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Chapter 1

Repeated measures at two points

1.1 Full model

We consider outcome data for individuals i, measured at times 1 and 2, where time 1 is
pre-randomization and 2 is post-treatment, so a full model would be:

yit =µ+ δg + βt + γgt + η + ai + eit, i = 1, . . . , I, t = 1, 2, g = pl, int (1.1)

ai ∼ N (0, τ 2),

eit ∼ N (0, σ2)

(1.2)

where η represents the effect of possible confounders to be included in the model. For
convenience we assume β1 = γg1 = δpl = 0, where g = 0 is what would normally be taken as
the placebo group.

Note that in the model (1.2), we allow different baseline means between randomization
groups g = g(i), in the parameter δg.

Thus the model with δg has 4 parameters to describe the baselines and follow-up
measurements in the two groups, so the estimated means under this model is identical to
the empirical means (at least if there are no other covariates in the model). In the
parametrization chosen, the mean difference at follow-up is:

(µ+ δint + β2 + γint,2)− (µ+ δpl + β2 + γpl,2) = δint + γint,2 − γpl,2

and the difference in mean change scores is:

(µ+ δint + β2 + γint,2)−(µ+ δint + β1 + γint,1)−
(µ+ δpl + β2 + γpl,2)+(µ+ δpl + β1 + γpl,1) =

γint,2 − γint,1−γpl,2 + γpl,1 =

γint,2 − γpl,2

In a randomized study one would expect that δg = 0, hence a model without δg should be
considered, in which case the two would be the same.

In the latter model the difference of the fitted mean at follow-up is identical to the
difference between the mean expected change scores, that is a model that considers
follow-up and change-scores on equal footing.
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2 Repeated measures at two points LEAD examples

A corollary of this is that in the evauation of the difference between the randomization
groups, the baseline mean is ancillary, and by first principles inference should be made in
the conditional distribution given the sufficient statistic for the (common) baseline mean.
Conditioning on the single individual means is a further narrowing of the sample space.

Also note that the formal interpretation of the model is that confounder effects are the
same at baseline (t = 1) and follow-up (t = 2), which implies that change from baseline to
follow-up is the same regardless of covariate values. Another way to state this is that there
is no confounder by time interaction.

1.2 Conditioning on baseline

The usual approach to the analysis of repeated measures with a baseline and one follow-up
measurement is to use the follow-up measurement as response in analysis with the baseline
measurement as covariate [4, 1, 2, 3].

This can be viewed as using the basic statistical principle that inference should be made
in the conditional distribution given the sufficient statistics for the ancillary parameters,
which in this case is the individual-specific values of the random effects (ai). The baseline
measurement yi1 is not formally the sufficient statistic for this in model 1.2, but it is close
and easier to handle.

The formal analysis of this is as follows: The random effects model 1.2 induces a
2-dimensional normal distribution of the measurements y1 and y2; in general terms:(

y1
y2

)
∼ N

[(
µ1

µ2

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)]
From standard statistical theory we know that under this model, the conditional
distribution of y2 given y1 is:

y2|y1 ∼ N
(
µ2 +

ρσ2
σ1

(y1 − µ1), σ
2
2(1− ρ2)

)
Now in the model (1.2) we have the following values for the parameters µ1, µ2, σ

2
1, σ2

2 and ρ
in the 2-dimensional normal model outlined above:

µ1 = µ+ δg + η

µ2 = µ+ δg + η + β2 + γg2

σ2
1 = σ2

2 = τ 2 + σ2

ρ =
τ 2

σ2 + τ 2

As opposed to the ANCOVA-approach that can be formally derived from a completely
unspecified 2-dimensional normal distribution, the 2-dimensional normal distribution
induced by the random effects model has the same variance at baseline and follow-up,
namely σ2 + τ 2. But there are no restrictions on the covariance and it is a model with
seperate means for the two groups, namely (µ+ η, µ+ η + β2) in the placebo group, and
(µ+ η + δint, µ+ η + β2 + δint + γint,2) in the intervention group.

