Longitudinal observations

Rendix Carstensen Steno Diabetes Center, Gentofte. Denmark & Department of Biostatistics, University of Copenhagen bxc@steno.dk http://BendixCarstensen.com

LEAD symposium, EDEG 2014 31 March 2014

http://BendixCarstensen.com/SDC/LEAD

Two observation points

Bendix Carstensen

LEAD 31 March 2014 LEAD symposium, EDEG 2014 http://BendixCarstensen.com/SDC/LEAD

(twopoints)

Measurements at two time points

Randomized study:

- Randomized study:
 - Effect of randomization

- Randomized study:
 - Effect of randomization
 - Ist point special (pre-intervention)

- Randomized study:
 - Effect of randomization
 - Ist point special (pre-intervention)
- Observational study

- Randomized study:
 - Effect of randomization
 - Ist point special (pre-intervention)
- Observational study
 - Describe population processes

- Randomized study:
 - Effect of randomization
 - Ist point special (pre-intervention)
- Observational study
 - Describe population processes
 - Nothing special about any one point of observation

- Randomized study:
 - Effect of randomization
 - Ist point special (pre-intervention)
- Observational study
 - Describe population processes
 - Nothing special about any one point of observation
 - except that this was the first measuring occasion.

Measurements at baseline and follow-up.

- Measurements at baseline and follow-up.
- Two randomized groups

- Measurements at baseline and follow-up.
- Two randomized groups
- Target:

- Measurements at baseline and follow-up.
- Two randomized groups
- Target:
 - What is the change in each of the groups,

- Measurements at baseline and follow-up.
- Two randomized groups
- ► Target:
 - What is the change in each of the groups,
 - What is the **difference** in the changes

- Measurements at baseline and follow-up.
- Two randomized groups
- ► Target:
 - What is the change in each of the groups,
 - What is the difference in the changes
 - that is, the intervention effct

- Measurements at baseline and follow-up.
- Two randomized groups
- Target:
 - What is the change in each of the groups,
 - What is the difference in the changes
 - that is, the intervention effct
- Thus we know:

- Measurements at baseline and follow-up.
- Two randomized groups
- Target:
 - What is the change in each of the groups,
 - What is the difference in the changes
 - that is, the intervention effct
- Thus we know:
 - No difference at baseline (randomization)

- Measurements at baseline and follow-up.
- Two randomized groups
- Target:
 - What is the change in each of the groups,
 - What is the difference in the changes
 - that is, the intervention effct
- Thus we know:
 - No difference at baseline (randomization)
 - ny difference at follow-up due to intervention.

Compute the change in each group

- Compute the change in each group
- Compute the differences between changes in the two groups

- Compute the change in each group
- Compute the differences between changes in the two groups
- this is the intervention effect

- Compute the change in each group
- Compute the differences between changes in the two groups
- this is the intervention effect
- ► Not quite so: Regression to the mean

 The follow up of an exceptional film is rarely as good as the first...

- The follow up of an exceptional film is rarely as good as the first...
- Children of tall parents smaller than parents

- The follow up of an exceptional film is rarely as good as the first...
- Children of tall parents smaller than parents
- Children of small parents taller than parents

- The follow up of an exceptional film is rarely as good as the first...
- Children of tall parents smaller than parents
- Children of small parents taller than parents
- comes from the make up of measurements:

$$Y_i = \mu_i + e_i$$

- The follow up of an exceptional film is rarely as good as the first...
- Children of tall parents smaller than parents
- Children of small parents taller than parents
- comes from the make up of measurements:

$$Y_i = \mu_i + e_i$$

• The **observed** Y_i is large if μ_i or e_i is large

- The follow up of an exceptional film is rarely as good as the first...
- Children of tall parents smaller than parents
- Children of small parents taller than parents
- comes from the make up of measurements:

$$Y_i = \mu_i + e_i$$

- The observed Y_i is large if μ_i or e_i is large
- Offspring (film no. II) has same μ_i but random e_i!

