STENO Introductory R-Workshop: Loading a Data Set

Tommi Suvitaival, tsvv@steno.dk, Steno Diabetes Center

June 11, 2015

Contents

1	Introduction							
2	Recap: Variables							
3	Data Containers							
	3.1 Vectors	2						
	3.2 Matrices	3						
4	Functions							
5	Reading a Data Set	5						
	5.1 Introduction	5						
	5.2 Reading a File with the read.table Function	6						
	5.3 First Look at the Data Set	7						
6	Visualization with Scatter Plot							
7	Extra: Logistic Regression Model	10						
	7.1 Fitting a Model with the glm Function	10						
	7.2 Inspecting a Model with the summary Function	10						
8	8 Your Own Practice Project							
9	Conclusion							
10	10 Future Topics?							

1 Introduction

Today's goals:

- Recap
- Data containers
- Functions
- Reading a data set into R
- First look at the data

2 Recap: Variables

• Numeric

a = 2 b = 3 a + b ## [1] 5 • String a = "This" b = "is a string" paste(a, b) ## [1] "This is a string" • Logical a = TRUE b = FALSE a & b

[1] FALSE

For the vectors and matrices, let's go through the Section 3 of the document *Introductory R-workshop: Variables, data types and containers* at https://github.com/leonjessen/introductoryR/tree/master/01_basic_ introduction .

- Click the name of the .pdf file.
- Click Raw.

3 Data Containers

3.1 Vectors

nums = c(5, 2, NA, 3, 1) nums

[1] 5 2 NA 3 1

```
# Show the 4th element of the vector.
nums[ 4 ]
## [1] 3
# Show all elements of the vector, except the 4th element.
nums[ -4 ]
## [1] 5 2 NA 1
# Create a sequence from 1 to 15.
sequence = seq( from=1, to=15 )
# Show the sequence.
sequence
```

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3.2 Matrices

```
# Define the number of rows
m = 3
# Define the number of columns
n = 5
# Define the elements of the matrix
A = matrix( data=sequence, nrow=m, ncol=n )
А
##
     [,1] [,2] [,3] [,4] [,5]
## [1,] 1 4 7 10
                            13
       2 5
## [2,]
                            14
                   8
                       11
## [3,]
       36
                 9
                       12
                            15
# Take the item in the 3rd row and 2nd column.
A[3, 2]
## [1] 6
# Take the 3rd row.
A[ <mark>3</mark>, ]
## [1] 3 6 9 12 15
# Take the 2nd column.
A[, 2]
```

[1] 4 5 6

Take the matrix without the second column. A[, -2]

##		[,1]	[,2]	[,3]	[,4]
##	[1,]	1	7	10	13
##	[2,]	2	8	11	14
##	[3,]	3	9	12	15

4 Functions

- Function combines a set of instructions into a single line of code.
 - Examples: mean(x) and read.table(file)
- Function may have *arguments*.
 - Arguments are the input to the function.
 - Examples:
 - * mean(x) has argument x, which is a numeric vector.
 - * read.table(file) has argument file, which is a name of the file (and of the string data type).
- Function may have a *return value*.
 - Return value is the output of the function.
 - Examples:
 - * mean(x) returns a single number.
 - * read.table(file) returns a data frame. (More of that later.)
- You can find the *documentation* of a function by typing ? and the name of the function.
 - Examples: ?mean, ?read.table
- How to *call* a function?
 - You have done it already for mean(${\tt x}$).

mean(x=c(1, 2, 3))

[1] 2

5 Reading a Data Set

5.1 Introduction

5.1.1 Comma Separated Values

- Let's read a comma separated values (CSV) file to R.
 - CSV is a text file that contains a data table.
 - Values are organized into rows and columns and separated by a comma.
 - CSV can also be imported/exported to/from Excel.
 - An example with 3 columns (variables) and 10 rows (samples):

0.8409986,-1.607113,2.136502 -0.1525392,1.688292,1.646375 -0.908455,-1.029759,0.7707836 -1.597526,-1.678158,1.100898 -0.1857298,-0.4470996,-0.7282355 0.8096235,-1.731656,-0.8830574 0.6639507,0.1762918,-0.06044059 0.4281464,0.14222,-1.796507 1.352567,-0.2312621,0.2371557 0.7544238,-1.279464,-1.582303

5.1.2 Diabetes Data Set from UCI

- We are going to have a look at a small data set related to diabetes, the *Pima Indians Diabetes Database*, which consists of clinical data on a Native American group.
 - It is a widely-used test data set for computational analysis methods: "UCI Diabetes Database" has almost 10,000 hits on Google Scholar.
 - It is publicly available at the UCI Repository Of Machine Learning Databases at http://repository. seasr.org/Datasets/UCI/csv/diabetes.csv.
 - The original owner of the data is National Institute of Diabetes and Digestive and Kidney Diseases.
- We are going to download a CSV file from the URL https://goo.gl/W5hdik.
 - It is a cleaned version of the Pima Indians Diabetes Database.
 - We'll read it directly into R, but you can also click the link to access it on your browser.