Thus the only difference between the ANCOVA approach and the random effects model
is that the random effects model assumes that the marginal variances are the same at
baseline and follow-up.
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Using the relationships above, the formulae for the conditional distribution gives the
conditional distribution of y2 given y1 in terms of the model parameters from (1.2) (well,
we maintain ρ):

y2|y1 ∼ N
(
µ+ δg + β2 + γg2 + η + ρ

(
y1 − (µ+ δg + η)

)
, (σ2 + τ 2)(1− ρ2)

)
= N

((
(1− ρ)µ+ β2

)
+
(
(1− ρ)δg + γg2

)
+ ρy1 + (1− ρ)η, (σ2 + τ 2)(1− ρ2)

)
So if data were generated by model (1.2), and we fitted the regression of y2 on y1, we get
the results in the form of a regression:

yi2 = M +Byi1 +Dg + Z + ei, ei ∼ N (0, ω2) (1.3)

where Z is the effect of possible confounders.
We would then expect to see the following relationships between the parameters from the

regression and the parameters from the model generating data:

• the term (1− ρ)µ+ β2 should show up as the intercept M ,

• the term (1− ρ)δg + γg2 as the coefficient to the treatment indicator Dg,

• ρ as the coefficient to the baseline measurement y1, B

• the coefficients to the confounders (in Z) should appear as the coefficients in η scaled
by 1− ρ, and

• the residual standard deviation, ω should be
√

(σ2 + τ 2)(1− ρ2).

In any practical circumstances, when fitting the two different models (the random effects
model and the conditional model) we should find these relationships quite accurately if the
random effects model fit well, because the relationships are derived under the assumption
that the random effects model is the correct model.

Under this assumption it seems that when conditioning on the first measurement yi1, we
are implicitly assuming that δg = 0 if we interpret the coefficient to the treatment indicator
as the treatment effect.

However, when fitting a regression of follow-up on baseline, we are formally not making
any assumptions about the marginal distribution of y1, the baseline, only that the
conditional of y2 given y1 is normal (and has a structure as it would have been if the
marginal of y1 were normal).

If we want to allow for baseline imbalance in the random effects model, we must fit the
random effects model with δg. In this model, the mean change is γg2 which is estimated as
the mean of the changes — but the mean change given baseline equal to y1 is
(1− ρ)δg + γg2 =

(
1− τ 2/(τ 2 + σ2)

)
δg + γg2. Thus if we want the conditional mean as

calculated under the random effects model we must compute it from the parameters as
above. But there is no easy way to get a standard error for this quantity.

1.3 Reporting effects

Very often researchers in addition to the treatment effect also want to report the change in
each randomization group separately, and that is usually done by just computing the mean
change in each group with the corresponding empirical standard deviation.
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But when using the conditional model, it is not sensible to ask for the mean change in
each group; conditioning on baseline is actually expressing a firm disinterest in this.

Insisting on mean changes in each group requires a re-introduction of the marginal
distribution of y1, and hence a reconstruction the entire joint distribution of (y1, y2).
Which of course need not be the bivariate normal as induced by the random-effects model.

However, since the expected (mean) change in each group depends on the mean baseline
in the group, it would be sensible to compute the mean change in both groups at some
fixed baseline value. For example the overall mean, but even if these changes have a
difference equal to the estimated treatment effect, we could compute a number of other sets
fo changes with the same property, by just conditioning on some other baseline value.

1.3.1 Conditional model

Usually the treatment effect is reported as the coefficient Dg to the treatment indicator
from an analysis with y1 as covariate.

In the conditional model, that is modelling the follow-up with the baseline measurement
as covariate as in model 1.3, we have:

yi2 − yi1 = M + (B − 1)yi1 +Dg + Z + ei

so the expected difference from baseline to follow-up depends both on the covariates in the
model and on the baseline value.

Still, the dependence is the same in the two treatment groups, and hence the difference
between these differences (Dg) can be taken as the treatment effect — how much larger is
the change in the treatment group than in the placebo group at any baseline value.

