Registers in Denmark

Bendix Carstensen

Steno Diabetes Center Gentofte, Denmark http://BendixCarstensen.com

Prince of Wales Hospital, Hong Kong 12 May 2014

http://BendixCarstensen.com/SDC/PWH-HK

Use of routine care data in research

Registers in Denmark

Use of routine care data in research

- Registers in Denmark
- Clinical register at SDC (Electronic Medical Records, EMR)

Use of routine care data in research

- Registers in Denmark
- Clinical register at SDC (Electronic Medical Records, EMR)
- Register-based projects at Steno Diabetes Center

Long-term follow up

- Long-term follow up
- Mortality

- Long-term follow up
- Mortality
- Natural history of disease

- Long-term follow up
- Mortality
- Natural history of disease
- Side effects of medication

- Long-term follow up
- Mortality
- Natural history of disease
- Side effects of medication
- Selection bias

- Long-term follow up
- Mortality
- Natural history of disease
- Side effects of medication
- Selection bias
- Exclusion criteria in clinical trials

- Long-term follow up
- Mortality
- Natural history of disease
- Side effects of medication
- Selection bias
- Exclusion criteria in clinical trials
- Low participation rate in observational studies

Complete history of patients:

- Complete history of patients:
 - ► HbA_{1c}

- Complete history of patients:
 - ► HbA_{1c}
 - blood pressure

- Complete history of patients:
 - ▶ HbA_{1c}
 - blood pressure
 - lipids

- Complete history of patients:
 - ► HbA_{1c}
 - blood pressure
 - lipids

- Complete history of patients:
 - ► HbA_{1c}
 - blood pressure
 - lipids
- Information on:

- Complete history of patients:
 - ► HbA_{1c}
 - blood pressure
 - lipids
 - **.** . . .
- Information on:
 - dates of measurement (visit)

- Complete history of patients:
 - ▶ HbA_{1c}
 - blood pressure
 - lipids
 - **.** . . .
- Information on:
 - dates of measurement (visit)
 - date of diagnosis

- Complete history of patients:
 - ▶ HbA_{1c}
 - blood pressure
 - lipids
 - . . .
- Information on:
 - dates of measurement (visit)
 - date of diagnosis
 - date of birth

- Complete history of patients:
 - ▶ HbA_{1c}
 - blood pressure
 - lipids
- Information on:
 - dates of measurement (visit)
 - date of diagnosis
 - date of birth
 - date of (adverse) event(s)

- Complete history of patients:
 - ► HbA_{1c}
 - blood pressure
 - lipids
- Information on:
 - dates of measurement (visit)
 - date of diagnosis
 - date of birth
 - date of (adverse) event(s)
- Note: Intervals between visits depend on patients' status

 Data collection (recording) at fixed intervals (once a year, e.g.)

- Data collection (recording) at fixed intervals (once a year, e.g.)
- Clinical data on individuals

- Data collection (recording) at fixed intervals (once a year, e.g.)
- Clinical data on individuals
- Data collection independent of patients' clinical status

- Data collection (recording) at fixed intervals (once a year, e.g.)
- Clinical data on individuals
- Data collection independent of patients' clinical status
- Missing data:

- Data collection (recording) at fixed intervals (once a year, e.g.)
- Clinical data on individuals
- Data collection independent of patients' clinical status
- Missing data:
 - a patient was not seen for an entire year

- Data collection (recording) at fixed intervals (once a year, e.g.)
- Clinical data on individuals
- Data collection independent of patients' clinical status
- Missing data:
 - a patient was not seen for an entire year
 - a patient has moved

- Data collection (recording) at fixed intervals (once a year, e.g.)
- Clinical data on individuals
- Data collection independent of patients' clinical status
- Missing data:
 - a patient was not seen for an entire year
 - a patient has moved
 - a patient died (but was not recorded as such)

- Data collection (recording) at fixed intervals (once a year, e.g.)
- Clinical data on individuals
- Data collection independent of patients' clinical status
- Missing data:
 - a patient was not seen for an entire year
 - a patient has moved
 - a patient died (but was not recorded as such)
- Used for quality monitoring:

- Data collection (recording) at fixed intervals (once a year, e.g.)
- Clinical data on individuals
- Data collection independent of patients' clinical status
- Missing data:
 - a patient was not seen for an entire year
 - a patient has moved
 - a patient died (but was not recorded as such)
- Used for quality monitoring:
- What percentage of pateints have had eyexamination within the last 2 years etc.