- The follow up of an exceptional film is rarely as good as the first...
- Children of tall parents smaller than parents
- Children of small parents taller than parents
- comes from the make up of measurements:

$$Y_i = \mu_i + e_i$$

- The observed Y_i is large if μ_i or e_i is large
- Offspring (film no. II) has same μ_i but random e_i!

$$Y_{it} = \mu_i + e_{it}, \quad t = 1, 2$$

$$Y_{it} = \mu_i + e_{it}, \quad t = 1, 2$$

► Large measurements at first timepoints Y_{i1} comes around because e_{i1} is large.

$$Y_{it} = \mu_i + e_{it}, \quad t = 1, 2$$

- Large measurements at first timepoints Y_{i1} comes around because e_{i1} is large.
- next measurement is with a random e_{i2}

$$Y_{it} = \mu_i + e_{it}, \quad t = 1, 2$$

- Large measurements at first timepoints Y_{i1} comes around because e_{i1} is large.
- next measurement is with a random e_{i2}
- hence with a random part which on average is smaller.

Intervention effect positive:

Intervention effect positive:

Persons who start high likely to have smaller change, their chage is made up of:

Intervention effect positive:

- Persons who start high likely to have smaller change, their chage is made up of:
 - ▶ the "real" change
- Persons who start high likely to have smaller change, their chage is made up of:
 - ► the "real" change
 - the differences in random errors:

- Persons who start high likely to have smaller change, their chage is made up of:
 - ► the "real" change
 - the differences in random errors:
 - first large (high measurement)

- Persons who start high likely to have smaller change, their chage is made up of:
 - the "real" change
 - the differences in random errors:
 - first large (high measurement)
 - second "normal" (presumably smaller)

- Persons who start high likely to have smaller change, their chage is made up of:
 - ▶ the "real" change
 - the differences in random errors:
 - first large (high measurement)
 - second "normal" (presumably smaller)
- Persons who start low likely to have larger change

- Persons who start high likely to have smaller change, their chage is made up of:
 - ▶ the "real" change
 - the differences in random errors:
 - first large (high measurement)
 - second "normal" (presumably smaller)
- Persons who start low likely to have larger change
 - ► the "real" change

- Persons who start high likely to have smaller change, their chage is made up of:
 - ► the "real" change
 - the differences in random errors:
 - first large (high measurement)
 - second "normal" (presumably smaller)
- Persons who start low likely to have larger change
 - the "real" change
 - the differences in random errors:

- Persons who start high likely to have smaller change, their chage is made up of:
 - ▶ the "real" change
 - the differences in random errors:
 - first large (high measurement)
 - second "normal" (presumably smaller)
- Persons who start low likely to have larger change
 - the "real" change
 - the differences in random errors:
 - first small (low measurement)

- Persons who start high likely to have smaller change, their chage is made up of:
 - the "real" change
 - the differences in random errors:
 - first large (high measurement)
 - second "normal" (presumably smaller)
- Persons who start low likely to have larger change
 - the "real" change
 - the differences in random errors:
 - first small (low measurement)
 - second "normal" (presumably larger)

Measurement	mean	SD
$B_i \\ F_i$	$\begin{array}{c} \mu \\ \mu + \Delta \end{array}$	$\sigma \sigma$

Measurement	mean	SD
B_i	μ	σ
F_{i}	$\mu + \Delta$	σ

 $F_i \& B_i$ are correlated...

Measurement	mean	SD
B_i	μ	σ
F_{i}	$\mu + \Delta$	σ

 $F_i \& B_i$ are correlated...

The **conditional** mean of the difference given the first measurement:

$$\mathbb{E}(F_i - B_i | B_i = x) = \Delta - (x - \mu)(1 - \rho)$$

— ρ is the correlation between F and B.

Measurement	mean	SD
B_i	μ	σ
F_{i}	$\mu + \Delta$	σ

 $F_i \& B_i$ are correlated...

The **conditional** mean of the difference given the first measurement:

$$\mathbb{E}(F_i - B_i | B_i = x) = \Delta - (x - \mu)(1 - \rho)$$

— ρ is the correlation between F and B.

So x large (*i.e.* $x > \mu$) means that the conditional mean is **smaller** than Δ - the **true** difference.

