunderstood.

• The purpose of this lecture is to give a conceptual background on where spline
models come from.
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Outline

Categorization and its discontents

Join the dots

Smoothing splines

Splines in R
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Rinaldi et al, JNCI. 2014 Jun;106(6):dju097

Categorization and its discontents Join the dots Smoothing splines Splines in R

Rinaldi et al, JNCI. 2014 Jun;106(6):dju097
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Statisticians against categorization

• Greenland S (1995) Avoiding power loss associated with categorization and
ordinal scores in dose-response and trend analysis, Epidemiology, 6, 450–454.

• Senn S (2005) Dichotomania: an obsessive compulsive disorder that is badly
affecting the quality of analysis of pharmaceutical trials.

• Bennette C, and Vickers A, (2012), Against quantiles: categorization of
continuous variables in epidemiologic research, and its discontents. BMC Medical
Research Methodology 12:21
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Epidemiologists against categorization

Rose, G. (1992) The Strategy of Preventive Medicine

• Many diseases are not discrete. Instead there is an underlying continuum of
increasing severity (e.g. hypertension).

• In medicine, we tend to conflate a clinical action (treat vs. do not treat) with the
presence/absence of disease.

• Disease prevention efforts are best targeted at shifting the distribution of risk for
the whole population instead of trying to identify and target a “high risk” group.
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Linear interpolation

• Suppose a dose response curve
is known exactly at certain
points

• We can fill in the gaps
(interpolate) by drawing a
straight (linear) line between
adjacent points

• This creates a mathematical
function f() which gives a
response value f(x) for every
dose value x.
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Why linear interpolation?

Out of all possible curves that go through the observed points, linear interpolation is
the one that minimizes the penalty function

∫ (
∂f

∂x

)2

dx
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What does the penalty mean?

• The contribution to
the penalty at each
point depends on
the steepness of the
curve (represented
by a colour
gradient)

• Any deviation from
a straight line
between the two
fixed points will
incur a higher
penalty overall.
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Extrapolation

• Linear interpolation
fits a linear
dose-response curve
exactly.

• But it breaks down
when we
extrapolate.
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fits a linear
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exactly.
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when we
extrapolate.
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Why does linear interpolation break down?

• The penalty function ∫ (
∂f

∂x

)2

dx

penalizes the steepness of the curve
• Minimizing the penalty function gives us gives us the “flattest” curve that goes
through the points.

• In between two observations the flattest curve is a straight line.
• Outside the range of the observations the flattest curve is completely flat.
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A roughness penalty

• If we want a fitted curve that extrapolates a linear trend then we want to
minimize the curvature. ∫ (

∂2f

∂x2

)2

dx

• Like the first penalty function but uses the second derivative of f (i.e. the
curvature).

• This is a roughness penalty.
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)2
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• Like the first penalty function but uses the second derivative of f (i.e. the
curvature).

• This is a roughness penalty.
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What does the roughness penalty mean?

• The contribution to the penalty
at each point depends on the
curvature (represented by a
colour gradient)

• A straight line has no curvature,
hence zero penalty.

• Sharp changes in the slope are
heavily penalized.
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An interpolating cubic spline

• The smoothest curve that goes
through the observed points is a
cubic spline.
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An interpolating cubic spline

• The smoothest curve that goes
through the observed points is a
cubic spline.
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What is a cubic spline?

Splines are piecewise cubic curves

• Every observed point is a knot.

• The knots divide the curve into sections

• Each section is a cubic function

f(x) = a+ bx+ cx2 + dx3

• The parameters a, b, c, d are different for different sections
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Boundary conditions

Sections need to join up smoothly.

• Both sides must go through the
knot.

• The slope cannot change at a
knot

• The curvature cannot change at
a knot
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Dose response with error

In practice we never know the dose
response curve exactly at any point
but always measure with error. A
spline model is then a compromise
between

• Model fit

• Smoothness of the spline
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• Smoothness of the spline
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Fitting a smoothing spline

Minimize
∑

i

[yi − f(xi)]
2 + λ

∫ (
∂2f

∂x2

)2

dx

Or, more generally
Deviance + λ× Roughness penalty

Size of tuning parameter λ determines compromise between model fit (small λ) and
smoothness (large λ).
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Smoothing and degrees of freedom

Software will choose the smoothing parameter λ for you automatically using
cross-validation.

The smoothing parameter is adapted to the data.

Smoothness of the model can be measured with the effective degrees of freedom
(EDF)

• Linear model: maximally smooth
• EDF=2 (intercept + slope parameter)

• Intepolating mode: best fit
• EDF=n (one parameter for every observation)
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Spline models in R

• Do not use the splines package.

• Use the gam function from the mgcv package to fit your spline models.

• The gam function chooses number and placement of knots for you and estimates
the size of the tuning parameter λ automatically.

• You can use the gam.check function to see if you have enough knots. Also re-fit
the model explicitly setting a larger number of knots (e.g. double) to see if the fit
changes.
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Penalized spline

• A gam fit to some simulated
data

• Model has 9 degrees of freedom

• Smoothing reduces this to 2.88
effective degrees of freedom

Categorization and its discontents Join the dots Smoothing splines Splines in R

Penalized spline

• A gam fit to some simulated
data

• Model has 9 degrees of freedom

• Smoothing reduces this to 2.88
effective degrees of freedom
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Unpenalized spline

• An unpenalized spline using the
same spline basis as the gam fit.

• Model has 9 degrees of freedom
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Unpenalized spline

• An unpenalized spline using the
same spline basis as the gam fit.

• Model has 9 degrees of freedom
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Conclusions

• Epidemiologists like to turn continuous variables into categories.

• Statisticians do not like categorization because it loses information.

• Splines are a flexible class of models that avoid categorization but also avoid
making strong assumptions about the shape of a dose-response relationship.

• Penalized regression splines are based on compromise between goodness-of-fit and
smoothness.

• Most of the decisions in fitting a penalized regression spline can be made for you
• Degree of smoothing
• Number of knots
• Placement of knots

37



Linear and generalized linear models
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Statistical Practice in Epidemiology using R
2 to 7 June, 2023
University of Tartu, Estonia

Outline

I Simple linear regression.

I Fitting a regression model and extracting results.

I Predictions and diagnostics.

I Categorical factors and contrast matrices.

I Main effects and interactions.

I Modelling curved effects.

I Generalized linear models.

I Binary regression and Poisson regression.
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Variables in generalized linear models

I The outcome or response variable must be numeric.

I Main types of response variables are

– Metric or continuous (a measurement with units).

– Binary (“yes” vs. ”no”, coded 1/0), or proportion.

– Failure in person-time, or incidence rate.

I Explanatory variables or regressors can be

– Numeric or quantitative variables

– Categorical factors, represented by class indicators or contrast matrices.

Linear and generalized linear models 2/ 25
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The births data in Epi

id: Identity number for mother and baby.
bweight: Birth weight of baby.
lowbw: Indicator for birth weight less than 2500 g.

gestwks: Gestation period in weeks.
preterm: Indicator for gestation period less than 37 weeks.
matage: Maternal age.

hyp: Indicator for maternal hypertension (0 = no, 1 = yes).
sex: Sex of baby (1 = male, 2 = female).

Declaring and transforming some variables as factors:

> library(Epi) ; data(births)
> births <- transform(births,
+ hyp = factor(hyp, labels=c("N", "H")),
+ sex = factor(sex, labels=c("M", "F")),
+ gest4 = cut(gestwks,breaks=c(20, 35, 37, 39, 45), right=FALSE) )
> births <- subset(births, !is.na(gestwks))
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Birth weight and gestational age
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> with(births, plot(bweight ~ gestwks, xlim = c(24,45), pch = 16, cex.axis=1.5, cex.lab = 1.5,
+ xlab= "Gestational age (wk)", ylab= "Birth weight (g)" ) )
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Metric response, numeric explanatory variable

Roughly linear relationship btw bweight and gestwks

→ Simple linear regression model fitted.

> m <- lm(bweight ~ gestwks, data=births)

I lm() is the function that fits linear regression models, assuming
Gaussian distribution or family for error terms.

I bweight ~ gestwks is the model formula

I m is a model object belonging to class “lm”.

> coef(m) – Printing the estimated regression coefficients

(Intercept) gestwks

-4489.1 197.0

Interpretation of intercept and slope?
Linear and generalized linear models 5/ 25

39



Model object and extractor functions

Model object = list of different elements, each being separately accessible.
– See str(m) for the full list.

Functions that extract results from the fitted model object

I summary(m) – lots of output

I coef(m) – beta-hats only (see above)

I ci.lin(m)[,c(1,5,6)] – β̂j s plus confidence limits

Estimate 2.5% 97.5%

(Intercept) -4489.1 -5157.3 -3821.0

gestwks 197.0 179.7 214.2

Function ci.lin() is found in Epi package.

I anova(m) – Analysis of Variance Table
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Other extractor functions, for example

I fitted(m), resid(m), vcov(m), . . .

I predict(m, newdata = ..., interval=...)

– Predicted responses for desired combinations of new values of the
regressors – newdata

– Argument interval specifies whether
confidence intervals for the mean response or
prediction intervals for individual responses
are returned.

I plot(m) – produces various diagnostic plots based on residuals
(raw, standardized or studentized residuals).

Many of these are special methods for certain generic functions, aimed at
acting on objects of class “lm”.
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Fitted values, confidence & prediction intervals
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> nd <- data.frame( gestwks = seq(24, 45, by = 0.25 ) )
> pr.c1 <- predict( m, newdata=nd, interval="conf" )
> pr.p1 <- predict( m, newdata=nd, interval="pred" )
> with(births, plot(bweight ~ gestwks, xlim = c(24,45), cex.axis=1.5, cex.lab = 1.5, xlab = ’Gestational age (wk)’, ylab = ’Birth weight (g)’ ) )
> matlines( nd$gestwks, pr.c1, lty=1, lwd=c(3,2,2), col=c(’red’,’blue’,’blue’))
> matlines( nd$gestwks, pr.p1, lty=1, lwd=c(3,2,2), col=c(’red’,’green’,’green’))
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A couple of diagnostic plots

1000 2000 3000 4000−
20

00
−

10
00

0
50

0
15

00

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

30

124

78

−3 −2 −1 0 1 2 3
−

4
−

2
0

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q−Q

30

124

78

> par(mfrow=c(1,2))
> plot(m, 1:2, cex.lab = 1.5, cex.axis=1.5, cex.caption=1.5, lwd=2)

I Some deviation from linearity?
I Reasonable agreement with Gaussian error assumption?
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Factor as an explanatory variable

I How bweight depends on maternal hypertension?

> mh <- lm( bweight ~ hyp, data=births)

Estimate 2.5% 97.5%

(Intercept) 3198.9 3140.2 3257.6

hypH -430.7 -585.4 -275.9

I Removal of intercept → mean bweights by hyp:
> mh2 <- lm( bweight ~ -1 + hyp, data = births)

> coef(mh2)

hypN hypH

3198.9 2768.2

I Interpretation: -430.7 = 2768.2 - 3198.9

= difference between level 2 (“H”) vs. reference level 1 (“N”) of factor hyp.
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Additive model with both gestwks and hyp

I Joint effect of hyp and gestwks is modelled e.g. by updating:

> mhg <- update(mh, . ~ . + gestwks)

Estimate 2.5% 97.5%

(Intercept) -4285.0 -4969.7 -3600.3

hypH -143.7 -259.0 -28.4

gestwks 192.2 174.7 209.8

I The coefficient for hyp: H vs. N is attenuated (from −430.7 to −143.7).

I Does −143.7 estimate the causal effect of hyp adjusted for gestwks?

I No, as gestwks is most likely a mediator. – Much of the effect of hyp on
bweight is mediated via shorter gestwks in hypertensive mothers.

I Instead, for total causal effect of hyp, adjustment for at least age is
needed, but adjusting for gestwks is overadjustment.

I Yet, for predictive modelling it is OK to keep gestwks.
Linear and generalized linear models 11/ 25
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Model with interaction of hyp and gestwks

I mhgi <- lm(bweight ~ hyp + gestwks + hyp:gestwks, ...)

I Or with shorter formula: bweight ~ hyp * gestwks

Estimate 2.5% 97.5%

(Intercept) -3960.8 -4758.0 -3163.6

hypH -1332.7 -2841.0 175.7

gestwks 183.9 163.5 204.4

hypH:gestwks 31.4 -8.3 71.1

I Estimated slope: 183.9 g/wk in reference group N of normotensive mothers and
183.9 + 31.4 = 215.3 g/wk in hypertensive mothers.

⇔ For each additional week the difference in mean bweight between H and N group
increases by 31.4 g.

I Interpretation of Intercept and “main effect” hypH?
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Model with interaction (cont’d)

More interpretable parametrization obtained if gestwks is centered at some
reference value, using e.g. the insulate operator I() for explicit transformation
of an original term.

I mi2 <- lm(bweight ~ hyp*I(gestwks-40), ...)

Estimate 2.5% 97.5%

(Intercept) 3395.6 3347.5 3443.7

hypH -77.3 -219.8 65.3

I(gestwks - 40) 183.9 163.5 204.4

hypH:I(gestwks - 40) 31.4 -8.3 71.1

I The “main effect” of hyp = −77.3 is the difference between H and N

at the reference value gestwks = 40.

I Intercept = 3395.6 is the estimated mean bweight

at the reference value 40 of gestwks in group N.
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Factors and contrasts in R

I A categorical explanatory variable or factor with L levels will be
represented by L− 1 linearly independent columns in the
model matrix of a linear model.

I These columns can be defined in various ways implying alternative
parametrizations for the effect of the factor.

I Parametrization is defined by given type of contrasts.

I Default: treatment contrasts, in which 1st class is the reference, and
regression coefficient βk for class k is interpreted as βk = µk − µ1

I Own parametrization may be tailored by function C(), with the pertinent
contrast matrix as argument.

I Or, use ci.lin(mod, ctr.mat = CM) after fitting.

Linear and generalized linear models 14/ 25
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Two factors: additive effects

I Factor X has 3 levels, Z has 2 levels – Model:

µ = α + β1X1 + β2X2 + β3X3 + γ1Z1 + γ2Z2

I X1 (reference), X2,X3 are the indicators for X ,

I Z1 (reference), Z2 are the indicators for Z .

I Omitting X1 and Z1 the model for mean is:

µ = α + β2X2 + β3X3 + γ2Z2

with predicted means µjk (j = 1, 2, 3; k = 1, 2):

Z = 1 Z = 2
1 µ11 = α µ11 = α + γ2

X 2 µ21 = α + β2 µ22 = α + β2 + γ2
3 µ31 = α + β3 µ32 = α + β3 + γ2
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Two factors with interaction

I Effect of Z differs at different levels of X :
Z = 1 Z = 2

1 µ11 = α µ12 = α + γ2
X 2 µ21 = α + β2 µ22 = α + β2 + γ2 + δ22

3 µ31 = α + β3 µ32 = α + β3 + γ2 + δ32

I How much the effect of Z (level 2 vs. 1)
changes when the level of X is changed from 1 to 3:

δ32 = (µ32 − µ31)− (µ12 − µ11)

= (µ32 − µ12)− (µ31 − µ11),

= how much the effect of X (level 3 vs. 1)
changes when the level of Z is changed from 1 to 2.

I See the exercise: interaction of hyp and gest4.
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Contrasts in R

I All contrasts can be implemented by supplying a suitable contrast function
giving the contrast matrix e.g:

> contr.cum(3) > contr.sum(3)

1 0 0 1 1 0

2 1 0 2 0 1

3 1 1 3 -1 -1

I In model formula factor name faktori can be replaced by expression like
C(faktori, contr.cum).

I Function ci.lin() can calculate CI’s for linear functions of the parameters
of a fitted model mall when supplied by a relevant contrast matrix
> ci.lin(mall, ctr.mat = CM)[ , c(1,5,6)]

→ No need to specify contrasts in model formula!

Linear and generalized linear models 17/ 25
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More about numeric regressors

What if dependence of Y on X is non-linear?

I Categorize the values of X into a factor.

– Continuous effects violently discretized by often arbitrary cutpoints.
This is inefficient.

I Fit a low-degree (e.g. 2 to 4) polynomial of X .

– Tail behaviour may be problematic.

I Use fractional polynomials.

– Invariance problems. Only useful if X = 0 is well-defined.

