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Inference in Multistate models

P.K. Andersen & N. Keiding
Interpretability and Importance of Functionals in Competing Risks
and Multistate Models, Stat Med, 2011 [1]:

1. Do not condition on the future

2. Do not regard individuals at risk after they have died

3. Stick to this world
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Conditioning on the future

I . . . also known as “Immortal time bias”, see e.g.
S. Suissa:
Immortal time bias in pharmaco-epidemiology, Am. J.
Epidemiol, 2008 [2].

I Wrongly including persons’ follow-up in the wrong state
(namely the one reached some time in the future).

I Frequently caused by classification of persons instead of
classification of follow-up time
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Immortal time bias

Yang et al.:
Associations of hyperglycemia and insulin usage with the risk of
cancer in type 2 diabetes: the Hong Kong diabetes registry,
Diabetes, 2010 [3]
. . . found that the RR of cancer associated with insulin use among
diabetes patients were 0.22 — very small indeed.

This was challenged [4] because person-years enumeration was
possible from the published tables.
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Why these mistakes?

I Time is absent from survival analysis results

I Time is taken to be a response variable observed for each
person

I Unit of analysis seems to be the person

I Persons classified by exposure

I The real unit of observation should be person-time
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Time

I Time is a covariate — determinant of rates

I Response variable in survival / follow-up is bivariate:

I Differences on the timescale (risk time, “exposure”)
I Events

I The relevant unit of observation is person-time:

I small intervals of follow-up — “empirical rates”
I (dit , yit): (event, (sojourn) time) for individual i at time t .
I y is the response time, t is the covariate time

I Covariates relate to each interval of follow-up

I Allows multiple timescales, e.g. age and disease duration.
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“Stick to this world”

In the paper by Andersen & Keiding this is primarily aimed at the
use of “net survival”, that is the calculation of

exp

(
−
∫ t

0

λc(s) ds

)
for a single cause of death
— formally for a non-exhustive exit rate from a state.

Corresponds to the survival probability in the situation where:

1. all other causes of death are absent
2. the mortality, λc from cause c is unchanged

. . . which is indeed not of this world.
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Sticking to this world

I Do not make predictions based on unrealistic assumptions:
1. Mortality is 0
2. Cancer rates as now

I or
1. Smallpox is eradicated
2. . . . yet mortality remains the same

I I postulate a specific feature of “this world”:
I — it is continuous
I — in particular, death and disease rates vary smoothly by

I age
I calendar time
I disease duration
I . . .
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A look at the Cox model

λ(t , x ) = λ0(t)× exp(x ′β)

A model for the rate as a function of t and x .

The covariate t has a special status:

I Computationally, because all individuals contribute to
(some of) the range of t .

I . . . the scale along which time is split (the risk sets)

I Conceptually it is less clear
— t is but a covariate that varies within individual.

I Cox’s approach profiles λ0(t) out.
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The Cox-likelihood as profile likelihood

I One parameter per death time to describe the effect of time
(i.e. the chosen timescale).

log
(
λ(t , xi)

)
= log

(
λ0(t)

)
+ β1x1i + · · ·+ βpxpi = αt + ηi

I Profile likelihood:
I Derive estimates of αt as function of data and βs

— assuming constant rate between death times
I Insert in likelihood, now only a function of data and βs
I Turns out to be Cox’s partial likelihood

11/ 62



The Cox-likelihood as profile likelihood

I One parameter per death time to describe the effect of time
(i.e. the chosen timescale).

log
(
λ(t , xi)

)
= log

(
λ0(t)

)
+ β1x1i + · · ·+ βpxpi = αt + ηi

I Profile likelihood:
I Derive estimates of αt as function of data and βs

— assuming constant rate between death times
I Insert in likelihood, now only a function of data and βs
I Turns out to be Cox’s partial likelihood

11/ 62



The Cox-likelihood as profile likelihood

I One parameter per death time to describe the effect of time
(i.e. the chosen timescale).

log
(
λ(t , xi)

)
= log

(
λ0(t)