1.3.2 Full random effects model

It could be argued that if we want to report within-group changes, it would be more
reasonable to fit the random effects model (with or without δg), and report the quantities
β2 + γg2. Because of the obvious redundancy, these group-specific changes have a difference
corresponding to the claimed treatment effect in the full model 1.2, which would seem an
obvious advantage1.

Thus the random effects model gives the possibility to model baseline imbalance and
sensibly report changes observed within groups; the model conditioning on the baseline
does not — if we want to report the expected change in each of the treatment groups, it
must of course be an expectation with respect to some assumed distribution of the
variables upon which the change depends, in this case baseline values and confounders.

The random effects model makes assumptions about the distribution of the
baseline-values, and hence we can derive the expected change to follow-up, essentially using
the assumed normal distribution of the baseline measurements.

1Unless of course you subscribe to the notion that the amount of information obtained is proportional to
the number of different models fitted to a given dataset.



Chapter 2

Two examples

This chapter illustrates the above piece of theory by two examples; the classical
acupuncture example used in BMJ by Vickers & Altman [4], and the other a simulation
example.

2.1 Acupuncture example

Here we read the data from acupuncture example in the BMJ article by Vickers and
Altman [4] — data has kindly been put at my disposal by DGA.

> library( Epi )
> library( foreign )
> acp <- read.dta( "./data/sportsmen.dta" )[,-4]
> names( acp ) <- c("bl","fu","gr")
> acp$gr <- factor( acp$gr, labels=c("Placebo","Acupuncture") )
> str( acp )
'data.frame': 54 obs. of 3 variables:
$ bl: num 59 53 46 38 52 63 30 73 44 48 ...
$ fu: num 81 53 83 51 81 86 42 74 45 54 ...
$ gr: Factor w/ 2 levels "Placebo","Acupuncture": 1 1 1 1 1 1 1 1 1 1 ...

> head( acp )

bl fu gr
1 59 81 Placebo
2 53 53 Placebo
3 46 83 Placebo
4 38 51 Placebo
5 52 81 Placebo
6 63 86 Placebo

2.1.1 Naive analyses

The simplest analyses would be to compute either the difference in follow-up score or the
difference in change-scores:

> round( ci.lin( lm( fu ~ gr, data=acp ) ), 2 )
Estimate StdErr z P 2.5% 97.5%

(Intercept) 62.3 3.38 18.44 0 55.67 68.92
grAcupuncture 17.3 4.87 3.55 0 7.75 26.85

> round( ci.lin( lm( fu-bl ~ gr, data=acp ) ), 2 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 8.37 2.95 2.84 0.00 2.59 14.15
grAcupuncture 10.83 4.25 2.55 0.01 2.50 19.16

5
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2.1.2 Conditional model

The model is fitted very simply:

> m0 <- lm( fu ~ bl + gr, data=acp )
> summary( m0 )
Call:
lm(formula = fu ~ bl + gr, data = acp)

Residuals:
Min 1Q Median 3Q Max

-28.549 -9.258 -1.104 13.059 29.753

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.9973 9.1092 2.634 0.01125
bl 0.7102 0.1602 4.432 5.25e-05
grAcupuncture 12.7057 4.2857 2.965 0.00467

Residual standard error: 14.98 on 49 degrees of freedom
(2 observations deleted due to missingness)

Multiple R-squared: 0.43, Adjusted R-squared: 0.4067
F-statistic: 18.48 on 2 and 49 DF, p-value: 1.046e-06

From the model conditioning on baseline we see that the treatment effect is 12.7 points,
that is, for any given baseline value the (mean) follow-up score will be 12.7 larger in the
intervention group.

