
R-exercise for Friday 31

October 2014
http://BendixCarstensen.com/Epi

Version 5

Compiled Thursday 30th October, 2014, 19:14
from: C:/Bendix/undervis/SPE/Intro/R-intro-SDC.tex

Bendix Carstensen Steno Diabetes Center, Gentofte, Denmark
& Department of Biostatistics, University of Copenhagen

bxc@steno.dk

www.pubhealth.ku.dk/~bxc

Edition 2014 by Bendix Carstensen

http://BendixCarstensen.com/Epi
www.pubhealth.ku.dk/~bxc

Contents

1 Getting R running on your computer 1

1.1 What is R? . 1

1.2 Getting R . 1

1.2.1 Starting R . 1

1.2.2 Quitting R . 2

1.3 Working with the script editor . 2

1.3.1 Rstudio . 2

1.3.2 Try! . 2

1.4 Changing the looks . 3

1.4.1 . . . of standard R . 3

1.4.2 . . . of Rstudio . 3

1.5 Further reading . 3

2 Some basic commands in R 4

2.1 Preliminaries . 4

2.2 Using R as a calculator . 4

2.3 Objects and functions . 5

2.4 Sequences . 6

2.5 The births data . 6

2.6 Referencing parts of the data frame . 7

2.7 Summaries . 8

2.8 Turning a variable into a factor . 8

2.9 Frequency tables . 9

2.10 Grouping the values of a metric variable . 9

2.11 Tables of means and other things . 10

2.11.1 Other tabulation functions . 11

2.12 Generating new variables . 11

2.13 Logical variables . 12

3 Working with R 13

3.1 Saving the work space . 13

3.2 Saving output in a file . 13

3.3 Saving R objects in a file . 14

3.4 Using a text editor with R . 14

3.5 The search path . 15

3.6 Attaching a data frame . 15

ii

4 Sample size calculations 17
4.1 Sample size calculations . 17

4.1.1 Traditional calculations . 17
4.1.2 Modern calculations . 17
4.1.3 The Greenland complications study 17
4.1.4 Precision and power . 18
4.1.5 Rates . 18
4.1.6 Rate-ratios . 18
4.1.7 Simulation of one dataset . 19
4.1.8 SImulating many datasets . 20
4.1.9 Summarizing over many scenarios . 20

iii

iv

Chapter 1

Getting R running on your computer

1.1 What is R?

R is free program for data analysis and graphics. It contains all state of the art statistical
methods, and has become the preferred analysis tool for most professional statisticians in
the world. It can be used as simple calculator and as a very specialized statistical analysis
and reporting machinery.

The special thing about R is that you enter commands from the keyboard into a console
window, where you also see the results. This is an advantage because you end up with a
script that you can use to reproduce your analyses—a requirement in any scientific
endeavour.

The disadvantage is that you somehow have to find out what to type. The practicals will
contain some hints, and you will mostly be using R as a calculator, as you just saw — type
an expression, hit the return key and you get the result.

1.2 Getting R

You can obtain R, which is free, from CRAN (the Comprehensive R Archive Network), at
http://cran.r-project.org/. Under “Download R for Windows” click on “install R for
the first time” and then on “Download R 3.0.2 for Windows”, which is a self-extracting
installer. This means that if you save it to your computer somewhere and click on it, it will
install R for you.

Apart from what you have downloaded there are several thousand add-on packages to R
dealing with all sorts of problems from ecology to fiance and incidentally, epidemiology.
You must download these manually. In this course we shall only need the Epi package.

1.2.1 Starting R

You start R by clicking on the icon that the installer has put on your desktop. You should
edit the properties of this, so that R starts in the folder that you have created on your
computer for this course.

Once you have installed R, start it, and in the menu bar click on Packages → Install
package(s)..., chose a mirror (this is just a server where you can get the stuff), and then the
Epi package.

1

http://cran.r-project.org/

2 Getting R running on your computer R for epidemiology

Once R (hopefully) has told you that it has been installed, you can type:

> library(Epi)

to get access to the Epi package. You can get an overview of the functions and datasets in
the package by typing:

> library(help=Epi)

It should be apparent that you have version 1.1.49 of the Epi package. For documentauon
purposes it is often useful to have the following at the beginning of your program:

> sessionInfo()

R version 3.1.1 (2014-07-10)
Platform: i386-w64-mingw32/i386 (32-bit)

locale:
[1] LC_COLLATE=Danish_Denmark.1252 LC_CTYPE=Danish_Denmark.1252
[3] LC_MONETARY=Danish_Denmark.1252 LC_NUMERIC=C
[5] LC_TIME=Danish_Denmark.1252

attached base packages:
[1] utils datasets graphics grDevices stats methods base

other attached packages:
[1] Epi_1.1.68 foreign_0.8-61

1.2.2 Quitting R

Type q() in the console, and answer “No” when asked whether you want to save workspace
image.

1.3 Working with the script editor

If you click on File → New script, R will open a window for you which is a text-editor very
much like Notepad.

If you write a command in it you can transfer it to the R console and have it executed by
pressing CTRL-r. If nothing is highlighted, the line where the cursor is will be transmitted
to the console and the cursor will move to the next line. If a part of the screen is
highlighted the highlighted part will be transmitted to the console. Highlighting can also
be used to transmit only a part of a line of code.

1.3.1 Rstudio

This is an interface that allows you to have a slithly more flexible script-editor than the
built-in, R-studio har syntax coloriung which can be very nice. You can obtain it from
http://rstudio.com.

1.3.2 Try!

Now, either open a script by File → New script, and type (omit the “>” in the beginning of
the line), or fire up R-studio and type in the editor window:

http://rstudio.com

Getting R running on your computer 1.4 Changing the looks . . . 3

> 5+7
> pi
> 1:10
> N <- c(27,33,81)
> N

Run the lines one at a time by pressing CTRL-r, (in R-studio it is CTRL-ENTER) and see
what happens.

You can also type the commands in the console directly. But then you will not have a
record of what you have done. Well, you can press File → Save History and save all you
typed in the console (including the 73.6% commands with errors).

1.4 Changing the looks . . .

1.4.1 . . . of standard R

If you want R to start up with a different font, different colors etc., the go to the folder
where R is installed — most likely Program Files\R\R-2.13.1, then to the folder etc,
and open the file Rconsole with Notepad. In the file are specifications on how R will look
when you start it, pretty self-explanatory, except perhaps for MDI.
MDI means “Multiple Display Interface”, which means you get a single R-window, and

within that sub-windows with the console, the script editor, graphs etc. If this is set to
“no”, you get SDI which means “Single Display Interface”, which means that R will open
the console, script editor etc. in separate windows of their own.

A withe background can be trying to look at so on my (BxC) computer I use a bold font
and the following colors:

> background = gray5
> normaltext = yellow2
> usertext = green
> pagerbg = gray5
> pagertext = yellow2
> highlight = red
> dataeditbg = gray5
> dataedittext = red
> dataedituser = yellow2
> editorbg = gray5
> editortext = lightblue

(If you want to know which colors are available in R, just give the command colors()).