Two observation points (twopoints)

Two observation points (twopoints)

The **real** model:

$$y_{it} = \mu + \Delta_2 + a_i + e_{it}$$

The **real** model:

$$y_{it} = \mu + \Delta_2 + a_i + e_{it}$$

with:

•
$$\mu$$
 — population mean

The **real** model:

$$y_{it} = \mu + \Delta_2 + a_i + e_{it}$$

with:

µ — population mean
∆₂ — change from time 1 to 2

The **real** model:

$$y_{it} = \mu + \Delta_2 + a_i + e_{it}$$

with:

μ — population mean
Δ₂ — change from time 1 to 2
a_i — person i's deviation from population mean:

Person *i* has "true" (baseline) mean $\mu + a_i$

The **real** model:

$$y_{it} = \mu + \Delta_2 + a_i + e_{it}$$

with:

μ — population mean
Δ₂ — change from time 1 to 2
a_i — person i's deviation from population mean: Person i has "true" (baseline) mean μ + a_i
a_i ~ N, s.d. = τ

The **real** model:

$$y_{it} = \mu + \Delta_2 + a_i + e_{it}$$

with:

μ — population mean
Δ₂ — change from time 1 to 2
a_i — person i's deviation from population mean: Person i has "true" (baseline) mean μ + a_i
a_i ~ N, s.d. = τ
e_{it} ~ N, s.d. = σ

The **real** model:

$$y_{it} = \mu + \Delta_2 + a_i + e_{it}$$

with:

μ — population mean
Δ₂ — change from time 1 to 2
a_i — person i's deviation from population mean: Person i has "true" (baseline) mean μ + a_i
a_i ~ N, s.d. = τ
e_{it} ~ N, s.d. = σ

The **real** model:

$$y_{it} = \mu + \Delta_2 + a_i + e_{it}$$

with:

 $\blacktriangleright \mu$ — population mean • Δ_2 — change from time 1 to 2 \bullet a_i — person i's deviation from population mean: Person *i* has "true" (baseline) mean $\mu + a_i$ \bullet $a_i \sim \mathcal{N}, \quad \text{s.d.} = \tau$ • $e_{it} \sim \mathcal{N}$, s.d. = σ $\rho = \operatorname{corr}(F, B) = \operatorname{corr}(y_{t2}, y_{t1}) = \frac{\tau^2}{\tau^2 \perp \tau^2}$ Two observation points (twopoints)

8/ 32

Time

 τ is the variation between persons: Variation between line-midpoints

Time

 τ is the variation between persons: Variation between line-midpoints

Δ is the average slope of the lines

Time

 τ is the variation between persons: Variation between line-midpoints

 Δ is the average slope of the lines

Time

 σ is the variation round these slopes

• Measurements at baseline and follow-up.

- Measurements at baseline and follow-up.
- Two randomized groups

- Measurements at baseline and follow-up.
- Two randomized groups
- Target:

- Measurements at baseline and follow-up.
- Two randomized groups
- Target:
 - What is the change in each of the groups,

- Measurements at baseline and follow-up.
- Two randomized groups
- Target:
 - What is the change in each of the groups,
 - What is the difference in the changes

- Measurements at baseline and follow-up.
- Two randomized groups
- ► Target:
 - What is the change in each of the groups,
 - What is the difference in the changes
 - the intervention effct

Compute the change in each group

- Compute the change in each group
- Compute the differences between groups

- Compute the change in each group
- Compute the differences between groups
- this is the intervention effect

- Compute the change in each group
- Compute the differences between groups
- this is the intervention effect
- ▶ No so: Regression to the mean

 The follow up of an exceptional film is rarely as good as the first...
- The follow up of an exceptional film is rarely as good as the first...
- Children of tall parents smaller than parents

- The follow up of an exceptional film is rarely as good as the first...
- Children of tall parents smaller than parents
- Children of small parents taller than parents

- The follow up of an exceptional film is rarely as good as the first...
- Children of tall parents smaller than parents
- Children of small parents taller than parents
- comes from the make up of measurements:

$$Y_i = \mu_i + e_i$$

- The follow up of an exceptional film is rarely as good as the first...
- Children of tall parents smaller than parents
- Children of small parents taller than parents
- comes from the make up of measurements:

$$Y_i = \mu_i + e_i$$

• Y_i is large if mu_i or e_i is large

- The follow up of an exceptional film is rarely as good as the first...
- Children of tall parents smaller than parents
- Children of small parents taller than parents
- comes from the make up of measurements:

$$Y_i = \mu_i + e_i$$

- Y_i is large if mu_i or e_i is large
- Offspring (film no. II) has same µ_i but random e_i!

- The follow up of an exceptional film is rarely as good as the first...
- Children of tall parents smaller than parents
- Children of small parents taller than parents
- comes from the make up of measurements:

$$Y_i = \mu_i + e_i$$

- Y_i is large if mu_i or e_i is large
- Offspring (film no. II) has same µ_i but random e_i!