)
+ β1x1i + · · ·+ βpxpi = αt + ηi

I Profile likelihood:
I Derive estimates of αt as function of data and βs

— assuming constant rate between death times
I Insert in likelihood, now only a function of data and βs
I Turns out to be Cox’s partial likelihood

11/ 62



The Cox-likelihood as profile likelihood

I One parameter per death time to describe the effect of time
(i.e. the chosen timescale).

log
(
λ(t , xi)

)
= log

(
λ0(t)

)
+ β1x1i + · · ·+ βpxpi = αt + ηi

I Profile likelihood:
I Derive estimates of αt as function of data and βs

— assuming constant rate between death times
I Insert in likelihood, now only a function of data and βs
I Turns out to be Cox’s partial likelihood

11/ 62



The Cox-likelihood as profile likelihood

I One parameter per death time to describe the effect of time
(i.e. the chosen timescale).

log
(
λ(t , xi)

)
= log

(
λ0(t)

)
+ β1x1i + · · ·+ βpxpi = αt + ηi

I Profile likelihood:
I Derive estimates of αt as function of data and βs

— assuming constant rate between death times
I Insert in likelihood, now only a function of data and βs
I Turns out to be Cox’s partial likelihood

11/ 62



Splitting the dataset

I The Poisson approach needs a dataset of empirical rates (d , y)
with suitably small values of y .

I — much larger than the original dataset
I — each individual contributes many empirical rates
I (one per risk-set contribution in Cox-modelling)
I From each empirical rate we get:

I Poisson-response d
I Risk time y
I Covariate value for the timescale

(time since entry, current age, current date, . . . )
I other covariates

I Modelling is by standard glm Poisson
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I Modelling is by standard glm Poisson

12/ 62



Splitting the dataset

I The Poisson approach needs a dataset of empirical rates (d , y)
with suitably small values of y .

I — much larger than the original dataset
I — each individual contributes many empirical rates
I (one per risk-set contribution in Cox-modelling)
I From each empirical rate we get:

I Poisson-response d
I Risk time y
I Covariate value for the timescale

(time since entry, current age, current date, . . . )
I other covariates

I Modelling is by standard glm Poisson

12/ 62



Example: Mayo Clinic lung cancer

I Survival after lung cancer

I Covariates:

I Age at diagnosis
I Sex
I Time since diagnosis

I Cox model

I Split data:

I Poisson model, time as factor
I Poisson model, time as spline
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Example: Mayo Clinic lung cancer I

> round( cmp, 5 )

age 2.5% 97.5% sex 2.5% 97.5%
Cox 1.01716 0.99894 1.03571 0.59896 0.43137 0.83165
Poisson-factor 1.01716 0.99894 1.03571 0.59896 0.43137 0.83165
Poisson-spline 1.01619 0.99803 1.03468 0.59983 0.43199 0.83287
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> mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10^-8, maxit=25 )

> CM <- cbind( 1, Ns( seq(10,1000,10)-5, knots=t.kn ), 60, 1 )
> lambda <- ci.exp( mLs.pois.sp, ctr.mat=CM )
> Lambda <- ci.cum( mLs.pois.sp, ctr.mat=CM, intl=10 )[,-4]
> survP <- exp(-rbind(0,Lambda))
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What the Cox-model really is

Taking the life-table approach ad absurdum by:

I dividing time very finely and

I modeling one covariate, the time-scale, with one parameter per
distinct value.

I ⇒ difficult to access the baseline hazard.

