
A short introduction to
for Epidemiology

June 2014
Version 4

Compiled Friday 27th June, 2014, 09:48
from: C:/Bendix/undervis/SPE/Intro/R-intro.tex

Michael Hills Retired
Highgate, London

Martyn Plummer International Agency for Research on Cancer, Lyon
plummer@iarc.fr

Bendix Carstensen Steno Diabetes Center, Gentofte, Denmark
& Department of Biostatistics, University of Copenhagen

bxc@steno.dk

www.pubhealth.ku.dk/~bxc

Edition 2014 by Bendix Carstensen

www.pubhealth.ku.dk/~bxc

Contents

1 Getting R running on your computer 1

1.1 What is R? . 1

1.2 Getting R . 1

1.2.1 Starting R . 1

1.2.2 Quitting R . 2

1.3 Working with the script editor . 2

1.3.1 Rstudio . 2

1.3.2 Try! . 3

1.4 Changing the looks . 3

1.4.1 . . . of standard R . 3

1.4.2 . . . of Rstudio . 3

1.5 Further reading . 4

2 Some basic commands in R 5

2.1 Preliminaries . 5

2.2 Using R as a calculator . 5

2.3 Objects and functions . 6

2.4 Sequences . 7

2.5 The births data . 7

2.6 Referencing parts of the data frame . 8

2.7 Summaries . 9

2.8 Turning a variable into a factor . 9

2.9 Frequency tables . 10

2.10 Grouping the values of a metric variable . 10

2.11 Tables of means and other things . 11

2.11.1 Other tabulation functions . 12

2.12 Generating new variables . 12

2.13 Logical variables . 12

3 Working with R 14

3.1 Saving the work space . 14

3.2 Saving output in a file . 14

3.3 Saving R objects in a file . 15

3.4 Using a text editor with R . 15

3.5 The search path . 16

3.6 Attaching a data frame . 16

2

4 Graphs in R 18
4.1 Simple plot on the screen . 18
4.2 Colours . 19
4.3 Adding to a plot . 19

4.3.1 Using indexing for plot elements . 20
4.3.2 Generating colours . 21

4.4 Interacting with a plot . 21
4.5 Saving your graphs for use in other documents 22
4.6 The par() command . 22

5 The effx function for effects estimation 23
5.1 The function effx . 23
5.2 Factors on more than two levels . 24
5.3 Stratified effects . 25
5.4 Controlling the effect of hyp for sex . 25
5.5 Numeric exposures . 25
5.6 Checking on linearity . 26
5.7 Frequency data . 26

6 Dates in R 27

7 Follow-up data in the Epi package 29
7.1 Timescales . 29
7.2 Splitting the follow-up time along a timescale 30
7.3 Cutting time at a specific date . 34
7.4 Competing risks — multiple types of events 36
7.5 Multiple events of the same type (recurrent events) 37
References . 40

8 R command sheet 41
Getting help . 41
Input and output . 41
Data creation . 42
Slicing and extracting data . 42
Variable conversion . 43
Variable information . 43
Data selection and manipulation . 43
Math . 43
Matrices . 44
Advanced data processing . 44
Strings . 44
Dates and Times . 45
Plotting . 45
Low-level plotting commands . 46
Graphical parameters . 47
Lattice (Trellis) graphics . 48
Optimization and model fitting . 48
Statistics . 48

Distributions . 49
Programming . 49
The Epi package . 49

Chapter 1

Getting R running on your computer

1.1 What is R?

R is free program for data analysis and graphics. It contains all state of the art statistical
methods, and has become the preferred analysis tool for most professional statisticians in
the world. It can be used as simple calculator and as a very specialized statistical analysis
and reporting machinery.

The special thing about R is that you enter commands from the keyboard into a console
window, where you also see the results. This is an advantage because you end up with a
script that you can use to reproduce your analyses—a requirement in any scientific
endeavour.

The disadvantage is that you somehow have to find out what to type. The practicals will
contain some hints, and you will mostly be using R as a calculator, as you just saw — type
an expression, hit the return key and you get the result.

1.2 Getting R

You can obtain R, which is free, from CRAN (the Comprehensive R Archive Network), at
http://cran.r-project.org/. Under “Download R for Windows” click on “install R for
the first time” and then on “Download R 3.0.2 for Windows”, which is a self-extracting
installer. This means that if you save it to your computer somewhere and click on it, it will
install R for you.

Apart from what you have downloaded there are several thousand add-on packages to R
dealing with all sorts of problems from ecology to fiance and incidentally, epidemiology.
You must download these manually. In this course we shall only need the Epi package.

1.2.1 Starting R

You start R by clicking on the icon that the installer has put on your desktop. You should
edit the properties of this, so that R starts in the folder that you have created on your
computer for this course.

Once you have installed R, start it, and in the menu bar click on Packages → Install
package(s)..., chose a mirror (this is just a server where you can get the stuff), and then the
Epi package.

1

http://cran.r-project.org/

2 1.3 Working with the script editor R for epidemiology

Once R (hopefully) has told you that it has been installed, you can type:

> library(Epi)

to get access to the Epi package. You can get an overview of the functions and datasets in
the package by typing:

> library(help=Epi)

It should be apparent that you have version 1.1.49 of the Epi package. For documentauon
purposes it is often useful to have the following at the beginning of your program:

> sessionInfo()

R version 3.1.0 (2014-04-10)
Platform: i386-w64-mingw32/i386 (32-bit)

locale:
[1] LC_COLLATE=Danish_Denmark.1252 LC_CTYPE=Danish_Denmark.1252
[3] LC_MONETARY=Danish_Denmark.1252 LC_NUMERIC=C
[5] LC_TIME=Danish_Denmark.1252

attached base packages:
[1] utils datasets graphics grDevices stats methods base

other attached packages:
[1] Epi_1.1.65 foreign_0.8-61

loaded via a namespace (and not attached):
[1] tools_3.1.0

1.2.2 Quitting R

Type q() in the console, and answer “No” when asked whether you want to save workspace
image.

1.3 Working with the script editor

If you click on File → New script, R will open a window for you which is a text-editor very
much like Notepad.

If you write a command in it you can transfer it to the R console and have it executed by
pressing CTRL-r. If nothing is highlighted, the line where the cursor is will be transmitted
to the console and the cursor will move to the next line. If a part of the screen is
highlighted the highlighted part will be transmitted to the console. Highlighting can also
be used to transmit only a part of a line of code.

1.3.1 Rstudio

This is an interface that allows you to have a slithly more flexible script-editor than the
built-in, R-studio har syntax coloriung which can be very nice. You can obtain it from
http://rstudio.com.

http://rstudio.com

Getting R running on your computer 1.4 Changing the looks . . . 3

1.3.2 Try!

Now, either open a script by File → New script, and type (omit the “>” in the beginning of
the line), or fire up R-studio and type in the editor window:

> 5+7
> pi
> 1:10
> N <- c(27,33,81)
> N

Run the lines one at a time by pressing CTRL-r, (in R-studio it is CTRL-ENTER) and see
what happens.

You can also type the commands in the console directly. But then you will not have a
record of what you have done. Well, you can press File → Save History and save all you
typed in the console (including the 73.6% commands with errors).

1.4 Changing the looks . . .

1.4.1 . . . of standard R

If you want R to start up with a different font, different colors etc., the go to the folder
where R is installed — most likely Program Files\R\R-2.13.1, then to the folder etc,
and open the file Rconsole with Notepad. In the file are specifications on how R will look
when you start it, pretty self-explanatory, except perhaps for MDI.
MDI means “Multiple Display Interface”, which means you get a single R-window, and

within that sub-windows with the console, the script editor, graphs etc. If this is set to
“no”, you get SDI which means “Single Display Interface”, which means that R will open
the console, script editor etc. in separate windows of their own.

A withe background can be trying to look at so on my (BxC) computer I use a bold font
and the following colors:

> background = gray5
> normaltext = yellow2
> usertext = green
> pagerbg = gray5
> pagertext = yellow2
> highlight = red
> dataeditbg = gray5
> dataedittext = red
> dataedituser = yellow2
> editorbg = gray5
> editortext = lightblue

(If you want to know which colors are available in R, just give the command colors()).

1.4.2 . . . of Rstudio

Click on Tools→Global options...→Apperance and choose Consolas font, 16 pt, Editor theme
Cobalt

4 1.5 Further reading R for epidemiology

1.5 Further reading

On the CRAN web-site the last menu-entry on the left is “Contributed” and will take you
to a very long list of various introductions to R, including manuals in esoteric languages
such as Danish, Finnish and Hungarian.

Chapter 2

Some basic commands in R

2.1 Preliminaries

The purpose of these notes is to describe a small subset of the Rlanguage, sufficient to
allow someone new to R to get started. The exercises are important because they reinforce
basic aspects of R. For further details about R we refer the reader to An Introduction to
R by W.N.Venables, D.M.Smith, and the R development team. This can be downloaded
from the R website at http://www.r-project.org.

To start R click on the R icon. To change your working directory click on
File→ Change dir... and select the directory you want to work in. Alternatively you can

write:

> setwd("c:/where/alll/my/files/are")

To get out of R click on the File menu and select Exit, or simpler just type “q()”. You will
be offered the chance to save the work space, but at this stage just exit without saving,
then start R again, and change the working directory, as before.
R is case sensitive, so that A is different from a. Commands in R are generally separated

by a newline, although a semi-colon can also be used. When using R it makes sense to
avoid as much typing as possible by recalling previous commands using the vertical arrow
key and editing them.

2.2 Using R as a calculator

Typing 2+2 will return the answer 4, typing 2^3 will return the answer 8 (2 to the power of
3), typing log(10) will return the natural logarithm of 10, which is 2.3026, and typing
sqrt(25) will return the square root of 25.

Instead of printing the result you can store it in an object, say

> a <- 2+2

which can be used in further calculations. The expression <-, pronounced ”gets”, is called
the assignment operator, and is obtained by typing < and then -. The assignment operator
can also be used in the opposite direction, as in

> 2+2 -> a

5

http://www.r-project.org

6 2.3 Objects and functions R for epidemiology

The contents of a can be printed by typing a.
Standard probability functions are readily available. For example, the probability below

1.96 in a standard normal (i.e. Gaussian) distribution is obtained with

> pnorm(1.96)

while

> pchisq(3.84,1)

will return the probability below 3.84 in a χ2 distribution on 1 degree of freedom, and

> pchisq(3.84,1,lower.tail=FALSE)

will return the probability above 3.84.

Exercise 2.1.

1. Calculate
√

32 + 42.

2. Find the probability above 4.3 in a chi-squared distribution on 1 degree of
freedom.

2.3 Objects and functions

All commands in R are functions which act on objects. One important kind of object is a
vector, which is an ordered collections of numbers, or an ordered collection of character
strings. Examples of vectors are 4, 6, 1, 2.2, which is a numeric vector with 4 components,
and “Charles Darwin”, “Alfred Wallace” which is a vector of character strings with 2
components. The components of a vector must be of the same type (numeric or character).
The combine function c(), together with the assignment operator, is used to create
vectors. Thus

> v <- c(4, 6, 1, 2.2)

creates a vector v with components 4, 6, 1, 2.2 by first combining the 4 numbers 4, 6, 1, 2.2
in order and then assigning the result to the vector v. Collections of components of
different types are called lists, and are created with the list() function. Thus

> m <- list(4, 6, "name of company")

creates a list with 3 components. The main differences between the numbers 4, 6, 1, 2.2
and the vector v is that along with v is stored information about what sort of object it is
and hence how it is printed and how it is combined with other objects. Try

> v
> 3+v
> 3*v

and you will see that R understands what to do in each case. This may seem trivial, but
remember that unlike most statistical packages there are many different kinds of object in
R.

You can get a description of the structure of any object using the function str(). For
example, str(v) shows that v is numeric with 4 components.

Some basic commands in R 2.4 Sequences 7

2.4 Sequences

It is not always necessary to type out all the components of a vector. For example, the
vector (15, 20, 25, ... ,85) can be created with

> seq(15, 85, by=5)

and the vector (5, 20, 25, ... ,85) can be created with

> c(5,seq(20, 85, by=5))

You can learn more about functions by typing ? followed by the function name. For
example ?seq gives information about the syntax and usage of the function seq().

Exercise 2.2.