1.4.2 . . . of Rstudio

Click on Tools→Global options...→Apperance and choose Consolas font, 16 pt, Editor theme
Cobalt

1.5 Further reading

On the CRAN web-site the last menu-entry on the left is “Contributed” and will take you
to a very long list of various introductions to R, including manuals in esoteric languages
such as Danish, Finnish and Hungarian.

Chapter 2

Some basic commands in R

2.1 Preliminaries

The purpose of these notes is to describe a small subset of the Rlanguage, sufficient to
allow someone new to R to get started. The exercises are important because they reinforce
basic aspects of R. For further details about R we refer the reader to An Introduction to
R by W.N.Venables, D.M.Smith, and the R development team. This can be downloaded
from the R website at http://www.r-project.org.

To start R click on the R icon. To change your working directory click on
File→ Change dir... and select the directory you want to work in. Alternatively you can

write:

> setwd("c:/where/alll/my/files/are")

To get out of R click on the File menu and select Exit, or simpler just type “q()”. You will
be offered the chance to save the work space, but at this stage just exit without saving,
then start R again, and change the working directory, as before.
R is case sensitive, so that A is different from a. Commands in R are generally separated

by a newline, although a semi-colon can also be used. When using R it makes sense to
avoid as much typing as possible by recalling previous commands using the vertical arrow
key and editing them.

2.2 Using R as a calculator

Typing 2+2 will return the answer 4, typing 2^3 will return the answer 8 (2 to the power of
3), typing log(10) will return the natural logarithm of 10, which is 2.3026, and typing
sqrt(25) will return the square root of 25.

Instead of printing the result you can store it in an object, say

> a <- 2+2

which can be used in further calculations. The expression <-, pronounced ”gets”, is called
the assignment operator, and is obtained by typing < and then -. The assignment operator
can also be used in the opposite direction, as in

> 2+2 -> a

4

http://www.r-project.org

Some basic commands in R 2.3 Objects and functions 5

The contents of a can be printed by typing a.
Standard probability functions are readily available. For example, the probability below

1.96 in a standard normal (i.e. Gaussian) distribution is obtained with

> pnorm(1.96)

while

> pchisq(3.84,1)

will return the probability below 3.84 in a χ2 distribution on 1 degree of freedom, and

> pchisq(3.84,1,lower.tail=FALSE)

will return the probability above 3.84.

Exercise 2.1.

1. Calculate
√

32 + 42.

2. Find the probability above 4.3 in a chi-squared distribution on 1 degree of
freedom.

2.3 Objects and functions

All commands in R are functions which act on objects. One important kind of object is a
vector, which is an ordered collections of numbers, or an ordered collection of character
strings. Examples of vectors are 4, 6, 1, 2.2, which is a numeric vector with 4 components,
and “Charles Darwin”, “Alfred Wallace” which is a vector of character strings with 2
components. The components of a vector must be of the same type (numeric or character).
The combine function c(), together with the assignment operator, is used to create
vectors. Thus

> v <- c(4, 6, 1, 2.2)

creates a vector v with components 4, 6, 1, 2.2 by first combining the 4 numbers 4, 6, 1, 2.2
in order and then assigning the result to the vector v. Collections of components of
different types are called lists, and are created with the list() function. Thus

> m <- list(4, 6, "name of company")

creates a list with 3 components. The main differences between the numbers 4, 6, 1, 2.2
and the vector v is that along with v is stored information about what sort of object it is
and hence how it is printed and how it is combined with other objects. Try

> v
> 3+v
> 3*v

and you will see that R understands what to do in each case. This may seem trivial, but
remember that unlike most statistical packages there are many different kinds of object in
R.

You can get a description of the structure of any object using the function str(). For
example, str(v) shows that v is numeric with 4 components.

6 Some basic commands in R R for epidemiology

2.4 Sequences

It is not always necessary to type out all the components of a vector. For example, the
vector (15, 20, 25, ... ,85) can be created with

> seq(15, 85, by=5)

and the vector (5, 20, 25, ... ,85) can be created with

> c(5,seq(20, 85, by=5))

You can learn more about functions by typing ? followed by the function name. For
example ?seq gives information about the syntax and usage of the function seq().

Exercise 2.2.

1. Create a vector w with components 1, -1, 2, -2

2. Print this vector (to the screen)

3. Obtain a description of w using str()

4. Create the vector w+1, and print it.

5. Create the vector (0, 1, 5, 10, 15, ... , 75) using c() and seq().

2.5 The births data

Table 2.1: Variables in the births dataset

Variable Units or Coding Type Name

Subject number – categorical id

Birth weight grams metric bweight

Birth weight < 2500 g 1=yes, 0=no categorical lowbw

Gestational age weeks metric gestwks

Gestational age < 37 weeks 1=yes, 0=no categorical preterm

Maternal age years metric matage

Maternal hypertension 1=hypertensive, 0=normal categorical hyp

Sex of baby 1=male, 2=female categorical sex

The most important example of a vector in epidemiology is the data on a variable
recorded for a group of subjects. To introduce R we use the births data which concern 500
mothers who had singleton births in a large London hospital. These data are available as
an R object called births in the Epi package. You can get them into your workspace by:

> library(Epi)
> data(births)

Try

Some basic commands in R 2.6 Referencing parts of the data frame 7

> objects()

to make sure that you have an object called births in your working directory. A more
detailed overview of the objects in your workspace is obtained by:

> lls()

The function

> str(births)

shows that the object births is a data frame with 500 observations of 8 variables. The
names and types of the variables are also shown together with the first 10 values of each
variable.

Some of the variables which make up these data take integer values while others are
numeric taking measurements as values. For most variables the integer values are just
codes for different categories, such as "male" and "female" which are coded 1 and 2 for
the variable sex.

Exercise 2.3.

1. The dataframe "diet" in the Epi package contains data from a follow-up
study with coronary heart disease as the end-point. Load these data with:

> data(diet)

and print the contents of the data frame to the screen.

2. Check that you now have two objects, births, and diet in your work
space.

3. Obtain a description of the object diet.

4. Remove the object diet with the command

> rm(diet)

5. Check that you only have the object births left.

2.6 Referencing parts of the data frame

Typing births will list the entire data frame - not usually very helpful. Now try

> births[1,"bweight"]

This will list the value taken by the first subject for the bweight variable. Similarly

> births[2,"bweight"]

will list the value taken by the second subject for bweight, and so on. To list the data for
the first 10 subject for the bweight variable, try

> births[1:10, "bweight"]

and to list all the data for this variable, try

> births[, "bweight"]

8 Some basic commands in R R for epidemiology

Exercise 2.4.