I Use a spline model: smooth function s(X ; β). – See Martyn’s lecture

– More flexible models that act locally.
– Effect of X reported by graphing ŝ(X ; β) & its CI
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Mean bweigth as 3rd order polynomial of gestwks
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> mp3 <- update( m, . ~ . - gestwks + poly(gestwks, 3) )

I The model is linear in parameters with 4 terms & 4 df.
I Otherwise good, but the tails do not behave well.
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Penalized spline model with cross-validation
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> library(mgcv)
> mpen <- gam( bweight ~ s(gestwks), data = births)

I Looks quite nice.
I Model df ≈ 4.2; close to 4, as in the 3rd degree polynomial model.

Linear and generalized linear models 20/ 25
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From linear to generalized linear models

I An alternative way of fitting our 1st Gaussian model:

> m <- glm(bweight ~ gestwks, family=gaussian, data=births)

I Function glm() fits generalized linear models (GLM).

I Requires specification of the

– family – i.e. the assumed “error” distribution for Yis,
– link function – a transformation of the expected Yi .

I Covers common models for other types of response variables and
distributions, too, e.g. logistic regression for binary responses and
Poisson regression for counts.

I Fitting: method of maximum likelihood.

I Many extractor functions for a glm object similar to those for an lm object.
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Generalized linear models

Modelling how expected values, risks, rates, etc. depend on explanatory variables
or regressors X = (X1, . . . ,Xp). – Common elements:

I Each subject i (i = 1, . . . ,N ) has an own regressor profile, i.e. vector
xT
i = (xi1, . . . , xip) of values of X .

I Let vector βT = (β0, β1, . . . , βp) contain regression coefficients.
The linear predictor is a linear combination of βj s and xij s:

ηi = β0 + β1xi1 + · · ·+ βpxip

I Some Xj s can be product terms for interactions and modifications if
needed, and splines may be used for continuous covariates.

I Further model specification depends on the type of outcome variable,
assumed error distribution or family, desired interpretation of coefficients,
and importance and choice of time scale(s).
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Binary regression and interpretations of coefficients

I Basic model for risks π(xi) = P{Yi = 1|X = xi} = E (Yi |X = xi) with
fixed risk period, complete follow-up (no censoring, nor competing events):

g{π(xi)} = β0 + β1xi1 + . . . βpxip , i = 1, . . . ,N .

I Link g(·) and interpretation of βj s, assuming the validity of model
(including homogeneity or non-modification of the coefficent in question):

– id ⇒ βj = adjusted risk difference (RD) for Xj = 1 vs. Xj = 0,
– log ⇒ βj = adjusted log of risk ratio (RR) – ” –
– logit ⇒ βj = adjusted log of odds ratio (OR), – ” –

I Fitting: glm(..., family=binomial(link=...), ...)

I Issues with id & log links in keeping predicted π̂(·) between 0 and 1.
– A solution for RR: Doubling the cases & logit-link! (Ning et al. 2022).
– A solution for RD exists, too (Battey et al. 2019).
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Poisson regression – model for rates

I A common outcome variable is a pair (D ,Y ) = (no. of cases, person-time),
from which the incidence rate = D/Y (see Janne’s lecture on Friday).

I Poisson regression model specifies, how theoretical rates or hazards
λ(xi) are assumed to depend on values of X .

I Some components of X represent the relevant time scales
(as in the exercise of today; more details in Bendix’s lecture on Monday).

I Linear predictor as above – Link g(·) and interpretation of βj s:

– id ⇒ βj = adjusted rate difference (RD) for Xj = 1 vs. Xj = 0,
– log ⇒ βj = adjusted log of rate ratio (RR) – ” –

I Fitting – our recommended approach using Epi:

glm(cbind(d,y) ~ ..., family=poisreg(link=...),...)
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What was covered

I A wide range of models from simple linear regression to splines.

I Gaussian family for continuous outcomes, binomial for binary outcomes, and
Poisson family for rates.

I Various link functions for different parametrizations.

I R functions fitting linear and generalized models: lm() and glm().

I Parametrization of categorical explanatory factors; contrast matrices.

I Extracting results and predictions: ci.lin(), fitted(), predict().

I Model diagnostics: resid(), plot.lm(), ... .

Linear and generalized linear models 25/ 25
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Introduction to causal inference

Krista Fischer

Institute of Mathematics and Statistics, University of Tartu
Institute of Genomics, University of Tartu

Estonian Academy of Sciences

Statistical Practice in Epidemiology, Tartu 2023
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How to define a causal effect?

Causal graphs, confounding and adjustment

Causal models for observational data
Instrumental variables estimation

Summary and references
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Statistical associations vs causal effects in epidemiology

Does the exposure (smoking level, obesity, etc) have a causal effect on the outcome
(blood pressure, cancer diagnosis, mortality, etc)?

is not the same question as

Is the exposure associated with the outcome?

Conventional statistical analysis will answer the second one, but not necessarily the first.

3 / 30
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Example

Does coffee-drinking prolong life?
(so drastically???)

4 / 30
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Example (cont.)

Does coffee-drinking prolong life?
Or: do coffee-drinkers live longer (for several reasons)?

5 / 30
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How to define causal effects (properly)?
I One can think of some basic guidelines (sometimes called as “criteria”) that must be

satisfied for causal effect to be identifiable.
I Such principles may include temporality (cause preceding the outcome), consistency

(reproducibility), monotonicity (dose-response), plausibility (e.g. biologically), etc.
(Bradford Hill’s guidelines)

I However, although such general guidelines are useful, they are often not sufficient to
establish causality

6 / 30
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Causal effects and counterfactuals
I To define causal effects more properly, counterfactual (what-if) thinking is useful.
I Mathematically, the individual causal effect can be defined as the difference

Y 1 − Y 0,

where Y 1 = Y (X = 1) and Y 0 = Y (X = 0) are defined as individual’s potential
(counterfactual) outcomes if this individual’s exposure level X were set to 1 or 0,
respectively.

I Example: Y 1 individual’s blood pressure, if he/she were a smoker; Y 0 individual’s
blood pressure, if he/she were a nonsmoker;

I For a particular individual, either Y 1 or Y 0 can be observed at any moment.

7 / 30
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The “naïve” association analysis
I With a binary exposure X , compare average outcomes in exposed and unexposed populations:

E(Y |X = 1)− E(Y |X = 0)

Is cancer incidence different in smokers and nonsmokers?
I But mostly:

E(Y |X = 1) 6= E(Y 1)

Cancer risk in smokers is not the same as the potential cancer risk in the population if everyone
were smoking

I Similarly:
E(Y |X = 0) 6= E(Y 0)

I In most cases there is always some unobserved confounding present and therefore the naïve
analysis does not provide causal effect estimates.

8 / 30
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Potential outcomes (counterfactuals) in different settings
I Randomized trials: probably the easiest setting to imagine Y X for different X .

I “Actionable” exposures: smoking level, vegetable consumption, . . . – potential
interventions may alter exposure levels in future.

I Non-actionable exposures: e.g genotypes. It is difficult to ask “What if I had different
genes?”. Still useful concept to formalize genetic effects (heritability, attributable risk).

I Combinations: With X– a behavioral intervention level, Z–smoking level and Y–a
disease outcome, one could formalize the effect of intervention on outcome by using
Y X ,Z (X)

9 / 30
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A causal model in terms of potential outcomes
I More generally Y x is defined as the potential outcome following the exposure level

X = x
I A linear causal model can be specified as

Y x
i − Y 0

i = xβ1 + εi , with E(εi |x) = 0

I Note that the observed outcome Yi = Y x
i for individuals with Xi = x .

I The model could be generalized to include nonlinear terms or interactions with other
covariates, or as a generalized linear model (logistic regression, survival model).

I However, as we don’t observe Y 0 and Y x (with x > 0) for the same individuals at the
same time, thus it is not straightforward to actually fit the model on data.

10 / 30
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Statistical model vs causal model
I More generally Y x is defined as the potential outcome following the exposure level

X = x
I A linear causal model can be specified as

Y x
i − Y 0

i = xβ1 + εi , with E(εi |x) = 0

I Note that the observed outcome Yi = Y x
i for individuals with Xi = x .

I A classical linear regression model:

Yi = β0 + Xiβ1 + εi , with E(εi |Xi) = 0

or
E(Yi |Xi) = β0 + Xiβ1.

I When are the two equivalent?

11 / 30
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Statistical model vs causal model
I Rewrite the linear causal model as

Y x
i = Y 0

i + xβ1 + εi , with E(εi |x) = 0

I Note that this would be equivalent with the classical linear model, if

E(Y 0
i + εi |Xi) = β0,

thus when the potential exposure-free outcome Y 0 is not associated with the
exposure X

I For instance, this would mean that in the absence of smoking, the cancer risk for
current smokers and current nonsmokers would be the same (E(Y |X = 0) = E(Y 0)).

I In other words, the two models are equivalent in the absence of confounding.

12 / 30
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Classical/generalized regression estimates vs causal effects?
I In the presence of confounding, regression analysis provides a biased estimate for

the true causal effect
I To reduce such bias, one needs to collect data on most important confounders and

adjust for them
I However, too much adjustment may actually introduce more biases
I Causal graphs (Directed Acyclic Graphs, DAGs) may be extremly helpful in identifying

the optimal set of adjustment variables

13 / 30
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DAGs: directed acyclic graphs
I A Directed Acyclic Graph (DAG) is a graphical representation of the causal

association structure in the data, where variables are presented as nodes (points)
and the associations are presented as edges (lines, arrows);

I Thus an arrow pointing from variable X to a variable Y on such graph represents a
causal effect of X on Y .
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“Classical” confounding
Third factors Z influence both, X and Y

Also called as backdoor path between X and Y .
Implied statistical associations (Y is not independent of X in general, but it is independent of X ,
conditional on Z ):

X 6⊥⊥ Y X ⊥⊥ Y |Z
X and Y are independent, conditional on Z , but marginally dependent.

15 / 30
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“Classical” confounding, mathematically

Assume:

X = b0x+bzxZ+εx , E(εx |Z ) = 0

Y = b0y+bzy Z+εy , E(εy |Z ,X ) = 0.

Now: E(Y |X ) = b0y + bzy E(Z |X ).

If bzx 6= 0, then also rzx 6= 0 and so

E(Z |X ) = b0z + bxzX , where bxz 6= 0

. We see that:

E(Y |X ) = b∗
0y + bxzbzy X .

One should adjust the analysis for Z , by
fitting a regression model for Y with
covariates X and Z . There is a causal effect
between X and Y , if the effect of X is
present in such model.

16 / 30
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Example: COVID vaccination and Simpson’s paradox

Suppose there are COVID infections in:
I 3000 unvaccinated individuals, 90 needing hospitalizations
I 1000 vaccinated individuals, 30 needing hospitalizations

No effect of vaccination?

More detailed data:

age vaccination total hospitalized % hospitalized
≥ 60 no 100 24 24%

yes 300 24 8%
< 60 no 2900 66 2.3%

yes 700 6 0.9%
all ages no 3000 90 3%

yes 1000 30 3%

Age is a confounder here!
17 / 30
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COVID vaccination and Simpson’s paradox
Real data from Estonia (August 2021):

age vaccination total hospitalized % hospitalized
≥ 60 no 186 50 26.9%

yes 202 16 7.9%
< 60 no 3075 57 1.9%

yes 666 5 0.8%
all ages no 3261 107 3.3%

yes 868 21 2.4%

18 / 30
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Causal chain (mediation, front-door path):
The effect of X on Y is mediated by Z:

Y = β0 + βxy X + βzy Z + ε,

I Don’t adjust for Z , if you are interested in the total effect of X on Y
I Do adjust for Z , if you are interested in the direct effect of X on Y
I Adjusted analysis is valid only when the Z -Y association is unconfounded!

19 / 30
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The case of a collider: adjustment is sometimes wrong!
X and Y have an effect on Z:

Z = β0 + βxzX + βyzY + ε, with βxz 6= 0 and βyz 6= 0

hence, there exist parameters βxy 6= 0 and βzy 6= 0, so that:
Y = β∗

0 + βxy X + βzy Z + ε∗.

X ⊥⊥ Y X 6⊥⊥ Y |Z

We see the association between X and Y only when the “effect” of Z has been taken into
account.
But this is NOT a causal effect of X on Y .

One should NOT adjust the analysis for Z !
20 / 30
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Selection bias: a special (but common) case of collider bias
I All analysis are done conditional on the selected sample
I However, selection itself might be a collider (Griffith et al. 2020,

https://www.nature.com/articles/s41467-020-19478-2 )
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Actually there might be a complicated system of causal effects:
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C-smoking; D-cancer
Q, S, U, W, X, Y, Z - other factors that influence cancer risks and/or smoking (genes, social
background, nutrition, environment, personality, . . . )
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What to do in complicated cases?
1. Sketch a causal graph
2. Identify all paths between the exposure and outcome (ways to go from X to Y

regardless of the direction of the arrows).
3. Identify the closed paths that include colliders and open paths that don’t.
4. You need to select adjustment variables that block all open paths.
5. Don’t adjust for colliders (as they would open the closed paths)!
6. If you are looking for the total effects, you don’t need to block the directed paths (that

follow the directions of the arrows).
7. Often, there are unobserved confounders!

R package dagitty is useful for such tasks.

24 / 30
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Example: mediation with confounding

X Y

Z
W

?

Paths: X → Z → Y (open) and X → Z ←W → Y (closed).

I The total effect of X on Y is estimable without any adjustment.
I For direct effect you need to adjust for Z , but that would open the closed path – to

block that, you also need to adjust for W .
I If W is an unobserved confounder, direct effect of X on Y cannot be estimated.

25 / 30
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Instrumental variables estimation

Instrumental variables estimation: the idea
A DAG with the exposure X , outcome Y , confounder U and an instrument Z :

Assuming:
Y = αy + βX + γU + ε, E(ε|X ,U) = 0,

simple regression will estimate:

E(Y |X ) = αy + βX + γE(U|X ).

Thus the coefficient of X will be a biased estimate of β (as it also depends on γ).
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Instrumental variables estimation

Instrumental variables estimation: the idea

A variable Z is an instrument for the path
X → Y , if:

1. Z has a direct causal effect on X
2. Z does not have any direct or indirect

causal effect on Y or the confounders U.

I It can be shown that the causal
effect of X on Y equals:

β =
cov(Z ,Y )

cov(Z ,X )
=
βZY

βZX
,

where βZY and βZX are the
coefficients of Z in a simple linear
regression models for Y and X
(with covariate Z ).

I Replacing βZY and βZX by their
estimates, we get the
instrumental variables (IV)
estimate of β.
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Instrumental variables estimation

28 / 30
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Summary
I There is no unique definition of “the causal effect”
I The validity of any causal effect estimates depends on the validity of the underlying

assumptions.
I Adjustment for other available variables may remove (some) confounding, but it may

also create more confounding. Do not adjust for variables that may themselves be
affected by the outcome.

I Instrumental variables approaches can be helpful, but beware of assumptions!
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Some references
I A webpage and a free online book by Miguel Hernan and Jamie Robins:

http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
I Judea Pearl, “The Book of Why”
I Mendelian randomization: Sheehan, N., Didelez, V., et al., Mendelian Randomization

and Causal Inference in Observational Epidemiology, PLoS Med. 2008; papers by
G.D. Smith, J. Bowden, S. Burgess and others.
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Graphics Systems in R

R has several different graphics systems:
▶ Base graphics (the graphics package)
▶ Lattice graphics (the lattice package)
▶ Grid graphics (the grid package)
▶ Grammar of graphics (the ggplot2 package)

Why so many? Which one to use?

3 / 22
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Base Graphics

▶ The oldest graphics system in R.
▶ Based on S graphics (Becker, Chambers and Wilks, The

New S Language, 1988)
▶ Implemented in the base package graphics

▶ Loaded automatically so always available
▶ Ink on paper model; once something is drawn “the ink is

dry” and it cannot be erased or modified.
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Grid Graphics

▶ A complete rewrite of the graphics system of R,
independent of base graphics.

▶ Programming with graphics:
▶ Grid graphics commands create graphical objects (Grobs)
▶ Printing a Grob displays it on a graphics device
▶ Functions can act on grobs to modify or combine them

▶ Implemented in the base package grid, and extended by
CRAN packages gridExtra, gridDebug, ...

▶ Described by the package author Paul Murrell in the book
R Graphics (2nd edition), 2011.
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Grammar of Graphics

▶ Originally described by Leland Wilkinson in the book The
Grammar of Graphics, 1999 and implemented in the
statistical software nViZn (part of SPSS)

▶ Statistical graphics, like natural languages, can be broken
down into components that must be combined according to
certain rules.