From the formulae above we have (since we assume no confounders present) that the
change in the placebo group for a person with baseline y1 is:
M + (B − 1)y1 = 24.00− 0.29× y1 and in the acupuncture group
M + (B − 1)y1 +Dg = 24.00− 0.29× y1 + 12.71. In order to report any of these two
sensibly, we need some value for yi; for example we could stick in the mean of the baseline
measurements:

> ( mb <- mean( acp$bl ) )
[1] 57.04259

so we get:

> ( cf <- coef( m0 ) )
(Intercept) bl grAcupuncture
23.9973054 0.7102148 12.7057205

> (cf-c(0,1,1)) %*% cbind( c(1,mb,0), c(1,mb,1) )

[,1] [,2]
[1,] 7.467206 19.17293

The particular choice of y1 is essentially arbitrary, if we use the joint mean we report a
change which is certainly not generalizable to any other context, so it could be argued that
an arbitrary reference value should be chosen.

2.1.3 Graphical illustration

We can illustrate this in figure ??, where the thin vertical line is drawn at the mean
baseline (for all persons), and the mean (expected) change for a person with baseline equal
to the overall baseline mean is the distance from the intersect with the identity to either
the red or blue line depending on the treatment group.

We could also consider the expected changes for persons with baseline score of say 40
and 80:
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> (cf-c(0,1,1)) %*% cbind( c(1,40,0), c(1,40,1) )
[,1] [,2]

[1,] 12.4059 24.11162

> (cf-c(0,1,1)) %*% cbind( c(1,80,0), c(1,80,1) )

[,1] [,2]
[1,] 0.8144897 12.52021

as we see dramatically different changes, but with differences between changes equal to
12.71 in both cases.

When making the graph we need the regression coefficients and the mean baseline and
the mean follow-up:

> cf <- coef( m0 )
> df <- with( acp, tapply( fu-bl, gr, mean ) )
> fu <- with( acp, tapply( fu , gr, mean ) )

> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
> with( acp, plot( bl, fu, pch=16, col=c("blue","red")[gr],
+ xlim=c(20,100), ylim=c(20,100),
+ xlab="Baseline score", ylab="Follow-up score" ) )
> abline( 0, 1 )
> abline( v=mb )
> text( mb, 20, " mean(baseline)", adj=0 )
> #abline( v=c(40,80), lty="26" )
> abline( cf[1] , cf[2], lwd=3, col="blue" )
> abline( cf[1]+cf[3], cf[2], lwd=3, col="red" )
> abline( h=fu[1], lwd=2, lty=2, col="blue" )
> abline( h=fu[2], lwd=2, lty=2, col="red" )
> abline( df[1], 1, lwd=2, lty=2, col="blue" )
> abline( df[2], 1, lwd=2, lty=2, col="red" )
> text( rep(100,2), c(25,30), levels(acp$g), font=2, col=c("blue","red"), adj=1 )

2.1.4 Random effects model

In order to fit the random effects model we must have the data in the long format:

> lg <- reshape( acp, varying=1:2, v.names="score", direction="long" )
> head( lg )

gr time score id
1.1 Placebo 1 59 1
2.1 Placebo 1 53 2
3.1 Placebo 1 46 3
4.1 Placebo 1 38 4
5.1 Placebo 1 52 5
6.1 Placebo 1 63 6

> str( lg )

'data.frame': 108 obs. of 4 variables:
$ gr : Factor w/ 2 levels "Placebo","Acupuncture": 1 1 1 1 1 1 1 1 1 1 ...
$ time : int 1 1 1 1 1 1 1 1 1 1 ...
$ score: num 59 53 46 38 52 63 30 73 44 48 ...
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
- attr(*, "reshapeLong")=List of 4
..$ varying:List of 1
.. ..$ score: chr "bl" "fu"
.. ..- attr(*, "v.names")= chr "score"
.. ..- attr(*, "times")= int 1 2
..$ v.names: chr "score"
..$ idvar : chr "id"
..$ timevar: chr "time"
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Figure 2.1: Follow-up versus baseline score for acupuncture data. Regression lines are from
the ANCOVA model, the horizontal dashed lines are the means of the follow-up data, and
the 45◦ dashed lines correspond to the analysis of the change scores — the change for each
person is the vertical distance to the identity line.
Note that the three lines of each color necessarily all pass through the point
(mean(bl),mean(fu)).