1. Print the data on the variable gestwks for subject 7 in the births data
frame.

2. Print all the data for subject 7.

3. Print all the data on the variable gestwks.

2.7 Summaries

A good way to start an analysis is to ask for a summary of the data by typing

> summary(births)

To see the names of the variables in the data frame try

> names(births)

Variables in a data frame can be referred to by name, but to do so it is necessary also to
specify the name of the data frame. Thus births$hyp refers to the variable hyp in the
births data frame, and typing births$hyp will print the data on this variable. To
summarize the variable hyp try

> summary(births$hyp)

In most datasets there will be some missing values. These are usually coded using tab
delimited blanks to mark the values which are missing. R then codes the missing values
using the NA (not available) symbol. The summary shows the number of missing values for
each variable.

2.8 Turning a variable into a factor

In R categorical variables are known as factors, and the different categories are called the
levels of the factor. Variables such as hyp and sex are originally coded using integer codes,
and by default R will interpret these codes as numeric values taken by the variables. For R
to recognize that the codes refer to categories it is necessary to convert the variables to be
factors, and to label the levels. To convert the variable hyp to be a factor, try

> hyp <- factor(births$hyp)
> str(births)
> objects()

which shows that hyp is both in your work space (as a factor), and in in the births data
frame (as a numeric variable). It is better to use the transform function on the data frame,
as in

> births <- transform(births, hyp=factor(hyp))
> str(births)

which shows that hyp, in the births data frame, is now a factor with two levels, labeled "0"

and "1" which are the original values taken by the variable. It is possible to change the
labels to (say) "normal" and "hyper" with

> births <- transform(births, hyp=factor(hyp,labels=c("normal","hyper")))
> str(births)

Some basic commands in R 2.9 Frequency tables 9

Exercise 2.5.

1. Convert the variable sex into a factor

2. Label the levels of sex as "male" and "female".

2.9 Frequency tables

When starting to look at any new data frame the first step is to check that the values of
the variables make sense and correspond to the codes defined in the coding schedule. For
categorical variables (factors) this can be done by looking at one-way frequency tables and
checking that only the specified codes (levels) occur. The most useful function for making
tables is stat.table. This is currently part of the Epi package, so you will need to load
this package first with

> library(Epi)

The distribution of the factors hyp and sex can be viewed by typing

> stat.table(hyp,data=births)
> stat.table(sex,data=births)

Their cross-tabulation is obtained by typing

> stat.table(list(hyp,sex),data=births)

Cross-tabulations are useful when checking for consistency, but because no distinction is
drawn between the response variable and any explanatory variables, they are not useful as
a way of presenting data.

2.10 Grouping the values of a metric variable

For a numeric variable like matage it is often useful to group the values and to create a new
factor which codes the groups. For example we might cut the values taken by matage into
the groups 20–29, 30–34, 35–39, 40–44, and then create a factor called agegrp with 4 levels
corresponding to the four groups. The best way of doing this is with the function cut. Try

> births <- transform(births,agegrp=cut(matage, breaks=c(20,30,35,40,45),right=FALSE))
> stat.table(agegrp,data=births)

By default the factor levels are labeled [20-25), [25-30), etc., where [20-25) refers to the
interval which includes the left hand end (20) but not the right hand end (25). This is the
reason for right=FALSE. When right=TRUE (which is the default) the intervals include the
right hand end but not the left hand.

It is important to realize that observations which are not inside the range specified in the
breaks() part of the command result in missing values for the new factor. For example,
try

> births <- transform(births,agegrp=cut(matage, breaks=c(20,30,35),right=FALSE))
> summary(births)

Only observations from 20 up to, but not including 35, are included. For the rest, agegrp
is coded missing. You can specify that you want to cut a variable into a given number of
intervals of equal length by specifying the number of intervals. For example

10 Some basic commands in R R for epidemiology

> births <- transform(births,agegrp=cut(matage,breaks=5,right=FALSE))
> stat.table(agegrp,data=births)

shows 5 intervals of width 4.

Exercise 2.6.

1. Summarize the numeric variable gestwks, which records the length of
gestation for the baby, and make a note of the range of values.

2. Create a new factor gest4 which cuts gestwks at 20, 35, 37, 39, and 45
weeks, including the left hand end, but not the right hand. Make a table
of the frequencies for the four levels of gest4.

3. Create a new factor gest5 which cuts gestwks into 5 equal intervals, and
make a table of frequencies.

2.11 Tables of means and other things

To obtain the mean of bweight by sex, try

> stat.table(sex, mean(bweight), data=births)

The headings of the table can be improved with

> stat.table(sex,list("Mean birth weight"=mean(bweight)),data=births)

To make a two-way table of mean birth weight by sex and hypertension, try

> stat.table(list(sex,hyp),mean(bweight),data=births)

and to tabulate the count as well as the mean, try

> stat.table(list(sex,hyp),list(count(),mean(bweight)),data=births)

Available functions for the cells of the table are count, mean, weighted.mean, sum,

min, max, quantile,median, IQR, and ratio. The last of these is useful for rates and
odds. For example, to make a table of the odds of low birth weight by hypertension, try

> stat.table(hyp, list("odds"=ratio(lowbw,1-lowbw,100)),data=births)

The scale factor 100 makes the odds per 100. Margins can be added to the tables, as
required. For example,

> stat.table(sex, mean(bweight),data=births,margins=TRUE)

for a one-way table, and

> stat.table(list(sex,hyp),mean(bweight),data=births,margins=c(TRUE,FALSE))
> stat.table(list(sex,hyp), mean(bweight),data=births,margins=c(FALSE,TRUE))
> stat.table(list(sex,hyp), mean(bweight),data=births,margins=c(TRUE,TRUE))

for a two-way table.

Some basic commands in R 2.12 Generating new variables 11

Exercise 2.7.

1. Make a table of median birth weight by sex.

2. Do the same for gestation time, but include count as a function to be
tabulated along with median. Note that when there are missing values for
the variable being summarized the count refers to the number of
non-missing observations for the row variable, not the summarized
variable.

3. Create a table showing the mean gestation time for the baby by hyp and
lowbw, together with margins for both.

4. Make a table showing the odds of hypertension by sex of the baby.

2.11.1 Other tabulation functions

You may want to take a look at the help pages for the functions:

• table

• ftable

• xtabs

• addmargins

• array

• tapply

One way to do this is to simply type:

> example(table)

2.12 Generating new variables

New variables can be produced using assignment together with the usual mathematical
operations and functions:

+ - * log exp ^ sqrt

The sign ^ means “to the power of”, log means “natural logarithm”, and sqrt means
“square root”.

The transform() function allows you to transform or generate variables in a data frame.
For example, try

> births <- transform(births,
+ num1=1,
+ num2=2,
+ logbw=log(bweight))

The variable logbw is the natural logarithm of birth weight. Logs base 10 are obtained
with log10().