▶ Provides a pattern language for graphics:
▶ geometries, statistics, scales, coordinate systems,

aesthetics, themes, ...
▶ Implemented in R in the CRAN package ggplot2

▶ Described more fully by the ggplot2 package author
Hadley Wickham in the book ggplot2: Elegant Graphics for
Data Analysis, 2009.
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Putting It All Together

▶ Base graphics are the default, and are used almost
exclusively in this course

▶ grid provides alternate low-level graphics functions.
▶ Experts only

▶ ggplot2 is an alternate, high-level graphics package built
on grid.

▶ All graphics packages take time to learn...

7 / 22
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Graphics Devices

Graphics devices are used by all graphics systems.
▶ Plotting commands will draw on the current graphics device
▶ The default graphics device is a window on your screen:

In RStudio RStudioGD()
On Windows windows()
On Unix/Linux x11()
On Mac OS X quartz()
It normally opens up automatically when you need it.

▶ You can have several graphics devices open at the same
time (but only one is current)
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Graphics Device in RStudio

RStudio has its own graphics device RStudioGD built into the
graphical user interface
▶ You can see the contents in a temporary, larger window by

clicking the zoom button.
▶ You can write the contents directly to a file with the export

menu
▶ Sometimes the small size of the RStudioGD device causes

problems. Open up a new device calling RStudioGD().
This will appear in its own window, free from the GUI.
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Writing Graphs to Files

There are also non-interactive graphics devices that write to a
file instead of the screen.

pdf produces Portable Document Format files
win.metafile produces Windows metafiles that can be

included in Microsoft Office documents (windows
only)

postscript produces postscript files
png, bmp, jpeg all produce bitmap graphics files

▶ Turn off a graphics device with dev.off(). Particularly
important for non-interactive devices.

▶ Plots may look different in different devices

10 / 22
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Types of Plotting Functions

▶ High level
▶ Create a new page of plots with reasonable default

appearance.
▶ Low level

▶ Draw elements of a plot on an existing page:
▶ Draw title, subtitle, axes, legend . . .
▶ Add points, lines, text, math expressions . . .

▶ Interactive
▶ Querying mouse position (locator), highlighting points

(identify)
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Base x-y Plots

▶ The plot function with one or two numeric arguments
▶ Scatterplot or line plot (or both) depending on type

argument: "l" for lines, "p" for points (the default), "b"
for both, plus quite a few more

▶ Also: formula interface, plot(y~x), with arguments
similar to the modeling functions like lm

12 / 22
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Customizing Plots in Base

▶ Most plotting functions take optional parameters to change
the appearance of the plot
▶ e.g., xlab, ylab to add informative axis labels

▶ Most of these parameters can be supplied to the par()
function, which changes the default behaviour of
subsequent plotting functions

▶ Look them up via help(par)! Here are some of the more
commonly used:
▶ Point and line characteristics: pch, col, lty, lwd
▶ Multiframe layout: mfrow, mfcol
▶ Axes: xlim, ylim, xaxt, yaxt, log

13 / 22
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Adding to Plots in Base

▶ title() add a title above the plot
▶ points(), lines() adds points and (poly-)lines
▶ text() text strings at given coordinates
▶ abline() line given by coefficients (a and b) or by fitted

linear model
▶ axis() adds an axis to one edge of the plot region.

Allows some options not otherwise available.
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Strategy for Customization of Base Graphics

▶ Start with default plots
▶ Modify parameters (using par() settings or plotting

arguments)
▶ Add more graphics elements. Notice that there are

graphics parameters that turn things off, e.g. plot(x, y,
xaxt="n") so that you can add completely customized
axes with the axis function.

▶ Put all your plotting commands in a script or inside a
function so you can start again
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Demo 1

library(ISwR)
par(mfrow=c(2,2))
matplot(intake)
matplot(t(intake))
matplot(t(intake),type="b")
matplot(t(intake),type="b",pch=1:11,col="black",

lty="solid", xaxt="n")
axis(1,at=1:2,labels=names(intake))

16 / 22

Overview of graphics systems Device handling Base graphics Grid graphics

Margins
▶ R sometimes seems to leave too much empty space

around plots (especially in multi-frame layouts).
▶ There is a good reason for it: You might want to put

something there (titles, axes).
▶ This is controlled by the mar parameter. By default, it is

c(5,4,4,2)+0.1
▶ The units are lines of text, so depend on the setting of

pointsize and cex
▶ The sides are indexed in clockwise order, starting at the

bottom (1=bottom, 2=left, 3=top, 4=right)
▶ The mtext function is designed to write in the margins of

the plot
▶ There is also an outer margin settable via the oma

parameter. Useful for adding overall titles etc. to
multiframe plots
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Demo 2

x <- runif(50,0,2)
y <- runif(50,0,2)
plot(x, y, main="Main title", sub="subtitle",

xlab="x-label", ylab="y-label")
text(0.6,0.6,"text at (0.6,0.6)")
abline(h=.6,v=.6)
for (side in 1:4)

mtext(-1:4,side=side,at=.7,line=-1:4)
mtext(paste("side",1:4), side=1:4, line=-1,font=2)
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A Few Words on Grid Graphics

▶ Experts only, but . . .
▶ Recall that ggplot2 uses grid
▶ The key concepts you need are grobs and viewports

20 / 22
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Grobs: Graphical Objects

▶ Grobs are created by plotting functions in grid, and
ggplot2

▶ Grobs are only displayed when they are printed
▶ Grobs can be modified or combined before being displayed
▶ The ggplot2 package uses the + operator to combine

grobs representing different elements of the plot
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Viewports

▶ The plotting region is divided into viewports
▶ Grobs are displayed inside a viewport

▶ Viewports can be different sizes (inches, centimetres, lines
of text, or relative units)

▶ Each viewport may have its own coordinate systems

22 / 22
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Points to be covered

1. Survival or time to event data & censoring.

2. Competing risks: event-specific cumulative incidences & hazards.

3. Kaplan–Meier and Aalen–Johansen estimators.

4. Regression modelling of hazards: Cox model.

5. Packages survival, mstate, Epi,(cmprisk).

6. Functions Surv(), survfit(), plot.survfit(), coxph().

2 / 29

Survival time – time to event

Time spent (lex.dur) in a given state (lex.Cst) from its beginning till a
certain endpoint or outcome event (lex.Xst) or transition occurs, changing the
state to another.

Examples of such times and outcome events:

▶ lifetime: birth → death,

▶ duration of marriage: wedding → divorce,

▶ healthy exposure time:
start of exposure → onset of disease,

▶ clinical survival time:
diagnosis of a disease → death.
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Ex. Survival of 338 oral cancer patients

Important variables:

▶ time = duration of patientship from
diagnosis (entry) till death (death) or censoring (Alive), (lex.Cst is
(Alive))

▶ event = indicator for the outcome and its
observation at the end of follow-up (exit):
0 = censoring,
1 = death from oral cancer

Special features:

▶ Two possible endpoints

▶ Censoring – incomplete observation of the survival time.

4 / 29

Set-up of classical survival analysis

▶ Two-state model: only one type of event changes the initial state.

▶ Major applications: analysis of lifetimes since birth and of survival times
since diagnosis of a disease until death from any cause.

Alive Dead
(lex.Xst = 1 or 2)

-Transition

▶ Censoring: Death and final lifetime not observed for some subjects due to
emigration or closing the follow-up while they are still alive
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Distribution concepts: hazard function

The hazard rate or intensity function λ(t)

λ(t) = P(t < T ≤ t +∆|T > t)/∆, forsmall∆

≈ the conditional probability that the event occurs in a short interval
(t, t +∆], given that it does not occur before t, divided by interval length.

In other words, during a short interval

risk of event ≈ hazard × interval length
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Distribution concepts: survival and cumulative hazard functions

Survival function
S(t) = P(T > t),

= probability of avoiding the event at least up to t (the event occurs only after t).

The cumulative hazard (or integrated intensity):

Λ(t) =

∫ t

0
λ(u)du

Connections between the functions:

S(t) = exp{−Λ(t)}
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Observed data on survival times

For individuals i = 1, . . . , n let
Ti = time to outcome event,
Ui = time to censoring.

Censoring is assumed noninformative, i.e.
independent from occurrence of events.
We observe

yi = min{Ti ,Ui}, i.e. the exit time, and

δi = 1{Ti<Ui}, indicator (1/0) for the outcome event occurring first, before
censoring.

Censoring must properly be taken into account in the statistical analysis.

8 / 29

Approaches for analysing survival time

▶ Parametric model (like Weibull, gamma, etc.) on hazard rate λ(t) →
Likelihood:

L =
n∏

i=1

λ(yi)
δiS(yi)

▶ Piecewise constant rate model on λ(t)
– see Bendix’s lecture on time-splitting (Poisson likelihood).

▶ Non-parametric methods, like
Kaplan–Meier (KM) estimator of survival curve S(t) and Cox proportional
hazards model on λ(t).

9 / 29
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R package survival
Tools for analysis with one outcome event.

▶ Surv(time, event) -> sobj

creates a survival object sobj assuming that all start at 0, containing pairs (yi , δi ),

▶ Surv(entry, exit, event) -> sobj2

creates a survival object from entry and exit times,

▶ survfit(sobj ~ x) -> sfo

creates a survfit object sfo containing KM or other non-parametric estimates (also from
a fitted Cox model),

▶ plot(sfo), plotCIF(sobj)

plot method for survival curves and related graphs,

▶ coxph(sobj ~ x1 + x2)

fits a Cox model with covariates x1 and x2.

▶ survreg() – parametric survival models.

10 / 29

Ex. Oral cancer data (cont’d)
> orca$suob <- Surv(orca$time, 1*(orca$event > 0) )

> orca$suob[1:7] # + indicates censored observation

[1] 5.081+ 0.419 7.915 2.480 2.500 0.167 5.925+

> km1 <- survfit( suob ~ 1, data = orca)

> km1 # brief summary

Call: survfit(formula = suob ~ 1, data = orca)

n events median 0.95LCL 0.95UCL

[1,] 338 229 5.42 4.33 6.92

> summary(km1) # detailed KM-estimate

Call: survfit(formula = suob ~ 1, data = orca)