2.1.4.1 Unequal means at baseline

Fitting a model for the long-form data is easily done using lmer — we first fit the model
with baseline imbalance:

> library( lme4 )
> mr <- lmer( score ~ gr + gr:factor(time) + (1|id), data=lg )
> round( ci.lin( mr ), 2 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 53.93 2.99 18.03 0.00 48.06 59.79
grAcupuncture 6.47 4.31 1.50 0.13 -1.98 14.93
grPlacebo:factor(time)2 8.37 2.95 2.84 0.00 2.59 14.15
grAcupuncture:factor(time)2 19.20 3.06 6.27 0.00 13.20 25.20

Thus the acupuncture group has a mean at baseline which is 6.47 larger then the placebo
group; the change in the placebo group is 8.37, in the acupuncture group it is 19.20, the
difference thus 10.83, not far from the difference we saw in the conditional model.
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If we were to compare to the parameter estimated in the conditional model it should be
(1− ρ)δg + γg2. This formula refers to a slightly different parametrization:

> mR <- lmer( score ~ gr*factor(time) + (1|id), data=lg )
> round( ci.lin( mR ), 2 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 53.93 2.99 18.03 0.00 48.06 59.79
grAcupuncture 6.47 4.31 1.50 0.13 -1.98 14.93
factor(time)2 8.37 2.95 2.84 0.00 2.59 14.15
grAcupuncture:factor(time)2 10.83 4.25 2.55 0.01 2.50 19.16

The latter parametrization is the classical interaction parametrization; as above the change
in the placebo (reference) group is 8.37, but we how have the interaction parameter as the
difference in changes between groups, 10.83 = 19.20− 8.37, so we have γg2 = 10.83 and
δg = 6.47. The ρ is derived from the variance components (labeled Random effects) in the
model as ρ = τ 2/(τ 2 + σ2), τ 2 is the between-person variance, labeled (Intercept) and σ2

is the residual variance, labeled Residual.

> summary( mR )
Linear mixed model fit by REML ['lmerMod']
Formula: score ~ gr * factor(time) + (1 | id)

Data: lg

REML criterion at convergence: 830.1

Scaled residuals:
Min 1Q Median 3Q Max

-1.80685 -0.56741 0.01961 0.58225 1.69548

Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 124.2 11.14
Residual 117.3 10.83
Number of obs: 104, groups: id, 52

Fixed effects:
Estimate Std. Error t value

(Intercept) 53.926 2.991 18.031
grAcupuncture 6.474 4.313 1.501
factor(time)2 8.370 2.948 2.839
grAcupuncture:factor(time)2 10.830 4.252 2.547

Correlation of Fixed Effects:
(Intr) grAcpn fct()2

grAcupunctr -0.693
factor(tm)2 -0.493 0.342
grAcpnc:()2 0.342 -0.493 -0.693

But we can actually fish them out of the mR object, a lmerMod object. But it is very
clumsy.

> VarCorr( mR )
Groups Name Std.Dev.
id (Intercept) 11.143
Residual 10.832

> VarCorr( mR)

Groups Name Std.Dev.
id (Intercept) 11.143
Residual 10.832

> ( tausq <- as.numeric( VarCorr( mR )$id ) )

[1] 124.1719

> ( sigsq <- attr( VarCorr( mR ), "sc" )^2 )
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[1] 117.323

> ( rho <- tausq/(tausq+sigsq) )

[1] 0.5141802

Hence what we need to compute is:

> round( ci.lin( mR ), 2 )
Estimate StdErr z P 2.5% 97.5%

(Intercept) 53.93 2.99 18.03 0.00 48.06 59.79
grAcupuncture 6.47 4.31 1.50 0.13 -1.98 14.93
factor(time)2 8.37 2.95 2.84 0.00 2.59 14.15
grAcupuncture:factor(time)2 10.83 4.25 2.55 0.01 2.50 19.16

> round( cf <- fixef( mR ), 2 )

(Intercept) grAcupuncture factor(time)2
53.93 6.47 8.37

grAcupuncture:factor(time)2
10.83

> ( 1- rho ) * cf[2] + cf[4]

grAcupuncture
13.97486

— also a little bit from the 12.7 in the conditional model.