12 Some basic commands in R R for epidemiology

2.13 Logical variables

Logical variables take the values TRUE or FALSE, and behave like factors. New variables
can be created which are logical functions of existing variables. For example

> births <- transform(births, low=bweight<2000)
> str(births)

creates a logical variable low with levels TRUE and FALSE, according to whether bweight
is less than 2000 or not. The logical expressions which R allows are

== < <= > >= !=

The first is logical equals and the last is not equals. One common use of logical variables is
to restrict a command to a subset of the data. For example, to list the values taken by
bweight for hypertensive women, try

> births$bweight[births$hyp=="hyper"]

If you want the entire dataframe restricted to hypertensive women try:

> births[births$hyp=="hyper",]

The subset() function also allows you to take a subset of a data frame. Try

> subset(births, hyp=="hyper")

Exercise 2.8.

1. Create a logical variable called early according to whether gestwks is less
than 30 or not.Make a frequency table of early.

2. Print the id numbers of women with gestwks less than 30 weeks.

Chapter 3

Working with R

3.1 Saving the work space

When exiting from R you are offered the chance of saving all the objects in your current
work space. If you do so, the work space is re-instated next time you start R. It can be
useful to do this, but before doing so it is worth tidying things up, because the work space
can fill up with temporary objects, and it is easy to forget what these are when you resume
the session.

3.2 Saving output in a file

To save the output from an R command in a file, for future use, the sink() command is
used. For example,

> sink("output.txt")
> summary(births)

first instructs R to re-direct output away from the R terminal to the file "output.txt" and
then summarizes the births data frame, the output from which goes to the sink. While a
sink is open all output will go to it, replacing what is already in the file. To append output
to a file, use the append=TRUE option with sink(). To close a sink, use

> sink()

Exercise 3.9.

1. Sink output to a file called "output1.txt".

2. Make frequency tables of hyp and sex

3. Make a table of mean birth weight by sex

4. Close the sink

5. From windows, have a look inside the file output1.txt and check that the
output you expected is in the file.

13

14 Working with R R for epidemiology

3.3 Saving R objects in a file

The command read.table() is relatively slow because it carries out quite a lot of
processing as it reads the data. To avoid doing this more than once you can save the data
frame, which includes the R information, and read from this saved file in future. For
example,

> save(births, file="births.Rdata")

will save the births data frame in the file births.Rdata. By default the data frame is
saved as a binary file, but the option ascii=TRUE can be used to save it as a text file. To
load the object from the file use

> load("births.Rdata")

The commands save() and load() can be used with any R objects, but they are
particularly useful when dealing with large data frames.

Exercise 3.10.

1. Use read.table() to read the data in the file diet.txt into a data frame
called diet.

2. Save this data frame in the file "diet.Rdata"

3. Remove the data frame

4. Load the data frame from the file "diet.Rdata".

3.4 Using a text editor with R

When working with R it is best to use a text editor to prepare a batch file (or script) which
contains R commands and then to run them from the script. This means you can use the
cut and paste facilities of the editor to cut down on typing. For Windows we recommend
using the text editor Tinn-R, but you can use your favorite text editor instead if you prefer,
and copy-paste commands from it into the R-console.

Alternatively you can use the built-in script-editor: Click on File→New script, or
File→Open script, according to whether you are using an old script. You can move the
current line from the script-editor to the console by CTRL-R. If you have highlighted a
section of the script the highlighted part will be moved to the console.

Now start up the editor and enter the following lines:

> births <- transform(births,
+ lowbw = factor(lowbw, labels=c("normal","low")),
+ hyp = factor(hyp, labels=c("normal","hyper")),
+ sex = factor(sex, labels=c("male","female")))

Now save the script as mygetbirths.R and run it. One major advantage of running all
your R commands from a script is that you end up with a record of exactly what you did
which can be repeated at any time.

This will also help you redo the analysis in the (highly likely) event that your data
changes before you have finished all analyses.

Working with R 3.5 The search path 15

Exercise 3.11.

1. Create a script called mytab.R which includes the lines

> stat.table(hyp,data=births)
> stat.table(sex,data=births)

and run just these two lines.

2. Edit the script to include the lines

> stat.table(sex,mean(bweight),data=births)
> stat.table(hyp,mean(bweight),data=births)

and run these two lines.

3. Edit the script to create a factor cutting matage at 20, 30, 35, 40, 45 years,
and run just this part of the script.

4. Edit the script to create a factor cutting gestwks at 20, 35, 37, 39, 45
weeks, and run just this part of the script.

5. Save and run the entire script.

3.5 The search path

R organizes objects in different positions on a search path. The command

> search()

shows these positions. The first is the work space, or global environment, the second is the
Epi package, the third is a package of commands called methods, the fourth is a package
called stats, and so on. To see what is in the work space try

> objects()

You should see just the objects births and diet. The command objects(1) does the
same as objects(). A shorther name for the same function is ls(). In the Epi package is
a function that gives a more detailed picture, lls(); try:

> lls()

To see what is in the Epi package, try

> ls(2)

When you type the name of an object R looks for it in the order of the search path and
will return the first object with this name that it finds. This is why it is best to start your
session with a clean workspace, otherwise you might have an object in your workspace that
masks another one later in the search path.

3.6 Attaching a data frame

The function objects(1) shows that the only objects in the workspace are births and
diet. To refer to variables in the births data frame by name it is necessary to specify the
name of the data frame, as in births$hyp. This is quite cumbersome, and provided you
are working primarily with one data frame, it can help to put a copy of the variables from
a data frame in their own position on the search path. This is done with the function

16 Working with R R for epidemiology

> attach(births)

which places a copy of the variables in the births data frame in position 2. You can verify
this with
> objects(2)

which shows the objects in this position are the variables from the births data frame.
Note that the methods package has now been moved up to position 3, as shown by the
search() function.

When you type the command:
> hyp

R will look in the first position where it fails to find hyp, then the second position where it
finds hyp, which now gets printed.

Although convenient, attaching a data frame can give rise to confusion. For example,
when you create a new object from the variables in an attached data frame, as in
> subgrp <- bweight[hyp==1]

the object subgrp will be in your workspace (position 1 on the search path) not in position
2. To demonstrate this, try
> objects(1)
> objects(2)

Similarly, if you modify the data frame in the workspace the changes will not carry through
to the attached version of the data frame. The best advice is to regard any operation on an
attached data frame as temporary, intended only to produce output such as summaries and
tabulations.

Beware of attaching a data frame more than once - the second attached copy will be
attached in position 2 of the search path, while the first copy will be moved up to position
3. You can see this with
> attach(births)
> search()

Having several copies of the same data set can lead to great confusion. To detach a data
frame, use the command
> detach(births)

which will detach the copy in position 2 and move everything else down one position. To
detach the second copy repeat the command detach(births).

Exercise 3.12.