time n.risk n.event survival std.err lower 95% CI upper 95% CI

0.085 338 2 0.9941 0.00417 0.9859 1.000

0.162 336 2 0.9882 0.00588 0.9767 1.000

0.167 334 4 0.9763 0.00827 0.9603 0.993

0.170 330 2 0.9704 0.00922 0.9525 0.989

0.246 328 1 0.9675 0.00965 0.9487 0.987

0.249 327 1 0.9645 0.01007 0.9450 0.984

0.252 326 3 0.9556 0.01120 0.9339 0.978

0.329 323 1 0.9527 0.01155 0.9303 0.976

0.334 322 1 0.9497 0.01189 0.9267 0.973

0.413 321 1 0.9467 0.01221 0.9231 0.971

0.419 320 6 0.9290 0.01397 0.9020 0.957

0.496 314 2 0.9231 0.01449 0.8951 0.952

0.498 312 2 0.9172 0.01499 0.8882 0.947

0.504 310 1 0.9142 0.01523 0.8848 0.945

0.580 309 1 0.9112 0.01547 0.8814 0.942

0.583 308 1 0.9083 0.01570 0.8780 0.940

0.586 307 1 0.9053 0.01592 0.8746 0.937

0.589 306 1 0.9024 0.01614 0.8713 0.935

0.665 305 3 0.8935 0.01678 0.8612 0.927

0.668 302 3 0.8846 0.01738 0.8512 0.919

0.671 299 3 0.8757 0.01794 0.8413 0.912

0.747 296 3 0.8669 0.01848 0.8314 0.904

0.750 293 1 0.8639 0.01865 0.8281 0.901

0.756 292 1 0.8609 0.01882 0.8248 0.899

0.830 291 2 0.8550 0.01915 0.8183 0.893

0.832 289 3 0.8462 0.01962 0.8086 0.886

0.914 286 5 0.8314 0.02037 0.7924 0.872

0.917 281 4 0.8195 0.02092 0.7795 0.862

0.999 277 3 0.8107 0.02131 0.7699 0.854

1.081 274 4 0.7988 0.02181 0.7572 0.843

1.084 270 7 0.7781 0.02260 0.7350 0.824

1.087 263 1 0.7751 0.02271 0.7319 0.821

1.166 262 4 0.7633 0.02312 0.7193 0.810

1.169 258 1 0.7604 0.02322 0.7162 0.807

1.251 257 2 0.7544 0.02341 0.7099 0.802

1.333 254 2 0.7485 0.02360 0.7036 0.796

1.336 252 1 0.7455 0.02369 0.7005 0.793

1.339 251 1 0.7426 0.02378 0.6974 0.791

1.413 250 2 0.7366 0.02396 0.6911 0.785

1.418 248 5 0.7218 0.02438 0.6755 0.771

1.421 243 1 0.7188 0.02446 0.6724 0.768

1.503 242 1 0.7158 0.02454 0.6693 0.766

1.580 241 1 0.7129 0.02462 0.6662 0.763

1.582 240 1 0.7099 0.02469 0.6631 0.760

1.665 239 1 0.7069 0.02477 0.6600 0.757

1.667 238 1 0.7039 0.02484 0.6569 0.754

1.747 237 1 0.7010 0.02491 0.6538 0.752

1.834 235 1 0.6980 0.02499 0.6507 0.749

1.916 233 1 0.6950 0.02506 0.6476 0.746

1.999 231 2 0.6890 0.02520 0.6413 0.740

2.067 229 1 0.6860 0.02527 0.6382 0.737

2.084 228 1 0.6830 0.02534 0.6351 0.734

2.166 227 1 0.6800 0.02540 0.6319 0.732

2.168 226 1 0.6769 0.02547 0.6288 0.729

2.171 225 1 0.6739 0.02553 0.6257 0.726

2.330 224 1 0.6709 0.02559 0.6226 0.723

2.412 222 1 0.6679 0.02566 0.6195 0.720

2.415 221 1 0.6649 0.02572 0.6163 0.717

2.420 220 1 0.6619 0.02578 0.6132 0.714

2.480 219 1 0.6588 0.02584 0.6101 0.711

2.500 218 2 0.6528 0.02595 0.6039 0.706

2.661 214 1 0.6497 0.02601 0.6007 0.703

2.664 213 2 0.6436 0.02612 0.5944 0.697

2.746 211 1 0.6406 0.02617 0.5913 0.694

2.752 210 1 0.6375 0.02623 0.5882 0.691

2.831 207 1 0.6345 0.02628 0.5850 0.688

2.834 206 1 0.6314 0.02633 0.5818 0.685

2.916 202 1 0.6283 0.02639 0.5786 0.682

2.998 200 1 0.6251 0.02644 0.5754 0.679

3.001 199 3 0.6157 0.02660 0.5657 0.670

3.083 196 1 0.6125 0.02665 0.5625 0.667

3.168 194 2 0.6062 0.02674 0.5560 0.661

3.250 189 1 0.6030 0.02679 0.5527 0.658

3.253 188 1 0.5998 0.02684 0.5495 0.655

3.329 186 1 0.5966 0.02689 0.5462 0.652

3.335 185 1 0.5934 0.02694 0.5429 0.649

3.502 181 1 0.5901 0.02699 0.5395 0.645

3.581 180 1 0.5868 0.02704 0.5361 0.642

3.587 179 2 0.5803 0.02713 0.5294 0.636

3.666 177 2 0.5737 0.02721 0.5228 0.630

3.669 175 1 0.5704 0.02726 0.5194 0.626

3.833 173 2 0.5638 0.02734 0.5127 0.620

3.915 168 1 0.5605 0.02738 0.5093 0.617

4.170 166 1 0.5571 0.02742 0.5059 0.614

4.244 163 1 0.5537 0.02747 0.5024 0.610

4.331 161 1 0.5502 0.02751 0.4989 0.607

4.580 156 1 0.5467 0.02756 0.4953 0.603

4.589 155 1 0.5432 0.02761 0.4917 0.600

4.668 154 2 0.5361 0.02769 0.4845 0.593

4.816 151 1 0.5326 0.02774 0.4809 0.590

4.838 150 1 0.5290 0.02778 0.4773 0.586

4.914 149 1 0.5255 0.02782 0.4737 0.583

4.917 148 1 0.5219 0.02786 0.4701 0.579

4.920 147 1 0.5184 0.02789 0.4665 0.576

4.923 146 1 0.5148 0.02793 0.4629 0.573

5.079 145 1 0.5113 0.02796 0.4593 0.569

5.164 143 1 0.5077 0.02799 0.4557 0.566

5.246 138 1 0.5040 0.02803 0.4520 0.562

5.248 137 1 0.5003 0.02806 0.4483 0.558

5.418 132 2 0.4928 0.02815 0.4406 0.551

5.503 130 1 0.4890 0.02818 0.4367 0.547

5.580 129 1 0.4852 0.02822 0.4329 0.544

5.585 128 1 0.4814 0.02825 0.4291 0.540

5.832 123 1 0.4775 0.02829 0.4251 0.536

5.834 122 1 0.4736 0.02833 0.4212 0.532

5.837 121 1 0.4696 0.02836 0.4172 0.529

5.916 120 1 0.4657 0.02840 0.4133 0.525

6.007 118 1 0.4618 0.02843 0.4093 0.521

6.166 117 1 0.4578 0.02846 0.4053 0.517

6.253 115 1 0.4539 0.02849 0.4013 0.513

6.587 112 1 0.4498 0.02852 0.3972 0.509

6.749 109 1 0.4457 0.02856 0.3931 0.505

6.913 108 1 0.4416 0.02859 0.3889 0.501

6.916 107 1 0.4374 0.02862 0.3848 0.497

6.998 106 1 0.4333 0.02864 0.3806 0.493

7.001 105 1 0.4292 0.02867 0.3765 0.489

7.329 102 1 0.4250 0.02869 0.3723 0.485

7.414 99 1 0.4207 0.02872 0.3680 0.481

7.748 95 2 0.4118 0.02879 0.3591 0.472

7.915 92 2 0.4029 0.02885 0.3501 0.464

7.918 90 1 0.3984 0.02888 0.3456 0.459

7.984 89 1 0.3939 0.02890 0.3412 0.455

8.167 88 1 0.3894 0.02891 0.3367 0.450

9.081 80 2 0.3797 0.02900 0.3269 0.441

9.084 78 1 0.3748 0.02903 0.3220 0.436

9.585 74 1 0.3698 0.02908 0.3169 0.431

9.648 73 1 0.3647 0.02912 0.3119 0.426

9.832 72 1 0.3596 0.02915 0.3068 0.422

9.900 70 1 0.3545 0.02918 0.3017 0.417

9.919 69 1 0.3494 0.02921 0.2966 0.412

10.081 66 1 0.3441 0.02924 0.2913 0.406

10.420 63 1 0.3386 0.02928 0.2858 0.401

10.502 62 1 0.3331 0.02932 0.2804 0.396

10.563 61 1 0.3277 0.02934 0.2749 0.391

10.919 60 1 0.3222 0.02936 0.2695 0.385

11.499 58 1 0.3167 0.02937 0.2640 0.380

11.581 57 1 0.3111 0.02938 0.2585 0.374

11.671 56 1 0.3056 0.02937 0.2531 0.369

11.748 54 1 0.2999 0.02937 0.2475 0.363

11.901 52 1 0.2941 0.02936 0.2419 0.358

13.081 44 1 0.2874 0.02945 0.2352 0.351

13.166 43 1 0.2808 0.02951 0.2285 0.345

13.333 42 1 0.2741 0.02956 0.2219 0.339

13.336 41 2 0.2607 0.02959 0.2087 0.326

13.585 39 1 0.2540 0.02958 0.2022 0.319

13.673 38 1 0.2473 0.02954 0.1957 0.313

13.755 37 1 0.2407 0.02949 0.1893 0.306

14.007 35 1 0.2338 0.02944 0.1826 0.299

14.067 34 1 0.2269 0.02937 0.1761 0.292

14.166 33 1 0.2200 0.02927 0.1695 0.286

15.091 26 1 0.2116 0.02934 0.1612 0.278

15.316 23 1 0.2024 0.02947 0.1521 0.269

15.581 22 1 0.1932 0.02953 0.1431 0.261

15.833 21 1 0.1840 0.02952 0.1343 0.252

16.580 17 1 0.1731 0.02970 0.1237 0.242

16.999 13 1 0.1598 0.03026 0.1103 0.232

17.916 10 1 0.1438 0.03117 0.0941 0.220

19.671 6 1 0.1199 0.03397 0.0688 0.209

19.833 5 1 0.0959 0.03461 0.0473 0.195

22.007 2 1 0.0479 0.03807 0.0101 0.227
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Oral cancer: Kaplan-Meier estimates
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Competing risks model: causes of death
▶ Often the interest is focused on the risk or hazard of dying from one specific

cause.

▶ That cause may eventually not be realized, because a competing cause of
death hits first.

(lex.Cst = 0)
Alive

(lex.Xst = 0)

Dead from cancer
(lex.Xst = 1)

Dead, other causes

������1

(lex.Xst = 2)

PPPPPPq

λ1(t)

λ2(t)

▶ Generalizes to several competing causes.
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Competing events & competing risks

In many epidemiological and clinical contexts there are competing events that
may occur before the target event and remove the person from the population at
risk for the event, e.g.

▶ target event: occurrence of endometrial cancer, competing events:
hysterectomy or death.

▶ target event: relapse of a disease (ending the state of remission),
competing event: death while still in remission.

▶ target event: divorce,
competing event: death of either spouse.

14 / 29

Event-specific quantities

Cumulative incidence function (CIF) or

Fc(t) = P(T ≤ t and C = c), c = 1, 2,

From these one can recover

▶ F (t) =
∑

c Fc(t), CDF of event-free survival time T , i.e. cumulative risk of
any event by t.

▶ S(t) = 1− F (t), event-free survival function, i.e. probability of avoiding
all events by t, but S(t) ̸= F1(t) + F2(t)
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Event-specific quantities (cont’d)

Event- or cause-specific hazard function

λc(t) = lim
∆→0

P(t < T ≤ t +∆ and C = c | T > t)

∆

=
fc(t)

1− F (t)

CIF = risk of event c over risk period [0, t] in the presence of competing risks,
also obtained

Fc(t) =

∫ t

0

λc(v)S(v)dv , c = 1, 2,

More on the technical definitions of relevant quantities:
http://bendixcarstensen.com/AdvCoh/papers/fundamentals.pdf
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Warning of“net risk”and“cause-specific survival”

▶ The“net risk”of outcome c by time t, assuming hypothetical elimination of
competing risks, is often defined as

F ∗
1 (t) = 1− S∗

1 (t) = 1− exp{−Λ1(t)} ≠ S(t)

▶ In clinical survival studies, function S∗
1 (t) is often called“cause-specific

survival”, or“net survival”

▶ Yet, these *-functions, F ∗
1 (t) and S∗

1 (t), lack proper probability
interpretation when competing risks exist.

▶ Hence, their use should be viewed critically (Andersen & Keiding, Stat Med,
2012)
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Analysis with competing events

Let Ui = censoring time, Ti = time to first event, and
Ci = variable for event 1 or 2. We observe

▶ yi = min{Ti ,Ui}, i.e. the exit time, and

▶ δic = 1{Ti<Ui & Ci=c}, indicator (1/0) for
event c being first observed, c = 1, 2.

Non-parametric estimation of CIF

▶ Let t1 < t2 < · · · < tK be the K distinct time points at which any outcome
event was observed,
Let also S̃(t) be KM estimator for overall S(t).

▶ Aalen-Johansen estimator (AJ) for the cumulative incidence function
F (t) should be used

18 / 29
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R tools for competing risks analysis

▶ survfit( Surv(...,type="mstate") ) in Survival-package can be fitted
for any transition of a multistate model and to obtain A-J estimates.

▶ Package cmprsk – cuminc(ftime, fstatus, ...) computes
CIF-estimates, and can be compared in more than two samples.
plot.cuminc() plots them.

▶ Package Epi – Lexis tools for multistate analyses
Will be advertised by Bendix!
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Box diagram for transitions
NOTE: entry.status has been set to "Alive" for all.

NOTE: entry is assumed to be 0 on the stime timescale.
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Ex. Survival from oral cancer
▶ AJ-estimates of CIFs (solid) for both causes.
▶ Naive KM-estimates of CIF (dashed) > AJ-estimates
▶ CIF curves may also be stacked (right).
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NB. The sum of the naive KM-estimates of CIF exceeds 100% at 13 years!
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Ex. CIFs by cause in men and women
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CIF for cancer higher in women (chance?) but for other causes higher in men (no
surprise).
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Regression models for time-to-event data

Regression models for hazards can be defined e.g. for

(a) hazards, multiplicatively:

λi(t) = λ0(t;α)r(ηi), where

λ0(t;α) = baseline hazard and
r(ηi) = relative rate function, typically exp(ηi)

(b) hazards, additively:
λi(t) = λ0(t;α) + ηi .
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Relative hazards model or Cox model

In model (b), the baseline hazard λ0(t, α) may be given a parametric form (e.g.
Weibull) or a piecewise constant rate (exponential) structure.

Often a parameter-free form λ0(t) is assumed. Then

λi(t) = λ0(t) exp(η1),

specifies the Cox model or the semiparametric proportional hazards model.
bigskip ηi = β1xi1 + · · ·+ βpxip not depending on time.

Generalizations: time-dependent covariates xij(t)
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PH model: interpretation of parameters

Present the model explicitly in terms of x ’s and β’s.

λi(t) = λ0(t) exp(β1xi1 + · · ·+ βpxip)

Consider two individuals, i and i ′, having the same values of all other covariates
except the j th one.

The ratio of hazards is constant:

λi(t)

λi ′(t)
=

exp(ηi)

exp(ηi ′)
= exp{βj(xij − xi ′j)}.

Thus eβj = HRj = hazard ratio or relative rate associated with a unit change in
covariate Xj .
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Ex. Total mortality of oral ca. patients
Fitting Cox models with sex and sex + age.

> cm0 <- coxph( suob ~ sex, data = orca)

> ci.exp(cm0)

exp(Est.) 2.5% 97.5%

sexMale 1.134004 0.8724905 1.473902

Total mortality in males is 13% higher in male than females, but not significant.

> cm0 <- coxph( suob ~ age+sex, data = orca)

> ci.exp(cm0)

exp(Est.) 2.5% 97.5%

age 1.041914 1.030655 1.053296

sexMale 1.494305 1.139254 1.960009

The M/F contrast visible only after age-adjustment.(43% higher in males).
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Predictions from the Cox model

▶ Individual survival times cannot be predicted but ind’l survival curves can.
PH model implies:

Si(t) = [S0(t)]
exp(β1xi1+...+βpxip)

▶ Having estimated β by partial likelihood, the baseline S0(t) is estimated by
Breslow method

▶ From these, a survival curve for an individual with given covariate values is
predicted.

▶ In R: pred <- survfit(mod, newdata=...) and plot(pred), where
mod is the fitted coxph object, and newdata specifies the covariate values.
newdata is always needed for predictions.
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Modelling with competing risks

Main options, providing answers to different questions.

(a) Cox model for event-specific hazards λc(t) = fc(t)/[1− F (t)], when e.g.
the interest is in the biological effect of the prognostic factors on the fatality
of the very disease that often leads to the relevant outcome.

(b) Fine–Gray model for the hazard of the subdistribution
γc(t) = fc(t)/[1− Fc(t)] when we want to assess the impact of the factors
on the overall cumulative incidence of event c .
– Function crr() in package cmprsk.
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SMR

Relate population mortality to the mortality of your ”exposed”cohort

Let

▶ λ(a) be the mortality in the cohort

▶ λP(a) be the population mortality

▶ λE(a) be the excess hazard of dying from the disease among cohort members

▶ SMR is the relative mortality in the cohort

λ(a) = λE(a) + λP(a) (excess mortality)

λ(a) = SMR × λP(a) (standardized mortality ratio)
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Representation of follow-up

Bendix Carstensen Steno Diabetes Center Copenhagen
Herlev, Denmark
http://BendixCarstensen.com
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Representation of follow-up

Bendix Carstensen

Representation of follow-up

SPE, Tartu, Estonia,

June 2023

http://BendixCarstensen.com/SPE time-split

▶ In follow-up studies we estimate rates from:
▶ D � events, deaths
▶ Y � person-years
▶ λ̂ = D/Y rates
▶ . . . empirical counterpart of intensity � an estimate

▶ Rates di�er between persons.

▶ Rates di�er within persons:
▶ by age
▶ by calendar time
▶ by disease duration
▶ . . .

▶ Multiple timescales.

▶ Multiple states (little boxes � later)

Representation of follow-up (time-split) 2/ 40
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Representation of follow-up data

A cohort or follow-up study records events and risk time

The outcome is thus bivariate: (d, y)

Follow-up data for each individual must therefore have (at least)
three pieces of information recorded:

Date of entry entry date variable
Date of exit exit date variable
Status at exit fail indicator (mostly 0/1)

These are speci�c for each type of outcome.

Representation of follow-up (time-split) 3/ 40

Strati�cation by age

If follow-up is rather short, age at entry is OK for age-strati�cation.

If follow-up is long, strati�cation by categories of
current age is preferable.

Age-scale
35 40 45 50

Follow-up
Two e1 5 3

One u4 3

� allowing rates to vary across age-bands
� how do we do the split and why is it OK?

Representation of follow-up (time-split) 4/ 40

y d

t0 t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry t0) d log(λ)− λy

= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(d at tx|entry t2) + d log(λ)− λy3

Representation of follow-up (time-split) 5/ 40
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y d

t0 t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry t0) d log(λ)− λy

= P(surv t0 → t1|entry t0) = 0 log(λ1)− λ1y1
×P(surv t1 → t2|entry t1) + 0 log(λ2)− λ2y2
×P(d at tx|entry t2) + d log(λ3)− λ3y3

� allows di�erent rates (λi) in each interval

Representation of follow-up (time-split) 6/ 40

Dividing time into bands requires:

Origin: The date where the time scale is 0:

▶ Age � 0 at date of birth
▶ Disease duration � 0 at date of diagnosis
▶ Occupation exposure � 0 at date of hire

Intervals: How should it be subdivided:

▶ 1-year classes? 5-year classes?
▶ Equal length?

Aim: Separate rate in each interval, mimicking continuous time by
using small intervals:
�time at the beginning of interval as quantitative variable.
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Example: cohort with 3 persons:

Id Bdate Entry Exit St
1 14/07/1952 04/08/1965 27/06/1997 1
2 01/04/1954 08/09/1972 23/05/1995 0
3 10/06/1987 23/12/1991 24/07/1998 1

▶ Age bands: 10-years intervals of current age.

▶ Split Y for every subject accordingly

▶ Treat each segment as a separate unit of observation.

▶ Keep track of exit status (D) in each interval.
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Splitting the follow-up

subj. 1 subj. 2 subj. 3

Age at Entry: 13.06 18.44 4.54
Age at eXit: 44.95 41.14 11.12

Status at exit: Dead Alive Dead

Y 31.89 22.70 6.58
D 1 0 1
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subj. 1 subj. 2 subj. 3
∑

Age Y D Y D Y D Y D

0� 0.00 0 0.00 0 5.46 0 5.46 0
10� 6.94 0 1.56 0 1.12 1 8.62 1
20� 10.00 0 10.00 0 0.00 0 20.00 0
30� 10.00 0 10.00 0 0.00 0 20.00 0
40� 4.95 1 1.14 0 0.00 0 6.09 1
∑

31.89 1 22.70 0 6.58 1 60.17 2
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Splitting the follow-up

id Bdate Entry Exit St risk int

1 14/07/1952 03/08/1965 14/07/1972 0 6.9432 10
1 14/07/1952 14/07/1972 14/07/1982 0 10.0000 20
1 14/07/1952 14/07/1982 14/07/1992 0 10.0000 30
1 14/07/1952 14/07/1992 27/06/1997 1 4.9528 40
2 01/04/1954 08/09/1972 01/04/1974 0 1.5606 10
2 01/04/1954 01/04/1974 31/03/1984 0 10.0000 20
2 01/04/1954 31/03/1984 01/04/1994 0 10.0000 30
2 01/04/1954 01/04/1994 23/05/1995 0 1.1417 40
3 10/06/1987 23/12/1991 09/06/1997 0 5.4634 0
3 10/06/1987 09/06/1997 24/07/1998 1 1.1211 10

Keeping track of calendar time too?
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Follow-up intervals on several timescales

▶ The risk-time is the same on all timescales
▶ Only need the entry point on each time scale:

▶ Age at entry.
▶ Date of entry.
▶ Time since treatment at entry.

� if time of treatment is the entry, this is 0 for all.