2.1.4.2 Identical means at baseline

Now if we fit a random effects model where we assume equal levels at baseline, that is the
model with δg = 0, we have a non-standard model. This is a model with no main effect of
g, but with a g× t interaction. In order to get this we must hand-code the interaction; here
the Relevel function (from the Epi package is used to merge the two baseline levels of the
g × t interaction):

> lg <- transform( lg, G2 = Relevel( interaction( gr, time ),
+ list( B=1:2 ) ) )
> with( lg, ftable( gr, time, G2 ) )

G2 B Placebo.2 Acupuncture.2
gr time
Placebo 1 27 0 0

2 0 27 0
Acupuncture 1 25 0 0

2 0 0 25

> ms <- lmer( score ~ G2 + (1|id), data=lg )
> round( ci.lin( ms ), 3 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 57.038 2.172 26.262 0.000 52.782 61.295
G2Placebo.2 6.873 2.780 2.472 0.013 1.423 12.322
G2Acupuncture.2 20.817 2.874 7.242 0.000 15.184 26.451

We would want not only the change in each group, but also the difference between them —
the intervention effect, so we use ci.lin for this:

> CM <- rbind( diag(3), c(0,-1,1) )
> rownames( CM ) <- c( names( fixef(ms) ), "Acp-eff" )
> round( ci.lin( ms, ctr.mat=CM ), 2 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 57.04 2.17 26.26 0.00 52.78 61.30
G2Placebo.2 6.87 2.78 2.47 0.01 1.42 12.32
G2Acupuncture.2 20.82 2.87 7.24 0.00 15.18 26.45
Acp-eff 13.94 3.72 3.75 0.00 6.66 21.23
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— and we see that in this dataset it makes very little difference whether we fit the baseline
difference or not. But this is no surprise since this is randomized study and the baseline
means are therefore expected be identical.

Treatment effect
from model: Estimate s.e. FU|BL

Conditional (ANCOVA) 12.71 4.29 12.71
Random effects:

identical baseline 13.94 3.72 13.94
different baseline 10.83 4.25 13.97

Change score difference 10.83 4.25
Follow-up difference 17.30 4.87

From the table we see that allowing for different baseline gives the same s.e. as the
conditional model but an estimate that deviates about 0.5 s.e., whereas the random effects
model with identical baseline between the groups has a slightly smaller s.e. and an
estimate that deviates about a third s.e., as well as a s.e. which is 15% smaller,

A fair summary would be that the three approaches in this case produces pretty much
the same results.

We also see that the random effects model allowing for different baseline between groups
produces an estimate which is identical to the analysis of the change-scores data. This is
because both models essentially are saturated interaction models, and they also produce
the same standard error of the effect.

The standard error of the intervention effect from the random effects model is
substantially smaller that the other ones. This is because the s.e. is based on the residual
sd. and the between-person variation is separated out.

2.2 Where do the differences come from?

Note that we had different baseline means in the two groups:

> gmn <- with( acp, tapply(bl,gr,mean) )
> c( gmn, df <- diff(gmn) )

Placebo Acupuncture Acupuncture
53.925926 60.400000 6.474074

Now suppose for the sage of the argument that the means had been exacly identical. We
can fix this by adding the difference between means to the basline in the placebo group,
and leaving everything else:

> acpx <- transform( acp, bl = bl + df*(gr=="Placebo") )
> gmn <- with( acpx, tapply(bl,gr,mean) )
> round( c( gmn, diff(gmn) ), 5 )

Placebo Acupuncture Acupuncture
60.4 60.4 0.0

What do we then get from the various approaches?