1. Create a vector w with components 1, -1, 2, -2

2. Print this vector (to the screen)

3. Obtain a description of w using str()

4. Create the vector w+1, and print it.

5. Create the vector (0, 1, 5, 10, 15, ... , 75) using c() and seq().

2.5 The births data

Table 2.1: Variables in the births dataset

Variable Units or Coding Type Name

Subject number – categorical id

Birth weight grams metric bweight

Birth weight < 2500 g 1=yes, 0=no categorical lowbw

Gestational age weeks metric gestwks

Gestational age < 37 weeks 1=yes, 0=no categorical preterm

Maternal age years metric matage

Maternal hypertension 1=hypertensive, 0=normal categorical hyp

Sex of baby 1=male, 2=female categorical sex

The most important example of a vector in epidemiology is the data on a variable
recorded for a group of subjects. To introduce R we use the births data which concern 500
mothers who had singleton births in a large London hospital. These data are available as
an R object called births in the Epi package. You can get them into your workspace by:

> library(Epi)
> data(births)

Try

> objects()

8 2.6 Referencing parts of the data frame R for epidemiology

to make sure that you have an object called births in your working directory. A more
detailed overview of the objects in your workspace is obtained by:
> lls()

The function
> str(births)

shows that the object births is a data frame with 500 observations of 8 variables. The
names and types of the variables are also shown together with the first 10 values of each
variable.

Some of the variables which make up these data take integer values while others are
numeric taking measurements as values. For most variables the integer values are just
codes for different categories, such as "male" and "female" which are coded 1 and 2 for
the variable sex.

Exercise 2.3.

1. The dataframe "diet" in the Epi package contains data from a follow-up
study with coronary heart disease as the end-point. Load these data with:

> data(diet)

and print the contents of the data frame to the screen.

2. Check that you now have two objects, births, and diet in your work
space.

3. Obtain a description of the object diet.

4. Remove the object diet with the command

> rm(diet)

5. Check that you only have the object births left.

2.6 Referencing parts of the data frame

Typing births will list the entire data frame - not usually very helpful. Now try
> births[1,"bweight"]

This will list the value taken by the first subject for the bweight variable. Similarly
> births[2,"bweight"]

will list the value taken by the second subject for bweight, and so on. To list the data for
the first 10 subject for the bweight variable, try
> births[1:10, "bweight"]

and to list all the data for this variable, try
> births[, "bweight"]

Exercise 2.4.

1. Print the data on the variable gestwks for subject 7 in the births data
frame.

2. Print all the data for subject 7.

3. Print all the data on the variable gestwks.

Some basic commands in R 2.7 Summaries 9

2.7 Summaries

A good way to start an analysis is to ask for a summary of the data by typing

> summary(births)

To see the names of the variables in the data frame try

> names(births)

Variables in a data frame can be referred to by name, but to do so it is necessary also to
specify the name of the data frame. Thus births$hyp refers to the variable hyp in the
births data frame, and typing births$hyp will print the data on this variable. To
summarize the variable hyp try

> summary(births$hyp)

In most datasets there will be some missing values. These are usually coded using tab
delimited blanks to mark the values which are missing. R then codes the missing values
using the NA (not available) symbol. The summary shows the number of missing values for
each variable.

2.8 Turning a variable into a factor

In R categorical variables are known as factors, and the different categories are called the
levels of the factor. Variables such as hyp and sex are originally coded using integer codes,
and by default R will interpret these codes as numeric values taken by the variables. For R
to recognize that the codes refer to categories it is necessary to convert the variables to be
factors, and to label the levels. To convert the variable hyp to be a factor, try

> hyp <- factor(births$hyp)
> str(births)
> objects()

which shows that hyp is both in your work space (as a factor), and in in the births data
frame (as a numeric variable). It is better to use the transform function on the data frame,
as in

> births <- transform(births, hyp=factor(hyp))
> str(births)

which shows that hyp, in the births data frame, is now a factor with two levels, labeled "0"

and "1" which are the original values taken by the variable. It is possible to change the
labels to (say) "normal" and "hyper" with

> births <- transform(births, hyp=factor(hyp,labels=c("normal","hyper")))
> str(births)

Exercise 2.5.

1. Convert the variable sex into a factor

2. Label the levels of sex as "male" and "female".

10 2.9 Frequency tables R for epidemiology

2.9 Frequency tables

When starting to look at any new data frame the first step is to check that the values of
the variables make sense and correspond to the codes defined in the coding schedule. For
categorical variables (factors) this can be done by looking at one-way frequency tables and
checking that only the specified codes (levels) occur. The most useful function for making
tables is stat.table. This is currently part of the Epi package, so you will need to load
this package first with

> library(Epi)

The distribution of the factors hyp and sex can be viewed by typing

> stat.table(hyp,data=births)
> stat.table(sex,data=births)

Their cross-tabulation is obtained by typing

> stat.table(list(hyp,sex),data=births)

Cross-tabulations are useful when checking for consistency, but because no distinction is
drawn between the response variable and any explanatory variables, they are not useful as
a way of presenting data.

2.10 Grouping the values of a metric variable

For a numeric variable like matage it is often useful to group the values and to create a new
factor which codes the groups. For example we might cut the values taken by matage into
the groups 20–29, 30–34, 35–39, 40–44, and then create a factor called agegrp with 4 levels
corresponding to the four groups. The best way of doing this is with the function cut. Try

> births <- transform(births,agegrp=cut(matage, breaks=c(20,30,35,40,45),right=FALSE))
> stat.table(agegrp,data=births)

By default the factor levels are labeled [20-25), [25-30), etc., where [20-25) refers to the
interval which includes the left hand end (20) but not the right hand end (25). This is the
reason for right=FALSE. When right=TRUE (which is the default) the intervals include the
right hand end but not the left hand.

It is important to realize that observations which are not inside the range specified in the
breaks() part of the command result in missing values for the new factor. For example,
try

> births <- transform(births,agegrp=cut(matage, breaks=c(20,30,35),right=FALSE))
> summary(births)

Only observations from 20 up to, but not including 35, are included. For the rest, agegrp
is coded missing. You can specify that you want to cut a variable into a given number of
intervals of equal length by specifying the number of intervals. For example

> births <- transform(births,agegrp=cut(matage,breaks=5,right=FALSE))
> stat.table(agegrp,data=births)

shows 5 intervals of width 4.

Some basic commands in R 2.11 Tables of means and other things 11

Exercise 2.6.

1. Summarize the numeric variable gestwks, which records the length of
gestation for the baby, and make a note of the range of values.

2. Create a new factor gest4 which cuts gestwks at 20, 35, 37, 39, and 45
weeks, including the left hand end, but not the right hand. Make a table
of the frequencies for the four levels of gest4.

3. Create a new factor gest5 which cuts gestwks into 5 equal intervals, and
make a table of frequencies.

2.11 Tables of means and other things

To obtain the mean of bweight by sex, try

> stat.table(sex, mean(bweight), data=births)

The headings of the table can be improved with

> stat.table(sex,list("Mean birth weight"=mean(bweight)),data=births)

To make a two-way table of mean birth weight by sex and hypertension, try

> stat.table(list(sex,hyp),mean(bweight),data=births)

and to tabulate the count as well as the mean, try

> stat.table(list(sex,hyp),list(count(),mean(bweight)),data=births)

Available functions for the cells of the table are count, mean, weighted.mean, sum,

min, max, quantile,median, IQR, and ratio. The last of these is useful for rates and
odds. For example, to make a table of the odds of low birth weight by hypertension, try

> stat.table(hyp, list("odds"=ratio(lowbw,1-lowbw,100)),data=births)

The scale factor 100 makes the odds per 100. Margins can be added to the tables, as
required. For example,

> stat.table(sex, mean(bweight),data=births,margins=TRUE)

for a one-way table, and

> stat.table(list(sex,hyp),mean(bweight),data=births,margins=c(TRUE,FALSE))
> stat.table(list(sex,hyp), mean(bweight),data=births,margins=c(FALSE,TRUE))
> stat.table(list(sex,hyp), mean(bweight),data=births,margins=c(TRUE,TRUE))

for a two-way table.

Exercise 2.7.

1. Make a table of median birth weight by sex.

2. Do the same for gestation time, but include count as a function to be
tabulated along with median. Note that when there are missing values for
the variable being summarized the count refers to the number of
non-missing observations for the row variable, not the summarized
variable.

3. Create a table showing the mean gestation time for the baby by hyp and
lowbw, together with margins for both.

4. Make a table showing the odds of hypertension by sex of the baby.

12 2.12 Generating new variables R for epidemiology

2.11.1 Other tabulation functions

You may want to take a look at the help pages for the functions:

• table

• ftable

• xtabs

• addmargins

• array

• tapply

One way to do this is to simply type:

> example(table)

2.12 Generating new variables

New variables can be produced using assignment together with the usual mathematical
operations and functions:

+ - * log exp ^ sqrt

The sign ^ means “to the power of”, log means “natural logarithm”, and sqrt means
“square root”.

The transform() function allows you to transform or generate variables in a data frame.
For example, try

> births <- transform(births,
+ num1=1,
+ num2=2,
+ logbw=log(bweight))

The variable logbw is the natural logarithm of birth weight. Logs base 10 are obtained
with log10().

2.13 Logical variables

Logical variables take the values TRUE or FALSE, and behave like factors. New variables
can be created which are logical functions of existing variables. For example

> births <- transform(births, low=bweight<2000)
> str(births)

creates a logical variable low with levels TRUE and FALSE, according to whether bweight
is less than 2000 or not. The logical expressions which R allows are

== < <= > >= !=

Some basic commands in R 2.13 Logical variables 13

The first is logical equals and the last is not equals. One common use of logical variables is
to restrict a command to a subset of the data. For example, to list the values taken by
bweight for hypertensive women, try

> births$bweight[births$hyp=="hyper"]

If you want the entire dataframe restricted to hypertensive women try:

> births[births$hyp=="hyper",]

The subset() function also allows you to take a subset of a data frame. Try

> subset(births, hyp=="hyper")

Exercise 2.8.

1. Create a logical variable called early according to whether gestwks is less
than 30 or not.Make a frequency table of early.

2. Print the id numbers of women with gestwks less than 30 weeks.

Chapter 3

Working with R

3.1 Saving the work space

When exiting from R you are offered the chance of saving all the objects in your current
work space. If you do so, the work space is re-instated next time you start R. It can be
useful to do this, but before doing so it is worth tidying things up, because the work space
can fill up with temporary objects, and it is easy to forget what these are when you resume
the session.

3.2 Saving output in a file

To save the output from an R command in a file, for future use, the sink() command is
used. For example,

> sink("output.txt")
> summary(births)

first instructs R to re-direct output away from the R terminal to the file "output.txt" and
then summarizes the births data frame, the output from which goes to the sink. While a
sink is open all output will go to it, replacing what is already in the file. To append output
to a file, use the append=TRUE option with sink(). To close a sink, use

> sink()

Exercise 3.9.

1. Sink output to a file called "output1.txt".

2. Make frequency tables of hyp and sex

3. Make a table of mean birth weight by sex

4. Close the sink

5. From windows, have a look inside the file output1.txt and check that the
output you expected is in the file.

14

Working with R 3.3 Saving R objects in a file 15

3.3 Saving R objects in a file

The command read.table() is relatively slow because it carries out quite a lot of
processing as it reads the data. To avoid doing this more than once you can save the data
frame, which includes the R information, and read from this saved file in future. For
example,

> save(births, file="births.Rdata")

will save the births data frame in the file births.Rdata. By default the data frame is
saved as a binary file, but the option ascii=TRUE can be used to save it as a text file. To
load the object from the file use

> load("births.Rdata")

The commands save() and load() can be used with any R objects, but they are
particularly useful when dealing with large data frames.

Exercise 3.10.

1. Use read.table() to read the data in the file diet.txt into a data frame
called diet.

2. Save this data frame in the file "diet.Rdata"

3. Remove the data frame

4. Load the data frame from the file "diet.Rdata".

3.4 Using a text editor with R

When working with R it is best to use a text editor to prepare a batch file (or script) which
contains R commands and then to run them from the script. This means you can use the
cut and paste facilities of the editor to cut down on typing. For Windows we recommend
using the text editor Tinn-R, but you can use your favorite text editor instead if you prefer,
and copy-paste commands from it into the R-console.

Alternatively you can use the built-in script-editor: Click on File→New script, or
File→Open script, according to whether you are using an old script. You can move the
current line from the script-editor to the console by CTRL-R. If you have highlighted a
section of the script the highlighted part will be moved to the console.

Now start up the editor and enter the following lines:

> births <- transform(births,
+ lowbw = factor(lowbw, labels=c("normal","low")),
+ hyp = factor(hyp, labels=c("normal","hyper")),
+ sex = factor(sex, labels=c("male","female")))

Now save the script as mygetbirths.R and run it. One major advantage of running all
your R commands from a script is that you end up with a record of exactly what you did
which can be repeated at any time.

This will also help you redo the analysis in the (highly likely) event that your data
changes before you have finished all analyses.

16 3.5 The search path R for epidemiology

Exercise 3.11.

1. Create a script called mytab.R which includes the lines

> stat.table(hyp,data=births)
> stat.table(sex,data=births)

and run just these two lines.

2. Edit the script to include the lines

> stat.table(sex,mean(bweight),data=births)
> stat.table(hyp,mean(bweight),data=births)

and run these two lines.