Aims to cover the entire population:

- Aims to cover the entire population:
- Limited information on each patient:

- Aims to cover the entire population:
- Limited information on each patient:
 - date of birth

- Aims to cover the entire population:
- Limited information on each patient:
 - date of birth
 - date of diagnosis

- Aims to cover the entire population:
- Limited information on each patient:
 - date of birth
 - date of diagnosis
 - date of death

- Aims to cover the entire population:
- Limited information on each patient:
 - date of birth
 - date of diagnosis
 - date of death
 - sex

- Aims to cover the entire population:
- Limited information on each patient:
 - date of birth
 - date of diagnosis
 - date of death
 - sex
- Monitoring of demographics:

- Aims to cover the entire population:
- Limited information on each patient:
 - date of birth
 - date of diagnosis
 - date of death
 - sex
- Monitoring of demographics:
 - prevalence of DM

- Aims to cover the entire population:
- Limited information on each patient:
 - date of birth
 - date of diagnosis
 - date of death
 - sex
- Monitoring of demographics:
 - prevalence of DM
 - DM occurrence (incidence rates)

- Aims to cover the entire population:
- Limited information on each patient:
 - date of birth
 - date of diagnosis
 - date of death
 - sex
- Monitoring of demographics:
 - prevalence of DM
 - DM occurrence (incidence rates)
 - mortality of DM patients

- Aims to cover the entire population:
- Limited information on each patient:
 - date of birth
 - date of diagnosis
 - date of death
 - sex
- Monitoring of demographics:
 - prevalence of DM
 - DM occurrence (incidence rates)
 - mortality of DM patients
- Important because we have:

- Aims to cover the entire population:
- Limited information on each patient:
 - date of birth
 - date of diagnosis
 - date of death
 - sex
- Monitoring of demographics:
 - prevalence of DM
 - DM occurrence (incidence rates)
 - mortality of DM patients
- Important because we have:
 - long term follow-up

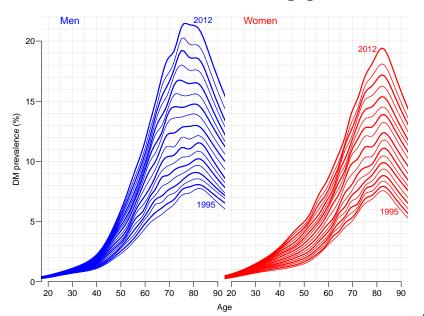
- Aims to cover the entire population:
- Limited information on each patient:
 - date of birth
 - date of diagnosis
 - date of death
 - sex
- Monitoring of demographics:
 - prevalence of DM
 - DM occurrence (incidence rates)
 - mortality of DM patients
- Important because we have:
 - long term follow-up
 - no patient drop-out

Combine with populations data:

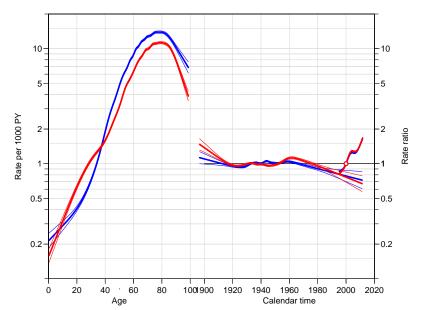
- Combine with populations data:
 - population size

- Combine with populations data:
 - population size
 - population risk time (person-years)

