STENO Introductory R-workshop: Variables, data types
and containers

Leon Eyrich Jessen, leyj@steno.dk

June 9, 2015

Contents

1__Introductionl 1
LI WhatisR? 1
12 Why R?. . .. 2

2 Variables| 2
2.1 meric variables|. oL 3
2.2 Character variablesl 4
2.3 Logicvariables| 5
2.4 Special variablevalues| o o 7
2.5 Read-and-understand questions| 0 oL L 8

13__Data containers| 9
BI _Vectorsl o oo 9
B2 Mafricesl 11
3.3 Read-and-understand questions| 0 0 L L 12
3.4 That'sall folksl| 13

1 Introduction

This workshop document is aimed at people with very little or no knowledge of R. We will start from
absolute scratch focusing on programming concepts, such as variables, data types and containers.
Before we begin the actual learning part of this vignette, I want to stress one thing, that I find extremely
important for you to know: R is difficult to learn! Especially if you are not familiar with programming.
HOWEVER if you can mobilise a bit of stubbornness and I-will-hang-in-there attitude, your effort
will be generously rewarded by R!

1.1 Whatis R?

"R is a free software environment for statistical computing and graphics" [http:/ /www.r-project.org/].
So basically R is an advanced calculator, allowing you to conduct various calculations, analyses and
visualisations.

In the following, there will be a mix of text like the one you are reading right now and every now and
then, you will see actual R code in a grey box, like this:

2 + 3
[1] 5

Where the first line beginning with a single "#' is the comment line. The second line is the actual R-code
itself and the last line beginning with "## is the result of running the R-code.

In this case we want to calculate the sum of 2 + 3, so we state that in the comment, then follows the
R-code, which simply is 2+3 and then the result 5 (We skip the [1] for now).

Note! Comments are important! They are used for explaining what you are doing, so that others may
read your code or more importantly, you will know what is going on, when you have to take a look at
the R-script you wrote 2 years ago.

12 Why R?

R is extremely powerful due to its flexibility. Furthermore if you stick to the build-in functions, R is
also quite fast. Lastly R is free!
Continuing on build-in functions, let me show how to calculate the mean of a some numbers in another
programming language (Perl):

my @nums = (1,2,3,4,5);

my $n = scalar(@nums) ;

my $sum = O;

for(my $i=0;$i<=$#nums;$i++){
$sum += $nums[$il;

}

my $mean = $sum / $n;
print $mean, "\n";

Now, let us try to do the same thing in R:

nums = c(1,2,3,4,5)
mean (nums)

[1] 3

I hope you appreciate the difference!
NOTE! Since R does not come with a point-and-click interface, it is VERY useful to know, that the help
page for any function is available by simply typing e.g. 7mean

2 Variables

In this section, we will take a close look at what a variable is.
We saw earlier, that we can perform simple calculations in R, e.g.:

2 ¢ &
[1] 5

However we will seldom write e.g. 2 4 3, when we write R-code. More likely we will have the values
2 and 3 stored in appropriate ‘containers’. This storing of ‘a value’ in ‘a container” is in essense what a
variable is, e.g.:

a =2
b=3

Here we assign the value 2 to a and the value 3 to b. Now we can perform the same calculations as
before:

a+b
[1] 5

As you see, we get the same results as before, only now, we are performing calculations using the
variables a and b instead of the actual numbers 2 and 3.
The result of a calculation on two variables, can be assigned to a third variable like so:

c=a+b
C
[1] 5

In the example above, the variables contain numbers. Variables can contain other things than numbers,
i.e. vatiables will be of a certain data type:

1. numerical
2. character
3. logical

In the following, we will take a closer look at each of these data types.