I ⇒ uninitiated tempted to show survival curves where irrelevant
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Modeling in this world

I Replace the αts by a parametric function f (t) with a limited
number of parameters, for example:

I Piecewise constant
I Splines (linear, quadratic or cubic)
I Fractional polynomials

I Brings model into “this world”:
I smoothly varying rates
I parametric closed form representation of baseline hazard
I finite no. of parameters

I Makes it really easy to use in calculations of
I expected residual life time
I state occupancy probabilities in multistate models
I . . .
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Tabulation of register data

Calendar time

A
ge

1943 1953 1963 1973 1983 1993
15

25

35

45

55

0
754.3

2
800.4

2
979.6

0
1053.5

1
956.4

2
946.0

4
1005.5

0
998.3

2
919.8

1
809.9

3
569.5

10
773.8

7
744.2

13
794.1

13
972.9

15
1051.5

33
961.0

35
952.5

37
1011.1

49
1005.0

51
929.8

41
670.2

30
813.0

31
744.7

46
721.8

49
770.9

55
960.3

85
1053.8

110
967.5

140
953.0

151
1019.7

150
1017.3

112
760.9

55
790.5

62
781.8

63
723.0

82
698.6

87
764.8

103
962.7

153
1056.1

201
960.9

214
956.2

268
1031.6

194
835.7

56
799.3

66
774.5

82
769.3

88
711.6

103
700.1

124
769.9

164
960.4

207
1045.3

209
955.0

258
957.1

251
821.2

53
769.4

56
782.9

56
760.2

67
760.5

99
711.6

124
702.3

142
767.5

152
951.9

188
1035.7

209
948.6

199
763.9

35
694.1

47
754.3

65
768.5

64
749.9

67
756.5

85
709.8

103
696.5

119
757.8

121
940.3

155
1023.7

126
754.5

29
622.1

30
676.7

37
737.9

54
753.5

45
738.1

64
746.4

63
698.2

66
682.4

92
743.1

86
923.4

96
817.8

16
539.4

28
600.3

22
653.9

27
715.4

46
732.7

36
718.3

50
724.2

49
675.5

61
660.8

64
721.1

51
701.5

6
471.0

14
512.8

16
571.1

25
622.5

26
680.8

29
698.2

28
683.8

43
686.4

42
640.9

34
627.7

45
544.8

403.3 435.1 474.7 528.0 573.4 626.8 643.3 628.0 629.8 590.7 464.1

Testis cancer cases
in Denmark.

Male person-years
in Denmark.
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Tabulation of register data

Calendar time

A
ge

1983 1984 1985 1986 1987 1988
30

31

32

33

34

35

209
955.0

Testis cancer cases in
Denmark.

Male person-years in
Denmark.
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Tabulation of register data

Calendar time

A
ge

1983 1984 1985 1986 1987 1988
30

31

32

33

34

35

7
38.1

7
38.1

5
38.0

8
38.1

14
38.3

3
38.2

9
38.1

7
38.0

5
38.0

9
38.1

10
38.2

8
38.3

9
38.2

6
38.0

7
38.0

9
38.1

11
38.2

10
38.3

5
38.8

12
38.1

7
37.9

13
38.0

8
38.1

8
38.2

13
40.3

8
38.7

4
38.0

6
37.9

11
38.0

11
38.1

8
42.3

12
40.2

5
38.7

5
38.0

11
37.9

6
38.0

1988

35

Testis cancer cases in
Denmark.

Male person-years in
Denmark.
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Tabulation of register data

Calendar time

A
ge

1983 1984 1985 1986 1987 1988
30

31

32

33

34

35

5 1 1 3 10 0
19.0

6
19.2

4
18.9

5
19.0

4
19.2

3
19.2 19.1

6
19.1

0
19.1

1
18.9

4
19.2

3
19.2

6
19.1

19.0
7

18.9
4

19.2
5

18.9
7

19.0
2

19.2 19.2

6
18.9

3
19.0

4
19.1

5
18.9

6
19.2

6
19.2

19.3
3

19.0
3

18.9
4

19.1
5

19.0
4

19.1 19.2

3
19.1

6
18.8

3
19.0

8
19.1

3
18.9

2
19.2

19.7
6

19.2
4

18.9
5

18.9
5

19.2
6

19.0 19.0

7
19.3

4
19.1

3
18.8

3
19.0

8
19.1

4
18.9

21.0
4

19.7
1

19.2
3

18.9
3

18.9
7

19.2 19.0

4
20.1

8
19.2

2
19.0

2
18.8

5
19.1

2
19.1

22.2
4

20.9
3

19.6
3

19.2
6

18.9
4

18.9 19.2 Testis cancer cases in
Denmark.