▶ Response variable in analysis of rates:

(d, y) (event, duration)

▶ Covariates in analysis of rates:
▶ timescales
▶ other (�xed) measurements

▶ . . . do not confuse duration and timescale !
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Follow-up data in Epi � Lexis objects I

> thoro[1:6,1:8]

id sex birthdat contrast injecdat volume exitdat exitstat
1 1 2 1916.609 1 1938.791 22 1976.787 1
2 2 2 1927.843 1 1943.906 80 1966.030 1
3 3 1 1902.778 1 1935.629 10 1959.719 1
4 4 1 1918.359 1 1936.396 10 1977.307 1
5 5 1 1902.931 1 1937.387 10 1945.387 1
6 6 2 1903.714 1 1937.316 20 1944.738 1

> thL <- Lexis(entry = list(age = injecdat-birthdat,
+ dte = injecdat,
+ tfi = 0 ),
+ exit = list(dte = exitdat),
+ exit.status = as.numeric(exitstat == 1),
+ data = thoro)
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Follow-up data in Epi � Lexis objects II
NOTE: entry.status has been set to 0 for all.
NOTE: Dropping 2 rows with duration of follow up < tol

> summary(thL, timeScales = TRUE)

Transitions:
To

From 0 1 Records: Events: Risk time: Persons:
0 504 1964 2468 1964 51934.08 2468

Timescales:
age dte tfi
"" "" ""
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De�nition of Lexis object

thL <- Lexis(entry = list(age = injecdat-birthdat,
dte = injecdat,
tfi = 0),

exit = list(dte = exitdat),
exit.status = as.numeric(exitstat==1),

data = thoro)

entry is de�ned on three timescales,
but exit is only needed on one timescale (or vice versa):
Follow-up time is the same on all timescales: exitdat - injecdat

One element of entry and exit must have same name (dte).
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The looks of a Lexis object

> thL[1:4,1:9]
age dte tfi lex.dur lex.Cst lex.Xst lex.id

1 22.18 1938.79 0 37.99 0 1 1
2 49.54 1945.77 0 18.59 0 1 2
3 68.20 1955.18 0 1.40 0 1 3
4 20.80 1957.61 0 34.52 0 0 4
...

> summary(thL)
Transitions:

To
From 0 1 Records: Events: Risk time: Persons:

0 504 1964 2468 1964 51934.08 2468
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> plot( thL, lwd=3 )
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Lexis diagram

> plot( thL, 2:1, lwd=5, col=c("red","blue")[thL$contrast],

+ grid=TRUE, lty.grid=1, col.grid=gray(0.7),

+ xlim=1930+c(0,70), xaxs="i", ylim= 10+c(0,70), yaxs="i", las=1 )

> points( thL, 2:1, pch=c(NA,3)[thL$lex.Xst+1],lwd=3, cex=1.5 )
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Splitting follow-up time

> spl1 <- splitLexis( thL, time.scale="age", breaks=seq(0,100,20) )
> round(spl1,1)

age dte tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
1 22.2 1938.8 0.0 17.8 0 0 1 2 1916.6 1 1938.8 22
2 40.0 1956.6 17.8 20.0 0 0 1 2 1916.6 1 1938.8 22
3 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
4 49.5 1945.8 0.0 10.5 0 0 640 2 1896.2 1 1945.8 20
5 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 1945.8 20
6 68.2 1955.2 0.0 1.4 0 1 3425 1 1887.0 2 1955.2 0
7 20.8 1957.6 0.0 19.2 0 0 4017 2 1936.8 2 1957.6 0
8 40.0 1976.8 19.2 15.3 0 0 4017 2 1936.8 2 1957.6 0
...
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Split on another timescale
> spl2 <- splitLexis( spl1, time.scale="tfi", breaks=c(0,1,5,20,100) )
> round( spl2, 1 )

lex.id age dte tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
1 1 22.2 1938.8 0.0 1.0 0 0 1 2 1916.6 1 1938.8 22
2 1 23.2 1939.8 1.0 4.0 0 0 1 2 1916.6 1 1938.8 22
3 1 27.2 1943.8 5.0 12.8 0 0 1 2 1916.6 1 1938.8 22
4 1 40.0 1956.6 17.8 2.2 0 0 1 2 1916.6 1 1938.8 22
5 1 42.2 1958.8 20.0 17.8 0 0 1 2 1916.6 1 1938.8 22
6 1 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
7 2 49.5 1945.8 0.0 1.0 0 0 640 2 1896.2 1 1945.8 20
8 2 50.5 1946.8 1.0 4.0 0 0 640 2 1896.2 1 1945.8 20
9 2 54.5 1950.8 5.0 5.5 0 0 640 2 1896.2 1 1945.8 20
10 2 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 1945.8 20
11 3 68.2 1955.2 0.0 1.0 0 0 3425 1 1887.0 2 1955.2 0
12 3 69.2 1956.2 1.0 0.4 0 1 3425 1 1887.0 2 1955.2 0
13 4 20.8 1957.6 0.0 1.0 0 0 4017 2 1936.8 2 1957.6 0
14 4 21.8 1958.6 1.0 4.0 0 0 4017 2 1936.8 2 1957.6 0
15 4 25.8 1962.6 5.0 14.2 0 0 4017 2 1936.8 2 1957.6 0
16 4 40.0 1976.8 19.2 0.8 0 0 4017 2 1936.8 2 1957.6 0
17 4 40.8 1977.6 20.0 14.5 0 0 4017 2 1936.8 2 1957.6 0
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plot(spl2, c(1, 3), col = "black", lwd = 2)

age tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
22.2 0.0 1.0 0 0 1 2 1916.6 1 1938.8 22
23.2 1.0 4.0 0 0 1 2 1916.6 1 1938.8 22
27.2 5.0 12.8 0 0 1 2 1916.6 1 1938.8 22
40.0 17.8 2.2 0 0 1 2 1916.6 1 1938.8 22
42.2 20.0 17.8 0 0 1 2 1916.6 1 1938.8 22
60.0 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
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Splitting on several timescales
> spl1 <- splitLexis(thL , time.scale = "age", breaks = seq(0, 100, 20))
> spl2 <- splitLexis(spl1, time.scale = "tfi", breaks = c(0, 1, 5, 20, 100))
> summary(spl2)

Transitions:
To

From 0 1 Records: Events: Risk time: Persons:
0 8250 1964 10214 1964 51934.08 2468

> library(popEpi)
> splx <- splitMulti(thL, age = seq(0, 100, 20), tfi = c(0, 1, 5, 20, 100))
> summary(splx)

Transitions:
To

From 0 1 Records: Events: Risk time: Persons:
0 8248 1964 10212 1964 51916.98 2468

> # NOTE: splitMulti excludes follow-up outside range of breaks

Representation of follow-up (time-split) 22/ 40

82



Likelihood for time-split data

▶ We assume that rates are constant in each (small) intervals

▶ Each observation in the dataset represents an interval,
contributing a term to the (log-)likelihood for the rate

▶ Each term looks like a contribution from a Poisson variate
(albeit with values only 0 or 1)

▶ So the likelihood from a single person looks like the likelihood
from several independent Poisson variates

▶ . . . but the data are neither independent nor Poisson

Representation of follow-up (time-split) 23/ 40

Analysis of time-split data

Observations (records) classi�ed by p�person and i�interval

▶ dpi � events in the variable: lex.Xst & lex.Xst!=lex.Cst

▶ ypi � risk time: lex.dur (duration)

▶ Covariates are:
▶ timescales (age, period, time in study)
▶ other variables for this person (constant in each interval).

▶ Likelihood for rates for one person is identical to a Poisson
likelihood for many independent Poisson variates

▶ Modeling rates using glm or gam:
time-scales and other covariates are treated alike
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Fitting a simple model�data:

> stat.table(contrast,
+ list(D = sum(lex.Xst),
+ Y = sum(lex.dur),
+ Rate = ratio(lex.Xst, lex.dur, 100)),
+ margin = TRUE,
+ data = spl2)

------------------------------------
contrast D Y Rate
------------------------------------
1 928.00 20094.74 4.62
2 1036.00 31839.35 3.25

Total 1964.00 51934.08 3.78
------------------------------------
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Fitting a simple model

------------------------------------
contrast D Y Rate
------------------------------------
1 928.00 20094.74 4.62
2 1036.00 31839.35 3.25
------------------------------------

> m0 <- glm((lex.Xst==1) ~ factor(contrast) - 1,
+ offset = log(lex.dur / 100),
+ family = poisson,
+ data = spl2)
> round(ci.exp(m0), 2)

exp(Est.) 2.5% 97.5%
factor(contrast)1 4.62 4.33 4.93
factor(contrast)2 3.25 3.06 3.46

. . . a Poisson model for mortality using log-person-years as o�set
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Fitting a simple model

------------------------------------
contrast D Y Rate
------------------------------------
1 928.00 20094.74 4.62
2 1036.00 31839.35 3.25
------------------------------------

> m0 <- glm(cbind(lex.Xst, lex.dur / 100) ~ factor(contrast) - 1,
+ family = poisreg,
+ data = spl2)
> round(ci.exp(m0), 2)

exp(Est.) 2.5% 97.5%
factor(contrast)1 4.62 4.33 4.93
factor(contrast)2 3.25 3.06 3.46

. . . a Poisson model for mortality rates based on deaths and person-years
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Fitting a simple model

The wrapper glm.Lexis requires that lex.Cst and lex.Xst are factors
�use factorize to make them:

> splf <- factorize(spl2)
> m0 <- glm.Lexis(splf, ~ factor(contrast) - 1, scale = 100)

stats::glm Poisson analysis of Lexis object splf with log link:
Rates for the transition:
0->1
, lex.dur (person-time) scaled by 100

> round(ci.exp(m0), 2)

exp(Est.) 2.5% 97.5%
factor(contrast)1 4.62 4.33 4.93
factor(contrast)2 3.25 3.06 3.46

. . . a Poisson model for mortality rates based on deaths and person-years in a

Lexis object
Representation of follow-up (time-split) 28/ 40

84



Fitting a simple model � aggregate data

------------------------------------
contrast D Y Rate
------------------------------------
1 928.00 20094.74 4.62
2 1036.00 31839.35 3.25
------------------------------------

As long as we only use covariates that take only a few values, we can model the
aggregate data directly:

> mx <- glm(cbind(c(928, 1036), c(20094.74, 31839.35) / 100) ~ factor(1:2) - 1,
+ family = poisreg )
> round(ci.exp(mx), 2)

exp(Est.) 2.5% 97.5%
factor(1:2)1 4.62 4.33 4.93
factor(1:2)2 3.25 3.06 3.46
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Representation of follow-up

SPE, Tartu, Estonia,

June 2023

http://BendixCarstensen.com/SPE SMR

Cohorts where all are exposed

When there is no comparison group we may ask:
Do mortality rates in cohort di�er from those of an external
population, for example:

Rates from:

▶ Occupational cohorts

▶ Patient cohorts

compared with reference rates obtained from:

▶ Population statistics (mortality rates)

▶ Hospital registers (disease rates)
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Cohort rates vs. population rates: RSR

▶ Additive: λ(a) = δ(a) + λp(a)

▶ Note that the survival (since a = a0, say) is:

S(a) = exp
(
−
∫ a

a0

δ(a) + λp(a) da
)

= exp
(
−
∫ a

a0

δ(a) da
)
× Sp(a)

⇒ r(a) = S(a)/Sp(a) = exp
(
−
∫ a

a0

δ(a) da
)

▶ Additive model for rates ⇔ Relative survival model.
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Cohort rates vs. population rates: SMR

▶ Multiplicative: λ(a) = θ × λp(a)

▶ Cohort rates proportional to reference rates, λp:
λ(a) = θ × λp(a) � θ the same in all age-bands.

▶ Da deaths during Ya person-years an age-band a gives the
likelihood:

Dalog(λ(a))− λ(a)Ya = Dalog(θλp(a))− θλp(a)Ya

= Dalog(θ) +Dalog(λp(a))− θ(λp(a)Ya)

▶ The constant Dalog(λp(a)) does not involve θ, and so can be
dropped.
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▶ λp(a)Ya = Ea is the �expected� number of cases in age a, so
the log-likelihood contribution from age a is:

Dalog(θ)− θ
(
λp(a)Ya

)
= Dalog(θ)− θ(Ea)

▶ The log-likelihood is similar to the log-likelihood for a rate, so:

θ̂ =
∑

a

Da/
∑

a

Ea = Observed/Expected = SMR
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Modeling the SMR in practice

▶ As for the rates, the SMR can be modelled using individual data.

▶ Response is di, the event indicator (lex.Xst).

▶ log-o�set is the expected value for each piece of follow-up,
ei = yi × λp (lex.dur * rate)

▶ λp is the population rate corresponding to the age, period and
sex of the follow-up period yi.
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Split the data to �t with population data

> thad <- splitMulti(thL, age=seq(0,90,5), dte=seq(1938,2038,5) )
> summary( thad )

Transitions:
To

From 0 1 Records: Events: Risk time: Persons:
0 21059 1939 22998 1939 51787.96 2463

Create variables to �t with the population data

> thad$agr <- timeBand( thad, "age", "left" )
> thad$per <- timeBand( thad, "dte", "left" )
> round( thad[1:5,c("lex.id","age","agr","dte","per","lex.dur","lex.Xst","sex")], 2 )

lex.id age dte lex.dur lex.Xst agr per sex
1 22.18 1938.79 2.82 0 20 1938 2
1 25.00 1941.61 1.39 0 25 1938 2
1 26.39 1943.00 3.61 0 25 1943 2
1 30.00 1946.61 1.39 0 30 1943 2
1 31.39 1948.00 3.61 0 30 1948 2
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> data( gmortDK )
> dim( gmortDK )

[1] 418 21

> gmortDK[1:6,1:6]

agr per sex risk dt rt
1 0 38 1 996019 14079 14.135
2 5 38 1 802334 726 0.905
3 10 38 1 753017 600 0.797
4 15 38 1 773393 1167 1.509
5 20 38 1 813882 2031 2.495
6 25 38 1 789990 1862 2.357

> gmortDK$per <- gmortDK$per+1900
> #
> thadx <- merge( thad, gmortDK[,c("agr","per","sex","rt")] )
> #
> thadx$E <- thadx$lex.dur * thadx$rt / 1000
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> stat.table(contrast,
+ list( D = sum(lex.Xst),
+ Y = sum(lex.dur),
+ E = sum(E),
+ SMR = ratio(lex.Xst, E)),
+ margin = TRUE,
+ data = thadx)

--------------------------------------------
contrast D Y E SMR
--------------------------------------------
1 917.00 20045.46 214.66 4.27
2 1022.00 31742.51 447.21 2.29

Total 1939.00 51787.96 661.87 2.93
--------------------------------------------
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--------------------------------------------
contrast D Y E SMR
--------------------------------------------
1 917.00 20045.46 214.66 4.27
2 1022.00 31742.51 447.21 2.29
--------------------------------------------

> m.SMR <- glm(cbind(lex.Xst, E) ~ factor(contrast) - 1,
+ family = poisreg,
+ data = thadx)
> round(ci.exp(m.SMR), 2)

exp(Est.) 2.5% 97.5%
factor(contrast)1 4.27 4.00 4.56
factor(contrast)2 2.29 2.15 2.43

▶ Analysis of SMR is like analysis of rates:
▶ Replace Y with E � that's all! (glm.Lexis not usable)
▶ . . . it's the calculation of E that is di�cult

SMR (SMR) 40/ 40
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Nested case-control and case-cohort studies
Tuesday, 06 June, 2023
Esa Läärä & Martyn Plummer & Krista Fischer

Statistical Practice in Epidemiology with R
University of Tartu, Estonia
June, 2023

Points to be covered

I Outcome-dependent sampling designs a.k.a.
case-control studies vs. full cohort design.

I Nested case-control study (NCC): sampling of controls from risk-sets
during follow-up of study population.

I Matching in selection of control subjects in NCC.

I R tools for NCC: function ccwc() in Epi for sampling controls, and
clogit() in survival for model fitting.

I Case-cohort study (CC): sampling a subcohort from the whole cohort as it
is at the start of follow-up.

I R tools for CC model fitting: function cch() in survival

Nested case-control and case-cohort studies 1/ 1

Example: Smoking and cervix cancer

Study population, measurements, follow-up, and sampling design

I Joint cohort of N ≈ 500 000 women from 3 Nordic biobanks.

I Follow-up: From variable entry times since 1970s till 2000.

I For each of 200 cases, 3 controls were sampled; matched for biobank, age (±2 y),
and time of entry (±2 mo).

I Frozen sera of cases and controls analyzed for cotinine etc.

Main result: Adjusted OR = 1.5 (95% CI 1.1 to 2.3) for high (>242.6 ng/ml) vs. low
(<3.0 ng/ml) cotinine levels.