5.2 Reading a File with the read.table Function

- The read.table function reads a data table from a text file.
 - Arguments of the function (*i.e.*, what it needs from the user as input):
 - * file: File path or URL of the file to be read (a string).
 - * header: Logical (TRUE/FALSE), deciding whether the first row of the file contains the names of the data columns.
 - * sep: The character separating values (cells in Excel) in a row from each other.
 - * dec: The decimal separator (typically "." in English; "," in Danish).
 - Value of the function (*i.e.*, what it returns as output):
 - * A data frame containing values read from the file.
 - Data frame is a tightly coupled collection of variables.
 - We could say it is a data table which allows us to store multiple data types together (e.g., numeric, string, logical).
 - $\cdot~$ Each column on its own needs to have a specific data type.
 - · It is "similar to SAS and SPSS datasets."

```
# Read the comma separated values (CSV) file from the web address (URL)
# using the "read.table" function,
# and assign ("=") the read data frame into the variable "data".
# When reading the file, assume/request that:
# - the file exists at the URL "https://goo.gl/W5hdik".
# - the first row of the file contains the names of the columns ('header=TRUE')
# - cells of the table are separated by comma ('sep=","')
# - the decimal point is marked by dot ('dec="."')
# The file downloaded is a cleaned version of the Diabetes data set
# from "http://repository.seasr.org/Datasets/UCI/csv/diabetes.csv":
# - the second row of the file has been removed
# - zeros in the columns 2 to 6 have been removed (and are now missing).
data = read.table( file="https://goo.gl/W5hdik", header=TRUE, sep=",", dec=".")
```

• Read without errors? Now we can have a look at the data!

5.3 First Look at the Data Set

5.3.1 The View Function

- In R Studio, we can explore a matrix or data frame interactively by typing View(data)
 - (Result not shown here.)

5.3.2 Backround: What is the Data Set?

- Each row is a vector of *observations* from one *subject*, related to the diagnosis of type 2 diabetes.
- Description of the variables is shown in the table below.
 - Adapted from http://cran.r-project.org/web/packages/mlbench/mlbench.pdf.

Variable	Description
preg	Number of times pregnant
plas	Plasma glucose concentration (glucose tolerance test)
pres	Diastolic blood pressure (mm Hg)
skin	Triceps skin fold thickness (mm)
insu	2-Hour serum insulin (mu U/ml)
mass	Body mass index (weight in $kg/(height in m)^2$)
pedi	Diabetes pedigree function
age	Age (years)
class	Class variable (test for diabetes)

5.3.3 Dimensions

- The dim function returns the dimensions of a matrix or data frame:
 - First element: the number of rows
 - Second element: the number of columns.

```
# Return the dimensions (rows and columns) of the data frame "data".
dim( data )
```

[1] 768 9

5.3.4 Structure of the Data Container

- The str function returns an overview of any data container.
 - Applies also to other containers than matrices.

```
# View the structure of the data frame "data".
str( data )
```

```
## 'data.frame': 768 obs. of 9 variables:
## $ preg : int 6 1 8 1 0 5 3 10 2 8 ...
## $ plas : int 148 85 183 89 137 116 78 115 197 125 ...
```

```
$ pres : int 72 66 64 66 4 74 5 NA 7 96 ...
##
                 35 29 NA 23 35 NA 32 NA 45 NA ...
##
   $ skin : int
                 NA NA NA 94 168 NA 88 NA 543 NA ...
##
   $ insu : int
  $ mass : num
##
                 33.6 26.6 23.3 28.1 43.1 25.6 31 35.3 3.5 NA ...
##
   $ pedi : num
                 0.627 0.351 0.672 0.167 2.288 ...
## $ age : int 50 31 32 21 33 30 26 29 53 54 ...
## $ class: Factor w/ 2 levels "tested_negative",..: 2 1 2 1 2 1 2 1 2 2 ...
```

- It is a *data frame*.
- The dimensions of the data frame are shown on the first row.
- Variables of the data frame are shown here as rows.
- The *data type* and few of the first elements of each variable and are shown in the print.

5.3.5 Subsetting the Matrix

- Printing an entire matrix will usually lead to an excess of information on the screen.
- Instead, we can print a subset of the entire data set, e.g., the first 5 rows of the matrix.

```
# Return the first 5 rows and all columns of the data frame "data".
data[ 1:5, ]
```

##		preg	plas	pres	skin	insu	${\tt mass}$	pedi	age	class
##	1	6	148	72	35	NA	33.6	0.627	50	tested_positive
##	2	1	85	66	29	NA	26.6	0.351	31	tested_negative
##	3	8	183	64	NA	NA	23.3	0.672	32	tested_positive
##	4	1	89	66	23	94	28.1	0.167	21	tested_negative
##	5	0	137	4	35	168	43.1	2.288	33	tested_positive