- The follow up of an exceptional film is rarely as good as the first...
- Children of tall parents smaller than parents
- Children of small parents taller than parents
- comes from the make up of measurements:

$$Y_i = \mu_i + e_i$$

- Y_i is large if mu_i or e_i is large
- Offspring (film no. II) has same µ_i but random e_i!

Source: Troels Mygind Jensen & Addition-PRO

Source: Troels Mygind Jensen & Addition-PRO

Source: Troels Mygind Jensen & Addition-PRO

Source: Troels Mygind Jensen & Addition-PRO

Analysis by lm I

cf <- coef(m0 <- lm(log10(mf) ~ log10(mb) + factor(gr), data= round(ci.lin(m0), 2)

	Estimate	StdErr	Z	Р	2.5%	97.5%
(Intercept)	1.14	0.07	15.50	0.00	0.99	1.28
log10(mb)	0.48	0.03	16.26	0.00	0.43	0.54
factor(gr)1	-0.01	0.02	-0.59	0.56	-0.05	0.03

Multiple measurements

Bendix Carstensen

LEAD 31 March 2014 LEAD symposium, EDEG 2014 http://BendixCarstensen.com/SDC/LEAD

(multpt)

Identical time points:

- Identical time points:
 - Slightly simpler analysis:

- Identical time points:
 - Slightly simpler analysis:
 - time effects can be specified arbitrarily (not neccessarily sensible)

- Identical time points:
 - Slightly simpler analysis:
 - time effects can be specified arbitrarily (not neccessarily sensible)
 - resembles 2-way analysis of variance

- Identical time points:
 - Slightly simpler analysis:
 - time effects can be specified arbitrarily (not neccessarily sensible)
 - resembles 2-way analysis of variance
 - essentially fitting data(structure) to available methodology

- Identical time points:
 - Slightly simpler analysis:
 - time effects can be specified arbitrarily (not neccessarily sensible)
 - resembles 2-way analysis of variance
 - essentially fitting data(structure) to available methodology
- Time points different between persons:

- Identical time points:
 - Slightly simpler analysis:
 - time effects can be specified arbitrarily (not neccessarily sensible)
 - resembles 2-way analysis of variance
 - essentially fitting data(structure) to available methodology
- Time points different between persons:
 - time effects must be specified as functions of time

- Identical time points:
 - Slightly simpler analysis:
 - time effects can be specified arbitrarily (not neccessarily sensible)
 - resembles 2-way analysis of variance
 - essentially fitting data(structure) to available methodology
- Time points different between persons:
 - time effects must be specified as functions of time
 - to be estimated...

- Identical time points:
 - Slightly simpler analysis:
 - time effects can be specified arbitrarily (not neccessarily sensible)
 - resembles 2-way analysis of variance
 - essentially fitting data(structure) to available methodology
- Time points different between persons:
 - time effects must be specified as functions of time
 - to be estimated...
- Model data by random effects models for mean and between person variation

- Identical time points:
 - Slightly simpler analysis:
 - time effects can be specified arbitrarily (not neccessarily sensible)
 - resembles 2-way analysis of variance
 - essentially fitting data(structure) to available methodology
- Time points different between persons:
 - time effects must be specified as functions of time
 - to be estimated...
- Model data by random effects models for mean and between person variation
- Limited amount of information per person.

 Because of limited information per person, we model the distribution of person-level measuremnst by a normal distribution. (could be another type of dist'n)

- Because of limited information per person, we model the distribution of person-level measuremnst by a normal distribution. (could be another type of dist'n)
- A single random person-effect is hardy ever sufficient with several time points

- Because of limited information per person, we model the distribution of person-level measuremnst by a normal distribution. (could be another type of dist'n)
- A single random person-effect is hardy ever sufficient with several time points
- Random slopes, random higher-order terms can be added

- Because of limited information per person, we model the distribution of person-level measuremnst by a normal distribution. (could be another type of dist'n)
- A single random person-effect is hardy ever sufficient with several time points
- Random slopes, random higher-order terms can be added
- Neither approach requires the same number of timepoints (let alone identical timepoints) between persons' measurements.

- Because of limited information per person, we model the distribution of person-level measuremnst by a normal distribution. (could be another type of dist'n)
- A single random person-effect is hardy ever sufficient with several time points
- Random slopes, random higher-order terms can be added
- Neither approach requires the same number of timepoints (let alone identical timepoints) between persons' measurements.
- This is how the world usually looks.