2.1 Numeric variables

A numeric variable holds a number, e.g. as we saw earlier:

a =2
b =3

Familiar arithmetic variable operations

We can perform a range of arithmetic variable operations, such as the familiar:

a+b
[1] 5
a-b>b
[1] -1
a *x b
[1] 6
a/b

[1] 0.6666667

Special arithmetic variable operations

Furthermore, the following more special variable operations can be performed:

[1]1 9

b ** a

[1] 9

Square root
sqrt(a)

[1] 1.414214

Which as you know really s
a *x (1/2)

#4# [1] 1.414214

Modulus (What is the remainder? E.g. 21 [} 4 = 1)
b %% a

[1] 1

Integer diviston (How many times is number wholly divistble? E.g. 21 [/ 4 = 5)
b %/%h a

[1] 1

Numbers in programming terminology

In programming terminology, numbers exist in different formats:

An integer ts a whole number, e.g.:

3
[1] 3

A float 2s a decimal number, e.g.:
3.14159

[1] 3.14159

A scientific number, is a number stated using scientific motation, e.g.:
6.63e-34

[1] 6.63e-34

This 1s the same as
6.63 *x 10 =~ -34

[1] 6.63e-34

2.2 Character variables

A character variables hold a letter like so:

a = "a"
b = "p"

a

Hit [1] uau
b

[1] npn

If we have multiple characters following each other we call it a string:

a = "This"

b = "is a string"
a

[1] "This"

b

[1] "is a string"

There are a plethora of string operators available. Usually we do not do much string manipulation in
R. For now, we will stick to string concatenation (joining strings together in an end-to-end manner)
and getting length of string (how many letters are in the string):

paste(a,b)
[1] "This is a string"
nchar (b)

[1] 11

2.3 Logic variables

This is a bit more tricky than the numerical and character data types. A logical is a representation of
something which is either TRUE (same as 1) or FALSE (same as 0). Hence a logical variable is a binary
variable with only TWO possible values.

We assign a value to a logical variable like so:

a = TRUE
b = FALSE

]

Note the absence of quotation marks and uppercase. We can perform the following logical (also known
as boolean) operations:

a && b

[1] FALSE

allb

[1] TRUE

la

[1] FALSE

'((@& b) || (a Il b))

[1] FALSE

Note that TRUE and 1 are equivalent and likewise for FALSE and 0, e.g.:

a=1

b=0

a == TRUE
[1] TRUE
b == FALSE
[1] TRUE

'((a &k b) ||l (all b))

[1] FALSE

These logicals/boolean values are used for comparing entities:

[1] FALSE

[1] TRUE

g == np"

[1] FALSE

ngn != np"

[1] TRUE

sqrt(2) == 2 ~ (1/2)
[1] TRUE

Here is a tabular representation of the above mentioned functions:

bool bool AND OR
TRUE TRUE | TRUE TRUE
TRUE FALSE | FALSE TRUE
FALSE TRUE | FALSE TRUE
FALSE FALSE | FALSE FALSE

and here is a table of the comparators:

symbol meaning

== equal to

I= not equal to

> larger than

>= larger than or equal to
< smaller than

<= smaller than or equal to

2.4 Special variable values

The concept of nothing/empty is actually quite tricky to handle in programming. In the following I
will introduce the various values R use for representing nothing/empty and alike

The NA value

In R we also need a way to represent the absence of a value. Consider the case, where we have a series
of incomplete measurements, which value do we assign the missing values? In R we represent missing
values with NA (Not Available):

a = NA
a

[1] NA
is.na(a)
[1] TRUE

Note how you cannot perform operations on the NA value, but you can ask R if the value is NA.

The NaN value

We also need a value for something which in numerical terms are not a number, for this we use NaN
(Not a Number):

b = NaN

b

[1] NaN
b ==

[1] NA
is.nan(b)
[1] TRUE
0/0

[1] NaN

Note how you cannot perform operations on the NaN value, but you can ask R if the value is NaN.