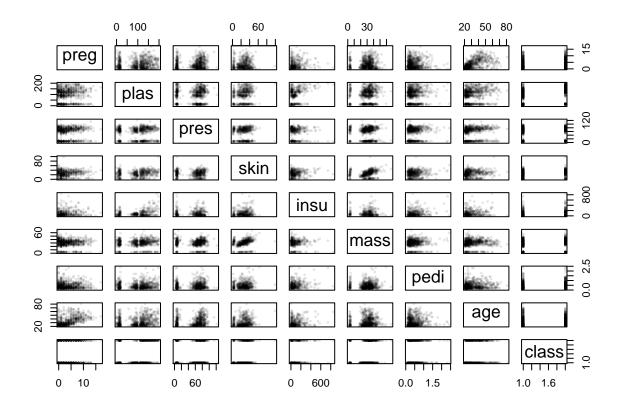
• Subsetting a column is useful for variable-specific computations.

```
# Compute the mean of the 1st column of the data frame "data",
# omitting the missing ("NA") values.
mean( x=data[ , 1 ], na.rm=TRUE )
```

[1] 3.845052

Compute the standard deviation of the 1st column of the data frame "data", # omitting the missing ("NA") values. sd(x=data[, 1], na.rm=TRUE)

[1] 3.369578


Compute the standard deviation of the 1st column of the data frame "data", # omitting the missing ("NA") values. median(x=data[, 1], na.rm=TRUE)

[1] 3

6 Visualization with Scatter Plot

• Inspect the linear and non-linear statistical dependencies between individual variable pairs.

pairs(x=data, col=gray(level=0, alpha=0.1), pch=20, cex=0.5)

7 Extra: Logistic Regression Model

- $\mathbf{y} = \frac{1}{1+e^{-\beta \mathbf{x}}}$
 - Interpretation: Binary dependent variable \mathbf{y} is explained by the continuous independent variables \mathbf{x} (through the regression coefficients $\boldsymbol{\beta}$ and the logistic link function).
 - Components of the model:
 - * y: Dependent variable called $\tt class$
 - · A factor coding the diabetes-negative and diabetes-positive subjects, respectively.
 - $\ast\,$ x: Independent variables called preg, plas, pres, skin, insu, mass, pedi, age.

7.1 Fitting a Model with the glm Function

7.2 Inspecting a Model with the summary Function

Return a summary of the model.

```
summary( logistic.regression.fit )
##
## Call:
## glm(formula = class ~ ., family = binomial(link = "logit"), data = data)
##
## Deviance Residuals:
##
      Min 1Q Median
                                  ЗQ
                                         Max
## -2.8329 -0.7235 -0.4495
                                       2.3819
                             0.7860
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
                          0.730602 -8.285 < 2e-16 ***
## (Intercept) -6.053308
## preg
               0.068907
                          0.050878
                                   1.354 0.17562
                          0.002617
                                   4.144 3.41e-05 ***
## plas
               0.010843
## pres
              -0.002260
                          0.004214 -0.536 0.59178
## skin
              0.028474
                          0.010897
                                    2.613 0.00897 **
              0.001772
                          0.001158 1.530 0.12612
## insu
## mass
              0.032477
                          0.012662 2.565 0.01032 *
## pedi
              1.108575
                          0.389777
                                    2.844 0.00445 **
```

age 0.046759 0.016958 2.757 0.00583 **
--## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 498.10 on 391 degrees of freedom
Residual deviance: 383.65 on 383 degrees of freedom
(376 observations deleted due to missingness)
AIC: 401.65
##
Number of Fisher Scoring iterations: 4

8 Your Own Practice Project

1. Save your data set as a CSV file. Pay attention to:

- How the cells of the table are separated ("separating character")?
- What is the decimal character? ("." or ","? Must not be the same as the separating character.)
- How the missing values are symbolized? (Empty cell or a special string such as NA?)
- 2. Load the CSV file using the read.table function. Pay attention to
 - Does the first row contain the names of the columns?
 - Are there columns whose data type is other than numeric?
 - Are all the values of a column of the same data type? (Should be.)
- 3. Inspect the data matrix in R. Try:
 - Subsetting the data.
 - Computing the mean of a data column.
 - Changing values in the data.
 - Making logical tests to the data.
- 4. Make a scatter plot of the data.

9 Conclusion

- R is a powerful tool for statistical data analysis.
 - $-\ldots$ once you have managed to load the data!
- There are vast libraries of functions and methods available for free.
- Knowledge of programming basics is useful

10 Future Topics?

- Programming basics:
 - conditional statements (if)
 - loops (for and while)
 - functions
 - objects
- Loading "raw" data sets, cleaning and pre-processing them in R
- Visualizations
- Statistical tests & p-value corrections
- How to find help for problems; how to find new packages
- Using the knitr package for writing reproducible reports (like this one)
- Widely-used packages for clustering and classification
- How to cross-validate or bootstrap a model