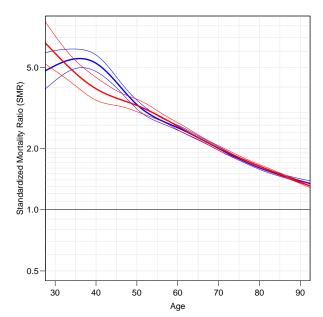
- Combine with populations data:
 - population size
 - population risk time (person-years)
- ...in order to compute:


- Combine with populations data:
 - population size
 - population risk time (person-years)
- ...in order to compute:
 - Prevalence of DM at different dates

- Combine with populations data:
 - population size
 - population risk time (person-years)
- ...in order to compute:
 - Prevalence of DM at different dates
 - Incidence rates of DM in the non-DM population


- Combine with populations data:
 - population size
 - population risk time (person-years)
- ...in order to compute:
 - Prevalence of DM at different dates
 - Incidence rates of DM in the non-DM population
 - Mortality of DM patients

- Combine with populations data:
 - population size
 - population risk time (person-years)
- ...in order to compute:
 - Prevalence of DM at different dates
 - Incidence rates of DM in the non-DM population
 - Mortality of DM patients
 - Relative mortality of DM patients (SMR)


NDR 1995-2012: Prevalence[1]

NDR 1995-2012: Incidence rates[1]

NDR 1995-2012: SMR[1]

Mortality among SDC T1 & T2 patients

Patients followed 1 Jan 2002 to 31 Dec 2010 [2, 3]

	T1		T2		
	Men	Women	Men	Women	
No. patients	2,614	2,207	3,423	2,421	
Annual decrease (%):					
Mortality	6.6	4.8	5.5	3.3	
SMR	4.3	2.6	3.0	1.4	

Mortality among SDC T1 & T2 patients

Patients followed 1 Jan 2002 to 31 Dec 2010 [2, 3]

	T1		T2	
	Men	Women	Men	Women
No. patients	2,614	2,207	3,423	2,421
Annual decre	ase (%):			
Mortality	6.6	4.8	5.5	3.3
SMR	4.3	2.6	3.0	1.4

So also in SDC patients mortality has been declining **more** than in the general population.

SDC T1 patients [4, 5] with DN

Patients with DN (diabetic nephropathy)

- Patients with DN (diabetic nephropathy)
- Occurrence of:

- Patients with DN (diabetic nephropathy)
- Occurrence of:
 - ► ESRD (end stage renal disease: dialysis or transplant)

- Patients with DN (diabetic nephropathy)
- Occurrence of:
 - ESRD (end stage renal disease: dialysis or transplant)
 - Death

- Patients with DN (diabetic nephropathy)
- Occurrence of:
 - ► ESRD (end stage renal disease: dialysis or transplant)
 - Death
- How do rates depend on clinical parameters?

- Patients with DN (diabetic nephropathy)
- Occurrence of:
 - ESRD (end stage renal disease: dialysis or transplant)
 - Death
- How do rates depend on clinical parameters?
- How is long-term outcome dependent on clinical status?

SDC: T1DM patients with kidney compliations

G. Andresdottir, M. L. Jensen, B. Carstensen, H. H. Parving, K. Rossing, T. W. Hansen, and P. Rossing:
 Improved Survival and Renal Prognosis of Patients
 With Type 2 Diabetes and Nephropathy With
 Improved Control of Risk Factors
 Diabetes Care, Mar 2014.

SDC: T1DM patients with kidney compliations

- G. Andresdottir, M. L. Jensen, B. Carstensen, H. H. Parving, K. Rossing, T. W. Hansen, and P. Rossing:
 Improved Survival and Renal Prognosis of Patients
 With Type 2 Diabetes and Nephropathy With
 Improved Control of Risk Factors
 Diabetes Care, Mar 2014.
- G. Andresdottir, M. L. Jensen, B. Carstensen, H. H. Parving, P. Hovind, T. W. Hansen, P. Rossing:
 Improved prognosis of diabetic nephropathy in type 1 diabetes
 Accepted in Kidney International on 17 April 2014.