3. Edit the script to create a factor cutting matage at 20, 30, 35, 40, 45 years,
and run just this part of the script.

4. Edit the script to create a factor cutting gestwks at 20, 35, 37, 39, 45
weeks, and run just this part of the script.

5. Save and run the entire script.

3.5 The search path

R organizes objects in different positions on a search path. The command

> search()

shows these positions. The first is the work space, or global environment, the second is the
Epi package, the third is a package of commands called methods, the fourth is a package
called stats, and so on. To see what is in the work space try

> objects()

You should see just the objects births and diet. The command objects(1) does the
same as objects(). A shorther name for the same function is ls(). In the Epi package is
a function that gives a more detailed picture, lls(); try:

> lls()

To see what is in the Epi package, try

> ls(2)

When you type the name of an object R looks for it in the order of the search path and
will return the first object with this name that it finds. This is why it is best to start your
session with a clean workspace, otherwise you might have an object in your workspace that
masks another one later in the search path.

3.6 Attaching a data frame

The function objects(1) shows that the only objects in the workspace are births and
diet. To refer to variables in the births data frame by name it is necessary to specify the
name of the data frame, as in births$hyp. This is quite cumbersome, and provided you
are working primarily with one data frame, it can help to put a copy of the variables from
a data frame in their own position on the search path. This is done with the function

Working with R 3.6 Attaching a data frame 17

> attach(births)

which places a copy of the variables in the births data frame in position 2. You can verify
this with
> objects(2)

which shows the objects in this position are the variables from the births data frame.
Note that the methods package has now been moved up to position 3, as shown by the
search() function.

When you type the command:
> hyp

R will look in the first position where it fails to find hyp, then the second position where it
finds hyp, which now gets printed.

Although convenient, attaching a data frame can give rise to confusion. For example,
when you create a new object from the variables in an attached data frame, as in
> subgrp <- bweight[hyp==1]

the object subgrp will be in your workspace (position 1 on the search path) not in position
2. To demonstrate this, try
> objects(1)
> objects(2)

Similarly, if you modify the data frame in the workspace the changes will not carry through
to the attached version of the data frame. The best advice is to regard any operation on an
attached data frame as temporary, intended only to produce output such as summaries and
tabulations.

Beware of attaching a data frame more than once - the second attached copy will be
attached in position 2 of the search path, while the first copy will be moved up to position
3. You can see this with
> attach(births)
> search()

Having several copies of the same data set can lead to great confusion. To detach a data
frame, use the command
> detach(births)

which will detach the copy in position 2 and move everything else down one position. To
detach the second copy repeat the command detach(births).

Exercise 3.12.

1. Use search() to make sure you have no data frames attached.

2. Use objects(1) to check that you have the data frame births in your
work space.

3. Verify that typing births$hyp will print the data on the variable hyp but
typing hyp will not.

4. Attach the births data frame in position 2 and check that the variables
from this data frame are now in position 2.

5. Verify that typing hyp will now print the data on the the variable hyp.

6. Summarize the variable bweight for hypertensive women.

> setwd(sweave.wd)

Chapter 4

Graphs in R

There are three kinds of plotting functions in R:

1. Functions that generate a new plot, e.g. hist() and plot().

2. Functions that add extra things to an existing plot, e.g. lines() and text().

3. Functions that allow you to interact with the plot, e.g. locator() and identify().

The normal procedure for making a graph in R is to make a fairly simple initial plot and
then add on points, lines, text etc., preferably in a script.

4.1 Simple plot on the screen

Load the births data and get an overview of the variables:

> library(Epi)
> data(births)
> str(births)

Now attach the dataframe and look at the birthweight distribution with

> attach(births)
> hist(bweight)

The histogram can be refined – take a look at the possible options with

> ?hist

and try some of the options, for example:

> hist(bweight, col="gray", border="white")

To look at the relationship between birthweight and gestational weeks, try

> plot(gestwks, bweight)

You can change the plot-symbol by the option pch=. If you want to see all the plot symbols
try:

> plot(1:25, pch=1:25)

18

Graphs in R 4.2 Colours 19

Exercise 4.13.

1. Make a plot of the birth weight versus maternal age with

> plot(matage, bweight)

2. Label the axes with

> plot(matage, bweight, xlab="Maternal age", ylab="Birth weight (g)")

4.2 Colours

There are many colours recognized by R. You can list them all by colours() or,
equivalently, colors() (R allows you to use British or American spelling). To colour the
points of birthweight versus gestational weeks, try

> plot(gestwks, bweight, pch=16, col="green")

This creates a solid mass of colour in the center of the cluster of points and it is no longer
possible to see individual points. You can recover this information by overwriting the
points with black circles using the points() function.

> points(gestwks, bweight)

4.3 Adding to a plot

The points() function is one of several functions that add elements to an existing plot. By
using these functions, you can create quite complex graphs in small steps.

Suppose we wish to recreate the plot of birthweight vs gestational weeks using different
colours for male and female babies. To start with an empty plot, try

> plot(gestwks, bweight, type="n")

Then add the points with the points function.

> points(gestwks[sex==1], bweight[sex==1], col="blue")
> points(gestwks[sex==2], bweight[sex==2], col="red")

To add a legend explaining the colours, try

> legend("topleft", pch=1, legend=c("Boys","Girls"), col=c("blue","red"))

which puts the legend in the top left hand corner.
Finally we can add a title to the plot with

> title("Birth weight vs gestational weeks in 500 singleton births")

20 4.3 Adding to a plot R for epidemiology

4.3.1 Using indexing for plot elements

One of the most powerful features of R is the possibility to index vectors, not only to get
subsets of them, but also for repeating their elements in complex sequences.

Putting separate colours on males and female as above would become very clumsy if we
had a 5 level factor instead.

Instead of specifying one color for all points, we may specify a vector of colours of the
same length as the gestwks and bweight vectors. This is rather tedious to do directly, but
R allows you to specify an expression anywhere, so we can use the fact that sex takes the
values 1 and 2, as follows:

First create a colour vector with two colours, and take look at sex:

> c("blue","red")
> sex

Now see what happens if you index the colour vector by sex:

> c("blue","red")[sex]

For every occurrence of a 1 in sex you get "blue", and for every occurrence of 2 you get
"red", so the result is a long vector of "blue"s and "red"s corresponding to the males and
females. This can now be used in the plot:

> plot(gestwks, bweight, pch=16, col=c("blue","red")[sex])

The same trick can be used if we want to have a separate symbol for mothers over 40 say.
We first generate the indexing variable:

> oldmum <- (matage >= 40) + 1

Note we add 1 because (matage >= 40) generates a logic variable, so by adding 1 we get
a numeric variable with values 1 and 2, suitable for indexing:

> plot(gestwks, bweight, pch=c(16,3)[oldmum], col=c("blue","red")[sex])

so where oldmum is 1 we get pch=16 (a dot) and where oldmum is 2 we get pch=3 (a cross).
R will accept any kind of complexity in the indexing as long as the result is a valid index,

so you don’t need to create the variable oldmum, you can create it on the fly:

> plot(gestwks, bweight, pch=c(16,3)[(matage>=40)+1], col=c("blue","red")[sex])

Exercise 4.14.

1. Make a three level factor for maternal age with cutpoints at 30 and 40
years.

2. Use this to make the plot of gestational weeks with three different plotting
symbols. (Hint: Indexing with a factor automatically gives indexes 1,2,3
etc.).

Graphs in R 4.4 Interacting with a plot 21

4.3.2 Generating colours

R has functions that generate a vector of colours for you. For example,

> rainbow(4)

produces a vector with 4 colours (not immediately human readable, though). There are a
few other functions that generates other sequences of colours, type ?rainbow to see them.

Gray-tones are produced by the function gray (or grey), which takes a numerical
argument between 0 and 1; gray(0) is black and gray(1) is white. Try:

> plot(0:10, pch=16, cex=3, col=gray(0:10/10))
> points(0:10, pch=1, cex=3)

4.4 Interacting with a plot

The locator() function allows you to interact with the plot using the mouse. Typing
locator(1) shifts you to the graphics window and waits for one click of the left mouse
button. When you click, it will return the corresponding coordinates.

You can use locator() inside other graphics functions to position graphical elements
exactly where you want them. Recreate the birth-weight plot,

> plot(gestwks, bweight, pch=c(16,3)[(matage>=40)+1], col=c("blue","red")[sex])

and then add the legend where you wish it to appear by typing

> legend(locator(1), pch=1, legend=c("Boys","Girls"), col=c("blue","red"))

The identify() function allows you to find out which records in the data correspond to
points on the graph. Try

> identify(gestwks, bweight)

When you click the left mouse button, a label will appear on the graph identifying the row
number of the nearest point in the data frame births. If there is no point nearby, R will
print a warning message on the console instead. To end the interaction with the graphics
window, right click the mouse: the identify function returns a vector of identified points.

Exercise 4.15.

1. Use identify() to find which records correspond to the smallest and
largest number of gestational weeks.

2. View all the variables corresponding to these records with:

> births[identify(gestwks,bweight),]

22 4.5 Saving your graphs for use in other documents R for epidemiology

4.5 Saving your graphs for use in other documents

Once you have a graph on the screen you can click on File→ Save as , and choose the
format you want your graph in. The PDF (Acrobat reader) format is normally the most
economical, and Acrobat reader has good options for viewing in more detail on the screen.
The Metafile format will give you an enhanced metafile .emf, which can be imported into
a Word document by Insert→ Picture→ From File . Metafiles can be resized and edited
inside Word.

If you want exact control of the size of your plot you can start a graphics device before
doing the plot. Instead of appearing on the screen, the plot will be written directly to a
file. After the plot has been completed you will need to close the device again in order to
be able to access the file. Try:

> win.metafile(file="plot1.emf", height=3, width=4)
> plot(gestwks, bweight)
> dev.off()

This will give you a enhanced metafile plot1.emf with a graph which is 3 inches tall and 4
inches wide.

4.6 The par() command

It is possible to manipulate any element in a graph, by using the graphics options. These
are collected on the help page of par(). For example, if you want axis labels always to be
horizontal, use the command par(las=1). This will be in effect until a new graphics device
is opened.

Look at the typewriter-version of the help-page with

> ?par

or better, use the the html-version through Help→ Html help→ Packages→ base→
P→ par .

It is a good idea to take a print of this (having set the text size to “smallest” because it is
long) and carry it with you at any time to read in buses, cinema queues, during boring
lectures etc. Don’t despair, few R-users can understand what all the options are for.
par() can also be used to ask about the current plot, for example par("usr") will give

you the exact extent of the axes in the current plot.
If you want more plots on a single page you can use the command

> par(mfrow=c(2,3))

This will give you a layout of 2 rows by 3 columns for the next 6 graphs you produce. The
plots will appear by row, i.e. in the top row first. If you want the plots to appear
column-wise, use par(mfcol=c(2,3)) (you still get 2 rows by 3 columns). To restore the
layout to a single plot per page use

> par(mfrow=c(1,1))

Finally for more complex graphical lay-outs you can use the functions layout(), take a
look:

> ?layout

Chapter 5

The effx function for effects
estimation

Identifying the response variable correctly is the key to analysis. The main types are:

• Metric (a measurement taking many values, usually with units)

• Binary (two values coded 0/1)

• Failure (does the subject fail at end of follow-up, and how long was follow-up)

• Count (aggregated failure data)

The response variable must be numeric.
Variables on which the response may depend are called explanatory variables. They can

be factors or numeric. A further important aspect of explanatory variables is the role they
will play in the analysis.

• Primary role: exposure

• Secondary role: confounder

The word effect is a general term referring to ways of comparing the values of the
response variable at different levels of an explanatory variable. The main measures of effect
are:

• Differences in means for a metric response.

• Ratios of odds for a binary response.

• Ratios of rates for a failure or count response.

What other measures of effects might be used?

5.1 The function effx

The function effx is intended to introduce the estimation of effects in epidemiology,
together with the related ideas of stratification and controlling, without the need for
familiarity with statistical modelling.

We shall use the births data in the Epi package, which can be loaded and inspected with

23

24 5.2 Factors on more than two levels R for epidemiology

> library(Epi)
> data(births)
> help(births)

The variables we shall be interested in are bweight (birth weight) and hyp (hypertension).
An alternative way of characterizing birth weight is shown in lowbw which is coded 1 for
babies with low birth weight, and 0 otherwise. Other variables of interest are sex (of the
baby) and gestwks, the gestation time.

All variables are numeric, so first we need first to do a little housekeeping:

> births$hyp <- factor(births$hyp,labels=c("normal","hyper"))
> births$sex <- factor(births$sex,labels=c("M","F"))
> births$agegrp <- cut(births$matage,breaks=c(20,25,30,35,40,45),right=FALSE)
> births$gest4 <- cut(births$gestwks,breaks=c(20,35,37,39,45),right=FALSE)

Now try

> effx(response=bweight,typ="metric",exposure=sex,data=births)

The effect of sex on birth weight, measured as a difference in means, is −197. The
command

> stat.table(sex,mean(bweight), data=births)

verifies this (3032.8− 3229.9 = −197.1). The p-value refers to the test that there is no
effect of sex on birth weight. Use effx to find the effect of hyp on bweight.