Always advisable to have data in the long form:

hea	d(glu	c)					
	id	fpg	ds	time	gruppe	end	tfe
1	4521	5.35	13895	-10.512011	0	17724	-3829
2	4521	5.30	15890	-5.035003	0	17724	-1834
3	4521	5.90	17724	0.00000	0	17724	0
4	10613	5.00	12116	0.00000	0	12116	0
5	11934	5.30	11849	-2.954015	0	11849	0
6	16753	5.06	13919	-8.312972	0	15865	-1946

Always advisable to have data in the long form:

head(gluc)								
	id	fpg	ds	time	gruppe	end	tfe	
1	4521	5.35	13895	-10.512011	0	17724	-3829	
2	4521	5.30	15890	-5.035003	0	17724	-1834	
3	4521	5.90	17724	0.00000	0	17724	0	
4	10613	5.00	12116	0.00000	0	12116	0	
5	11934	5.30	11849	-2.954015	0	11849	0	
6	16753	5.06	13919	-8.312972	0	15865	-1946	

each record in data represents one measurement

Always advisable to have data in the long form:

head(gluc) id fpg ds time gruppe end tfe 1 4521 5.35 13895 -10.512011 0 17724 -3829 2 4521 5.30 15890 -5.035003 0 17724 -1834 3 4521 5.90 17724 0.000000 0 17724 0 4 10613 5.00 12116 0.000000 0 12116 0 5 11934 5.30 11849 -2.954015 0 11849 0 6 16753 5.06 13919 -8.312972 0 15865 -1946 } id fpg ds time gruppe end tfe id fpg ds id fpg ds time gruppe end tfe id fpg ds if fpg ds id fpg ds if fpg

- each record in data represents one measurement
- and the corresponding covariate values

Always advisable to have data in the long form:

head(gluc)								
	id	fpg	ds	time	gruppe	end	tfe	
1	4521	5.35	13895	-10.512011	0	17724	-3829	
2	4521	5.30	15890	-5.035003	0	17724	-1834	
3	4521	5.90	17724	0.00000	0	17724	0	
4	10613	5.00	12116	0.00000	0	12116	0	
5	11934	5.30	11849	-2.954015	0	11849	0	
6	16753	5.06	13919	-8.312972	0	15865	-1946	

- each record in data represents one measurement
- and the corresponding covariate values
- Most programs use this format, and it imposes fewer restrictions on your data

Always advisable to have data in the long form:

head(gluc)

	id	fpg	ds	time	gruppe	end	tfe
1	4521	5.35	13895	-10.512011	0	17724	-3829
2	4521	5.30	15890	-5.035003	0	17724	-1834
3	4521	5.90	17724	0.00000	0	17724	0
4	10613	5.00	12116	0.00000	0	12116	0
5	11934	5.30	11849	-2.954015	0	11849	0
6	16753	5.06	13919	-8.312972	0	15865	-1946

- each record in data represents one measurement
- and the corresponding covariate values
- Most programs use this format, and it imposes fewer restrictions on your data
- A bad idea to taylor your data to fit a given computer representation,

Always advisable to have data in the long form:

head(gluc)

	id	fpg	ds	time	gruppe	end	tfe
1	4521	5.35	13895	-10.512011	0	17724	-3829
2	4521	5.30	15890	-5.035003	0	17724	-1834
3	4521	5.90	17724	0.00000	0	17724	0
4	10613	5.00	12116	0.00000	0	12116	0
5	11934	5.30	11849	-2.954015	0	11849	0
6	16753	5.06	13919	-8.312972	0	15865	-1946

- each record in data represents one measurement
- and the corresponding covariate values
- Most programs use this format, and it imposes fewer restrictions on your data
- A bad idea to taylor your data to fit a given computer representation,

Always advisable to have data in the long form:

head(glu	ıc)
-----------	------

	id	fpg	ds	time	gruppe	end	tfe
1	4521	5.35	13895	-10.512011	0	17724	-3829
2	4521	5.30	15890	-5.035003	0	17724	-1834
3	4521	5.90	17724	0.00000	0	17724	0
4	10613	5.00	12116	0.00000	0	12116	0
5	11934	5.30	11849	-2.954015	0	11849	0
6	16753	5.06	13919	-8.312972	0	15865	-1946