The inf/-inf value

We also need to represent un-imaginable large numbers:

1/0
[1] Inf
-1/0
[1] -Inf

An likewise for un-imaginable small numbers

1 / 1e1000

[1]1 O

Note how this technically is not true, since 1 / 1e1000 == 1e-1000, which R actually knows:
1 / 1e1000 == 1e-1000

[1] TRUE

However for all intend and purpose, I hope we can agree that 1 / 11000 == 0, which again R actually
knows:

1 / 1e1000 ==

[1] TRUE

The NULL value
There is one more more special value we need to consider, namely the value of an empty variable, e.g.:

a=c()
b = NULL
is.null(a)

[1] TRUE
is.null(b)

[1] TRUE
a ==

logical(0)

Again we cannot perform operations, but we can ask if the value is NULL.

2.5 Read-and-understand questions

. What data type does the a variable with value 3 have?

. What data type does the a variable with value "a" have?

. What data type does the a variable with value TRUE have?

. What is the difference between "a" and a?

. What is the difference between a = "a" and a == "a"?

. What is the result of "a" == a?

. What is the result of 1 == TRUE?

. What is the result of (TRUE && FALSE) || (FALSE || TRUE)?

O 0o N O O kA~ WO

. What is the result of 3 / 0?

—_
o

. What is the result of sqrt(-3)?

—_
—_

. Whatis theresultof 2 *x 2 ~ 2

—_
N

. What is the result of 32 %% 6?

—_
@

. What is the result of 32 %/% 6?

—_
S

. Isa = "" a NULL value? Why/why not?

—_
U1

. Isb = "", then what is the result of nchar(b) == FALSE?

3 Data containers

So far we have looked at what a variable is and what a data type of a variable is. Now we will look at
how to store multipe values in one variable.

3.1 Vectors

A vector is a way to hold multiple values in one variable. Earlier you saw me defining a vector, when
we looked at how to compute the mean of a set of numbers, like so:

nums = c(1,2,3,4,5)
nums

[1] 1 23 4 5

Vectors can also hold strings:

strings = c("this","is","a","string")

strings
[1] "this" nign ngn "string"
or logical values:

logics = c(FALSE,FALSE,TRUE, TRUE,FALSE)
logics

[1] FALSE FALSE TRUE TRUE FALSE
However you CANNOT mix the values:

mixed = c(1,"a",FALSE)

mixed
[1] lllll llall IIFALSEII
What happened here?

The individual number in this numerical vector is referred to as an element and can be accessed like
S0:

strings[1]

[1] "this"

strings[2] = "constitutes"

strings

[1] "this" "constitutes" "a" "string"

strings[2:4]

[1] "constitutes" "a" "string"

strings[4:1]

[1] "string" "a "constitutes" "this"

Do Yoda!
paste(strings[c(3,4,1,2)],collapse=" ")

[1] "a string this constitutes"

Note the usage of a numerical wvector in indexing the character vector
and the wrapping concatenation function

IMPORTANT! Note how R is NOT zero-indexed! The first position in a vector is position 1!

Earlier you saw me calculating the mean of a set of numbers stored in a numerical vector using the
function mean. Functions are what lies at the heart of R. In the following I will give examples of vector
relevant functions:

How many elements are in the numerical wvector nums?
length (nums)

[1] 5

What 1s the reciprocal value of each of the numbers in the numerical vector nums?
1/nums

[1] 1.0000000 0.5000000 0.3333333 0.2500000 0.2000000

Give me a vector with all the numbers from 1 to 10
seq(1,10)

[1] 1 2 3 4 5 6 7 8 910

Add the number 11 to the end of the above sequence of numbers
v = seq(1,10)

v

[1] 1 2 3 4 5 6 7 8 910

v = append(v,11)

v

[1] 1 2 3 4 5 6 7 8 9 10 11
Remove the number 5

v = v[-5]

v

[1] 1 2 3 4 6 7 8 9 10 11

Show me the first element
v[1]

[1] 1

Show me the last element
v[length(v)]

[1] 11

Note above how some functions will work on all the elements and return one value, whereas others
will work on the individual elements and return the resulting values in a new vector.
Just to give you a flavour for some basic descriptive statistics:

What is the mean of the walues in the numerical wvector nums?
mean (nums)

10

[1] 3

sd (nums)

[1] 1.581139

median (nums)

[1] 3

3.2 Matrices

A matrix is simply a table with some values in it. If we take a bunch of vectors, with the same length
and put them on top of each other, we have a matrix. Think of an Excel sheet with a table, with m rows
and n columns. These are VERY useful both for storing values and doing calculations on.