For another example, consider the effect of sex on the binary response lowbw.

> effx(response=lowbw,typ="binary",exposure=sex,data=births)

The effect of sex on lowbw, measured as an odds ratio, is 1.43. The command

> stat.table(sex,list(odds=ratio(lowbw,1-lowbw,100)),data=births)

can be used to verify this (16.26/11.39 = 1.427). Use effx to find the effect of hyp on
lowbw.

5.2 Factors on more than two levels

The variable gest4 is the result of cutting gestwks into 4 groups with boundaries [20,35)
[35,37) [37,39) [39,45). We shall find the effects of gest4 on the metric response bweight.

> effx(response=bweight,typ="metric",exposure=gest4,data=births)

There are now 3 effects

[35,37) vs [20,35) 856.6

[37,39) vs [20,35) 1360.0

[39,45) vs [20,35) 1668.0

The command

> stat.table(gest4,mean(bweight),data=births)

verifies that the effect of agegrp (level 2 vs level 1) is 2590− 1733 = 857, etc. Find the
effects of gest4 on lowbw. Use the option base=4 to change the baseline for gest4 from 1
to 4.

The effx function for effects estimation 5.3 Stratified effects 25

5.3 Stratified effects

As an example we shall stratify the effects of hyp on bweight by sex with

> effx(bweight, type="metric", exposure=hyp, strata=sex,data=births)

The effects of hyp in the different strata defined by sex are −496 and −380.
Use effx to stratify the effect of hyp on lowbw first by sex and then by gest4.

5.4 Controlling the effect of hyp for sex

The effect of hyp is controlled for sex by first looking at the effects of hyp in the two strata
defined by sex, and then combining these effects if they are similar. In this case the effcts
were −496 and −380 which look similar (the test for effect modification is a test of whether
they differ significantly) so we can combine them, and control for sex.

The combining is done by declaring sex as a control variable:

> effx(bweight, type="metric", exposure=hyp, control=sex,data=births)

The effect of hyp on bweight controlled for sex is −448. Note that it is the name of the
control variable which is passed, not the variable itself. There can be more than one control
variable, control=list(sex,agegrp).

Many people go straight ahead and control for variables which are likely to confound the
effect of exposure without bothering to stratify first, but there are times when it is useful
to stratify first.

5.5 Numeric exposures

If we wished to study the effect of gestation time on the baby’s birth weight then gestwks

is a numeric exposure. Assuming that the relationship of the response with gestwks is
roughly linear (for a metric response) or log-linear (for a binary response) we can find the
linear effect of gestwks.

> effx(response=bweight, type="metric", exposure=gestwks,data=births)

The linear effect of gestwks is 197 g per extra week of gestation. The linear effect of
gestwks on lowbw can be found similarly

> effx(response=lowbw, type="binary", exposure=gestwks,data=births)

The linear effect of gestwks on lowbw is a reduction by a factor of 0.408 per extra week of
gestation, i.e. the odds of a baby having a low birth weight is reduced by a factor of 0.408
per one week increase in gestation.

You cannot stratify by a numeric variable, but you can study the effects of a numeric
exposure stratified by (say) agegrp with

> effx(lowbw, type="binary",exposure=gestwks,strata=agegrp,data=births)

You can control for a numeric variable by putting it in control=.

26 5.6 Checking on linearity R for epidemiology

5.6 Checking on linearity

At this stage it will be best to make a visual check using plot. For example, to check
whether bweight goes up linearly with gestwks try

> with(births, plot(gestwks,bweight))

Is the relationship roughly linear? It is not possible to check graphically whether log odds
of a baby being low birth weight goes down linearly with gestation because the individual
odds are either 0 or ∞. Instead we use the grouped variable gest4:

> tab<-stat.table(gest4,ratio(lowbw,1-lowbw,100),data=births)
> str(tab)
> #Extract the odds from tab, and plot the logodds against 1:4
> odds<-tab[1,1:4]
> plot(1:4,log(odds),type="b")

The relationship is remarkably linear, but remember this is quite crude because it takes no
account of unequal gestation intervals. More about checking for linearity later.

5.7 Frequency data

Data from very large studies are often summarized in the form of frequency data, which
records the frequency of all possible combinations of values of the variables in the study.
Such data are sometimes presented in the form of a contingency table, sometimes as a data
frame in which one variable is the frequency. As an example, consider the UCBAdmissions

data, which is one of the standard R data sets, and refers to the outcome of applications to
6 departments by gender. The command

> UCBAdmissions

shows that the data are in the form of a 2× 2× 6 contingency table for the three variables
Admit (admitted/rejected), Gender (male/female), and Dept (A/B/C/D/E/F). Thus in
department A 512 males were admitted while 312 were rejected, and so on. The question of
interest is whether there is any bias against admitting female applicants.

The command

> ucb <- as.data.frame(UCBAdmissions)
> head(ucb)

coerces the contingency table to a data frame, and shows the first 10 lines. The relationship
between the contingency table and the data frame should be clear. The command

> ucb$Admit <- as.numeric(ucb$Admit)-1

turns Admit into a numeric variable coded 1 for rejection, 0 for admission, so

> effx(Admit,type="binary",exposure=Gender,weights=Freq,data=ucb)

shows the odds of rejection for female applicants to be 1.84 times the odds for males (note
the use of weights to take account of the frequencies). A crude analysis therefore suggests
there is a strong bias against admitting females. Continue the analysis by stratifying the
crude analysis by department - does this still support a bias against females? What is the
effect of gender controlled for department?

Chapter 6

Dates in R

Epidemiological studies often contain date variables which take values such as 2/11/1962.
We shall use the diet data to illustrate how to deal with variables whose values are dates.

The important variables in the dataset are chd, which takes the value 1 if the subject
develops coronary heart disease during the study the value 0 if the observation is censored,
and the three date variables which are date of birth (dob), date of entry (doe) and date of
exit (dox). The command

> str(diet)

shows that these three variables are Date variables.
You will also see that the values are just numbers, but if you try

> head(diet)

you will see these variables printed as “real” dates. The variables are internally stored as
number of days since 1/1/1970.

To convert a character string (or a character variable) to date format try:

> as.Date("14/07/1952", format="%d/%m/%Y")
> as.numeric(as.Date("14/07/1952", format="%d/%m/%Y"))

The first form shows the date form and the latter the number of days since 1/1/1970,
which is a negative number for dates prior to 1/1/1970.

The format parts, “%d” etc., identify elements of the dates, whereas the “/”s are just the
separator characters that are in the character string. There are other possibilities for
formats, see ?strftime or the section on dates and times in the R command sheet at the
end of this document.

Reading dates from an external file is done by reading the fields as character variables
and then transforming them to date variables by the function as.Date

If you want to enter a fixed date, for example if you want to terminate follow-up at 1st
April 1975 you could say:

> newx <- pmin(diet$dox, as.Date("1975-4-1", format="%F"))

The format %F is shorthand for the ISO-standard date representation %Y-%m-%d, which is
the default, so it can be omitted altogether:

> newx <- pmin(diet$dox, as.Date("1975-4-1"))

27

28 R for epidemiology

You can print dates in the format you like by using the function format.Date(), try for
example:

> bdat <- as.Date("1952-7-14", format="%F")
> format.Date(bdat, format="%A %d %B %Y")

Exercise 6.16.

1. Convert doe and dox to date variables.

2. Generate a new variable y which is the elapsed time in years between the
date of entry and the date of exit.

3. The file getdiet.R reads the diet data, converts all three date variables to
standard form using the transform function, and generates the variable y.
Run this script and check the results are what you want.

4. Enter your own birtday as a date. Print it using format.Date() with the
format "%A %d %B %Y". Did you learn anything new?

5. Enter the birthday of your husband/wife/. . . as a date too. When will you
be (were you) 100 years old together? (Hint: mean() works on vectors of
dates as well.)

In the Epi package is also a function cal.yr which converts dates to fractional years:

> as.Date("1952-7-14")
> cal.yr(as.Date("1952-7-14"))
> cal.yr("1952-7-14")

The function will also find all date-variabels in a dataframe and convert them; try:

> data(diet)
> str(diet)
> str(cal.yr(diet))

Chapter 7

Follow-up data in the Epi package

In the Epi-package, follow-up data is represented by adding some extra variables to a
dataframe. Such a dataframe is called a Lexis object. The tools for handling follow-up
data then use the structure of this for special plots, tabulations etc.

Follow-up data basically consists of a time of entry, a time of exit and an indication of
the status at exit (normally either “alive” or “dead”). Implicitly is also assumed a status
during the follow-up (usually “alive”).

7.1 Timescales

A timescale is a variable that varies deterministically within each person during follow-up,
e.g.:

• Age

• Calendar time

• Time since treatment

• Time since relapse

All timescales advance at the same pace, so the time followed is the same on all timescales.
Therefore, it suffices to use only the entry point on each of the time scale, for example:

• Age at entry.

• Date of entry.

• Time since treatment (at treatment this is 0).

• Time since relapse (at relapse this is 0)..

In the Epi package, follow-up in a cohort is represented in a Lexis object. A Lexis object
is a dataframe with a bit of extra structure representing the follow-up. For the nickel

data we would construct a Lexis object by:

29

30 7.2 Splitting the follow-up time along a timescale R for epidemiology

> data(nickel)
> nicL <- Lexis(entry = list(per=agein+dob,
+ age=agein,
+ tfh=agein-age1st),
+ exit = list(age=ageout),
+ exit.status = (icd %in% c(162,163))*1,
+ data = nickel)

The entry argument is a named list with the entry points on each of the timescales we
want to use. It defines the names of the timescales and the entry points. The exit

argument gives the exit time on one of the timescales, so the name of the element in this
list must match one of the names of the entry list. This is sufficient, because the follow-up
time on all time scales is the same, in this case ageout - agein. Now take a look at the
result:

> str(nickel)
> str(nicL)
> head(nicL)
> summary(nicL)

The Lexis object nicL has a variable for each timescale which is the entry point on this
timescale. The follow-up time is in the variable lex.dur (duration).

We defined the exit status to be death from lung cancer (ICD7 162,163), i.e. this variable
is 1 if follow-up ended with a death from this cause. If follow-up ended alive or by death
from another cause, the exit status is coded 0, i.e. as a censoring.

Note that the exit status is in the variable lex.Xst (eXit status. The variable lex.Cst is
the state where the follow-up takes place (Current status), in this case 0 (alive).

It is possible to get a visualization of the follow-up along the timescales chosen by using
the plot method for Lexis objects. nicL is an object of class Lexis, so using the function
plot() on it means that R will look for the function plot.Lexis and use this function.

> plot(nicL)

The function allows a lot of control over the output, and a points.Lexis function allows
plotting of the endpoints of follow-up.

> par(mar=c(3,3,1,1), mgp=c(3,1,0)/1.6)
> plot(nicL, 1:2, lwd=1, col=c("blue","red")[(nicL$exp>0)+1],
+ grid=TRUE, lty.grid=1, col.grid=gray(0.7),
+ xlim=1900+c(0,90), xaxs="i",
+ ylim= 10+c(0,90), yaxs="i", las=1)
> points(nicL, 1:2, pch=c(NA,3)[nicL$lex.Xst+1],
+ col="lightgray", lwd=3, cex=1.2)
> points(nicL, 1:2, pch=c(NA,3)[nicL$lex.Xst+1],
+ col=c("blue","red")[(nicL$exp>0)+1], lwd=1, cex=1.2)

7.2 Splitting the follow-up time along a timescale

The follow-up time in a cohort can be subdivided by for example current age. This is
achieved by the splitLexis (note that it is not called split.Lexis). This requires that
the timescale and the breakpoints on this timescale are supplied. Try:

> nicS1 <- splitLexis(nicL, "age", breaks=seq(0,100,10))
> str(nicL)

Follow-up data in the Epi package 7.2 Splitting the follow-up time along a timescale 31

Classes Lexis and data.frame: 679 obs. of 14 variables:
$ per : num 1934 1934 1934 1934 1934 ...
$ age : num 45.2 48.3 53 47.9 54.7 ...
$ tfh : num 27.7 25.1 27.7 23.2 24.8 ...
$ lex.dur : num 47.75 15 1.17 21.77 22.1 ...
$ lex.Cst : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.Xst : num 0 1 1 0 0 1 0 0 0 0 ...
$ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ id : num 3 4 6 8 9 10 15 16 17 18 ...
$ icd : num 0 162 163 527 150 163 334 160 420 12 ...
$ exposure: num 5 5 10 9 0 2 0 0.5 0 0 ...
$ dob : num 1889 1886 1881 1886 1880 ...
$ age1st : num 17.5 23.2 25.2 24.7 30 ...
$ agein : num 45.2 48.3 53 47.9 54.7 ...
$ ageout : num 93 63.3 54.2 69.7 76.8 ...
- attr(*, "time.scales")= chr "per" "age" "tfh"
- attr(*, "time.since")= chr "" "" ""
- attr(*, "breaks")=List of 3
..$ per: NULL
..$ age: NULL
..$ tfh: NULL

> str(nicS1)

Classes Lexis and data.frame: 2210 obs. of 14 variables:
$ lex.id : int 1 1 1 1 1 1 2 2 2 3 ...