Male person-years in
Denmark.

Subdivision by year of
birth (cohort).
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Tabulation by age, period and cohort

Period

A
ge

1982 1983 1984 1985
0

1

2

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

19792
3

19801
3

19802
3

19811
3

19812
3

19821
3

19822
3

19831
3

19832
3

19841
3

19821
3

19822
3

19831
3

19832
3

19841
3

19842
3

1
3

2
3

11
3

12
3

21
3

22
3

Gives triangular sets with
differing mean age,
period and cohort:

These correct midpoints
for age, period and
cohort must be used in
modelling.
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Model for triangular data

I One parameter per distinct value on each timescale.

I Example: 4 age-classes and 4 periods would give 32
observations and 30 parameters

I 8 age parameters
I 8 period parameters
I 14 cohort parameters

I Model:
log(λap) = αa + βp + γc

I . . . only 26 parameters identifiable.
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Problem: Disconnected design!

Log-likelihood contribution from one triangle:

Daplog(λap)−λapYap = Dap(αa + βp + γc)− exp(αa + βp + γc)Yap

The total log-likelihood can be separated:∑
a,p ∈

Daplog(λap)− λapYap +
∑

a,p ∈

Daplog(λap)− λapYap

No common parameters between terms — two separate models:
One for upper triangles, one for lower.
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Illustration by Danish lung cancer data

> library( Epi )
> data( lungDK )
> lungDK[1:10,]

A5 P5 C5 up Ax Px Cx D Y
1 40 1943 1898 1 43.33333 1944.667 1901.333 52 336233.8
2 40 1943 1903 0 41.66667 1946.333 1904.667 28 357812.7
3 40 1948 1903 1 43.33333 1949.667 1906.333 51 363783.7
4 40 1948 1908 0 41.66667 1951.333 1909.667 30 390985.8
5 40 1953 1908 1 43.33333 1954.667 1911.333 50 391925.3
6 40 1953 1913 0 41.66667 1956.333 1914.667 23 377515.3
7 40 1958 1913 1 43.33333 1959.667 1916.333 56 365575.5
8 40 1958 1918 0 41.66667 1961.333 1919.667 43 383689.0
9 40 1963 1918 1 43.33333 1964.667 1921.333 44 385878.5
10 40 1963 1923 0 41.66667 1966.333 1924.667 38 371361.5
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Now, separately fit models for upper and lower triangles:

> mx.u <- glm( D ~ factor(Ax) - 1 +
+ factor(Cx) +
+ factor(Px) + offset( log( Y/10^5 ) ), family=poisson,
+ data=lungDK[lungDK$up==1,] )
> mx.l <- glm( D ~ factor(Ax) - 1 +
+ factor(Cx) +
+ factor(Px) + offset( log( Y/10^5 ) ), family=poisson,
+ data=lungDK[lungDK$up==0,] )
> mx$deviance
[1] 284.7269
> mx.l$deviance
[1] 134.4566
> mx.u$deviance
[1] 150.2703
> mx.l$deviance+mx.u$deviance
[1] 284.7269
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What’s the problem?

I One parameter is assigned to each distinct value of the
timescales:

I ordering and position of the observations on the scales is not
used in the modelling

I — the exchangeability assumption again
I Solution: model effects with smooth functions of the mean

age, period and cohort with three functions:

λap = f (a) + g(p) + h(c)

I Fixes the problem with non-equidistant age, period and cohort
classes

I The practical problem is how to choose a reasonable
parametrization of these functions, and how to get estimates,
because. . .
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The identifiability problem still exists:

c = p − a ⇔ p − a − c = 0

λap = f (a) + g(p) + h(c)

= f (a) + g(p) + h(c) + γ(p − a − c)

= f (a) − µa − γa +

g(p) + µa + µc + γp +

h(c) − µc − γc

A decision on parametrization is needed.
It must be external to the model.
. . . and is alien to the chosen parametrization of the APC-effects