T1DM patients with kidney compliations

Extract patients with Diabetic Nephropathy (DN) from the SDC patient records and record:

Date of birth

T1DM patients with kidney compliations

- Date of birth
- Date of diabetes

T1DM patients with kidney compliations

- Date of birth
- Date of diabetes
- Date of DN

T1DM patients with kidney compliations

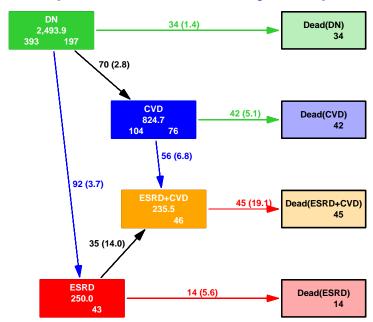
- Date of birth
- Date of diabetes
- Date of DN
- Date of CVD

T1DM patients with kidney compliations

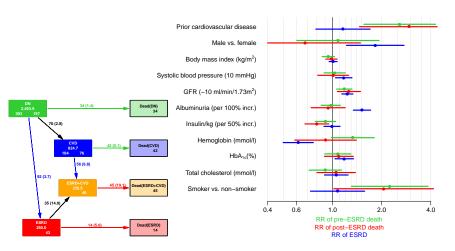
- Date of birth
- Date of diabetes
- Date of DN
- Date of CVD
- Date of ESRD

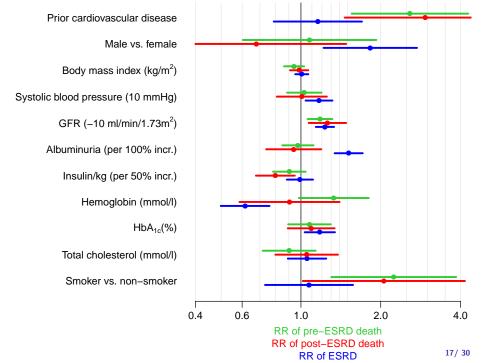
T1DM patients with kidney compliations

- Date of birth
- Date of diabetes
- Date of DN
- Date of CVD
- Date of ESRD
- Date of death

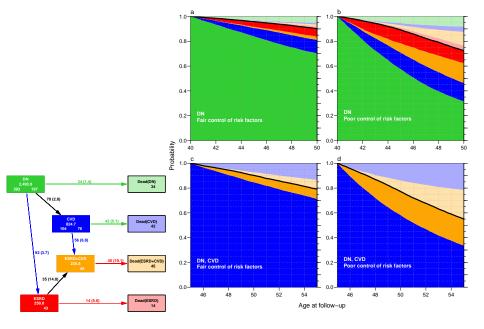

SDC:

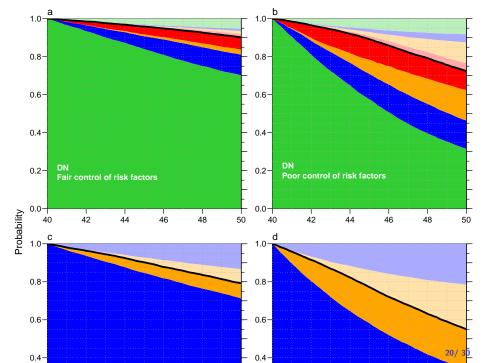
T1DM patients with kidney compliations

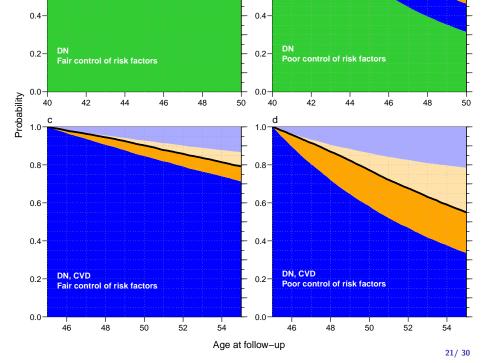

Extract patients with Diabetic Nephropathy (DN) from the SDC patient records and record:


- Date of birth
- Date of diabetes
- Date of DN
- Date of CVD
- Date of ESRD
- Date of death
- Clinical parameters at date of DN (baseline)

T1DM patients with kidney compliations


Covariate effects





Example patients

Regulation	Fair	Poor
Sex	Man	Man
Age	40/45	40/45
Time since DN	[′] 5	[′] 5
Diabetes duration	25	25
HbA_{1c}	7.5	9.0
Systolic blood pr.	130	150
Total cholesterol	4.5	5.5
Albumin	300	1000
Smoking	never, <3	4– 20, 20+
BMI	22	22
GFR	70	70
Hemoglobin	8	8
Insulin dose per kg	0.75	0.75

Only possible if we model the entire lifecourse.

- Only possible if we model the entire lifecourse.
- Only events (ESRD, CVD, Death) are modelled

- Only possible if we model the entire lifecourse.
- Only events (ESRD, CVD, Death) are modelled
- Changes in clinical parameters are ignored
 - all is conditional on baseline **only**.

- Only possible if we model the entire lifecourse.
- Only events (ESRD, CVD, Death) are modelled
- Changes in clinical parameters are ignored
 - all is conditional on baseline **only**.
- Possible to model rates as a function of current clinical parameters (time-updated variables)

- Only possible if we model the entire lifecourse.
- Only events (ESRD, CVD, Death) are modelled
- Changes in clinical parameters are ignored
 - all is conditional on baseline **only**.
- Possible to model rates as a function of current clinical parameters (time-updated variables)
 - no model for the clinical parameters (HbA_{1c}, cholesterol, . . .)

- Only possible if we model the entire lifecourse.
- Only events (ESRD, CVD, Death) are modelled
- Changes in clinical parameters are ignored
 - all is conditional on baseline **only**.
- Possible to model rates as a function of current clinical parameters (time-updated variables)
 - no model for the clinical parameters (HbA_{1c}, cholesterol, . . .)
 - so we lose the ability to predict the lifecourse

- Only possible if we model the entire lifecourse.
- Only events (ESRD, CVD, Death) are modelled
- Changes in clinical parameters are ignored
 - all is conditional on baseline **only**.
- Possible to model rates as a function of current clinical parameters (time-updated variables)
 - no model for the clinical parameters (HbA_{1c}, cholesterol, . . .)
 - so we lose the ability to predict the lifecourse
- This was not done in the Danish kidney-complications study.

- Only possible if we model the entire lifecourse.
- Only events (ESRD, CVD, Death) are modelled
- Changes in clinical parameters are ignored
 - all is conditional on baseline **only**.
- Possible to model rates as a function of current clinical parameters (time-updated variables)
 - no model for the clinical parameters (HbA_{1c}, cholesterol, . . .)
 - so we lose the ability to predict the lifecourse
- This was not done in the Danish kidney-complications study.
- ... but it is possible with the SDC EPR.

▶ But we gain the possibility to **compare** populations (e.g. HK & DK) with respect to

- But we gain the possibility to compare populations (e.g. HK & DK) with respect to
 - occurrence rates

- But we gain the possibility to compare populations (e.g. HK & DK) with respect to
 - occurrence rates
 - conditional on clinical parameters:

- But we gain the possibility to compare populations (e.g. HK & DK) with respect to
 - occurrence rates
 - conditional on clinical parameters:
 - are there differences that cannot be explained in terms of the clinical status of patients?

- But we gain the possibility to compare populations (e.g. HK & DK) with respect to
 - occurrence rates
 - conditional on clinical parameters:
 - are there differences that cannot be explained in terms of the clinical status of patients?
 - i.e. are there factors that influence rates that are not mediated through the measured clinical variables?