1940 1960 1980 2000

40
60

80
10

0

per

ag
e

Figure 7.1: Lexis diagram of the nickel dataset.

32 7.2 Splitting the follow-up time along a timescale R for epidemiology

$ per : num 1934 1939 1949 1959 1969 ...
$ age : num 45.2 50 60 70 80 ...
$ tfh : num 27.7 32.5 42.5 52.5 62.5 ...
$ lex.dur : num 4.77 10 10 10 10 ...
$ lex.Cst : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.Xst : num 0 0 0 0 0 0 0 0 1 1 ...
$ id : num 3 3 3 3 3 3 4 4 4 6 ...
$ icd : num 0 0 0 0 0 0 162 162 162 163 ...
$ exposure: num 5 5 5 5 5 5 5 5 5 10 ...
$ dob : num 1889 1889 1889 1889 1889 ...
$ age1st : num 17.5 17.5 17.5 17.5 17.5 ...
$ agein : num 45.2 45.2 45.2 45.2 45.2 ...
$ ageout : num 93 93 93 93 93 ...
- attr(*, "breaks")=List of 3
..$ per: NULL
..$ age: num 0 10 20 30 40 50 60 70 80 90 ...
..$ tfh: NULL
- attr(*, "time.scales")= chr "per" "age" "tfh"
- attr(*, "time.since")= chr "" "" ""

> round(subset(nicS1, id %in% 8:10), 2)

lex.id per age tfh lex.dur lex.Cst lex.Xst id icd exposure dob age1st agein
11 4 1934.25 47.91 23.19 2.09 0 0 8 527 9 1886.34 24.72 47.91

1900 1920 1940 1960 1980

20

40

60

80

100

per

ag
e

Figure 7.2: Lexis diagram of the nickel dataset, with bells and whistles. The red lines are
for persons with exposure> 0, so it is pretty evident that the oldest ones are the exposed part
of the cohort.

Follow-up data in the Epi package 7.2 Splitting the follow-up time along a timescale 33

12 4 1936.34 50.00 25.28 10.00 0 0 8 527 9 1886.34 24.72 47.91
13 4 1946.34 60.00 35.28 9.68 0 0 8 527 9 1886.34 24.72 47.91
14 5 1934.25 54.75 24.79 5.25 0 0 9 150 0 1879.50 29.96 54.75
15 5 1939.50 60.00 30.04 10.00 0 0 9 150 0 1879.50 29.96 54.75
16 5 1949.50 70.00 40.04 6.84 0 0 9 150 0 1879.50 29.96 54.75
17 6 1934.25 44.33 23.04 5.67 0 0 10 163 2 1889.91 21.29 44.33
18 6 1939.91 50.00 28.71 10.00 0 0 10 163 2 1889.91 21.29 44.33
19 6 1949.91 60.00 38.71 2.54 0 1 10 163 2 1889.91 21.29 44.33

ageout
11 69.68
12 69.68
13 69.68
14 76.84
15 76.84
16 76.84
17 62.54
18 62.54
19 62.54

The resulting object is again a Lexis object, and so follow-up may be split further along
another timescale. Try this and list the result for individuals 4 and 6:

> nicS2 <- splitLexis(nicS1, "tfh", breaks=c(0,1,5,10,20,30,100))
> round(subset(nicS2, id %in% 8:10), 2)

lex.id per age tfh lex.dur lex.Cst lex.Xst id icd exposure dob age1st agein
13 4 1934.25 47.91 23.19 2.09 0 0 8 527 9 1886.34 24.72 47.91
14 4 1936.34 50.00 25.28 4.72 0 0 8 527 9 1886.34 24.72 47.91
15 4 1941.06 54.72 30.00 5.28 0 0 8 527 9 1886.34 24.72 47.91
16 4 1946.34 60.00 35.28 9.68 0 0 8 527 9 1886.34 24.72 47.91
17 5 1934.25 54.75 24.79 5.21 0 0 9 150 0 1879.50 29.96 54.75
18 5 1939.46 59.96 30.00 0.04 0 0 9 150 0 1879.50 29.96 54.75
19 5 1939.50 60.00 30.04 10.00 0 0 9 150 0 1879.50 29.96 54.75
20 5 1949.50 70.00 40.04 6.84 0 0 9 150 0 1879.50 29.96 54.75
21 6 1934.25 44.33 23.04 5.67 0 0 10 163 2 1889.91 21.29 44.33
22 6 1939.91 50.00 28.71 1.29 0 0 10 163 2 1889.91 21.29 44.33
23 6 1941.20 51.29 30.00 8.71 0 0 10 163 2 1889.91 21.29 44.33
24 6 1949.91 60.00 38.71 2.54 0 1 10 163 2 1889.91 21.29 44.33

ageout
13 69.68
14 69.68
15 69.68
16 69.68
17 76.84
18 76.84
19 76.84
20 76.84
21 62.54
22 62.54
23 62.54
24 62.54

If we want to model the effect of these timescales we will for each interval use either the
value of the left endpoint in each interval or the middle. There is a function timeBand

which returns these. Try:

> timeBand(nicS2, "age", "middle")[1:10]

Note that these are the midpoints of the intervals defined by breaks=, not the midpoints of
the actual follow-up intervals. This is because the variable to be used in modeling must be
independent of the censoring and mortality pattern — it should only depend on the chosen
grouping of the timescale.

34 7.3 Cutting time at a specific date R for epidemiology

7.3 Cutting time at a specific date

If we have a recording of the date of a specific event as for example recovery or relapse, we
may classify follow-up time as being before or after this intermediate event. This is
achieved with the function cutLexis, which takes three arguments: the time point, the
timescale, and the name of the (new) state following the date.

Now we define the age for the nickel workers where the cumulative exposure exceeds 50
exposure years:

> subset(nicL, id %in% 8:10)

per age tfh lex.dur lex.Cst lex.Xst lex.id id icd exposure dob age1st
4 1934.246 47.9067 23.1861 21.7727 0 0 4 8 527 9 1886.340 24.7206
5 1934.246 54.7465 24.7890 22.0977 0 0 5 9 150 0 1879.500 29.9575
6 1934.246 44.3314 23.0437 18.2099 0 1 6 10 163 2 1889.915 21.2877

agein ageout
4 47.9067 69.6794
5 54.7465 76.8442
6 44.3314 62.5413

> agehi <- nicL$age1st + 50/nicL$exposure
> nicC <- cutLexis(data=nicL, cut=agehi, timescale="age",
+ new.state=2, precursor.states=0)
> subset(nicC[order(nicC$id,nicC$age),], id %in% 8:10)

per age tfh lex.dur lex.Cst lex.Xst lex.id id icd exposure dob age1st
4100 1934.246 47.9067 23.1861 21.7727 2 2 4 8 527 9 1886.340 24.7206
5 1934.246 54.7465 24.7890 22.0977 0 0 5 9 150 0 1879.500 29.9575
6 1934.246 44.3314 23.0437 1.9563 0 2 6 10 163 2 1889.915 21.2877
680 1936.203 46.2877 25.0000 16.2536 2 1 6 10 163 2 1889.915 21.2877

agein ageout
4100 47.9067 69.6794
5 54.7465 76.8442
6 44.3314 62.5413
680 44.3314 62.5413

(The precursor.states= argument is explained below). Note that individual 6 has had
his follow-up split at age 25 where 50 exposure-years were attained. This could also have
been achieved in the split dataset nicS2 instead of nicL, try:

> subset(nicS2, id %in% 8:10)

lex.id per age tfh lex.dur lex.Cst lex.Xst id icd exposure dob age1st
13 4 1934.246 47.9067 23.1861 2.0933 0 0 8 527 9 1886.340 24.7206
14 4 1936.340 50.0000 25.2794 4.7206 0 0 8 527 9 1886.340 24.7206
15 4 1941.060 54.7206 30.0000 5.2794 0 0 8 527 9 1886.340 24.7206
16 4 1946.340 60.0000 35.2794 9.6794 0 0 8 527 9 1886.340 24.7206
17 5 1934.246 54.7465 24.7890 5.2110 0 0 9 150 0 1879.500 29.9575
18 5 1939.457 59.9575 30.0000 0.0425 0 0 9 150 0 1879.500 29.9575
19 5 1939.500 60.0000 30.0425 10.0000 0 0 9 150 0 1879.500 29.9575
20 5 1949.500 70.0000 40.0425 6.8442 0 0 9 150 0 1879.500 29.9575
21 6 1934.246 44.3314 23.0437 5.6686 0 0 10 163 2 1889.915 21.2877
22 6 1939.915 50.0000 28.7123 1.2877 0 0 10 163 2 1889.915 21.2877
23 6 1941.203 51.2877 30.0000 8.7123 0 0 10 163 2 1889.915 21.2877
24 6 1949.915 60.0000 38.7123 2.5413 0 1 10 163 2 1889.915 21.2877

agein ageout
13 47.9067 69.6794
14 47.9067 69.6794
15 47.9067 69.6794
16 47.9067 69.6794
17 54.7465 76.8442
18 54.7465 76.8442
19 54.7465 76.8442
20 54.7465 76.8442
21 44.3314 62.5413

Follow-up data in the Epi package 7.3 Cutting time at a specific date 35

22 44.3314 62.5413
23 44.3314 62.5413
24 44.3314 62.5413

> agehi <- nicS2$age1st + 50/nicS2$exposure
> nicS2C <- cutLexis(data=nicS2, cut=agehi, timescale="age",
+ new.state=2, precursor.states=0)
> subset(nicS2C[order(nicS2C$id,nicS2C$age),], id %in% 8:10)

lex.id per age tfh lex.dur lex.Cst lex.Xst id icd exposure dob age1st
3142 4 1934.246 47.9067 23.1861 2.0933 2 2 8 527 9 1886.340 24.7206
3143 4 1936.340 50.0000 25.2794 4.7206 2 2 8 527 9 1886.340 24.7206
3144 4 1941.060 54.7206 30.0000 5.2794 2 2 8 527 9 1886.340 24.7206
3145 4 1946.340 60.0000 35.2794 9.6794 2 2 8 527 9 1886.340 24.7206
17 5 1934.246 54.7465 24.7890 5.2110 0 0 9 150 0 1879.500 29.9575
18 5 1939.457 59.9575 30.0000 0.0425 0 0 9 150 0 1879.500 29.9575
19 5 1939.500 60.0000 30.0425 10.0000 0 0 9 150 0 1879.500 29.9575
20 5 1949.500 70.0000 40.0425 6.8442 0 0 9 150 0 1879.500 29.9575
21 6 1934.246 44.3314 23.0437 1.9563 0 2 10 163 2 1889.915 21.2877
3150 6 1936.203 46.2877 25.0000 3.7123 2 2 10 163 2 1889.915 21.2877
3151 6 1939.915 50.0000 28.7123 1.2877 2 2 10 163 2 1889.915 21.2877
3152 6 1941.203 51.2877 30.0000 8.7123 2 2 10 163 2 1889.915 21.2877
3153 6 1949.915 60.0000 38.7123 2.5413 2 1 10 163 2 1889.915 21.2877

agein ageout
3142 47.9067 69.6794
3143 47.9067 69.6794
3144 47.9067 69.6794
3145 47.9067 69.6794
17 54.7465 76.8442
18 54.7465 76.8442
19 54.7465 76.8442
20 54.7465 76.8442
21 44.3314 62.5413
3150 44.3314 62.5413
3151 44.3314 62.5413
3152 44.3314 62.5413
3153 44.3314 62.5413

> summary(nicS2C)

Transitions:
To

From 0 1 2 Records: Events: Risk time: Persons:
0 2043 65 74 2182 139 10772.53 466
2 0 72 949 1021 72 4575.52 296
Sum 2043 137 1023 3203 211 15348.06 679

Note that follow-up subsequent to the event is classified as being in state 2, but that the
final transition to state 1 (death from lung cancer) is preserved. This is the point of the
precursor.states= argument. It names the states (in this case 0, “Alive”) that will be
over-written by new.state (in this case 2, “High exposure”). Clearly, state 1 (“Dead”)
should not be updated even if it is after the time where the persons moves to state 2. On
other words, only state 0 is a precursor to state 2, state 1 is always subsequent to state 2.