34/ 62



The identifiability problem still exists:

c = p − a ⇔ p − a − c = 0

λap = f (a) + g(p) + h(c)

= f (a) + g(p) + h(c) + γ(p − a − c)

= f (a) − µa − γa +

g(p) + µa + µc + γp +

h(c) − µc − γc

A decision on parametrization is needed.
It must be external to the model.
. . . and is alien to the chosen parametrization of the APC-effects

34/ 62



The identifiability problem still exists:

c = p − a ⇔ p − a − c = 0

λap = f (a) + g(p) + h(c)

= f (a) + g(p) + h(c) + γ(p − a − c)

= f (a) − µa − γa +

g(p) + µa + µc + γp +

h(c) − µc − γc

A decision on parametrization is needed.
It must be external to the model.
. . . and is alien to the chosen parametrization of the APC-effects

34/ 62



The identifiability problem still exists:

c = p − a ⇔ p − a − c = 0

λap = f (a) + g(p) + h(c)

= f (a) + g(p) + h(c) + γ(p − a − c)

= f (a) − µa − γa +

g(p) + µa + µc + γp +

h(c) − µc − γc

A decision on parametrization is needed.
It must be external to the model.
. . . and is alien to the chosen parametrization of the APC-effects

34/ 62



Parametrization principle

1. The age-function should be interpretable as log age-specific
rates in cohort c0 after adjustment for the period effect.

2. The cohort function is 0 at a reference cohort c0, interpretable
as log-RR relative to cohort c0.

3. The period function is 0 on average with 0 slope, interpretable
as log-RR relative to the age-cohort prediction. (residual
log-RR).
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Implementation:

1. Obtain any set of parameters f̂ (a), ĝ(p), ĥ(c).
2. Extract the trend from the period effect:

g̃(p) = ĝ(p)− (µ+ βp)

3. Then use the functions:

f̃ (a) = f̂ (a) + µ + βa + ĥ(c0) + βc0
g̃(p) = ĝ(p) − µ − βp
h̃(c) = ĥ(c) + βc − ĥ(c0) − βc0

4. Extracting trend requires an inner product to project colums

of g(p) on the orthogonal of (1
...p), in the literature implicitly

assumed to be induced by the identity, — a bold assumption
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How to?

Implemented in apc.fit in the Epi package

m1 <- apc.fit( A=lungDK$Ax,
P=lungDK$Px,
D=lungDK$D,
Y=lungDK$Y/10^5,

ref.c=1900 )
apc.plot( m1 )

Consult the help page for details.
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Joint occurrence of Diabetes and Cancer
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Joint occurrence of Diabetes and Cancer
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Predicted rates — cross-sectional 1995–2010
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0.02

0.05

0.1

0.2

0.5

1

2

5

10

20

50

100

200
DM to DM−Ca Well to DM Ca to Ca−DM

Well to D−W

20 40 60 80 100

0.2

0.5

1

2

5

10

20

50

100

200

500

1000

2000
DM to D−DM

20 40 60 80 100

Ca to D−Ca

20 40 60 80 100

DM−Ca to D−DC

20 40 60 80 100

Ca−DM to D−CD

20 40 60 80 100

Age (years)

In
ci

de
nc

e 
ra

te
s 

(p
er

 1
00

0 
P

Y
)

M
or

ta
lit

y 
ra

te
s 

(p
er

 1
00

0 
P

Y
)

Well to Ca

0.02

0.05

0.1

0.2

0.5

1

2

5

10

20

50

100

200
DM to DM−Ca Well to DM Ca to Ca−DM

Well to D−W

20 40 60 80 100

0.2

0.5

1

2

5

10

20

50

100

200

500

1000

2000
DM to D−DM

20 40 60 80 100

Ca to D−Ca

20 40 60 80 100

DM−Ca to D−DC

20 40 60 80 100

Ca−DM to D−CD

20 40 60 80 100

Age (years)

In
ci

de
nc

e 
ra

te
s 

(p
er

 1
00

0 
P

Y
)