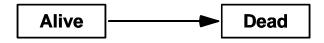
Also gain the possibility to evaluate time-trends in mortality:

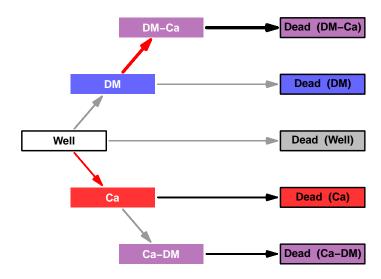
- Also gain the possibility to evaluate time-trends in mortality:
 - ► If trend in mortality by calendar time is negative, overall patient prognosis is improving

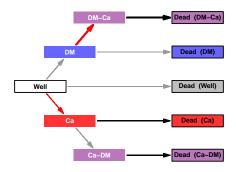
- Also gain the possibility to evaluate time-trends in mortality:
 - If trend in mortality by calendar time is negative, overall patient prognosis is improving
 - But trend may be less negative or even positive when controlling for updated clinical variables, conditional on current (updated) clinical parameters:

- Also gain the possibility to evaluate time-trends in mortality:
 - If trend in mortality by calendar time is negative, overall patient prognosis is improving
 - But trend may be less negative or even positive when controlling for updated clinical variables, conditional on current (updated) clinical parameters:
 - improvement in overall patient prognosis mediated through improvement in clinical variables?

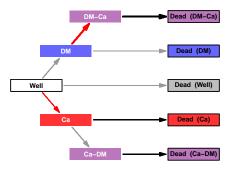
 Demographers compute the life expectancy in a population


- Demographers compute the life expectancy in a population
- as the expected length of life



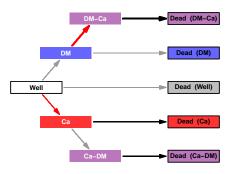

- Demographers compute the life expectancy in a population
- ▶ as the expected length of life
- under the assumption that rates are as seen in the population

- Demographers compute the life expectancy in a population
- as the expected length of life
- under the assumption that rates are as seen in the population
- at a certain point in time:



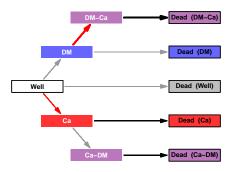
▶ How many people get cancer?

How are the persons distributed between states at a given point in life?

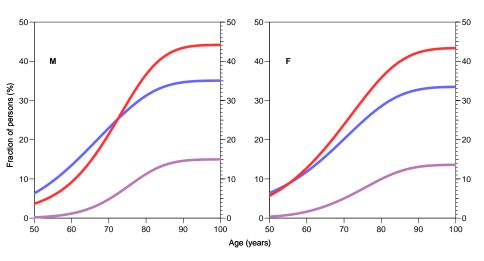

Depends on **all** the transition rates

- ▶ How many people get cancer?
- ▶ How many people get diabetes?

How are the persons distributed between states at a given point in life?


Depends on **all** the transition rates

- ▶ How many people get cancer?
- How many people get diabetes?
- ▶ How many people get both DM and cancer?


How are the persons distributed between states at a given point in life?

Depends on **all** the transition rates

How many get DM/Cancer before age a

References

B Carstensen, JK Kristensen, P Ottosen, and K Borch-Johnsen.

The Danish National Diabetes Register: Trends in incidence, prevalence and mortality.

Diabetologia, 51:2187-2196, 2008.

M. E. Jørgensen, T. P. Almdal, and B. Carstensen.

Time trends in mortality rates in type 1 diabetes from 2002 to 2011. *Diabetologia*, 56(11):2401–2404, Nov 2013.

K. Færch, B. Carstensen, T. P. Almdal, and M. E. Jørgensen.

Improved survival among patients with complicated type 2 diabetes in Denmark: A prospective study (2002-2010).

J. Clin. Endocrinol. Metab., page jc20133210, Jan 2014.

G. Andresdottir, M. L. Jensen, B. Carstensen, H. H. Parving, P. Hovind, T. W. Hansen, and P. Rossing.

Improved prognosis of diabetic nephropathy in type ${\bf 1}$ diabetes.

Kidney International, page Accepted, 2014.

S. Iacobelli and B. Carstensen.

Multiple time scales in multi-state models.

Stat Med, 32(30):5315-5327, Dec 2013.