1. Use search() to make sure you have no data frames attached.

2. Use objects(1) to check that you have the data frame births in your
work space.

3. Verify that typing births$hyp will print the data on the variable hyp but
typing hyp will not.

4. Attach the births data frame in position 2 and check that the variables
from this data frame are now in position 2.

5. Verify that typing hyp will now print the data on the the variable hyp.

6. Summarize the variable bweight for hypertensive women.

> setwd(sweave.wd)

Chapter 4

Sample size calculations

R version 3.1.1 (2014-07-10)
Platform: i386-w64-mingw32/i386 (32-bit)

attached base packages:
[1] utils datasets graphics grDevices stats methods base

other attached packages:
[1] gRbase_1.7-0.1 Epi_1.1.68 foreign_0.8-61

loaded via a namespace (and not attached):
[1] BiocGenerics_0.12.0 graph_1.44.0 grid_3.1.1 igraph_0.7.1
[5] lattice_0.20-29 Matrix_1.1-4 parallel_3.1.1 RBGL_1.42.0
[9] Rcpp_0.11.3 stats4_3.1.1 tools_3.1.1

4.1 Sample size calculations

4.1.1 Traditional calculations

Normally people have relied on various formulae or tabled when determining sample size in
a study to obtain a given power to “detect an effect”. The power of a study is the
probability that the null hypotesis is rejected, so it depends on the null hypothesis, but in
particular it depends on the alternative, or more precisely the scenario under which the
data is gathered. So on how far from the null the true scenario is, measured by some sort
of variability in data.

Hence in order to compute power or sample size it is necessary to specify the “truth”.

4.1.2 Modern calculations

If you are able to specify the “true” scenario in which a given study will be conducted, it is
also possible to simulate at dataset that will resemble the one that you anticipate to collect.

So the solution seems straigt forward: Simulate a dataset as you think it will be, analyze
it and see what the result is. For example if the null is rejected or how wide the confidence
limits are for the parameter (quantity of interest, e.g. the RR or slope of GFR by time or
. . .). One simulated dataset is of course prone to error (random variation), so normally you
would simulate, say 1000 dataset and analyze then, extracting the results and summarizing
them.

17

18 Sample size calculations R for epidemiology

For eample for a given simulation scenario, the fraction of the analyses that reject the
null is the power of the anticpated study under the conditions used for simulation.

Normally you would vary the conditions you use for simulation, notably the sample size
for each simulated dataset, and presumably also the effect size. Both of these are need as
input for simulation.

This machinery is illustrated in a samplesize calculation for a study to be conducted in
Greenland.

4.1.3 The Greenland complications study

The Greenland complications study is an extra follow-up of the B99 and the IHIT cohorts,
where persons with diabetes or impaired glucose regulation (IGR) are followed up for
microvascular complications, notably nephropathy and retinopathy.

The number of persons in the IGR is about 1200 (not know till the 2014 survey is
completed), with an estimated follow-up time of 7,940 person-years after onset of DM/IGR.

We want to estimate:

• rates of microvascular complications

• rate-ratios of microvascular complications between carriers of different genotypes of
interest.

4.1.3.1 Assumptions

Based on previous studies and sound clinical judgment the rate of newly onset nephropathy
among persons with DM or IGR is taken to be 20 per 1000 PY and the corresponding rate
of retinopathy to be 30 per 1000 PY. Moreove it is likely that it will be possible to recruit
persons so that the total ampunt of follow-up time will be about 8,000 PY.

4.1.4 Precision and power

4.1.5 Rates

A bold calculation yields that a complication with a constant rate of 20/1000 during 7,940
PY will produce 20× 7.94 = 159 events, and one with rates 30/1000 will produce 238
events:

> c(20,30) * 7.94

[1] 158.8 238.2

The usual formula for the relative precision of a rate estimate based on these numbers is:

erf = exp(1.96/
√
D)

which in the cases here will produce rate estimates with a relative precision in the vicinity
of ± 15%:

> exp(1.96/sqrt(c(159,238)))

[1] 1.168170 1.135471

Sample size calculations 4.1 Sample size calculations 19

This is the analysis part of the study, based on the formula for an estimated rate λ̂ besed
on D observed cases:

s.d.(log(λ̂)) =
√

1/D

and for a rate-ratio based on D1 and D0 events we have:

s.d.(log(R̂R)) = s.d.(log(λ̂1/λ̂0)) =
√

1/D0 + 1/D1

4.1.6 Rate-ratios

IN the Greenland study we are looking at genotypes with population prevalences between 5
and 10% separately and 44% in total, but we do not have any specific estimates of the
likely risk elevation associated each of them.

Hence we will compute the precision of the RR estimates between carriers and
non-carriers using a baseline rates of 20 and 30 per 1000 PY, for exposure prevalences 5 –
50 %, and exposure effects 1.05, . . . , 1.50. This will slightly overestimate the precision if
the true overall rates is 20 resp. 30, because a fraction of the population having an elevated
risk will of course result in an overall rate that is higher than the rate in the unexposed
group. For the sake of completeness we also make the computations for person-years
between 8,000 and 13,000.

4.1.7 Simulation of one dataset

In this situation the simulation is particularly simple, because for a fixed amount of
follow-up time (person-years), the number of observed events is Poisson-distributed with
mean equal to the person-years times the rate. SO we can simulate the number of events in
the exposed (the carrier group) and the number of events in the non-carrier group, and the
compute the RR and the percisoon of it as follows:

Define the incidence rate, the person-years, RR and the prevalence and work out the rate
times PY in each group, and simulate two Poisson varaites with these means:

> inc <- 20 # Incidence per 1000 PY
> RR <- 1.5 # RR associated with carrier status
> pr <- 10 # Prevalence (%) of carrier status
> py <- 8 # Person-years in 1000s

So with these data we can simulate a munber of events in the two groups:
Person-years in the two groups:

> (PY <- py*1000 * c(pr/100, 1-pr/100))

[1] 800 7200

Incidence rates in the two groups (per 1 person-year):

> (IR <- c(RR,1) * inc/1000)

[1] 0.03 0.02

Incidence rate times person-years:

> PY*IR

[1] 24 144

20 Sample size calculations R for epidemiology

This is the expected number of events in the two groups, so we can simulate a
studyoutcome of events in the two groups by generation two Poisson variates with these
means, note we need to give the number of variate we simulate:

> (D <- rpois(2, lambda=PY*IR))

[1] 25 124

The estimated rates are now:

> (rt <- D / PY)

[1] 0.03125000 0.01722222

and the rate-ratio is then:

> (RR <- rt[1]/rt[2])

[1] 1.814516

and the error-factor (relative precision):

> exp(1.96 * sqrt(sum(1/D)))

[1] 1.536801

and the p-value is looking up the log-RR squared divided by the variance of the log-RR in
a χ2-distribution with 1 d.f.:

> (chtst <- log(rt[2]/rt[1])^2 / (1/D[1] + 1/D[2]))