- each record in data represents one measurement
- and the corresponding covariate values
- Most programs use this format, and it imposes fewer restrictions on your data
- A bad idea to taylor your data to fit a given computer representation, vice versa is better.
Measurement on individual i at timepoint t

$$y_{ti} = \mu + [\mathsf{cov}] + a_i + e_{it}$$

Measurement on individual i at timepoint t

$$y_{ti} = \mu + [\text{cov}] + \frac{a_i}{a_i} + e_{it}$$

 a_i is a random effect for person i: represents the (random) **deviation** of the person-mean from the population mean

Measurement on individual i at timepoint t

$$y_{ti} = \mu + [\mathsf{cov}] + a_i + e_{it}$$

 a_i is a random effect for person *i*: represents the (random) **deviation** of the person-mean from the population mean — that is the predicted population mean for persons with **similar** values of the covariates,

Measurement on individual i at timepoint t

$$y_{ti} = \mu + [\mathbf{cov}] + a_i + e_{it}$$

 a_i is a random effect for person *i*: represents the (random) **deviation** of the person-mean from the population mean — that is the predicted population mean for persons with **similar** values of the covariates, $\mu + [cov]$

Measurement on individual i at timepoint t

$$y_{ti} = \mu + [\mathsf{cov}] + a_i + \frac{e_{it}}{e_{it}}$$

 a_i is a random effect for person *i*: represents the (random) **deviation** of the person-mean from the population mean — that is the predicted population mean for persons with **similar** values of the covariates, $\mu + [cov]$

 e_{it} is a random effect representing the measurement error on any measurement

Measurement on individual i at timepoint t

$$y_{ti} = \mu + [\mathsf{cov}] + a_i + e_{it}$$

The variation in a_i is the **between** person variation.

Measurement on individual i at timepoint t

$$y_{ti} = \mu + [\mathsf{cov}] + a_i + e_{it}$$

The variation in a_i is the **between** person variation. Standard deviation of the a_i s is τ , say; you get an estimate of this from statistics programmes.

 Select two persons at random with the same covariate values ([cov]).

- Select two persons at random with the same covariate values ([cov]).
- ► The s.d. of the difference of their measurements is √2τ; the absolute difference follow a half-normal distribution with this s.d.,

- Select two persons at random with the same covariate values ([cov]).
- ► The s.d. of the difference of their measurements is √2τ; the absolute difference follow a half-normal distribution with this s.d.,
- ► The median of this corresponds to the 75th percentile of a normal with this scale, that is 0.953 × τ.

- Select two persons at random with the same covariate values ([cov]).
- ► The s.d. of the difference of their measurements is √2τ; the absolute difference follow a half-normal distribution with this s.d.,
- ► The median of this corresponds to the 75th percentile of a normal with this scale, that is 0.953 × τ.
- Thus the median absolute difference between measuremnts on two identical persons (in terms of covariates) is 0.953 × τ.

- Select two persons at random with the same covariate values ([cov]).
- ► The s.d. of the difference of their measurements is √2τ; the absolute difference follow a half-normal distribution with this s.d.,
- ► The median of this corresponds to the 75th percentile of a normal with this scale, that is 0.953 × τ.
- Thus the median absolute difference between measuremnts on two identical persons (in terms of covariates) is 0.953 × τ.
- This is the way to report between person variation [?]

Measurement on individual i at timepoint t

$$y_{ti} = \mu + [\operatorname{cov}] + a_i + b_i t + e_{it}$$

The variation in $a_i + b_i t$ is now the **between** person variation; depending on t.

Measurement on individual i at timepoint t

$$y_{ti} = \mu + [\operatorname{cov}] + a_i + b_i t + e_{it}$$

The variation in $a_i + b_i t$ is now the **between** person variation; depending on t.

Note: The distribution of (a_i, b_i) must be specified as a bivariate normal, with arbitrary correlation.

Measurement on individual i at timepoint t

$$y_{ti} = \mu + [\operatorname{cov}] + a_i + b_i t + e_{it}$$

The variation in $a_i + b_i t$ is now the **between** person variation; depending on t.

Note: The distribution of (a_i, b_i) must be specified as a bivariate normal, with arbitrary correlation.

Otherwise the model is dependent on the scaling and origin of \boldsymbol{t}

Measurement on individual i at timepoint t

$$y_{ti} = \mu + [\operatorname{cov}] + a_i + b_i t + e_{it}$$

The variation in $a_i + b_i t$ is now the **between** person variation; depending on t.

Note: The distribution of (a_i, b_i) must be specified as a bivariate normal, with arbitrary correlation.