In R we can get a matrix A with m = 3 rows and n = 5 columns.

elements = seq(1l:(m*n))

elements

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A = matrix(data=elements,nrow=m,ncol=n)
A

#it [,11 [,21 [,3]1 [,4]1 [,5]

[1,] 1 4 7 10 13

[2,] 2 5 8 11 14
[3,] 3 6 9 12 15

Note had I stated elements = 0, then the value 0 would have been recycled, such that the value of
ALL the elements in A would be 0.

Like the vector, matrices can hold a single data type, i.e. either numbers, characters or logicals, but
NOT a mix!

We can access a single element, e.g. the element in the 3rd row in the 2nd column, in the matrix like
s0:

A[3,2]

[1] 6

Or ask for the content of the 3rd row
A[3,]

[1] 3 6 9 12 15

Or the content of the 2nd column

11

A[,2]

[1]1 456

You can use negative indices to remove either a row or a column:
A[,-2]

#it [,11 [,2]1 [,3]1 [,4]

[1,] 1 7 10 13

[2,] 2 8 11 14
[3,] 3 9 12 15

Think of e.g. 3 patients, where we have measured 5 clinical variables. Instead of using the indices, we
can name the rows and columns like so:

rownames(A) = c("patl","pat2","pat3")
colnames(A) = c("height","weight","HbAlc","bp_sys","bp_dia")

A

#it height weight HbAlc bp_sys bp_dia
patl 1 4 7 10 13
pat2 2 5 8 11 14
pat3 3 6 9 12 15

Now we can ask for values using the assigned names, e.g. what is the systolic blood pressure of pat2?
A [npat2 n s ”bp_SyS n]
[1] 11

If we want to know the dimensions of a given matrix, i.e. the number of rows and columns, we simply

type
dim(A)

[1] 3 5
nrow (A)
[1] 3
ncol (A)

[1]1 5

Remember that the rows are ALWAYS indiced before the columns! (In Danish ‘'R’ preceeds 'S’ in the
alphabet like so 'R’aekker and 'S’oejler).

3.3 Read-and-understand questions

1. What is the difference between nchar ("string") and length("string")?

I

.ifa = c("1","2","3"), what type of vector is a then?

. ifb = ¢(1,2,3), what type of vector is b then?

2

3

4. if ¢ = ¢(1,0,1), what type of vector is ¢ then?

5. if d = ¢(TRUE,FALSE,TRUE), what type of vector is d then?
6

. if e = c("TRUE", "FALSE", "TRUE"), what type of vector is e then?

12

7. What is the result of length(a)?
8. What is the result of length (append(a,c(4,5)))?

9. if A = matrix(data=0,nrow=2,ncol=5), then how many elements are in A? What are the dimen-
sions of A?

10. What is the result of dim(A) [1]?
11. What is the result of dim(A[,-3])
12. What is the result of means (seq(1,9))?

13. What is the command for generating a matrix with 10 rows and 10 columns, containing only NA
values?

14. In what situation could a matrix of NA values be useful?

15. What is the dimension of: a point? a line? a square? a cube?

3.4 That’s all folks!

That is it for now. In the next workshop, we will take a closer look at how to load data matrices and
perform simple statistical analyses.

13

	1 Introduction
	1.1 What is R?
	1.2 Why R?

	2 Variables
	2.1 Numeric variables
	2.2 Character variables
	2.3 Logic variables
	2.4 Special variable values
	2.5 Read-and-understand questions

	3 Data containers
	3.1 Vectors
	3.2 Matrices
	3.3 Read-and-understand questions
	3.4 That's all folks!