[1] 7.385908

> (pval <- 1 - pchisq(chtst, 1))

[1] 0.006573688

4.1.8 SImulating many datasets

But we would like to simulate many datasets, so let us first try to do 5 datasets with these
parameters. In this situation it is better to simulate the outcome in each of the two groups
in different vectors. We simulate N datasets:

> nsim <- 5

The first is the same as before; first the person-years in the two groups:

> (PY <- py*1000 * c(1-pr/100, pr/100))

[1] 7200 800

Incidence rates in the two groups (per 1 person-year):

> (IR <- c(RR,1) * inc/1000)

[1] 0.03629032 0.02000000

Incidence rate times person-years:

> (cuminc <- PY*IR)

[1] 261.2903 16.0000

But now we simulate 5 copies of outcomes in the exposed, resp non-exposed:

Sample size calculations 4.1 Sample size calculations 21

> # Events in exposed:
> (nx <- rpois(nsim, cuminc[1]))

[1] 268 266 282 225 286

> # Events in unexposed:
> (nr <- rpois(nsim, cuminc[2]))

[1] 20 24 9 16 21

SO then we can easily compute the 5 RRs:

> (rr <- (nx/PY[1]) / (nr/PY[2]))

[1] 1.488889 1.231481 3.481481 1.562500 1.513228

> (erf <- exp(1.96*sqrt(1/nx+1/nr)))

[1] 1.575115 1.518530 1.941920 1.660507 1.557577

We are not really interested in the p-value but only if the results is significant, which is
when the log-RR is larger than the log-error-factor:

> (sgn <- abs(log(rr)) > log(erf))

[1] FALSE FALSE TRUE FALSE FALSE

4.1.9 Summarizing over many scenarios

We will do this exercise for say 1000 or 10,000 datasets but also in may different scenarios.
Thus, we set up an array to collect the median RR (for control), the precision (in terms of
the error factor, the relative uncertainty of the RR estimates) and the power for
combinations of these factors.

An array in R is just a multi-way table, and the trick is to set up the array to hold for
example power for different combinations of sample-size, RR and prevalence of exposure.
Initially we set up an array exclusively with NAs in it and then we fill in the relevant
numbers, based on simulated datasets:

> library(Epi)
> prpw <- NArray(list(RR = seq(1.05,1.5,0.05),
+ pr = seq(5,50,5),
+ PY = 8:13,
+ inc = c(20,30),
+ what = c("RR","Erf","Pwr")))
> str(prpw)

logi [1:10, 1:10, 1:6, 1:2, 1:3] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 5
..$ RR : chr [1:10] "1.05" "1.1" "1.15" "1.2" ...
..$ pr : chr [1:10] "5" "10" "15" "20" ...
..$ PY : chr [1:6] "8" "9" "10" "11" ...
..$ inc : chr [1:2] "20" "30"
..$ what: chr [1:3] "RR" "Erf" "Pwr"

> dim(prpw)

RR pr PY inc what
10 10 6 2 3

> prod(dim(prpw))

[1] 3600

> dimnames(prpw)

22 Sample size calculations R for epidemiology

$RR
[1] "1.05" "1.1" "1.15" "1.2" "1.25" "1.3" "1.35" "1.4" "1.45" "1.5"

$pr
[1] "5" "10" "15" "20" "25" "30" "35" "40" "45" "50"

$PY
[1] "8" "9" "10" "11" "12" "13"

$inc
[1] "20" "30"

$what
[1] "RR" "Erf" "Pwr"

With this array to collect the results we can simulate, by approximating the no. events by
a Poisson variate with mean equal to the cumulative rate.

The array is filled by making a set of nested for-loops so that inside we address one
particular combination of RR (RR), prevalence (pr), person-years (PY) and incidence rates
(inc).

Note that the loop-variables are character variables, so for the calculations we make
numerical counterparts:

> nsim <- 10000
> system.time(
+ for(ir in dimnames(prpw)[["RR"]])
+ for(ip in dimnames(prpw)[["pr"]])
+ for(iy in dimnames(prpw)[["PY"]])
+ for(ii in dimnames(prpw)[["inc"]])
+ {
+ nr <- as.numeric(ir)
+ np <- as.numeric(ip)/100
+ ny <- as.numeric(iy)
+ ni <- as.numeric(ii)
+ # Cumulative incidence in exposed and non-exposed:
+ cuminc <- ny * c(np,1-np) * ni * c(nr,1)
+ # Events in exposed:
+ nx <- rpois(nsim, cuminc[1])
+ # Events in unexposed:
+ nr <- rpois(nsim, cuminc[2])
+ # Rate Ratio
+ rr <- (nx/np) / (nr/(1-np))
+ # Error factor
+ erf <- exp(1.96*sqrt(1/nx+1/nr))
+ # Significance
+ sgn <- abs(log(rr)) > log(erf)
+ # Store results - not we use the *character* variables for indexing:
+ prpw[ir,ip,iy,ii,"RR"] <- median(rr)
+ prpw[ir,ip,iy,ii,"Erf"] <- median(erf)
+ prpw[ir,ip,iy,ii,"Pwr"] <- mean(sgn)
+ })

user system elapsed
9.96 0.00 10.03

For the sake of verification, we print the median RRs from the simulations, hopefully its is
approximately equal to the simulated scenario:

> prpw[,,"12",,"RR"]

, , inc = 20

pr
RR 5 10 15 20 25 30 35 40 45

Sample size calculations 4.1 Sample size calculations 23

1.05 1.036364 1.049327 1.051414 1.048128 1.050761 1.047009 1.048665 1.051020 1.048994
1.1 1.090909 1.088372 1.096774 1.096774 1.096774 1.094650 1.095238 1.100000 1.101721
1.15 1.136752 1.145455 1.149371 1.145729 1.148237 1.151804 1.149024 1.149635 1.145265
1.2 1.192469 1.195776 1.195980 1.201878 1.194030 1.200780 1.198505 1.201923 1.202186
1.25 1.239130 1.245536 1.246667 1.251185 1.251429 1.246212 1.250000 1.248322 1.249585
1.3 1.282700 1.296296 1.299187 1.301320 1.301587 1.301146 1.297362 1.298077 1.301359
1.35 1.337533 1.339535 1.345118 1.347826 1.349112 1.351587 1.350649 1.352113 1.349917
1.4 1.384615 1.393805 1.395310 1.395833 1.397727 1.401209 1.401003 1.400301 1.403646
1.45 1.448430 1.443396 1.444444 1.450777 1.447236 1.449704 1.449770 1.445652 1.450249
1.5 1.486957 1.492891 1.498397 1.500000 1.500000 1.500938 1.498747 1.500000 1.502002

pr
RR 50
1.05 1.051724
1.1 1.101695
1.15 1.153846
1.2 1.201681
1.25 1.245832
1.3 1.302752
1.35 1.354839
1.4 1.398305
1.45 1.448819
1.5 1.500000