Otherwise the model is dependent on the scaling and origin of \boldsymbol{t}

The s.d. of a_i normally meaningless, but the s.d. of the b_i s is interpretable

Measurement on individual i at timepoint t

$$y_{ti} = \mu + [\operatorname{cov}] + a_i + b_i t + e_{it}$$

The variation in $a_i + b_i t$ is now the **between** person variation; depending on t.

Note: The distribution of (a_i, b_i) must be specified as a bivariate normal, with arbitrary correlation.

Otherwise the model is dependent on the scaling and origin of \boldsymbol{t}

The s.d. of a_i normally meaningless, but the s.d. of the b_i s is interpretable (principle of marginality).

Changing the times individually

Bendix Carstensen

LEAD 31 March 2014 LEAD symposium, EDEG 2014 http://BendixCarstensen.com/SDC/LEAD

(reshuf)

► Time is usually an explanatory variable

- ► Time is usually an explanatory variable
- used in modelling the outcome

- Time is usually an explanatory variable
- used in modelling the outcome
- Meaningless to change the relative position of times within a person.

- Time is usually an explanatory variable
- used in modelling the outcome
- Meaningless to change the relative position of times within a person.
- Changing times between persons just amounts to using a different timescale. Age instead of time since diagnosis...

- Time is usually an explanatory variable
- used in modelling the outcome
- Meaningless to change the relative position of times within a person.
- Changing times between persons just amounts to using a different timescale. Age instead of time since diagnosis...
- Change of the statistical model in terms of interpretation

Changing the times individually (reshuf)

Changing the times individually (reshuf)

Time since:

- Time since:
 - Randomization

- Time since:
 - Randomization
 - 1st measurement

- Time since:
 - Randomization
 - 1st measurement
 - Birth

- Time since:
 - Randomization
 - 1st measurement
 - Birth
 - ▶ 1 jan. 1900 (calendar time)

- Time since:
 - Randomization
 - 1st measurement
 - Birth
 - ▶ 1 jan. 1900 (calendar time)
- Time before:
- Time since:
 - Randomization
 - 1st measurement
 - Birth
 - ▶ 1 jan. 1900 (calendar time)
- Time before:
 - DM diagnosis

- Time since:
 - Randomization
 - 1st measurement
 - Birth
 - ▶ 1 jan. 1900 (calendar time)
- Time before:
 - DM diagnosis
 - Death

- Time since:
 - Randomization
 - 1st measurement
 - Birth
 - ▶ 1 jan. 1900 (calendar time)
- Time before:
 - DM diagnosis
 - Death
 - Last measurement

- Time since:
 - Randomization
 - 1st measurement
 - Birth
 - ▶ 1 jan. 1900 (calendar time)
- Time before:
 - DM diagnosis
 - Death
 - Last measurement
 - A random point in time what is this?

- Time since:
 - Randomization
 - 1st measurement
 - Birth
 - ▶ 1 jan. 1900 (calendar time)
- Time before:
 - DM diagnosis
 - Death
 - Last measurement
 - A random point in time what is this?
- Meaningful to condition on the future?

(Tentative arguments)

(Tentative arguments)

Meaningful for outcomes:

 we are just making inference in a different (conditional) distribution.

(Tentative arguments)

Meaningful for outcomes:

- we are just making inference in a different (conditional) distribution.
- the conditional distribution must not be singular.

(Tentative arguments)

Meaningful for outcomes:

- we are just making inference in a different (conditional) distribution.
- the conditional distribution must not be singular.
- generalizable to the unconditional distribution?

(Tentative arguments)

Meaningful for outcomes:

- we are just making inference in a different (conditional) distribution.
- the conditional distribution must not be singular.
- generalizable to the unconditional distribution?
- comparable to the unconditional dist'n?

(Tentative arguments, cont'd)

(Tentative arguments, cont'd)

Not meaningful for covariates:

Immortal time bias:

Conditioning on future change of exposure, and **hence also** on future survival. So the outcome (death) is deterministic — it will not occur till exposure change.

(Tentative arguments, cont'd)

Not meaningful for covariates:

Immortal time bias:

Conditioning on future change of exposure, and **hence also** on future survival. So the outcome (death) is deterministic — it will not occur till exposure change.

 The joint distribution of (response, predictors)
 conditional on a future value of a covariate may not be what we want.