M
or

ta
lit

y 
ra

te
s 

(p
er

 1
00

0 
P

Y
)

43/ 62



Continuous rates

1-month cumulative rates → transition probabilities(
1− exp

(
−(Λ1 + Λ2 + Λ3)

))
× Λi/(Λ1 + Λ2 + Λ3), i = 1, 2, 3

1-month transition probabilities (×104) at age 66 years:

to
from Well DM DM-Ca Ca Ca-DM D-W D-DM D-Ca D-DC D-CD Sum
Well 9966 8 . 13 . 14 . . . . 10000
DM . 9943 16 . . . 41 . . . 10000
DM-Ca . . 9582 . . . . . 418 . 10000
Ca . . . 9819 9 . . 172 . . 10000
Ca-DM . . . . 9866 . . . . 134 10000
D-W . . . . . 10000 . . . . 10000
D-DM . . . . . . 10000 . . . 10000
D-Ca . . . . . . . 10000 . . 10000
D-DC . . . . . . . . 10000 . 10000
D-CD . . . . . . . . . 10000 10000
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Lifetime
risk
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Trend in
lifetime
risk
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Continuous time rates

I Transition rates between states:

I based on 1-year tabulation of data
I age-period-cohort models
I using smooth effects of age, period and cohort

I State probabilities simple closed-form function of rates

I Numerical integration of known functions trivial

I Matrix multiplication trivial

All simplified by a parametric form for rates as function of time
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Markov property: Empirical question

Model for mortality rates:

I t time since transplant

I r time since relapse (if relapsed)

I tr time from transplant to relapse

I Fit the model for all transitions:

I split follow-up time
I fit Poisson model with covariates
I and spline terms for each time scale.

I Lexis machinery from the Epi package for R

I . . . for representation and manipulation of follow-up data.
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Using the Lexis machinery [6, 7]

cmlT <- Lexis(entry = list(cal = cal.yr(dot),
age = cal.yr(dot)-cal.yr(dob),
tst = 0),

exit = list(cal = cal.yr(dof)),
exit.status = dead,

states = c("Transplant","Dead"),
data = cml )

cmlL <- cutLexis( cmlT, cut = cal.yr(cmlT$dor),
new.state = "Relapse",
new.scale = "tsr",

precursor.states = "Transplant")

> subset( cmlL, lex.id==151 )[,1:8]

id cal age tst tsr lex.dur lex.Cst lex.Xst covariates
151 1987.28 36.22 0.00 NA 1.87 Trans Relap ...
151 1989.16 38.10 1.87 0 4.93 Relap Dead ...
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log(µ) = h(t)+k(r)+g(t − r) + Xβ
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Model summary

I Mortality of relapsed patients depends on
when they relapsed.

I We also checked if the mortality depended on
time since they relapsed.
It did not.

I Note: It is an empirical question what timescales to use.

I Note: In order to compute probabilities, we need a model for
the relapse rates (λ) in addition to the mortality rates (µT , µR)

I . . . unfortunately not a Markov model
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Not Markov: the hard way

P {T at t} =exp
(
−
∫ t

0

λ(s) + µT (s) ds
)

P {D(T) at t} =
∫ t

0

µT (s)exp
(
−
∫ s

0

λ(u) + µT (u) du
)
ds

P {R at t} =
∫ t

0

P {Relapsed at s}

× P {Survive in Relapse from s to t} ds

=

∫ t

0

λ(s)exp
(
−
∫ s

0

λ(u) + µT (u) du
)

× exp
(
−
∫ t

s

µR(u, s) du
)
ds

P {D(R) at t} =1− P {T at t} − P {D(T) at t} − P {R at t} 58/ 62
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Summary & Conclusions

I The world is continuous

I Effects of time likely to be continuously, smoothly varying

I Continuous time formulae easiest to handle

I Statistical models should reflect this:

I Parametric form of time-effects allow direct implementation of
probability theory

I Corrolary: Choice of time scales is an empirical problem

I Reporting of models should reflect this

I Stick to this world: Fewer tables — more graphs!

Thanks for your attention
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