, , inc = 30

pr
RR 5 10 15 20 25 30 35 40 45
1.05 1.046832 1.049080 1.052007 1.049282 1.046512 1.047953 1.047619 1.049678 1.051174
1.1 1.091954 1.099010 1.097354 1.100324 1.099315 1.101611 1.098175 1.100000 1.098825
1.15 1.146552 1.145963 1.147679 1.150327 1.147727 1.149254 1.151899 1.154412 1.150327
1.2 1.191223 1.196532 1.199387 1.197279 1.197556 1.196802 1.200348 1.197309 1.198257
1.25 1.239130 1.243243 1.249482 1.247458 1.250000 1.249651 1.249199 1.252358 1.250063
1.3 1.290123 1.289902 1.299003 1.299639 1.295455 1.297297 1.300000 1.298611 1.301932
1.35 1.342391 1.347305 1.348339 1.351171 1.349740 1.347942 1.352000 1.351485 1.351527
1.4 1.394988 1.396040 1.393743 1.398601 1.397727 1.401741 1.402652 1.399038 1.404926
1.45 1.440233 1.448916 1.448049 1.446050 1.449739 1.451444 1.450098 1.448718 1.445862
1.5 1.485175 1.495385 1.496150 1.501706 1.500000 1.497375 1.497942 1.500000 1.502315

pr
RR 50
1.05 1.050562
1.1 1.098901
1.15 1.150838
1.2 1.198830
1.25 1.251366
1.3 1.298644
1.35 1.346821
1.4 1.400000
1.45 1.450000
1.5 1.502793

As we see it does not print very nicely, but that can be remedied by using ftable (flat
table):

> round(ftable(prpw[,,"12",,"RR"], col.vars=1, row.vars=c(3,2)), 2)

RR 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
inc pr
20 5 1.04 1.09 1.14 1.19 1.24 1.28 1.34 1.38 1.45 1.49

10 1.05 1.09 1.15 1.20 1.25 1.30 1.34 1.39 1.44 1.49
15 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.44 1.50
20 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
25 1.05 1.10 1.15 1.19 1.25 1.30 1.35 1.40 1.45 1.50
30 1.05 1.09 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
35 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
40 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
45 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50

24 Sample size calculations R for epidemiology

50 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
30 5 1.05 1.09 1.15 1.19 1.24 1.29 1.34 1.39 1.44 1.49

10 1.05 1.10 1.15 1.20 1.24 1.29 1.35 1.40 1.45 1.50
15 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.39 1.45 1.50
20 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
25 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
30 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
35 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
40 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
45 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
50 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50

Further more we see that the precision of the estimates (the error-factor) decreases only
little with increasing RR, but much more so by increasing prevalence of the risk factor:

> round(ftable(prpw[,,c("8","12"),,"Erf"],
+ col.vars=1, row.vars=c(3,4,2)), 2)

RR 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
PY inc pr
8 20 5 2.03 1.96 1.96 1.95 1.90 1.89 1.85 1.84 1.84 1.80

10 1.66 1.65 1.63 1.61 1.60 1.58 1.58 1.56 1.55 1.54
15 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 1.45 1.45
20 1.46 1.45 1.44 1.44 1.43 1.42 1.41 1.41 1.40 1.39
25 1.42 1.41 1.41 1.40 1.39 1.39 1.38 1.37 1.37 1.36
30 1.40 1.39 1.38 1.38 1.37 1.36 1.36 1.35 1.35 1.35
35 1.38 1.37 1.37 1.36 1.36 1.35 1.35 1.34 1.34 1.33
40 1.37 1.36 1.36 1.35 1.35 1.34 1.34 1.33 1.33 1.33
45 1.36 1.36 1.35 1.35 1.34 1.34 1.34 1.33 1.33 1.33
50 1.36 1.35 1.35 1.35 1.34 1.34 1.34 1.33 1.33 1.33

30 5 1.78 1.75 1.72 1.71 1.69 1.68 1.66 1.64 1.64 1.62
10 1.51 1.50 1.49 1.48 1.47 1.46 1.45 1.44 1.43 1.42
15 1.42 1.41 1.40 1.39 1.38 1.38 1.37 1.36 1.36 1.35
20 1.36 1.36 1.35 1.34 1.34 1.33 1.33 1.32 1.32 1.31
25 1.33 1.33 1.32 1.31 1.31 1.30 1.30 1.30 1.29 1.29
30 1.31 1.31 1.30 1.30 1.29 1.29 1.28 1.28 1.28 1.27
35 1.30 1.29 1.29 1.29 1.28 1.28 1.27 1.27 1.27 1.27
40 1.29 1.29 1.28 1.28 1.27 1.27 1.27 1.27 1.26 1.26
45 1.29 1.28 1.28 1.27 1.27 1.27 1.27 1.26 1.26 1.26
50 1.28 1.28 1.28 1.27 1.27 1.27 1.27 1.26 1.26 1.26

12 20 5 1.78 1.75 1.72 1.71 1.69 1.68 1.66 1.64 1.64 1.62
10 1.51 1.50 1.49 1.48 1.47 1.46 1.45 1.44 1.43 1.42
15 1.42 1.41 1.40 1.39 1.38 1.37 1.37 1.36 1.36 1.35
20 1.36 1.36 1.35 1.34 1.34 1.33 1.33 1.32 1.32 1.31
25 1.33 1.33 1.32 1.32 1.31 1.30 1.30 1.30 1.29 1.29
30 1.31 1.31 1.30 1.30 1.29 1.29 1.28 1.28 1.28 1.27
35 1.30 1.29 1.29 1.29 1.28 1.28 1.27 1.27 1.27 1.27
40 1.29 1.29 1.28 1.28 1.27 1.27 1.27 1.27 1.26 1.26
45 1.29 1.28 1.28 1.27 1.27 1.27 1.27 1.26 1.26 1.26
50 1.28 1.28 1.28 1.27 1.27 1.27 1.27 1.26 1.26 1.26

30 5 1.59 1.57 1.56 1.55 1.54 1.52 1.51 1.50 1.49 1.48
10 1.40 1.39 1.38 1.37 1.37 1.36 1.35 1.35 1.34 1.33
15 1.33 1.32 1.31 1.31 1.30 1.30 1.29 1.29 1.28 1.28
20 1.29 1.28 1.28 1.27 1.27 1.26 1.26 1.26 1.25 1.25
25 1.26 1.26 1.25 1.25 1.25 1.24 1.24 1.24 1.23 1.23
30 1.25 1.24 1.24 1.24 1.23 1.23 1.23 1.22 1.22 1.22
35 1.24 1.23 1.23 1.23 1.22 1.22 1.22 1.22 1.21 1.21
40 1.23 1.23 1.22 1.22 1.22 1.22 1.21 1.21 1.21 1.21
45 1.23 1.22 1.22 1.22 1.22 1.21 1.21 1.21 1.21 1.21
50 1.23 1.22 1.22 1.22 1.22 1.21 1.21 1.21 1.21 1.21