> ci.lin( lm( fu ~ gr , data=acpx ), subset="gr" )
Estimate StdErr z P 2.5% 97.5%

grAcupuncture 17.3037 4.872285 3.551455 0.0003831068 7.7542 26.85321

> ci.lin( lm( fu-bl ~ gr , data=acpx ), subset="gr" )
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Estimate StdErr z P 2.5% 97.5%
grAcupuncture 17.3037 4.251638 4.069891 4.703514e-05 8.970646 25.63676

> ci.lin( lm( fu ~ bl + gr, data=acpx ), subset="gr" )

Estimate StdErr z P 2.5% 97.5%
grAcupuncture 17.3037 4.158268 4.161277 3.164731e-05 9.153649 25.45376

So we see that the estimated treatment difference is precisely the sam in the three cases,
but the estimated s.e. is smallest for the ANCOVA approach. When we explicit contril for
the confoundr (baseline) which is not really a counfounder in this example.

And we can do the same with the random effects models:

> lgx <- reshape( acpx, varying=1:2, v.names="score", direction="long" )
> lgx <- transform( lgx, G2 = Relevel( interaction( gr, time ),
+ list( B=1:2 ) ) )
> round( ci.lin( lmer( score ~ gr*factor(time) + (1|id), data=lgx ) ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 60.4000 2.9907 20.1960 0.0000 54.5383 66.2617
grAcupuncture 0.0000 4.3132 0.0000 1.0000 -8.4538 8.4538
factor(time)2 1.8963 2.9480 0.6433 0.5201 -3.8816 7.6742
grAcupuncture:factor(time)2 17.3037 4.2516 4.0699 0.0000 8.9706 25.6368

> round( ci.lin( lmer( score ~ G2 + (1|id), data=lgx ) ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 60.4000 2.1416 28.2036 0.0000 56.2026 64.5974
G2Placebo.2 1.8963 2.7623 0.6865 0.4924 -3.5178 7.3104
G2Acupuncture.2 19.2000 2.8554 6.7242 0.0000 13.6036 24.7964

> round( ci.lin( lmer( score ~ G2 + (1|id), data=lgx ),
+ ctr.mat=rbind(diag(3),c(0,-1,1)) ), 4 )

Estimate StdErr z P 2.5% 97.5%
[1,] 60.4000 2.1416 28.2036 0.0000 56.2026 64.5974
[2,] 1.8963 2.7623 0.6865 0.4924 -3.5178 7.3104
[3,] 19.2000 2.8554 6.7242 0.0000 13.6036 24.7964
[4,] 17.3037 3.6858 4.6947 0.0000 10.0796 24.5278

Again we see that the random effects model allowing for baseline difference is equivalent to
analysis of change scores, whereas the model assuming equl baseline produces the same
estimate, but with a substantial smaller s.e. also as before. And for the same reason.

So we could say that including the baseline in the model as predictor is controlling for
base-line imbalance.

2.3 A simulation example

We set up a function to generate a wide dataset, and a subsequent function to make it
long:

> gen.data <-
+ function( tau = 15,
+ sigma = 5,
+ n1 = 50,
+ n2 = 50,
+ mu = 50,
+ beta = -5,
+ delta = 0,
+ gamma = 10 )
+ {
+ mB <- mu + rep( c(0,delta), c(n1,n2) )
+ mF <- mB + rep( c(0,gamma), c(n1,n2) ) + beta
+ ai <- rnorm( n1+n2, 0, tau )
+ yB <- rnorm( n1+n2, mB+ai, sigma )
+ yF <- rnorm( n1+n2, mF+ai, sigma )
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+ data.frame( yF, yB, bb=factor( rep(0:1,c(n1,n2)),
+ labels=c("Pl","Tr") ) )
+ }
> wd2long <-
+ function( ss )
+ {
+ n1 <- table( ss$bb )[1]
+ n2 <- table( ss$bb )[2]
+ data.frame( yy = with( ss, c( yB, yF ) ),
+ ii = rep( 1:(n1+n2), 2 ),
+ tt = factor( rep( 1:2, each=(n1+n2) ),
+ labels=c("Bl","FU") ),
+ bb = factor( rep ( rep(0:1,c(n1,n2)), 2 ),
+ labels=c("Pl","Tr") ) )
+ }