Simen Kapeu et al. (2009) Am J Epidemiol

Nested case-control and case-cohort studies 2/ 1
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Example: USF1 gene and CVD

Study population, measurements, follow-up, and sampling design

I Two FINRISK cohorts, total N ≈ 14000 M & F, 25-64 y.

I Baseline health exam, questionnaire & blood specimens at recruitment in the
1990s – Follow-up until the end of 2003.

I Subcohort of 786 subjects sampled.

I 528 incident cases of CVD; 72 of them in the subcohort.

I Frozen blood from cases and subchort members genotyped.

Main result: Female carriers of a high risk haplotype had a
2-fold hazard of getting CVD [95% CI: 1.2 to 3.5]

Komulainen et al. (2006) PLoS Genetics

Nested case-control and case-cohort studies 3/ 1

Full cohort design & its simple analysis

I Full cohort design: Data on exposure variables obtained for all subjects in
a large study population.

I Summary data for crude comparison:

Exposed Unexposed Total
Cases D1 D0 D
Non-cases B1 B0 B
Group size at start N1 N0 N
Follow-up times Y1 Y0 Y

I Crude estimation of hazard ratio ρ = λ1/λ0:
incidence rate ratio IR, with standard error of log(IR):

ρ̂ = IR =
D1/Y1
D0/Y0

SE[log(IR)] =

√
1

D1

+
1

D0

.

I More refined analyses: Poisson or Cox regression.
Nested case-control and case-cohort studies 4/ 1

Problems with full cohort design

Obtaining exposure and covariate data

I Slow and expensive in a big cohort.

I Easier with questionnaire and register data,

I Extremely costly and laborious for e.g.

– measurements from biological specimens, like genotyping, antibody
assays, etc.

– dietary diaries & other manual records

Can we obtain equally valid estimates of hazard ratios etc. with nearly as good
precision by some other strategies?

Yes – we can!

Nested case-control and case-cohort studies 5/ 1
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Estimation of hazard ratio

The incidence rate ratio can be expressed:

IR =
D1/D0

Y1/Y0
=

cases: exposed / unexposed

person-times: exposed / unexposed

=
exp’re odds in cases

exp’re odds in p-times
= exposure odds ratio (EOR)

= Exposure distribution in cases vs. that in cohort!

Implication for more efficient design:

I Numerator: Collect exposure data on all cases.

I Denominator: Estimate the ratio of person-times Y1/Y0 of the exposure
groups in the cohort by sampling “control” subjects, on whom exposure is
measured.

Nested case-control and case-cohort studies 6/ 1

Case-control designs

General principle: Sampling of subjects from a given study population is
outcome-dependent.

Data on risk factors are collected separately from

(I) Case group: All (or high % of) the D subjects in the study population
(total N) encountering the outcome event during the follow-up.

(II) Control group:

I Random sample (simple or stratified) of
C subjects (C << N) from the population.

I Eligible controls must be bf risk (alive, under follow-up & free of outcome)
at given time(s).

Nested case-control and case-cohort studies 7/ 1

Study population in a case-control study?

Ideally: The study population comprises subjects who would be included as
cases, if they got the outcome in the study

I Cohort-based studies: cohort or closed population of well-identified
subjects under intensive follow-up for outcomes (e.g. biobank cohorts).

I Register-based studies: open or dynamic population in a region covered by
a disease register.

I Hospital-based studies: dynamic catchment population of cases – may be
hard to identify (e.g. hospitals in US).

In general, the role of control subjects is to represent the distribution of
person-times by exposure variables in the underlying population from which the
cases emerge.

Nested case-control and case-cohort studies 8/ 1
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Sampling of controls – alternative frames

Illustrated in a simple longitudinal setting:
Follow-up of a cohort over a fixed risk period & no censoring.

hhhhhhhhhhhhhh

Time (t)Start End-

(B) Initially at risk

(N) (C) Currently at risk (Nt)

6

?

New cases
of disease

(D)

(A) Still at risk

(N −D)

Rodrigues, L. & Kirkwood, B.R. (1990). Case-control designs of common diseases

. . . Int J Epidemiol 19: 205-13.

Nested case-control and case-cohort studies 9/ 1

Sampling schemes or designs for controls

(A) Exclusive or traditional, “case-noncase” sampling

I Controls chosen from those N −D subjects still at risk (healthy)
at the end of the risk period (follow-up).

(B) Inclusive sampling or case-cohort design (CC)

I The control group – subcohort – is a random sample of the cohort (N)
at start.

(C) Concurrent sampling or density sampling

I Controls drawn during the follow-up

I Risk-set or time-matched sampling:
A set of controls is sampled from the risk set at each time t of diagnosis of
a new case – a.k.a. nested case-control design (NCC)

Nested case-control and case-cohort studies 10/ 1

Nested case-control – two meanings

I In some epidemiologic books, the term “nested case-control study” (NCC)
covers jointly all variants of sampling: (A), (B), and (C), from a cohort.

Rothman et al. (2008): Modern Epidemology, 3rd Ed.
Dos Santos Silva (1999): Cancer Epidemiology. Ch 8-9

I In biostatistical texts NCC typically refers only to the variant of concurrent
or density sampling (C), in which risk-set or time-matched sampling is
employed.

Borgan & Samuelsen (2003) in Norsk Epidemiologi
Langholz (2005) in Encyclopedia of Biostatistics.

I We shall follow the biostatisticians!

Nested case-control and case-cohort studies 11/ 1
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NCC: Risk-set sampling with staggered entry

Sampling frame to select controls for a given case:
Members (×) of the risk set at tk, i.e. the population at risk at the time of
diagnosis tk of case k. r×Case

×Healthy until end
Early censoring

×Late entry
Too late entry rEarly case r×Later case

Start End
Study period

Sampled risk set contains the case and the control subjects randomly sampled
from the non-cases in the risk set at tk.

Nested case-control and case-cohort studies 12/ 1

Use of different sampling schemes

(A) Exclusive sampling, or “textbook” case-control design

I Almost exclusively(!) used in studies of epidemics.
I (Studies on birth defects with prevalent cases.)

(B) Inclusive sampling or case-cohort design

I Good esp. for multiple outcomes, if measurements of
risk factors from stored material remain stable.

(C) Concurrent or density sampling (without or with time-matching)

I The only logical design in an open population.

I Most popular in chronic diseases (Knol et al. 2008).

Designs (B) and (C) allow valid estimation of hazard ratios ρ without any “rare
disease” assumption.

Nested case-control and case-cohort studies 13/ 1

Case-control studies: Textbooks vs. real life

I Many epi texts focus on the traditional design:
exclusive sampling of controls, ignoring other designs.

I Claim: “Odds ratio is the only estimable parameter.”

I Yet, over 60% of published case-control studies apply concurrent sampling
or density sampling of controls from an open or dynamic population.

I Thus, the parameter most often estimated is the
hazard ratio (HR) or rate ratio ρ.

I Still, 90% of authors really estimating HR, reported as having estimated an
OR (e.g. Simen Kapeu et al. 2009)

Knol et al. (2008). What do case-control studies estimate?

Am J Epidemiol 168: 1073-81.

Nested case-control and case-cohort studies 14/ 1

94



Exposure odds ratio – estimate of what?

I Crude summary of case-control data

exposed unexposed total
cases D1 D0 D
controls C1 C0 C

I Depending on study base & sampling strategy, the exposure odds ratio

EOR =
D1/D0

C1/C0

=
cases: exposed / unexposed

controls: exposed / unexposed

is a consistent estimator of
(a) hazard ratio, (b) risk ratio, (c) risk odds ratio,

(d) prevalence ratio, or (e) prevalence odds ratio
I NB. In case-cohort studies with variable follow-up times C1/C0 is

substituted by Ŷ1/Ŷ0, from estimated p-years.

Nested case-control and case-cohort studies 15/ 1

Precision and efficiency

With exclusive (A) or concurrent (C) sampling of controls (unmatched), the
estimated variance of log(EOR) is

v̂ar[log(EOR)] =
1

D1

+
1

D0

+
1

C1

+
1

C0

= cohort variance + sampling variance

I Depends basically on the numbers of cases, with ≥ 4 controls per case.

I Is not much bigger than 1/D1 + 1/D0 = variance in a full cohort study with
same numbers of cases.

⇒ Usually < 5 controls per case is enough.

⇒ These designs are very cost-efficient!

Nested case-control and case-cohort studies 16/ 1

Estimation in concurrent or density sampling

I Assume a simple situation: Prevalence of exposure in the study population
stable over time.

⇒ The exposure odds C1/C0 among controls
= a consistent estimator of exposure odds Y1/Y0 of person-times.

I Therefore, the crude EOR = (D1/D0)/(C1/C0)
= a consistent estimator of hazard ratio ρ = λ1/λ0.

I Variance of log(EOR) estimated as above.

I Yet, stability of exposure distribution may be unrealistic, especially in a
closed study population or cohort.

I Solution: Time-matched sampling of controls from
risk sets, i.e. NCC, & matched EOR to estimate HR.

Prentice & Breslow (1978), Greenland & Thomas (1982).

Nested case-control and case-cohort studies 17/ 1
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Matching in case-control studies

= Stratified sampling of controls, e.g. from the
same region, sex, and age group as a given case

I Frequency matching or group matching:
For cases in a specific stratum (e.g. same sex and 5-year age-group), a set
of controls from a similar subgroup.

I Individual matching (1:1 or 1:m matching):
For each case, choose 1 or more (rarely > 5) closely similar controls (e.g.
same sex, age within ±1 year.

I NCC: Sampling from risk-sets implies time-matching at least. Additional
matching for other factors possible.

I CC: Subcohort selection involves no matching with cases.

Nested case-control and case-cohort studies 18/ 1

Virtues of matching

I Increases efficiency, if the matching factors are both

(i) strong risk factors of the disease, and
(ii) correlated with the main exposure.

– Major reason for matching.

I Confounding due to poorly quantified factors (sibship, neighbourhood, etc.)
may be removed by close matching – only if properly analyzed.

I Biobank studies: Matching for storage time, freeze-thaw cycle & analytic
batch improves comparability of measurements from frozen specimens

→ Match on the time of baseline measurements within the case’s risk set.

Nested case-control and case-cohort studies 19/ 1

Warnings for overmatching

Matching a case with a control subject is a different issue than matching an
unexposed subject to an exposed one in a cohort study – much trickier!

I Matching on an intermediate variable between exposure and outcome.

⇒ Bias!

I Matching on a surrogate or correlate of exposure, which is not a true risk
factor.
⇒ Loss of efficiency.

→ Counter-matching: Choose a control which
is not similar to the case w.r.t a correlate of exposure.

⇒ Increases efficiency!

• Requires appropriate weighting in the analysis.

Nested case-control and case-cohort studies 20/ 1
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Sampling matched controls for NCC using R

I Suppose key follow-up items are recorded for all subjects in a cohort, in
which a NCC study is planned.

I Function ccwc() in package Epi can be used for risk-set sampling of
controls. – Arguments:

entry : Time of entry to follow-up
exit : Time of exit from follow-up
fail : Status on exit (1 for case, 0 for censored)

origin : Origin of analysis time scale (e.g. time of birth)
controls : Number of controls to be selected for each case

match : List of matching factors
data : Cohort data frame containing input variables

I Creates a data frame for a NCC study, containing the desired number of
matched controls for each case.

Nested case-control and case-cohort studies 21/ 1

Analysis of matched studies

I Close matching induces a new parameter for each matched case-control set
or stratum.

⇒ unconditional logistic regression breaks down.

I Matching on well-defined variables (like age, sex)
– include these factors as covariates.

I Matching on “soft” variables (like sibship) can be dealt with
conditional logistic regression.

I Same method in matched designs (A), exclusive, and (C), concurrent, but
interpretation of βjs differs:

(A) βj = log of risk odds ratio (ROR),
(C) βj = log of hazard ratio (HR).

Nested case-control and case-cohort studies 22/ 1

Full cohort design: Follow-up & risk sets

Each member of the cohort provides exposure data for all cases, as long as this
member is at risk, i.e. (i) alive, (ii) not censored & (iii) free from outcome.

-Time

6
Subjects

Censored

t

tCase

�

�

�

�

ddd
ddd dAt risk

t

�

�

�

�

dd
d

Risk sets

Times of new cases define the risk-sets.
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Nested case-control (NCC) design

Whenever a new case occurs, a set of controls (here 2/case) are
sampled from its risk set.

-Time

6
Subjects

Censored

t

tCase

Risk sets�

�

�

�

d

d
dControl

t

�

�

�

�

d
d

NB. A control once selected for some case can be selected as a control for
another case, and can later on become a case, too.
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Case-cohort (CC) design

Subcohort: Sample of the whole cohort randomly selected at the outset.
– Serves as a reference group for all cases.

-Time

6
Subjects

Censored tCase dControl

�
�Subcohort

t
�
�
�
�����

Sampled risk setsddd

t

�
�
�
�
����

dd

NB. A subcohort member can become a case, too.
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Modelling in NCC and other matched studies

Cox proportional hazards model:

λi(t, xi; β) = λ0(t) exp(xi1β1 + · · ·+ xipβp),

Estimation: partial likelihood LP =
∏

k L
P
k :

LP
k = exp(ηik)/

∑

i∈R̃(tk)

exp(ηi),

where R̃(tk) = sampled risk set at observed event time tk, containing the
case + sampled controls (t1 < · · · < tD)

⇒ Fit stratified Cox model, with R̃(tk)’s as the strata.

⇔ Conditional logistic regression
– function clogit() in survival, wrapper of coxph().

Nested case-control and case-cohort studies 26/ 1
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Modelling case-cohort data

Cox’s PH model λi(t) = λ0(t) exp(ηi) again, but . . .

I Analysis of survival data relies on the theoretical principle that
you can’t know the future.

I Case-cohort sampling breaks this principle:
cases are sampled based on what is known to be happening to them
during follow-up.

I The union of cases and subcohort is a mixture

1. random sample of the population, and

2. “high risk” subjects who are certain to become cases.

⇒ Ordinary Cox partial likelihood is wrong.

I Overrepresentation of cases must be corrected for, by
(I) weighting, or (II) late entry method.

Nested case-control and case-cohort studies 27/ 1

Correction method I – weighting

The method of weighted partial likelihood borrows some basics ideas from
survey sampling theory.

I Sampled risk sets
R̃(tk) = {cases} ∪ {subcohort members} at risk at tk.

I Weights:
− w = 1 for all cases (within and outside the subcohort),
− w = Nnon-cases/nnon-cases = inverse of sampling-fraction

f for selecting a non-case to the subcohort.

I Function coxph() with option weights = w would provide
consistent estimation of β parameters.

I However, the SEs must be corrected!

I R solution: Function cch() – a wrapper of coxph() –
in package survival, with method = "LinYing".

Nested case-control and case-cohort studies 28/ 1

Comparison of NCC and CC designs

I Statistical efficiency

Broadly similar in NCC and CC with similar numbers of cases and controls.

I Statistical modelling and valid inference

Straightforward for both designs with appropriate software,
now widely available for CC, too

I Analysis of outcome rates on several time scales?

NCC: Only the time scale used in risk set definition can be the
time variable t in the baseline hazard of PH model.

CC: Different choices for the basic time in PH model possible, because
subcohort members are not time-matched to cases.

Nested case-control and case-cohort studies 29/ 1
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Comparison of designs (cont’d)

I Missing data

NCC: With close 1:1 matching, a case-control pair is lost,
if either of the two has data missing on key exposure(s).

CC: Missingness of few data items is less serious.

I Quality and comparability of biological measurements

NCC: Allows each case and its controls to be matched also for analytic batch,
storage time, freeze-thaw cycle, → better comparability.

CC: Measurements for subcohort performed at different times than for cases
→ differential quality & misclassification.

I Possibility for studying many diseases with same controls

NCC: Complicated, but possible if matching is not too refined.
CC: Easy, as no subcohort member is “tied” with any case.

Nested case-control and case-cohort studies 30/ 1

Conclusion

I “Case-controlling” is very cost-effective.

I Case-cohort design is useful especially when several outcomes are of interest,
given that the measurements on stored materials remain stable during the
study.

I Nested case-control design is better suited e.g. for studies involving
biomarkers that can be infuenced by analytic batch, long-term storage, and
freeze-thaw cycles.

I Matching helps in improving effciency and in reducing bias
– but only if properly done.

I Handy R tools are available for all designs.