We can then print the anticipated power to detect a significant RR of a given size, in
percent:

> round(ftable(prpw[,,c("8","12"),,"Pwr"]*100,
+ col.vars=1, row.vars=c(3,4,2)), 1)

Sample size calculations 4.1 Sample size calculations 25

RR 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
PY inc pr
8 20 5 4.5 6.2 8.0 9.9 12.0 15.2 18.1 21.7 25.4 29.0

10 5.3 7.2 9.5 13.6 17.1 22.4 26.3 32.0 38.5 44.9
15 6.3 8.0 10.6 15.6 21.6 27.0 34.4 41.5 48.7 56.6
20 6.4 8.9 12.9 17.3 24.5 31.5 40.7 48.8 57.3 64.2
25 5.9 9.5 13.3 19.4 27.1 36.3 44.9 53.7 63.3 69.8
30 6.2 8.8 13.4 19.7 29.3 37.8 47.0 57.1 67.3 74.4
35 6.3 9.2 14.1 21.8 31.4 40.4 50.9 60.9 70.2 79.0
40 5.8 9.3 14.8 22.1 31.4 41.7 52.2 62.9 72.2 80.3
45 5.8 10.2 15.2 22.8 32.0 42.1 53.4 63.5 73.3 81.0
50 6.1 9.5 14.3 21.8 31.6 41.8 53.7 63.6 73.2 81.0

30 5 5.7 7.0 9.4 11.6 15.7 19.4 23.6 28.0 32.6 37.4
10 5.9 8.9 11.3 16.2 22.4 28.6 36.3 44.3 51.9 59.1
15 6.2 9.8 13.4 20.4 28.0 36.8 46.4 55.8 64.8 72.4
20 6.5 9.8 15.1 23.5 33.5 43.3 55.0 64.0 73.2 80.9
25 7.0 10.7 17.7 25.8 37.2 48.8 60.1 71.6 79.3 85.8
30 6.8 10.9 18.4 28.6 40.4 53.3 63.7 74.5 83.6 89.7
35 7.2 11.5 20.0 29.4 41.9 55.8 66.8 77.2 86.3 91.5
40 6.8 11.6 19.4 31.8 43.9 57.4 68.9 80.0 87.6 92.9
45 7.2 11.5 20.0 31.8 44.9 58.8 70.6 80.7 88.4 93.5
50 6.8 11.5 19.4 31.4 43.9 58.8 71.3 80.5 88.7 93.7

12 20 5 5.4 7.0 9.6 11.8 15.3 18.7 23.6 27.6 34.6 38.9
10 6.3 8.0 11.8 16.4 22.0 29.1 35.9 44.2 51.6 59.2
15 6.3 9.5 14.1 20.7 27.6 37.5 46.4 55.7 64.6 73.0
20 6.1 9.6 15.6 23.8 33.7 44.3 54.4 64.2 74.2 81.2
25 6.9 10.4 18.1 25.7 37.5 49.4 60.1 70.4 79.2 86.4
30 6.5 11.2 18.7 28.6 39.8 53.2 65.3 75.3 83.4 89.5
35 6.5 10.9 19.0 29.6 42.5 54.9 67.5 78.6 85.4 91.1
40 6.7 11.4 20.4 31.2 43.4 56.5 70.2 79.9 87.3 93.3
45 7.1 11.9 19.6 31.1 44.4 58.5 70.5 81.4 88.1 93.5
50 6.8 11.9 19.8 31.7 43.5 58.9 71.8 80.0 88.3 93.3

30 5 5.3 7.7 11.1 14.9 19.6 25.2 30.7 38.0 44.1 50.4
10 6.0 9.8 14.5 21.8 29.3 38.5 49.2 58.4 67.9 74.8
15 6.4 11.0 17.5 27.7 38.8 50.5 61.6 72.4 80.7 87.1
20 7.0 12.7 21.4 32.2 45.0 59.2 71.2 80.8 87.8 93.2
25 6.9 13.1 23.5 35.7 51.1 64.1 78.0 86.2 92.0 96.0
30 7.5 14.9 25.0 38.5 55.0 68.7 81.8 89.5 94.4 97.6
35 7.3 14.8 27.2 41.8 58.0 72.1 84.0 91.5 96.1 98.1
40 7.8 15.0 28.6 42.2 61.0 73.5 85.6 92.6 96.7 98.6
45 7.4 14.6 27.6 43.3 60.4 75.1 86.6 93.4 97.1 98.9
50 8.1 15.5 28.3 43.2 61.1 75.7 86.3 93.2 97.2 98.9

And show where the power exceeds 80%; if we explicitly use the print function we can use
the zero.print argument:

> print(ftable((prpw[,,c("8","12"),,"Pwr"]>0.7)*1,
+ col.vars=1, row.vars=c(3,4,2)),
+ zero.print=".")

RR 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
PY inc pr
8 20 5

10
15
20
25
30 1
35 1 1
40 1 1
45 1 1
50 1 1

30 5
10
15 1
20 1 1

26 Sample size calculations R for epidemiology

25 1 1 1
30 1 1 1
35 1 1 1
40 1 1 1
45 1 1 1 1
50 1 1 1 1

12 20 5
10
15 1
20 1 1
25 1 1 1
30 1 1 1
35 1 1 1
40 1 1 1 1
45 1 1 1 1
50 1 1 1 1

30 5
10 1
15 1 1 1
20 1 1 1 1
25 1 1 1 1
30 1 1 1 1
35 1 1 1 1 1
40 1 1 1 1 1
45 1 1 1 1 1
50 1 1 1 1 1

Broadly speaking, with 80% power we can only see effects of RR> 1.4 for exposures with
prevalence over 30%, but the good news is that with 12,000 PY we have a relative precision
of 1.3 and with 8,000 PY a relative precision in the vicinity of 1.5.

	Contents
	Getting R running on your computer
	What is R?
	Getting R
	Starting R
	Quitting R

	Working with the script editor
	Rstudio
	Try!

	Changing the looks …
	…of standard R
	…of Rstudio

	Further reading

	Some basic commands in R
	Preliminaries
	Using R as a calculator
	Objects and functions
	Sequences
	The births data
	Referencing parts of the data frame
	Summaries
	Turning a variable into a factor
	Frequency tables
	Grouping the values of a metric variable
	Tables of means and other things
	Other tabulation functions

	Generating new variables
	Logical variables

	Working with R
	Saving the work space
	Saving output in a file
	Saving R objects in a file
	Using a text editor with R
	The search path
	Attaching a data frame

	Sample size calculations
	Sample size calculations
	Traditional calculations
	Modern calculations
	The Greenland complications study
	Precision and power
	Rates
	Rate-ratios
	Simulation of one dataset
	SImulating many datasets
	Summarizing over many scenarios