Note if the intermediate event is to be used as a time-dependent variable in a Cox-model,
then lex.Cst should be used as the time-dependent variable, and lex.Xst==1 as the event.

It is possible to illustrate the transitions between the different states by the command
boxes.Lexis — if you omit boxpos=TRUE, you will be asked to click on the screen to locate
the boxes.

> boxes(nicS2C, boxpos=TRUE)

36 7.4 Competing risks — multiple types of events R for epidemiology

7.4 Competing risks — multiple types of events

If we want to consider death from lung cancer and death from other causes as separate
events we can code these as for example 1 and 2.

> data(nickel)
> nicL <- Lexis(entry = list(per=agein+dob,
+ age=agein,
+ tfh=agein-age1st),
+ exit = list(age=ageout),
+ exit.status = (icd > 0) + (icd %in% c(162,163)),
+ data = nickel)
> str(nicL)
> head(nicL)
> subset(nicL, id %in% 8:10)

If we want to label the states, we can enter the names of these in the states parameter,
try for example:

> nicL <- Lexis(entry = list(per=agein+dob,
+ age=agein,
+ tfh=agein-age1st),
+ exit = list(age=ageout),
+ exit.status = (icd > 0) + (icd %in% c(162,163)),
+ data = nickel,
+ states = c("Alive","D.oth","D.lung"))
> str(nicL)

You can get an overview of the number of records by state and transitions between states as
well as the person-years in each state by using summary.Lexis(), and computing rates:

> summary(nicL, scale=1000)

0
10,772.5

2
4,575.5

1

74
(0.0)

65
(0.0)

72
(0.0)

0
10,772.5

2
4,575.5

1

0
10,772.5

2
4,575.5

1

Figure 7.3: The persons years (in the boxes) and number of transitions between the states.

Follow-up data in the Epi package7.5 Multiple events of the same type (recurrent events) 37

When we cut at a date as in this case, the date where cumulative exposure exceeds 50
exposure-years, we get the follow-up after the date classified as being in the new state if
the exit (lex.Xst) was to a state we defined as one of the precursor.states:

> nicL$agehi <- nicL$age1st + 50/nicL$exposure
> nicC <- cutLexis(data=nicL, cut=nicL$agehi, "age",
+ new.state="HiExp", precursor.states="Alive")
> subset(nicC, id %in% 8:10)
> summary(nicC, scale=1000)

Note that the persons-years is the same, but that the number of events has changed. This
is because events are now defined as any transition from alive, including the transitions to
HiExp.

As before we can illustrate the different states with little boxes:

> boxes(nicC, boxpos=TRUE)

7.5 Multiple events of the same type (recurrent

events)

Sometimes more events of the same type are recorded for each person and one would then
like to count these and put follow-up time in states accordingly. So states must be

Alive
10,772.5

HiExp
4,575.5

D.othD.lung

83
(0.0)

279
(0.0)

65
(0.0)

216
(0.0)

72
(0.0)

Alive
10,772.5

HiExp
4,575.5

D.othD.lung

Alive
10,772.5

HiExp
4,575.5

D.othD.lung

Figure 7.4: The persons years (in the boxes) and number of transitions between states in the
competing risks model.

38 7.5 Multiple events of the same type (recurrent events) R for epidemiology

numbered. Essentially, each set of cutpoints represents progressions from one state to the
next. Therefore the states should be numbered, and the numbering of states subsequently
occupied be increased accordingly.

This is a behaviour different from the one outlined above, and it is achieved by the
argument count=TRUE to cutLexis. When count is set to TRUE, the value of the arguments
new.state and precursor.states are ignored. Actually, when using the argument
count=TRUE, the function countLexis is called, so an alternative is to use this directly.

If we record when persons pass thresholds of exposure we have this situation. But if we
at the same time want to keep track of when people die, we must code death by a
sufficiently large number, because all states will be increased by one for each event:

> nicL <- Lexis(entry = list(per=agein+dob,
+ age=agein,
+ tfh=agein-age1st),
+ exit = list(age=ageout),
+ exit.status = (icd > 0)*100,
+ data = nickel)
> summary(nicL)

Transitions:
To

From 0 100 Records: Events: Risk time: Persons:
0 47 632 679 632 15348.06 679

We now cut the follow-up at successive exposure thresholds — note that we go through the
levsle (i.e. the times at which they are crossed) by going throught them in random order
(sample.int(x) returns a random permutation of the numbers 1, . . . , x).

> nicC <- nicL
> exlev <- seq(20,140,40)
> for(level in exlev[sample.int(length(exlev))])
+ {
+ agehi <- nicC$age1st + level/nicC$exposure
+ nicC <- cutLexis(data=nicC, cut=agehi, "age", count=TRUE)
+ }
> summary(nicC)

We can now plot these:

> nc <- length(table(nicC$lex.Cst))
> boxes(nicC, boxpos=list(x=rep(seq(5,95,,nc), 2),
+ y=rep(c(80,20), each=nc)))

We can put a few extra bells and whistles on the graph, by redefining the names of the
names of the states by first making them factors (using factorize), then by pasting the
relevant pieces of text to it. Moreover we also ask that rates instead of no. transitions be
shown.

> nicF <- factorize(nicC)
> xlev <- paste(c("<",rep("",nc-1)),
+ c(exlev[1],exlev),
+ c("",rep("-",nc-1)), sep="")
> levels(nicF$lex.Cst) <-
+ levels(nicF$lex.Xst) <-
+ c(paste("Cum.ex.\n", xlev, "\n"),
+ paste("Dead\n", xlev))
> levels(nicF$lex.Cst)

[1] "Cum.ex.\n <20 \n" "Cum.ex.\n 20- \n" "Cum.ex.\n 60- \n" "Cum.ex.\n 100- \n"
[5] "Cum.ex.\n 140- \n" "Dead\n <20" "Dead\n 20-" "Dead\n 60-"
[9] "Dead\n 100-" "Dead\n 140-"

Follow-up data in the Epi package7.5 Multiple events of the same type (recurrent events) 39

> boxes(nicF, boxpos=list(y=rep(c(80,20), each=nc),
+ x=rep(seq(5,95,,nc), 2)),
+ eq.ht=FALSE, hmult=1.5, scale.D=1000, pos=0.3)

The resulting graphs are shown in figure 7.5.
A more thorough explanation of the Lexis machinery and its practical use in modeling is

given in the papers [1, 2].

0
8,870.0

1
2,287.6

2
1,058.1

3
727.6

4
2,404.8

100 101 102 103 104

65
(0.0)

274
(0.0)

78
(0.0)

87
(0.0)

73
(0.1)

58
(0.1)

70
(0.1)

43
(0.1)

170
(0.1)

0
8,870.0

1
2,287.6

2
1,058.1

3
727.6

4
2,404.8

100 101 102 103 104

0
8,870.0

1
2,287.6

2
1,058.1

3
727.6

4
2,404.8

100 101 102 103 104

Cum.ex.
 <20

8,870.0

Cum.ex.
 20−

2,287.6

Cum.ex.
 60−

1,058.1

Cum.ex.
 100−

727.6

Cum.ex.
 140−

2,404.8

Dead
 <20

Dead
 20−

Dead
 60−

Dead
 100−

Dead
 140−

65
(0.0)

274
(0.0)

78
(0.0)

87
(0.0)

73
(0.1)

58
(0.1)

70
(0.1)

43
(0.1)

170
(0.1)

Cum.ex.
 <20

8,870.0

Cum.ex.
 20−

2,287.6

Cum.ex.
 60−

1,058.1

Cum.ex.
 100−

727.6

Cum.ex.
 140−

2,404.8

Dead
 <20

Dead
 20−

Dead
 60−

Dead
 100−

Dead
 140−

Cum.ex.
 <20

8,870.0

Cum.ex.
 20−

2,287.6

Cum.ex.
 60−

1,058.1

Cum.ex.
 100−

727.6

Cum.ex.
 140−

2,404.8

Dead
 <20

Dead
 20−

Dead
 60−

Dead
 100−

Dead
 140−

Figure 7.5: The person years (in the boxes) and number of transitions between states in the
counting model. The bottom display is enhanced by labeling of exposure levels, and showing
the transition rates rather than the no. of transitions.

Bibliography

[1] Martyn Plummer and Bendix Carstensen. Lexis: An R class for epidemiological studies
with long-term follow-up. Journal of Statistical Software, 38(5):1–12, 1 2011.

[2] Bendix Carstensen and Martyn Plummer. Using Lexis objects for multi-state models in
R. Journal of Statistical Software, 38(6):1–18, 1 2011.

40

Chapter 8

R command sheet

This R Reference Card is written by Tom Short, EPRI PEAC, tshort@epri-peac.com,
2004-10-21 and granted to the public domain. See www.Rpad.org for the source and latest
version. Includes material from R for Beginners by Emmanuel Paradis (with permission).

It is also available separately as a 4-page landscape document from the R-hompage
www.r-project.org, Manuals → contributed documentation.

Getting help

Most R functions have online documentation.
help(topic) documentation on topic

?topic — the same.
help.search("topic") search the help

system
apropos("topic") the names of all objects

in the search list matching the regular
expression ”topic”

help.start() start the HTML version of
help

str(a) display the internal *str*ucture of an
R object

summary(a) gives a “summary” of a, usually
a statistical summary but it is generic
meaning it has different operations for
different classes of a

ls() show objects in the search path; specify
pat="pat" to search on a pattern

ls.str() str() for each variable in the search
path

dir() show files in the current directory
methods(a) shows S3 methods of a
methods(class=class(a)) lists all the

methods to handle objects of class a.

Input and output
load() load the datasets written with save

data(x) loads specified data sets
library(x) load add-on packages

read.table(file) reads a file in table
format and creates a data frame from it;
the default separator sep="" is any
whitespace; use header=TRUE to read the
first line as a header of column names; use
as.is=TRUE to prevent character vectors
from being converted to factors; use
comment.char="" to prevent "#" from
being interpreted as a comment; use
skip=n to skip n lines before reading data;
see the help for options on row naming,
NA treatment, and others

read.csv("filename",header=TRUE) id.
but with defaults set for reading
comma-delimited files

read.delim("filename",header=TRUE) id.
but with defaults set for reading
tab-delimited files

read.fwf(file,widths,header=FALSE,sep="�",as.is=FALSE)
read a table of f ixed w idth f ormatted
data into a ’data.frame’; widths is an
integer vector, giving the widths of the
fixed-width fields

save(file,...) saves the specified objects
(...) in the XDR platform-independent
binary format

save.image(file) saves all objects
cat(..., file="", sep=" ") prints the

arguments after coercing to character; sep
is the character separator between
arguments

print(a, ...) prints its arguments; generic,
meaning it can have different methods for

41

www.Rpad.org
www.r-project.org

42 R command sheet R for epidemiology

different objects
format(x,...) format an R object for

pretty printing
write.table(x,file="",row.names=TRUE,col.names=TRUE,

sep=" ") prints x after converting to a
data frame; if quote is TRUE, character or
factor columns are surrounded by quotes
("); sep is the field separator; eol is the
end-of-line separator; na is the string for
missing values; use col.names=NA to add
a blank column header to get the column
headers aligned correctly for spreadsheet
input

sink(file) output to file, until sink()
Most of the I/O functions have a file

argument. This can often be a character string
naming a file or a connection. file="" means
the standard input or output. Connections can
include files, pipes, zipped files, and R variables.

On windows, the file connection can also be
used with description = "clipboard". To
read a table copied from Excel, use

x <- read.delim("clipboard")

To write a table to the clipboard for Excel,
use

write.table(x,"clipboard",sep="\t",col.names=NA)

For database interaction, see packages RODBC,
DBI, RMySQL, RPgSQL, and ROracle. See
packages XML, hdf5, netCDF for reading other
file formats.

Data creation
c(...) generic function to combine

arguments with the default forming a
vector; with recursive=TRUE descends
through lists combining all elements into
one vector

from:to generates a sequence; “:” has
operator priority; 1:4 + 1 is “2,3,4,5”

seq(from,to) generates a sequence by=

specifies increment; length= specifies
desired length

seq(along=x) generates 1, 2, ...,

length(along); useful for for loops
rep(x,times) replicate x times; use each=

to repeat “each” element of x each times;
rep(c(1,2,3),2) is 1 2 3 1 2 3;
rep(c(1,2,3),each=2) is 1 1 2 2 3 3

data.frame(...) create a data frame of the
named or unnamed arguments;
data.frame(v=1:4,ch=c("a","B","c","d"),n=10);
shorter vectors are recycled to the length
of the longest

list(...) create a list of the named or
unnamed arguments;
list(a=c(1,2),b="hi",c=3i);

array(x,dim=) array with data x; specify
dimensions like dim=c(3,4,2); elements
of x recycle if x is not long enough

matrix(x,nrow=,ncol=) matrix; elements of
x recycle

factor(x,levels=) encodes a vector x as a
factor

gl(n,k,length=n*k,labels=1:n) generate
levels (factors) by specifying the pattern
of their levels; k is the number of levels,
and n is the number of replications

expand.grid() a data frame from all
combinations of the supplied vectors or
factors

rbind(...) combine arguments by rows for
matrices, data frames, and others

cbind(...) id. by columns

Slicing and extracting

data

Indexing vectors
x[n] nth element
x[-n] all but the nth element
x[1:n] first n elements
x[-(1:n)] elements from n+1 to the end
x[c(1,4,2)] specific elements
x["name"] element named "name"

x[x > 3] all elements greater than 3
x[x > 3 & x < 5] all elements between 3 and 5
x[x %in% c("a","and","the")] elements in the given set
Indexing lists
x[n] list with elements n

x[[n]] nth element of the list
x[["name"]] element of the list named "name"

x$name id.
Indexing matrices
x[i,j] element at row i, column j

x[i,] row i

x[,j] column j

x[,c(1,3)] columns 1 and 3
x["name",] row named "name"

Indexing data frames (matrix indexing plus
the following)

x[["name"]] column named "name"

x$name id.