Nested case-control and case-cohort studies 31/ 1
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Causal Inference 2: Model-based estimation
of causal contrasts

Tuesday, 6 June, 2023
Esa Läärä

Statistical Practice in Epidemiology with R
2 to 7 June, 2023
University of Tartu, Estonia

Outline

I Causal questions

I Factual risks and associational contrasts

I Causal estimands: contrasts of counterfactual quantities

I Marginal and conditional contrasts, effect among treated, etc.

I Outcome regression models, standardization or g-formula

I Exposure modelling, propensity scores and weighting

I Double robust estimators and machine learning algorithms

I Time-to-event outcomes: hazards of hazard ratios and estimation of causal
contrasts of cumulative risks.

Causal Inference 2: Model-based estimation of causal contrasts 1/ 30

Some literature

I Austin & Stuart (2015) Stat Med 34(28):3661-3679.

I Funk et al. (2011) Am J Epidemiol 173(7):761-767

I Hernan & Robins (2020). Causal Inference: What if. CRC Press.

I Luque Fernandez et al. (2018) Stat Med 2018;37(16):2530-2546

I Schuler & Rose (2017) Am J Epidemiol 185(1):65-73.

I Sjölander (2016) Eur J Epidemiol 31:563-574

I Smith et al. (2022) Stat Med 2022;41(2):407-432.

I Zhou et al. (2022) PSweight vignette.
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Causal question in PECOT format & Example

P Population: 2900 women with breast cancer (Rotterdam study)

E Exposure: Hormonal treatment (HT)

C Comparator: Placebo, no HT

O Outcome: Recurrence or death

T Time frame: 10 y from surgery to outcome

Causal questions of interest – comparisons of counterfactuals:

– What is the 10-year risk π1 of the outcome, if everybody in P were exposed
to HT, as compared with π0, the risk if nobody were exposed?

– What is the 10-year risk π1
1 of the outcome, among those in P,

who are factually exposed to HT, as compared with the risk π0
1,

if they were not exposed?

Causal Inference 2: Model-based estimation of causal contrasts 3/ 30

Risks by factual exposure and their associational contrasts

I Let Y be a binary indicator (1/0) for the outcome to occur within fixed risk
period (assuming no censoring, nor competing events), and
X be an exposure variable or risk factor.

I Let πx = risk of the outcome to occur during the period in the
subset of the target population factually exposed to level X = x :

πx = P{Y = 1 | X = x} = E (Y |X = x ).

I For simplicity, let X be binary, too: exposed vs. unexposed .

I Common associational contrasts of risks between exposure groups:

– Risk difference τ = π1 − π0 = E (Y |X = 1)− E (Y |X = 0),
– Risk ratio φ = π1/π0,

– Risk odds ratio ψ = ω1
ω0

=
π1/(1− π1)
π0/(1− π0) .

Causal Inference 2: Model-based estimation of causal contrasts 4/ 30

Conditional associational contrasts

I The associational quantities above were marginal; not conditioned on
(or stratified by) any covariate – such as sex, age, etc.

I Let now Z be a covariate (can be multivariable) and

πxz = P{Y = 1 | X = x ,Z = z} = E (Y |X = x ,Z = z )

be the risk of outcome during risk period in a population group where
both X = x and Z = z , x = 0, 1.

I Conditional associational contrasts between exposed and unexposed
among those with Z = z .

– τz = π1z − π0z is the risk difference conditional on Z = z , i.e.
z -specific risk difference.

– φz = π1z/π0z and ψz = π1z (1− π1z )/[π0z (1− π0z )] are the
z -specific risk ratio and odds ratio, respectively.

Causal Inference 2: Model-based estimation of causal contrasts 5/ 30
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Example: Single binary covariate Z

I Let the prevalence of exposure be P{X = 1} = 0.45 in the population

I Let P{Z = 1} = 1− P{Z = 0} = 0.40 in the population and

P{Z = 1|X = 1} = 0.667 and P{Z = 1|X = 0} = 0.182

I Let also factual risks πxz = P{Y = 1|X = x ,Z = z} (x , z = 0, 1)
by X and Z be as shown in the cells of the table below :

Z = 1 Z = 0 πx (obtained by formula of total probability)

X = 1 0.50 0.20 π1 = 0.40 (0.50× 0.667 + 0.20× 0.333)
X = 0 0.25 0.10 π0 = 0.13 (0.25× 0.182 + 0.10× 0.818)

Contrasts τ1 =0.25 τ0 = 0.10 τ = 0.27

I Marginal risks, π1, π0, contrast τ = π1 − π0, and conditional contrasts
τz = π1z − π0z are shown in table margins.

Causal Inference 2: Model-based estimation of causal contrasts 6/ 30

Associational and causal contrasts

I Associational: Contrast of risks between the subsets of the population
determined by the subjects’ factual exposure value.

I Causal: Contrast of risks in the entire population under the
alternative potential or counterfactual exposure values;
see Hernan (2004), Hernan & Robins (2006), H&R (2020)

Causal Inference 2: Model-based estimation of causal contrasts 7/ 30

Causal estimands: contrasts of counterfactual risks

I Let Y X=x = Y x indicate (1/0) the event to occur within the risk period,

if exposure X were – counterfactually – forced to value x in the
whole target population.

I The counterfactual risk if everybody had exposure level X = x

πx = P{Y X=x = 1} = E (Y X=x ).

I Marginal causal contrasts of risk

– risk difference (RD) τ c = π1 − π0 = P{Y X=1 = 1} − P{Y X=0 = 1},
– risk ratio (RR) φc = π1/π0,

– risk odds ratio (OR) ψc = [π1/(1− π1)]/[π0/(1− π0)],

NB. Alternative notation: Judea Pearl’s (2010) do-operator
P{Y = 1|do(X = x )} = P{Y X=x = 1}.

Causal Inference 2: Model-based estimation of causal contrasts 8/ 30
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Identifying causal contrasts from causal diagram

X

Y

Z

W1 W2

◦
U

PQ

T

CM

S

X ∗

I Causal paths X → Y and X → M → Y : Don’t block!
I Non-causal paths between X and Y : Block!

– If already blocked, don’t open (e.g. by conditioning on S ).
I Backdoor paths X ←W1 ← Z →W2 → Y and X ← U → P → Y :

Block with minimal effort. – Sufficient sets: P plus one from
{Z ,W1,W2}. – If P unobserved, substitute by Q , proxy of U .

I No need to adjust for T . – Adjusting for C can improve precision.
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Identifying causal contrasts from causal diagram

I Let Z ′ be a set of observed covariates that are non-descendants of X

I If Z ⊂ Z ′ were sufficient to block all open non-causal paths btw X and
Y , then counterfactuals are identified by standardization – or g-formula:

πx = E (Y X=x ) = EZ [EY (Y |X = x ,Z )]

=
∑

z

P{Y = 1 | X = x ,Z = z}P{Z = z}, for discrete Z .

I Causal contrasts τ c, φc, ψc are obtained from π1 and π0 thus derived.

I If there are open paths btw X and Y , e.g. via unmeasured confounders U ,
the causal contrasts are not identified ⇔ residual confounding.

I If X is randomized, then X ⊥⊥ Z ∪ U , and it holds simply

πx = P{Y X=x = 1} = P{Y = 1 | X = x} = πx , ∀x ,
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Randomized study and causal diagram

•
X

•
Y

?

• Z

◦
U

• C
R = Randomization of exposure

X

X

I When X ≡ R, no arrow points to X , and X is independent of Z ,U , . . . ,
measured and unmeasured.

⇒ No confounding!

⇒ Estimation of causal effect: unadjusted, crude comparison is enough.

I Precision may be improved by including Z and C as covariates.

I Often realized exposure X is affected by Z and U , thus differing from R.
Then, R may be utilized as an instrumental variable.

Causal Inference 2: Model-based estimation of causal contrasts 11/ 30
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Example (cont’d): Single binary common cause Z

I Causal diagram X → Y , X ← Z → Y ; classical confounding triangle.

I Counterfactual risks (from items on slide 6) are obtained by g-formula
πx =

∑
z πxzP{Z = z} with weights from total population:

π1 = 0.50× 0.4 + 0.20× 0.6 = 0.32,

π0 = 0.25× 0.4 + 0.10× 0.6 = 0.16

I Marginal causal contrasts (vs. associational ones)

τ c = 0.32− 0.16 = 0.16 6= 0.27 = 0.40− 0.13 = τ,

φc = 0.32/0.16 = 2 6= 3.14 = 0.40/0.13 = φ,

ψc =
0.32/(1− 0.32)

0.16/(1− 0.16)
= 2.47 6= 4.57 = ψ.

I Associational contrasts were clearly confounded by Z .
Causal Inference 2: Model-based estimation of causal contrasts 12/ 30

Conditional causal contrasts

I With covariate Z , counterfactual z -specific risks are defined

πx
z = P{Y X=x = 1 | Z = z}, for all z and x = 0, 1.

I These have their own identifiability conditions.

I Conditional or z -specific causal contrasts of risks are, for instance

τ cz = π1
z − π0

z = P{Y X=1 = 1 | Z = z} − P{Y X=0 = 1 | Z = z},
φc
z = π1

z/π
0
z = P{Y X=1 = 1 | Z = z}/P{Y X=0 = 1 | Z = z}

I If τ cz has the same value for all z , the risk difference is homogenous.
Otherwise it is heterogenous or modified by Z .

I These concepts are defined similarly for risk ratio and odds ratio.

I Homogeneity of one type of contrast implies heterogeneity of other types.

Causal Inference 2: Model-based estimation of causal contrasts 13/ 30

Causal contrasts in factual exposure groups

I Causal risk difference among exposed is defined
τ c1 = P{Y X=1 = 1 | X = 1} − P{Y X=0 = 1 | X = 1},

also known as average treatment effect among treated (ATT).
– The contrast among unexposed (ATU) is analogously defined.

I The effect often heterogenous, and groups noncomparable.

I If Z is a sufficient set, g-formulas for identifying these are

ATT = π1 −
∑

π0zP{Z = z |X = 1} = “observed− expected′′,

ATU =
∑

π1zP{Z = z |X = 0} − π0 = “expected− observed′′.

I Different standard populations for ATT, ATU, and for marginal contrast,
a.k.a. average treatment effect in the whole population:

ATE = τ c = πX=1 − πX=0 =
∑

z

π1zP{Z = z} −
∑

z

π0zP{Z = z}.
Causal Inference 2: Model-based estimation of causal contrasts 14/ 30
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Example: Single binary Z (cont’d)

I z -specific risks, marginal assoc. & causal contrasts are on slides 6 & 11.

I For ATT, we have the observed risk π1
1 = π1 = 0.40, and the expected risk

is π0
1 =

∑
z π0zP{Z = z |X = 1} = 0.25×0.667 + 0.10×0.333 = 0.20, so

ATT = 0.40 − 0.20 = 0.20.

I For ATU, the expected risk is π1
0 =

∑
z π1zP{Z = z |X = 0} =

0.50×0.182 + 0.20×0.818 = 0.26, the observed risk is π0
0 = π0 = 0.13,

and ATU = 0.26 − 0.13 = 0.13.

I Here, the causal risk difference is bigger among exposed. – Being exposed
seems to be a modifier of the effect of exposure on this scale!

I Interestingly, the causal risk ratio = 2 is homogenous.

NB Popular design for estimating ATT: matched cohort study.
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Outcome regression modelling (see lecture on Saturday)

Modelling how expected values, risks, hazards, etc. depend on exposure X and
covariates Z (modifiers, and/or confounders). – Common elements:

I Each subject i (i = 1, . . . , n) has an own profile, i.e.
vector (xi , z

T
i ) of values of X and covariates Z .

I In the spirit of generalized linear models, let vector (α, β, γT) contain
regression coefficients, and specify the linear predictor
– assuming so far no interactions, nor effect modifications

ηi = α + βxi + γTzi

I Product terms can be added for interactions and modifications if needed,
and splines may be used for continuous covariates.

I Further model specification depends on the type of outcome variable, causal
contrasts of interest, and importance and choice of time scale(s).

Causal Inference 2: Model-based estimation of causal contrasts 16/ 30

Binary outcome model and classical causal estimation

I Basic outcome regression model for risks π in fixed risk periods:

g{π(xi)} = α + βxi + γTzi , i = 1, . . . ,N .

I Link g(·) and causal interpretation of β, assuming the validity of model
(including homogeneity or non-modification of the contrast in question) and
that Z blocks all backdoor paths:

– id ⇒ β = risk difference (RD) τ c for X = 1 vs. X = 0, adjusted for Z
– log ⇒ β = log of risk ratio (RR) φc – ” –
– logit ⇒ β = log of conditional risk odds ratio (OR), ψc

z , – ” –
NB. This is different from marginal OR due to non-collapsibility.

I Random component: Binomial family – Fitting: glm()

I Problems with id & log in keeping predicted π̂(·) between 0 and 1.
Causal Inference 2: Model-based estimation of causal contrasts 17/ 30
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Modern approach: Causal contrasts by g-formula

I Assuming that Z is sufficient to block non-causal paths, a logistic model is
fitted, which may even contain product terms allowing modification

logit(πi) = log[πi/(1− πi)] = α + βxi + γTzi + δT(xizi), i = 1, . . . , n.

I For each individual i , predicted risks are computed for both possibilities of
exposure: X = 0 and X = 0, but keeping Z = zi as it is

π̃Xi=x
i = expit{α̂ + β̂x + γ̂Tzi + δ̂T(xzi)}, x = 0, 1.

I Marginal counterfactual risks for x = 1, 0 are estimated applying g-formula:

π̂X=x = ÊZ [E (Y |X = x ,Z )] =
1

n

n∑

i=1

Ẽ (Yi |Xi = x ,Z = zi) =
1

n

n∑

i=1

π̃Xi=x
i

as the data provide a non-parametric estimate of the joint distribution of Z .

I Estimators marginal causal contrasts of risks are now, e.g.

τ̂ c = π̂X=1 − π̂X=0, ψ̂c = [π̂1/(1− π̂1)]/[π̂0/(1− π̂0)]
Causal Inference 2: Model-based estimation of causal contrasts 18/ 30

Exposure modelling, propensity scores and weighting

Let X be a binary exposure variable. Assume again that Z is a sufficient set

I Exposure model predicting individual Xi :s by confounders is fitted

logit[P{Xi = 1|Z = zi}] = α∗ + zTi γ
∗, i = 1, . . . ,N .

I Propensity scores PSi , or fitted probabilities of exposure are obtained

PSi = P̂{Xi = 1|Z = zi} = expit(α̂∗ + zTi γ̂
∗).

I Individual weights Wi = w(PSi ,Xi) are computed (see next slide).

I Counterfactual risks are estimated as weighted averages of the outcome in
the two exposure groups

π̂X=x =

∑n
i=1 1{Xi=x}WiYi∑n
i=1 1{Xi=x}Wi

=

∑
Xi=x WiYi∑
Xi=x Wi

, x = 0, 1

I From these, marginal causal contrasts are estimated as before.

Causal Inference 2: Model-based estimation of causal contrasts 19/ 30

Exposure modelling, propensity scores and weighting (cont’d)

I Inverse probability weights (IPW) are used to estimate marginal causal
contrasts (like ATE) in the whole population. They are based on inverses of
the fitted probabilities of belonging to the realized exposure group:

Wi = w(PSi ,Xi) =
1{Xi=1}

PSi

+
1{Xi=0}
1− PSi

, i = 1, . . . , n.

I If the interest is on causal contrasts among the treated (like ATT), the
treated weights are used:
Wi = 1 for Xi = 1, and Wi = PSi/(1− PSi) for Xi = 0.

I Other: overlap weights, matching weights, entropy weights.

I The goodness-of-fit of the exposure model needs to be assessed.
For that purpose, various measures of covariate balance are developed.

Causal Inference 2: Model-based estimation of causal contrasts 20/ 30
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Double robust (DR) estimators and machine learning methods

I The validity of estimator utilizing g-formula or PS-based weighting depends
on, how accurately the outcome model or exposure model is specified.

I Double robust (DR) estimation of causal contrasts:
Combination of g-formula and IPW. – Alternatives

– Augmented IPW (AIPW); see Jonsson Funk et al. (2011),

– Targeted maximum likelihood estimation (TMLE);
see Schuler & Rose (2017), Luque-Fernandez et al. (2018)

Validity of a DR estimator requires that either the exposure model or the
outcome model (or both) is correctly specified.

I Algorithms developed for supervised learning increase flexibility in
modelling both outcome and exposure (see Bi et al. 2019, Blakely et al. 2020).
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Interim conclusions

I Careful specification of causal question and estimands needed.

I Adjustment for confounding via efficient blocking of backdoor paths.

