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» ...also known as “Immortal time bias", see e.g.
S. Suissa:
Immortal time bias in pharmaco-epidemiology, Am. J.
Epidemiol, 2008 [2].

» Wrongly including persons’ follow-up in the wrong state
(namely the one reached some time in the future).

» Frequently caused by classification of persons instead of
classification of follow-up time
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Immortal time bias

Yang et al.:

Associations of hyperglycemia and insulin usage with the risk of
cancer in type 2 diabetes: the Hong Kong diabetes registry,
Diabetes, 2010 [3]

... found that the RR of cancer associated with insulin use among
diabetes patients were 0.22 — very small indeed.

This was challenged [4] because person-years enumeration was
possible from the published tables.
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Why these mistakes?

» Time is absent from survival analysis results

v

Time is taken to be a response variable observed for each
person

v

Unit of analysis seems to be the person

v

Persons classified by exposure

v

The real unit of observation should be person-time
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Time is a covariate — determinant of rates
Response variable in survival / follow-up is bivariate:

» Differences on the timescale (risk time, “exposure”)
» Events

The relevant unit of observation is person-time:

» small intervals of follow-up — “empirical rates”
> (dit, yit): (event, (sojourn) time) for individual 7 at time t.
» 1 is the response time, t is the covariate time

Covariates relate to each interval of follow-up

Allows multiple timescales, e.g. age and disease duration.
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“Stick to this world”

In the paper by Andersen & Keiding this is primarily aimed at the
use of “net survival”, that is the calculation of

ow (- | As) )

for a single cause of death
— formally for a non-exhustive exit rate from a state.

Corresponds to the survival probability in the situation where:

1. all other causes of death are absent
2. the mortality, A, from cause ¢ is unchanged

... which is indeed not of this world.
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Computationally, because all individuals contribute to
(some of) the range of t.

v

... the scale along which time is split (the risk sets)

Conceptually it is less clear
— t is but a covariate that varies within individual.

v

v

Cox's approach profiles (%) out.
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The Cox-likelihood as profile likelihood

» One parameter per death time to describe the effect of time
(i.e. the chosen timescale).

log()\(t, xz)) = log()\o(t)) + Biwni + -+ Bprpi = + 1

» Profile likelihood:
» Derive estimates of «; as function of data and (s
— assuming constant rate between death times
» Insert in likelihood, now only a function of data and s
» Turns out to be Cox's partial likelihood
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(one per risk-set contribution in Cox-modelling)

From each empirical rate we get:

» Poisson-response d
» Risk time y
» Covariate value for the timescale
(time since entry, current age, current date, .. )
» other covariates
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Modelling is by standard glm Poisson
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Example: Mayo Clinic lung cancer

» Survival after lung cancer
» Covariates:

» Age at diagnosis
» Sex
» Time since diagnosis

» Cox model
» Split data:

» Poisson model, time as factor
» Poisson model, time as spline
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Example: Mayo Clinic lung cancer |

> round( cmp, 5 )

age 2.5% 97.5% sex 2.5% 97.5%
Cox 1.01716 0.99894 1.03571 0.59896 0.43137 0.83165
Poisson-factor 1.01716 0.99894 1.03571 0.59896 0.43137 0.83165
Poisson-spline 1.01619 0.99803 1.03468 0.59983 0.43199 0.83287
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+ 4+ + Vv

vV Vv Vv Vv

mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +
age + factor( sex ),
offset = log(lex.dur),
family=poisson, data=Lung.s, eps=10"-8, maxit=25 )

CM <- cbind( 1, Ns( seq(10,1000,10)-5, knots=t.kn ), 60, 1 )
lambda <- ci.exp( mLs.pois.sp, ctr.mat=CM )

Lambda <- ci.cum( mLs.pois.sp, ctr.mat=CM, intl=10 )[,-4]
survP <- exp(-rbind(0,Lambda))
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What the Cox-model really is
Taking the life-table approach ad absurdum by:

» dividing time very finely and

» modeling one covariate, the time-scale, with one parameter per
distinct value.

» = difficult to access the baseline hazard.