R command sheet R command sheet 43

Variable conversion

as.array(x), as.data.frame(x),

as.numeric(x), as.logical(x),

as.complex(x), as.character(x), ...

convert type; for a complete list, use
methods(as)

Variable information

is.na(x), is.null(x), is.array(x),

is.data.frame(x), is.numeric(x),

is.complex(x), is.character(x), ...

test for type; for a complete list, use
methods(is)

length(x) number of elements in x

dim(x) Retrieve or set the dimension of an
object; dim(x) <- c(3,2)

dimnames(x) Retrieve or set the dimension
names of an object

nrow(x) number of rows; NROW(x) is the
same but treats a vector as a one-row
matrix

ncol(x) and NCOL(x) id. for columns
class(x) get or set the class of x; class(x)

<- "myclass"

unclass(x) remove the class attribute of x
attr(x,which) get or set the attribute

which of x
attributes(obj) get or set the list of

attributes of obj

Data selection and

manipulation

which.max(x) returns the index of the
greatest element of x

which.min(x) returns the index of the
smallest element of x

rev(x) reverses the elements of x
sort(x) sorts the elements of x in increasing

order; to sort in decreasing order:
rev(sort(x))

cut(x,breaks) divides x into intervals
(factors); breaks is the number of cut
intervals or a vector of cut points

match(x, y) returns a vector of the same
length than x with the elements of x
which are in y (NA otherwise)

which(x == a) returns a vector of the
indices of x if the comparison operation is
true (TRUE), in this example the values of
i for which x[i] == a (the argument of
this function must be a variable of mode
logical)

choose(n, k) computes the combinations of
k events among n repetitions =
n!/[(n− k)!k!]

na.omit(x) suppresses the observations with
missing data (NA) (suppresses the
corresponding line if x is a matrix or a
data frame)

na.fail(x) returns an error message if x
contains at least one NA

unique(x) if x is a vector or a data frame,
returns a similar object but with the
duplicate elements suppressed

table(x) returns a table with the numbers
of the differents values of x (typically for
integers or factors)

subset(x, ...) returns a selection of x
with respect to criteria (..., typically
comparisons: x$V1 < 10); if x is a data
frame, the option select gives the
variables to be kept or dropped using a
minus sign

sample(x, size) resample randomly and
without replacement size elements in the
vector x, the option replace = TRUE

allows to resample with replacement
prop.table(x,margin=) table entries as

fraction of marginal table

Math

sin,cos,tan,asin,acos,atan,atan2,log,log10,exp

max(x) maximum of the elements of x
min(x) minimum of the elements of x
range(x) id. then c(min(x), max(x))

sum(x) sum of the elements of x
diff(x) lagged and iterated differences of

vector x
prod(x) product of the elements of x
mean(x) mean of the elements of x
median(x) median of the elements of x
quantile(x,probs=) sample quantiles

corresponding to the given probabilities
(defaults to 0,.25,.5,.75,1)

weighted.mean(x, w) mean of x with
weights w

rank(x) ranks of the elements of x

44 R command sheet R for epidemiology

var(x) or cov(x) variance of the elements of
x (calculated on n− 1); if x is a matrix or
a data frame, the variance-covariance
matrix is calculated

sd(x) standard deviation of x
cor(x) correlation matrix of x if it is a

matrix or a data frame (1 if x is a vector)
var(x, y) or cov(x, y) covariance between

x and y, or between the columns of x and
those of y if they are matrices or data
frames

cor(x, y) linear correlation between x and
y, or correlation matrix if they are
matrices or data frames

round(x, n) rounds the elements of x to n

decimals
log(x, base) computes the logarithm of x

with base base

scale(x) if x is a matrix, centers and
reduces the data; to center only use the
option center=FALSE, to reduce only
scale=FALSE (by default center=TRUE,
scale=TRUE)

pmin(x,y,...) a vector which ith element is
the minimum of x[i], y[i], . . .

pmax(x,y,...) id. for the maximum
cumsum(x) a vector which ith element is the

sum from x[1] to x[i]

cumprod(x) id. for the product
cummin(x) id. for the minimum
cummax(x) id. for the maximum
union(x,y), intersect(x,y), setd-

iff(x,y), setequal(x,y),
is.element(el,set) “set” functions

Re(x) real part of a complex number
Im(x) imaginary part
Mod(x) modulus; abs(x) is the same
Arg(x) angle in radians of the complex

number
Conj(x) complex conjugate
convolve(x,y) compute the several kinds of

convolutions of two sequences
fft(x) Fast Fourier Transform of an array
mvfft(x) FFT of each column of a matrix
filter(x,filter) applies linear filtering to

a univariate time series or to each series
separately of a multivariate time series

Many math functions have a logical
parameter na.rm=FALSE to specify missing data
(NA) removal.

Matrices
t(x) transpose
diag(x) diagonal

%*% matrix multiplication
solve(a,b) solves a %*% x = b for x
solve(a) matrix inverse of a
rowsum(x) sum of rows for a matrix-like

object; rowSums(x) is a faster version
colsum(x), colSums(x) id. for columns
rowMeans(x) fast version of row means
colMeans(x) id. for columns

Advanced data

processing
apply(X,INDEX,FUN=) a vector or array or

list of values obtained by applying a
function FUN to margins (INDEX) of X

lapply(X,FUN) apply FUN to each element of
the list X

tapply(X,INDEX,FUN=) apply FUN to each
cell of a ragged array given by X with
indexes INDEX

by(data,INDEX,FUN) apply FUN to data
frame data subsetted by INDEX

merge(a,b) merge two data frames by
common columns or row names

xtabs(a b,data=x) a contingency table
from cross-classifying factors

aggregate(x,by,FUN) splits the data frame
x into subsets, computes summary
statistics for each, and returns the result
in a convenient form; by is a list of
grouping elements, each as long as the
variables in x

stack(x, ...) transform data available as
separate columns in a data frame or list
into a single column

unstack(x, ...) inverse of stack()
reshape(x, ...) reshapes a data frame

between ’wide’ format with repeated
measurements in separate columns of the
same record and ’long’ format with the
repeated measurements in separate
records; use (direction=”wide”) or
(direction=”long”)

Strings
paste(...) concatenate vectors after

converting to character; sep= is the string
to separate terms (a single space is the
default); collapse= is an optional string
to separate “collapsed” results

R command sheet R command sheet 45

substr(x,start,stop) substrings in a
character vector; can also assign, as
substr(x, start, stop) <- value

strsplit(x,split) split x according to the
substring split

grep(pattern,x) searches for matches to
pattern within x; see ?regex

gsub(pattern,replacement,x) replacement
of matches determined by regular
expression matching sub() is the same
but only replaces the first occurrence.

tolower(x) convert to lowercase
toupper(x) convert to uppercase
match(x,table) a vector of the positions of

first matches for the elements of x among
table

x %in% table id. but returns a logical vector
pmatch(x,table) partial matches for the

elements of x among table

nchar(x) number of characters

Dates and Times
The class Date has dates without times.

POSIXct has dates and times, including
time zones. Comparisons (e.g. >), seq(),
and difftime() are useful. Date also
allows + and −. ?DateTimeClasses gives
more information. See also package
chron. as.Date(s) and as.POSIXct(s)

convert to the respective class.
format(dt) converts to a string
representation. The default string format
is “2001-02-21”. These accept a second
argument to specify a format for
conversion. Some common formats are:

%a, %A Abbreviated and full weekday name.
%b, %B Abbreviated and full month name.
%d Day of the month (01–31).
%H Hours (00–23).
%I Hours (01–12).
%j Day of year (001–366).
%m Month (01–12).
%M Minute (00–59).
%p AM/PM indicator.
%S Second as decimal number (00–61).
%U Week (00–53); the first Sunday as day 1 of

week 1.
%w Weekday (0–6, Sunday is 0).
%W Week (00–53); the first Monday as day 1 of

week 1.
%y Year without century (00–99). Don’t use.
%Y Year with century.
%z (output only.) Offset from Greenwich;

-0800 is 8 hours west of.
%Z (output only.) Time zone as a character

string (empty if not available).

Where leading zeros are shown they will be
used on output but are optional on input.
See ?strftime.

Plotting
plot(x) plot of the values of x (on the

y-axis) ordered on the x-axis
plot(x, y) bivariate plot of x (on the

x-axis) and y (on the y-axis)
hist(x) histogram of the frequencies of x
barplot(x) histogram of the values of x; use

horiz=FALSE for horizontal bars
dotplot(x) if x is a data frame, plots a

Cleveland dot plot (stacked plots
line-by-line and column-by-column)

piechart(x) circular pie-chart
boxplot(x) “box-and-whiskers” plot

46 R command sheet R for epidemiology

sunflowerplot(x, y) id. than plot() but
the points with similar coordinates are
drawn as flowers which petal number
represents the number of points

stripplot(x) plot of the values of x on a
line (an alternative to boxplot() for
small sample sizes)

coplot(x~y | z) bivariate plot of x and y

for each value or interval of values of z
interaction.plot (f1, f2, y) if f1 and

f2 are factors, plots the means of y (on
the y-axis) with respect to the values of
f1 (on the x-axis) and of f2 (different
curves); the option fun allows to choose
the summary statistic of y (by default
fun=mean)

matplot(x,y) bivariate plot of the first
column of x vs. the first one of y, the
second one of x vs. the second one of y,
etc.

fourfoldplot(x) visualizes, with quarters of
circles, the association between two
dichotomous variables for different
populations (x must be an array with
dim=c(2, 2, k), or a matrix with
dim=c(2, 2) if k = 1)

assocplot(x) Cohen–Friendly graph
showing the deviations from independence
of rows and columns in a two dimensional
contingency table

mosaicplot(x) ‘mosaic’ graph of the
residuals from a log-linear regression of a
contingency table. Also useful for
graphical display of contingency tables.

pairs(x) if x is a matrix or a data frame,
draws all possible bivariate plots between
the columns of x

plot.ts(x) if x is an object of class "ts",
plot of x with respect to time, x may be
multivariate but the series must have the
same frequency and dates

ts.plot(x) id. but if x is multivariate the
series may have different dates and must
have the same frequency

qqnorm(x) quantiles of x with respect to the
values expected under a normal law

qqplot(x, y) quantiles of y with respect to
the quantiles of x

contour(x, y, z) contour plot (data are
interpolated to draw the curves), x and y

must be vectors and z must be a matrix
so that dim(z)=c(length(x),
length(y)) (x and y may be omitted)

filled.contour(x, y, z) id. but the areas
between the contours are coloured, and a
legend of the colours is drawn as well

image(x, y, z) id. but with colours (actual
data are plotted)

persp(x, y, z) id. but in perspective
(actual data are plotted)

stars(x) if x is a matrix or a data frame,
draws a graph with segments or a star
where each row of x is represented by a
star and the columns are the lengths of
the segments

symbols(x, y, ...) draws, at the
coordinates given by x and y, symbols
(circles, squares, rectangles, stars,
thermometres or “boxplots”) which sizes,
colours . . . are specified by supplementary
arguments

termplot(mod.obj) plot of the (partial)
effects of a regression model (mod.obj)

The following parameters are common to
many plotting functions:

add=FALSE if TRUE superposes the plot on the
previous one (if it exists)

axes=TRUE if FALSE does not draw the axes
and the box

type="p" specifies the type of plot, "p":
points, "l": lines, "b": points connected
by lines, "o": id. but the lines are over
the points, "h": vertical lines, "s": steps,
the data are represented by the top of the
vertical lines, "S": id. but the data are
represented by the bottom of the vertical
lines

xlim=, ylim= specifies the lower and upper
limits of the axes, for example with
xlim=c(1, 10) or xlim=range(x)

xlab=, ylab= annotates the axes, must be
variables of mode character

main= main title, must be a variable of mode
character

sub= sub-title (written in a smaller font)