I Basic estimation methods: outcome regression & g-formula,
exposure modelling & PS-weighting, double robust estimators.

I Sufficiently flexible models desirable to reduce misspecification bias.

I Statistical inference (ignored here): robust covariance matrix & delta
method, bootstrapping, efficient influence curve, etc.

I We also limited to time-fixed exposure (binary) and confounders. Extensions
exist for polytomous exposure, time-varying exposure and confounding.

I Warning: There can still remain open non-causal paths between X and Y
inducing residual confounding and/or selection bias.

Causal Inference 2: Model-based estimation of causal contrasts 22/ 30

Time-to-event outcomes: associational hazard quantities

I Let T = time to outcome event from a defined zero time, and
Y (t) = 1{T≤t} indicator (1/0) for the outcome to occur by t .

I The risk of outcome by t conditional on exposure level x

πx (t) = P{Y (t) = 1|X = x} = P{T ≤ t |X = x}, x = 0, 1.

I The hazard of outcome at t for those exposed to level X = x be

λx (t) = λ(t | X = x ) = lim
h→0

P{Y (t + h) = 1 | X = x}/h
P{Y (t) = 1 | X = x} .

I Common associational contrasts:

– Hazard difference δ(t) = λ1(t)− λ0(t),
– Hazard ratio ρ(t) = λ1(t)/λ0(t).

This is often assumed constant ρ – as in Cox regression.

Causal Inference 2: Model-based estimation of causal contrasts 23/ 30
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Causal contrasts of hazards

I Let TX=x = T x , be time to event, and Y X=x (t) = Y x (t) = 1{T x≤t}
indicate the event occurring during risk period (0, t ],
if exposure X were forced to value x in the whole target population.

I The counterfactual hazard, if everybody were exposed to X = x :

λx (t) = lim
h→0

1

h

P{Y X=x (t + h) = 1}
P{Y X=x (t) = 0} , x = 1, 0.

I Marginal causal contrasts:
hazard difference (HD) λ1(t)− λ0(t), and hazard ratio (HR) λ1(t)/λ0(t).

I If X is randomized, these are identified by corresp. assoc. contrasts.

I Yet, hazard at any t is conditional on survival by t . If X has any effect,
Y 1(t) = 0 and Y 0(t) = 0 imply different populations at risk for t > 0.

⇒ Even if exposure groups were comparable at t = 0, after that they aren’t.

I Causal interpretation of HR problematic even in a randomized study.
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Example: The untreated have a higher hazard (Stensrud et al 2019)

I In the course of time, the prognostic profile of the remaining active
treatment group will be worse than that in the remaining placebo group.
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Hazard of hazard ratios (Hernan 2010, Aalen et al. 2015 )

I The hazard at any time t > 0 is affected by known and unknown causes of
the outcome ⇒ individual frailty U varies in the population.

X
Y (t)

Y (t + h)

◦
U

I Y (t) is a collider on the path from X to Y (t + h) via U .
Conditioning on Y (t) = 0 opens this non-causal path ⇒ selection bias.

I The observable hazards may behave strangely over time and lead to
conclusions like “HR> 1 before t∗ but HR< 1 after that”.
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Example: WHI Trial on MHT and CHD (Manson et al. 2003)

I Women, 50-79 y,
MHT: N1 = 8506,
placebo: N0 = 8102

I Followed-up for
max 8.6 y, mean 5.6 y.

I Cases & rates/104 y
D1 = 188, I1 = 39,
D0 = 147, I0 = 33.

I Crude IR = 1.20,
adjusted 1.24
(1.00–1.54)

Causal Inference 2: Model-based estimation of causal contrasts 27/ 30

Example: WHI Trial (cont’d)

I Curves of cumulative hazard
approximate the development
of cumulative risks πx (t) over
time.

I In early years, the curve of
MHT runs on top, reflecting
higher hazard in that period.

I By 6-7 year, cumulative risks
appear to have reached same
level.
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From hazards to causal contrasts of risk

I A well-specified predictive model for hazards λ(t |x , z ) (e.g. Cox or Poisson;
suitably flexible) can, however, be used to estimate counterfactual
cumulative risks πx (t) = P{Y X=x (t)} = P{TX=x ≤ t}, x = 0, 1.

I Suppose Z blocks all non-causal paths. Then counterfactual conditional
hazards λx (t |Z = z ) are identified by observable hazards λ(t |x , z )

I When no competing events exist, counterfactual z -specific risks
πx (t |Z = z ) = P{Y X=x (t)|Z = z} are identified from
factual z -conditional hazards

πx (t |Z = z ) = 1− exp
{
−
∫ t

0
λ(v |x , z )dv

}
.

I Counterfactual marginal risks are obtained using the g-formula:

πx (t) =
∑

z

πx (t |Z = z )P{Z = z}.
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Estimation of causal contrasts from time-to-event data

I Various methods to estimate counterfactual risks πX=x (t) and their
contrasts (see Denz et al. 2023 ) – For instance

(a) Fit a Cox model λ(t |xi , zi) = λ0(t) exp(βxi + γT zi), take estimates of

coefficients and baseline cumulative hazard Λ̂0(t) from which:

π̃Xi=x
i (t) = 1− exp{−Λ̂0(t) exp(β̂x + γ̂Tzi)}.

Counterfactuals πX=x (t) and contrasts are then estimated by g-formula.

(b) Get weights Wi from an exposure model, fit Cox with “intercept only”
specifying X as a strata() variable and Wi :s as weights, and estimate
π̂X=x (t) using survfit(), etc.

I Other: IPW Kaplan-Meier, use of pseudo-values, DR methods, . . .

I Competing event setting: additional complexities in defining and analysing
causal contrasts (see Rudolph et al. 2020, Young et al. 2020).
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Multistate models
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Common assumptions in survival analysis

1. Subjects are either �healthy� or �diseased�, with no
intermediate state.

2. The disease is irreversible, or requires intervention to be cured.

3. The time of disease incidence is known exactly.

4. The disease is accurately diagnosed.

These assumptions are true for death and many chronic diseases.

A question of de�nition:
� consider occurrence of recording of a given disease

Multistate models (ms-Markov) 2/ 27
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A model for cervical cancer

Invasive squamous cell cancer of the cervix is preceded by cervical
intraepithelial neoplasia (CIN)

Normal CIN I CIN II CIN III CancerNormal CIN I CIN II CIN III CancerNormal CIN I CIN II CIN III Cancer
λ01

λ10

λ12

λ21

λ23

λ32

λ3D

Purpose of a screening programme is to detect and treat CIN �
status of persons obtained at screening dates

Aim of the modeling the transition rates between states, is to be able
predict how population moves between states

▶ Transition rates between states

▶ Probability of state occupancy
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Markov models for multistate processes

The natural generalization of Poisson regression to multiple disease
states:

▶ transition between states depends only on current state

▶ � this is the Markov property

▶ ⇒ transition rates are constant over time

▶ (time-�xed) covariates may in�uence transition rates

▶ the formal Markov property is very restrictive

▶ in the clinical litterature �Markov model� is often used about
any type of multistate model
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Components of a multistate (Markov) model

▶ De�ne the disease states

▶ De�ne which transitions between states are allowed

▶ Select covariates in�uencing transition rates (may be di�erent
between transitions)

▶ Not a trivial task � do we want e.g.

▶ cause of death (CVD, Cancer, Other)
▶ disease status at death (prev.CVD, prev.Can, neither)

Multistate models (ms-Markov) 5/ 27
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A more complicated multistate model

DN
1,706.4

309          175

CVD
1,219.4

234          119

ESRD(CVD)
108.6

0          14

ESRD
138.8

0          34

Dead(CVD)
0          98

Dead(ESRD(CVD))
0          25

Dead(ESRD)
0          14

Dead(DN)
0          64
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39 (3.2)
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Dead(ESRD)
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Likelihood for a multistate model

▶ The likelihood of the model depends on the probability of being
in state j at time t1, given that you were in state i at time t0.

▶ Assume transition rates constant in small time intervals

▶ ⇒ each interval for a person contributes term(s) to the
likelihood

▶ one term for each possible transition between states

▶ the total likelihood for person p in intervals i is a product of
these terms, dpilog(λpi)− λpiypi

▶ ⇒ each term has the form of the likelihood for a
Poisson variate d with mean λy
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Likelihood for a multistate model

▶ each term has the form of the likelihood for a Poisson variate d
with mean λy

▶ terms are not independent, but the total likelihood is a product;
hence of the same form as the likelihood from independent
Poisson variates

▶ but observations from intervals from one person are
neither Poisson nor independent
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Realms of multistate modeling

▶ intensities � dimension time−1

▶ state probabilities � dimensionless, time0

integral of intensities w.r.t. to time

▶ sojourn times � dimension time1

integral of state probabilities w.r.t. to time

Multistate models (ms-Markov) 9/ 27

Classes of multistate models

▶ Markov model: transition between states depends only on
current state ⇒ transition rates are constant
time-homogeneous Markov model

▶ If transition rates depend on the same timescale only we have
a time-inhomogeneous Markov model

▶ If transition rates depend on the time since entry to the current
state we have a semi-Markov model

▶ If transition rates depend on several timescales we have a
general multistate model (there is no name for this)
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Computing state probabilities

from intensities in multistate models

▶ time-homogeneous Markov model:
closed-form formulae exist

▶ time-inhomogeneous Markov model:
closed-form formulae exist (a bit more complicated)

▶ semi-Markov model:
no closed form formulae exist

▶ general multistate model:
no closed form formulae exist

No formulae means that any inference on state probabilities and
sojourn times must be based on simulation from the model.
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115



Multistate models with Lexis
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Example: Renal failure data from Steno

Hovind P, Tarnow L, Rossing P, Carstensen B, and Parving H-H: Improved

survival in patients obtaining remission of nephrotic range albuminuria in diabetic

nephropathy. Kidney Int., 66(3):1180�1186, 2004.

▶ Endpoint of interest: Death or end stage renal disease (ESRD),
i.e. dialysis or kidney transplant.

▶ 96 patients entering at nephrotic range albuminuria (NRA), i.e.
U-alb> 300mg/day.

▶ Is remission from this condition (i.e return to
U-alb< 300mg/day) predictive of the prognosis?

Multistate models with Lexis (ms-Lexis) 12/ 27

Remission

Total Yes No

No. patients 125 32 93
No. events 77 8 69

Follow-up time (years) 1084.7 259.9 824.8

Cox-model:
Timescale: Time since nephrotic range albuminuria (NRA)

Entry: 2.5 years of GFR-measurements after NRA
Outcome: ESRD or Death
Estimates: RR 95% c.i. p

Fixed covariates:
Sex (F vs. M): 0.92 (0.53,1.57) 0.740

Age at NRA (per 10 years): 1.42 (1.08,1.87) 0.011

Time-dependent covariate:
Obtained remission: 0.28 (0.13,0.59) 0.001
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Features of the analysis

▶ Remission is included as a time-dependent variable.

▶ Age at entry is included as a �xed variable.

renal[1:5,]
id dob doe dor dox event
17 1967.944 1996.013 NA 1997.094 2
26 1959.306 1989.535 1989.814 1996.136 1
27 1962.014 1987.846 NA 1993.239 3
33 1950.747 1995.243 1995.717 2003.993 0
42 1961.296 1987.884 1996.650 2003.955 0

Note patient 26, 33 and 42 obtain remission.
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> Lr <- Lexis(entry = list(per = doe,
+ age = doe-dob,
+ tfi = 0),
+ exit = list(per = dox),
+ exit.status = event>0,
+ states = c("NRA", "ESRD"),
+ data = renal)
> summary(Lr)

Transitions:
To

From NRA ESRD Records: Events: Risk time: Persons:
NRA 48 77 125 77 1084.67 125
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> boxes(Lr, boxpos = list(x = c(25, 75),
+ y = c(75, 25)),
+ scale.R = 100, show.BE = TRUE )

NRA
1,084.7

125          48

ESRD
0          77

77
(7.1)

NRA
1,084.7

125          48

ESRD
0          77

NRA
1,084.7

125          48

ESRD
0          77
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Illness-death model

NRA Rem

ESRD

0.0

0.1
0.0

NRA Rem

ESRD

NRA Rem

ESRD

λ

µNRA µRem

λ: remission rate.
µNRA: mortality/ESRD rate before remission.
µrem: mortality/ESRD rate after remission.
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Cutting follow-up at remission: cutLexis

> Lc <- cutLexis(Lr, cut = Lr$dor,
+ timescale = "per",
+ new.state = "Rem",
+ precursor.states = "NRA")
> summary(Lc)

Transitions:
To

From NRA Rem ESRD Records: Events: Risk time: Persons:
NRA 24 29 69 122 98 824.77 122
Rem 0 24 8 32 8 259.90 32
Sum 24 53 77 154 106 1084.67 125
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Showing states and FU: boxes.Lexis

> boxes(Lc, boxpos = list(x = c(15, 85, 50),
+ y = c(85, 85, 20)),
+ scale.R = 100, show.BE = TRUE)

NRA
824.8

122          24

Rem
259.9

3          24

ESRD
0          77

29
(3.5)

69
(8.4)

8
(3.1)

NRA
824.8

122          24

Rem
259.9

3          24

ESRD
0          77

NRA
824.8

122          24

Rem
259.9

3          24

ESRD
0          77
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Cutting follow up at events: cutLexis

> Lc <- cutLexis( Lr, cut = Lr$dor,
+ timescale = "per",
+ new.state = "Rem",
+ precursor.states = "NRA",
+ split.states = TRUE )
> summary( Lc )

Transitions:
To

From NRA Rem ESRD ESRD(Rem) Records: Events: Risk time: Persons:
NRA 24 29 69 0 122 98 824.77 122
Rem 0 24 0 8 32 8 259.90 32
Sum 24 53 69 8 154 106 1084.67 125
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Showing states and FU: boxes.Lexis

> boxes(Lc, boxpos = list(x = c(15, 85, 15, 85),
+ y = c(85, 85, 20, 20)),
+ scale.R = 100)

NRA
824.8

Rem
259.9

ESRD ESRD(Rem)

29
(3.5)

69
(8.4)

8
(3.1)

NRA
824.8

Rem
259.9

ESRD ESRD(Rem)

NRA
824.8

Rem
259.9

ESRD ESRD(Rem)
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Likelihood for a general MS-model

▶ Product of likelihoods for each transition
� each one as for a survival model

▶ Risk time is the risk time in the �From� state

▶ Events are transitions to the �To� state

▶ All other transitions out of �From� are treated as censorings

▶ Possible to �t models separately for each transition
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NRA Rem

ESRD ESRD(Rem)

0.0

0.1 0.0

NRA Rem

ESRD ESRD(Rem)

NRA Rem

ESRD ESRD(Rem)

λ

µNRA µRem

Cox-analysis with remission as time-dependent covariate:

▶ Ignores λ, the remission rate.

▶ Assumes µNRA and µrem use the same timescale.
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Model for all transitions

NRA
824.8

Rem
259.9

ESRD ESRD(Rem)

29

69 8

NRA
824.8

Rem
259.9

ESRD ESRD(Rem)

NRA
824.8

Rem
259.9

ESRD ESRD(Rem)

Cox-model:

▶ Di�erent timescales for
transitions possible

▶ . . . only one per transition

▶ No explicit representation of
estimated rates.

Poisson-model:

▶ Timescales can be di�erent

▶ Multiple timescales can be
accomodated simultaneously

▶ Explicit representation of all
transition rates
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Calculating state probabilities

P {Remission before time t}

=

∫ t

0

λ(u)exp

(
−
∫ u

0

λ(s) + µNRA ds

)
du

P {Being in remission at time t}

=

∫ t

0

λ(u)exp

(
−
∫ u

0

λ(s) + µNRA(s) ds

)
×

exp

(
−
∫ t

u

µrem(s) ds

)
du

Note µrem could also depend on u, time since obtained remission.
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Sketch of programming, assuming that λ (lambda), µNRA (mu.nra)
and µrem (mu.rem) are known at any age (stored in vectors)

c.rem <- cumsum(lambda)
c.mort.nra <- cumsum(mu.nra)
c.mort.rem <- cumsum(mu.rem)
pr1 <- cumsum(lambda * exp(-(c.rem + c.mort.nra)))

intgr(t,s) <-
function(t,s){
lambda[s] * exp(-(c.rem[s] + c.mort.nra[s])) *

exp(-(c.mort.rem[t] - c.mort.rem[s]))
}

for(t in 1:100) p2[t] <- sum(intgr(t,1:t))

If µrem also depends on time since remission, then c.mort.rem

should have an extra argument�technically very complicated
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