(Tentative arguments, cont'd)

Not meaningful for covariates:

Immortal time bias:

Conditioning on future change of exposure, and **hence also** on future survival. So the outcome (death) is deterministic — it will not occur till exposure change.

- The joint distribution of (response, predictors)
 conditional on a future value of a covariate may not be what we want.
- ... some may even think it is the unconditional.

Meaningful comparisons conditioning on a future event:

- Meaningful comparisons conditioning on a future event:
- the comparison should be conditional on:

- Meaningful comparisons conditioning on a future event:
- the comparison should be conditional on:
 - not seeing a future event (impossible)

- Meaningful comparisons conditioning on a future event:
- the comparison should be conditional on:
 - not seeing a future event (impossible)
 - not having seen an event ...

- Meaningful comparisons conditioning on a future event:
- the comparison should be conditional on:
 - not seeing a future event (impossible)
 - not having seen an event ...

- Meaningful comparisons conditioning on a future event:
- the comparison should be conditional on:
 - not seeing a future event (impossible)
 - not having seen an event ... yet
- Imposes constraints on possible shapes of trajectories for those without event:

- Meaningful comparisons conditioning on a future event:
- the comparison should be conditional on:
 - not seeing a future event (impossible)
 - not having seen an event ... yet
- Imposes constraints on possible shapes of trajectories for those without event:
- Must be invariant under individual translation of time

- Meaningful comparisons conditioning on a future event:
- the comparison should be conditional on:
 - not seeing a future event (impossible)
 - not having seen an event ... yet
- Imposes constraints on possible shapes of trajectories for those without event:
- Must be invariant under individual translation of time
- Only linear (mean) effects meaningful

- Meaningful comparisons conditioning on a future event:
- the comparison should be conditional on:
 - not seeing a future event (impossible)
 - not having seen an event ... yet
- Imposes constraints on possible shapes of trajectories for those without event:
- Must be invariant under individual translation of time
- Only linear (mean) effects meaningful
- Must include random intercept and slope

- Meaningful comparisons conditioning on a future event:
- the comparison should be conditional on:
 - not seeing a future event (impossible)
 - not having seen an event ... yet
- Imposes constraints on possible shapes of trajectories for those without event:
- Must be invariant under individual translation of time
- Only linear (mean) effects meaningful
- Must include random intercept and slope
- Is time just a surrogate for age???

Bendix Carstensen

LEAD 31 March 2014 LEAD symposium, EDEG 2014 http://BendixCarstensen.com/SDC/LEAD

(concl)

Always look at your data:

- Always look at your data:
 - ► FU vs. Baseline

Always look at your data:

- ► FU vs. Baseline
- Spaghetti-plots

- Always look at your data:
 - FU vs. Baseline
 - Spaghetti-plots
- Be explicit about the model used.

- Always look at your data:
 - FU vs. Baseline
 - Spaghetti-plots
- Be explicit about the model used.
- Show all estimates, not only the means,

- Always look at your data:
 - FU vs. Baseline
 - Spaghetti-plots
- Be explicit about the model used.
- Show all estimates, not only the means,
- the variation between and within persons are also important

There is no such thing as a "mixed model" or a "random effects model"

- There is no such thing as a "mixed model" or a "random effects model"
- Specify the fixed and random effects.

- There is no such thing as a "mixed model" or a "random effects model"
- Specify the fixed and random effects.
- Report them.

- There is no such thing as a "mixed model" or a "random effects model"
- Specify the fixed and random effects.
- Report them.
- All of them this is scary; you have to get you head around all of them.

- There is no such thing as a "mixed model" or a "random effects model"
- Specify the fixed and random effects.
- Report them.
- All of them this is scary; you have to get you head around all of them.
- Fit only one or two models
Reporting models

- There is no such thing as a "mixed model" or a "random effects model"
- Specify the fixed and random effects.
- Report them.
- All of them this is scary; you have to get you head around all of them.
- Fit only one or two models
- that captures what you want to know about.

 Mean trajectories — the mean shape of the measurements.

- Mean trajectories the mean shape of the measurements.
- usually by group

- Mean trajectories the mean shape of the measurements.
- usually by group
- Estimated random effect variations

- Mean trajectories the mean shape of the measurements.
- usually by group
- Estimated random effect variations
 - median difference between persons

- Mean trajectories the mean shape of the measurements.
- usually by group
- Estimated random effect variations
 - median difference between persons
 - possibly varying along the time scale,