Once we have set up the functions we can simulate two data sets, both generated by the
same random effects model, but one restricted to only contain baseline measurements
above a certain quantile:

> set.seed( 724368 )
> n1 <- 50
> n2 <- 50
> ss <- gen.data( n1=n1, n2=n2, delta=0 )
> ll <- wd2long( ss )
> ff <- 4
> SS <- gen.data( n1=ff*n1, n2=ff*n2, delta=0 )
> SS <- subset( SS, yB > quantile( yB, 1-1/ff ) )
> LL <- wd2long( SS )
> cbind( ss=with( ss, table( bb ) ),
+ SS=with( SS, table( bb ) ) )

ss SS
Pl 50 52
Tr 50 48

Here is a graphical display of the two data sets

> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> with( ss, plot( yB, yF,
+ pch=16, col=c("limegreen","red")[bb],
+ xlim=c(0,100), ylim=c(0,100) ) )
> with( SS, plot( yB, yF,
+ pch=16, col=c("limegreen","red")[bb],
+ xlim=c(0,100), ylim=c(0,100) ) )

We can take a look at the results from the analyses of the two data sets, simulated with
a treatment effect of 10, a time effect of −5, and a baseline imbalance of 0.

> library( lme4 )
> library( Epi )
> round( ci.lin( lm( yF ~ yB + bb, data = ss ) ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 1.9150 2.1147 0.9056 0.3652 -2.2297 6.0597
yB 0.8731 0.0366 23.8613 0.0000 0.8014 0.9448
bbTr 8.8177 1.3919 6.3352 0.0000 6.0897 11.5458
> round( ci.lin( lmer( yy ~ tt + I((bb=="Tr")*(tt=="FU")) + (1|ii), data=ll ) ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 49.6626 1.8598 26.7025 0 46.0173 53.3078
ttFU -4.4627 1.0246 -4.3556 0 -6.4708 -2.4545
I((bb == "Tr") * (tt == "FU")) 8.9698 1.4346 6.2524 0 6.1580 11.7816
> round( ci.lin( lmer( yy ~ tt + bb + I((bb=="Tr")*(tt=="FU")) + (1|ii), data=ll ) ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 51.1978 2.6342 19.4360 0.0000 46.0349 56.3607
ttFU -4.5814 1.0347 -4.4278 0.0000 -6.6094 -2.5535
bbTr -3.0705 3.7253 -0.8242 0.4098 -10.3719 4.2309
I((bb == "Tr") * (tt == "FU")) 9.2073 1.4633 6.2922 0.0000 6.3394 12.0753
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Figure 2.2: Two data sets generated from the same base model, the latter restricted to those
with baseline above a threshold.

> round( ci.lin( lm( yF ~ yB + bb, data = SS ) ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 2.9059 6.1598 0.4718 0.6371 -9.1670 14.9789
yB 0.8856 0.0891 9.9352 0.0000 0.7109 1.0603
bbTr 8.1436 1.3447 6.0559 0.0000 5.5079 10.7792

> round( ci.lin( lmer( yy ~ tt + I((bb=="Tr")*(tt=="FU")) + (1|ii), data=LL ) ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 68.4222 0.8573 79.8138 0 66.7420 70.1024
ttFU -4.9450 0.8987 -5.5027 0 -6.7064 -3.1837
I((bb == "Tr") * (tt == "FU")) 8.1881 1.2396 6.6052 0 5.7584 10.6177

> round( ci.lin( lmer( yy ~ tt + bb + I((bb=="Tr")*(tt=="FU")) + (1|ii), data=LL ) ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 68.3122 1.1932 57.2503 0.0000 65.9735 70.6508
ttFU -4.9111 0.9346 -5.2546 0.0000 -6.7429 -3.0793
bbTr 0.2293 1.7223 0.1331 0.8941 -3.1463 3.6048
I((bb == "Tr") * (tt == "FU")) 8.1173 1.3490 6.0172 0.0000 5.4733 10.7614
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