Low-level plotting

commands
points(x, y) adds points (the option type=

can be used)
lines(x, y) id. but with lines
text(x, y, labels, ...) adds text given

by labels at coordinates (x,y); a typical
use is: plot(x, y, type="n"); text(x,

y, names)

mtext(text, side=3, line=0, ...) adds
text given by text in the margin specified
by side (see axis() below); line
specifies the line from the plotting area

R command sheet R command sheet 47

segments(x0, y0, x1, y1) draws lines
from points (x0,y0) to points (x1,y1)

arrows(x0, y0, x1, y1, angle= 30,

code=2) id. with arrows at points (x0,y0)
if code=2, at points (x1,y1) if code=1, or
both if code=3; angle controls the angle
from the shaft of the arrow to the edge of
the arrow head

abline(a,b) draws a line of slope b and
intercept a

abline(h=y) draws a horizontal line at
ordinate y

abline(v=x) draws a vertical line at abcissa
x

abline(lm.obj) draws the regression line
given by lm.obj

rect(x1, y1, x2, y2) draws a rectangle
which left, right, bottom, and top limits
are x1, x2, y1, and y2, respectively

polygon(x, y) draws a polygon linking the
points with coordinates given by x and y

legend(x, y, legend) adds the legend at
the point (x,y) with the symbols given by
legend

title() adds a title and optionally a
sub-title

axis(side, vect) adds an axis at the
bottom (side=1), on the left (2), at the
top (3), or on the right (4); vect
(optional) gives the abcissa (or ordinates)
where tick-marks are drawn

rug(x) draws the data x on the x-axis as
small vertical lines

locator(n, type="n", ...) returns the
coordinates (x, y) after the user has
clicked n times on the plot with the
mouse; also draws symbols (type="p") or
lines (type="l") with respect to optional
graphic parameters (...); by default
nothing is drawn (type="n")

Graphical parameters

These can be set globally with par(...);
many can be passed as parameters to
plotting commands.

adj controls text justification (0 left-justified,
0.5 centred, 1 right-justified)

bg specifies the colour of the background (ex.
: bg="red", bg="blue", . . . the list of the
657 available colours is displayed with
colors())

bty controls the type of box drawn around
the plot, allowed values are: "o", "l",
"7", "c", "u" ou "]" (the box looks like
the corresponding character); if bty="n"
the box is not drawn

cex a value controlling the size of texts and
symbols with respect to the default; the
following parameters have the same
control for numbers on the axes,
cex.axis, the axis labels, cex.lab, the
title, cex.main, and the sub-title,
cex.sub

col controls the color of symbols and lines;
use color names: "red", "blue" see
colors() or as "#RRGGBB"; see rgb(),
hsv(), gray(), and rainbow(); as for cex
there are: col.axis, col.lab, col.main,
col.sub

font an integer which controls the style of
text (1: normal, 2: italics, 3: bold, 4: bold
italics); as for cex there are: font.axis,
font.lab, font.main, font.sub

las an integer which controls the orientation
of the axis labels (0: parallel to the axes,
1: horizontal, 2: perpendicular to the
axes, 3: vertical)

lty controls the type of lines, can be an
integer or string (1: "solid", 2:
"dashed", 3: "dotted", 4: "dotdash", 5:
"longdash", 6: "twodash", or a string of
up to eight characters (between "0" and
"9") which specifies alternatively the
length, in points or pixels, of the drawn
elements and the blanks, for example
lty="44" will have the same effect than
lty=2

lwd a numeric which controls the width of
lines, default 1

mar a vector of 4 numeric values which
control the space between the axes and
the border of the graph of the form
c(bottom, left, top, right), the
default values are c(5.1, 4.1, 4.1,

2.1)

mfcol a vector of the form c(nr,nc) which
partitions the graphic window as a matrix
of nr lines and nc columns, the plots are
then drawn in columns

mfrow id. but the plots are drawn by row
pch controls the type of symbol, either an

integer between 1 and 25, or a single
character in "":

1: 2: 3: 4: 5: 6: 7: 8: 9:

10: 11: 12: 13: 14: 15: 16: 17: 18:

19: 20: 21: 22: 23: 24: 25: *: .:

●

● ● ●

● ● ● *

48 R command sheet R for epidemiology

ps an integer which controls the size in
points of texts and symbols

pty a character which specifies the type of
the plotting region, "s": square, "m":
maximal

tck a value which specifies the length of
tick-marks on the axes as a fraction of the
smallest of the width or height of the plot;
if tck=1 a grid is drawn

tcl a value which specifies the length of
tick-marks on the axes as a fraction of the
height of a line of text (by default
tcl=-0.5)

xaxt if xaxt="n" the x-axis is set but not
drawn (useful in conjonction with
axis(side=1, ...))

yaxt if yaxt="n" the y-axis is set but not
drawn (useful in conjonction with
axis(side=2, ...))

Lattice (Trellis) graphics

barchart(y~x) histogram of the values of y
with respect to those of x

bwplot(y~x) “box-and-whiskers” plot
densityplot(~x) density functions plot
dotplot(y~x) Cleveland dot plot (stacked

plots line-by-line and column-by-column)
histogram(~x) histogram of the frequencies

of x
qqmath(~x) quantiles of x with respect to

the values expected under a theoretical
distribution

stripplot(y~x) single dimension plot, x
must be numeric, y may be a factor

qq(y~x) quantiles to compare two
distributions, x must be numeric, y may
be numeric, character, or factor but must
have two ‘levels’

xyplot(y~x) bivariate plots (with many
functionalities)

levelplot(z~x*y) coloured plot of the
values of z at the coordinates given by x

and y (x, y and z are all of the same
length)

splom(~x) matrix of bivariate plots
parallel(~x) parallel coordinates plot

Optimization and model

fitting
optim(par, fn, method =

c("Nelder-Mead", "BFGS", "CG",

"L-BFGS-B", "SANN") general-purpose
optimization; par is initial values, fn is
function to optimize (normally minimize)

nlm(f,p) minimize function f using a
Newton-type algorithm with starting
values p

lm(formula) fit linear models; formula is
typically of the form response termA

+ termB + ...; use I(x*y) + I(x^2) for
terms made of nonlinear components

glm(formula,family=) fit generalized linear
models, specified by giving a symbolic
description of the linear predictor and a
description of the error distribution;
family is a description of the error
distribution and link function to be used
in the model; see ?family

nls(formula) nonlinear least-squares
estimates of the nonlinear model
parameters

approx(x,y=) linearly interpolate given data
points; x can be an xy plotting structure

spline(x,y=) cubic spline interpolation
loess(formula) fit a polynomial surface

using local fitting
Many of the formula-based modeling

functions have several common arguments:
data= the data frame for the formala variables,
subset= a subset of variables used in the fit,
na.action= action for missing values:
"na.fail", "na.omit", or a function. The
following generics often apply to model fitting
functions:

predict(fit,...) predictions from fit

based on input data
df.residual(fit) returns the number of

residual degrees of freedom
coef(fit) returns the estimated coefficients

(sometimes with their standard-errors)
residuals(fit) returns the residuals
deviance(fit) returns the deviance
fitted(fit) returns the fitted values
logLik(fit) computes the logarithm of the

likelihood and the number of parameters
AIC(fit) computes the Akaike information

criterion or AIC

Statistics
aov(formula) analysis of variance model

R command sheet R command sheet 49

anova(fit,...) analysis of variance (or
deviance) tables for one or more fitted
model objects

density(x) kernel density estimates of x
binom.test(), pairwise.t.test(),

power.t.test(), prop.test(),
t.test(), ... use help.search("test")

Distributions
rnorm(n, mean=0, sd=1) Gaussian (normal)
rexp(n, rate=1) exponential
rgamma(n, shape, scale=1) gamma
rpois(n, lambda) Poisson
rweibull(n, shape, scale=1) Weibull
rcauchy(n, location=0, scale=1) Cauchy
rbeta(n, shape1, shape2) beta
rt(n, df) ‘Student’ (t)
rf(n, df1, df2) Fisher–Snedecor (F) (χ2)
rchisq(n, df) Pearson
rbinom(n, size, prob) binomial
rgeom(n, prob) geometric
rhyper(nn, m, n, k) hypergeometric
rlogis(n, location=0, scale=1) logistic
rlnorm(n, meanlog=0, sdlog=1) lognormal
rnbinom(n, size, prob) negative binomial
runif(n, min=0, max=1) uniform
rwilcox(nn, m, n), rsignrank(nn, n)

Wilcoxon’s statistics
All these functions can be used by replacing the

letter r with d, p or q to get, respectively,
the probability density (dfunc(x, ...)),
the cumulative probability density
(pfunc(x, ...)), and the value of
quantile (qfunc(p, ...), with 0 < p <
1).

Programming
function(arglist) expr function

definition
return(value)

if(cond) expr

if(cond) cons.expr else alt.expr

for(var in seq) expr

while(cond) expr

repeat expr

break

next

Use braces {} around statements
ifelse(test, yes, no) a value with the

same shape as test filled with elements
from either yes or no

do.call(funname, args) executes a
function call from the name of the
function and a list of arguments to be
passed to it.

The Epi package

The purpose of the Epi package is to provide
tools for advanced epidemiological data
manipulation and analysis. This section
does not provide the full set of arguments
for the functions, so please consult the
help pages.

Lexis(entry,exit,duration,enty.status,

exit.status,id,data,merge,states)

Define a Lexis object with follow-up on
several timescales (and possibly several
types of events).

boxes.Lexis() Show the states and
transitions between them from a Lexis

object representing observatios from a
multistate model.
plot.Lexis(),lines.Lexis(),points.Lexis()

Plot a Lexis diagram from a Lexis object,
and add lines and points.

splitLexis(lex,breaks,time.scale) Split
the follow-up time in a Lexis object along
one time scale.

cutLexis(data,cut,timescale) Cut the
follow-up at one specific point on a
timescale.

summary.Lexis(x) Tabulate events and risk
time from a Lexis object.

boxes.Lexis(x) Illustrate a multistate
model, and show person-years and
transitions.

timeScales(), timeBand(), breaks()

Utilites to acces parts of a Lexis object.
cal.yr(x,format) Convert x to fractional

calendar year.
stat.table(index,contents,...) Make

tables, classified by index, of sums, ratios
etc. given in contents.

effx(response, type, exposure, ...)

Epidemiological estimates of effects.
ci.lin(obj,ctr.mat,subset,diffs,Exp)

Extract parameters and linear functions of
them from a model object.

ci.exp(obj,ctr.mat,subset,diffs)

Extract parameters and linear functions of
them from a model object, and
exponentiate them.

50 R command sheet R for epidemiology

ci.cum(obj,ctr.mat,subset,intl,Exp)

Extract parameters and a model object
and compute the cumulative sum.

plotEst(ests,...) Make a plot of
parameter estimates.

twoby2(exposure,outcome,...) Analysis of
a 2× 2 table. Input can be either two
binary variables or a matrix of counts.

More esoteric topics in the Epi package (look at
the help pages for links):

Icens() Fit a model to interval censored
follow-up data.

apc.fit() Fit age-period-cohort models to
tabulated data.

	Contents
	Getting R running on your computer
	What is R?
	Getting R
	Starting R
	Quitting R

	Working with the script editor
	Rstudio
	Try!

	Changing the looks …
	…of standard R
	…of Rstudio

	Further reading

	Some basic commands in R
	Preliminaries
	Using R as a calculator
	Objects and functions
	Sequences
	The births data
	Referencing parts of the data frame
	Summaries
	Turning a variable into a factor
	Frequency tables
	Grouping the values of a metric variable
	Tables of means and other things
	Other tabulation functions

	Generating new variables
	Logical variables

	Working with R
	Saving the work space
	Saving output in a file
	Saving R objects in a file
	Using a text editor with R
	The search path
	Attaching a data frame

	Graphs in R
	Simple plot on the screen
	Colours
	Adding to a plot
	Using indexing for plot elements
	Generating colours

	Interacting with a plot
	Saving your graphs for use in other documents
	The par() command

	The effx function for effects estimation
	The function effx
	Factors on more than two levels
	Stratified effects
	Controlling the effect of hyp for sex
	Numeric exposures
	Checking on linearity
	Frequency data

	Dates in R
	Follow-up data in the Epi package
	Timescales
	Splitting the follow-up time along a timescale
	Cutting time at a specific date
	Competing risks — multiple types of events
	Multiple events of the same type (recurrent events)
	References

	R command sheet
	Getting help
	Input and output
	Data creation
	Slicing and extracting data
	Variable conversion
	Variable information
	Data selection and manipulation
	Math
	Matrices
	Advanced data processing
	Strings
	Dates and Times
	Plotting
	Low-level plotting commands
	Graphical parameters
	Lattice (Trellis) graphics
	Optimization and model fitting
	Statistics
	Distributions
	Programming
	The Epi package