» = uninitiated tempted to show survival curves where irrelevant
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Tabulation

of register data

6 14 16 25 26 29 28 43 2 34 5
4710 5128 | 5711 6225 6808 6982 6838 6864 6409 6277 @ 544.8
55
16 28 22 27 46 36 50 49 61 64 51
5304 6003 6539 7154 7327 7183 7242 | 6755 6608 7211 7015
20 30 37 54 45 64 63 66 92 86 9%
6221 | 6767 | 737.9 7535 7381 7464 6982 6824 | 7431 9234  817.9
45—
35 a7 65 64 67 85 | 103 | 119 | 121 | 155 | 126
6941 7543 | 7685 7499 7565 7098 6965 757.8 | 940.3  1023.7 754
g 53 56 56 67 99 | 124 142 | 152 | 188 | 209 199
£ 7694 | 7829 | 7602 7605 7116 7023 7675 9519 10357 9486  763.9
35
56 66 82 88 | 103 124 | 164 | 207 | 209 258 251
7993 | 7745 | 7693 7116 7001  769.9 9604 10453 9550 & 9571  821.2)
55 62 63 82 87 | 108 153 | 201 | 214 | 268 194
7905 7818 | 7230 6986 7648 9627 10561 960.9 | 956.2 | 10316 8357
25
30 31 46 49 55 85 | 110 140 151 | 150 | 112
8130 7447 | 721.8 7709 9603 10538 967.5 9530  1019.7 1017.3 760.9
10 7 13 13 15 33 35 37 29 51 a
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Calendar time

Testis cancer cases
in Denmark.

Male person-years
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Tabulation

of register data

6 14 16 25 26 29 28 43 2 34 5
4710 5128 | 5711 6225 6808 6982 6838 6864 6409 6277 @ 544.8
55
16 28 22 27 46 36 50 49 61 64 51
5304 6003 6539 7154 7327 7183 7242 | 6755 6608 7211 7015
20 30 37 54 45 64 63 66 92 86 9%
6221 | 6767 | 737.9 7535 7381 7464 6982 6824 | 7431 9234  817.9
45—
35 a7 65 64 67 85 | 103 | 119 | 121 | 155 | 126
6941 7543 | 7685 7499 7565 7098 6965 757.8 | 940.3  1023.7 754
g 53 56 56 67 99 | 124 142 | 152 | 188 | 209 199
£ 7694 | 7829 | 7602 7605 7116 7023 7675 9519 10357 9486  763.9
35
56 66 82 88 | 103 124 164 | 207 | 200 | 258 = 251
7993 | 7745 | 7693 7116 7001  769.9 9604 10453 | 9550 | 9571 | 821.2)
55 62 63 82 87 | 108 153 | 201 | 214 | 268 194
7905 7818 | 7230 6986 7648 9627 10561 960.9 | 956.2 | 10316 8357
25
30 31 46 49 55 85 | 110 140 151 | 150 | 112
8130 7447 | 721.8 7709 9603 10538 967.5 9530  1019.7 1017.3 760.9
10 7 13 13 15 33 35 37 29 51 a
7738 7442 7941 9729 10515 9610 9525 | 1011.1 10050 929.8 = 670.2
15 T T T T
1943 1953 1963 1973 1983 1993

Calendar time

Testis cancer cases
in Denmark.

Male person-years
in Denmark.
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Tabglation of register data

34

33

Age

32

31

30

209
955.0

Testis cancer cases in
Denmark.

Male person-years in
Denmark.

1983

1
1984

1 1 1
1985 1986 1987

Calendar time

1988
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Tabglation of register data

12 5 5 11 6 TeStIS cancer cases In
40.2 38.7 38.0 37.9 38.0
Denmark.
34—
8 4 6 11 11 .
38.7 38.0 37.9 38.0 38.1 Male person-years in
33+ Denmark.
g, 12 7 13 8 8
< 38.1 37.9 38.0 38.1 38.2
32
6 7 9 11 10
38.0 38.0 38.1 38.2 38.3
31
7 5 9 10 8
38.0 38.0 38.1 38.2 38.3
30 T T T T
1983 1984 1985 1986 1987 1988

Calendar time
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Tabglation of register data

4 3 3 6 4 . .
20.9 196 19.2 18.9 189 TeStIS cancer cases In
8 2 2 5 2
19.2 19.0 18.8 19.1 19.1 Den mark
34 ’
4 1 3 3 7
19.7 19.2 18.9 18.9 19.2 .
4 3 3 8 4 Male person-years in
19.1 18.8 19.0 191 18.9
33+ Denmark.
6 4 5 5 6
g 19.2 18.9 18.9 19.2 19.0
g 6 3 8 3 2 L.
18.8 19.0 19.1 18.9 19.2 SUdeVISIOﬂ by year of
32
3 3 4 5 4 blrth (Cohort).
19.0 18.9 19.1 19.0 19.1
3 4 5 6 6
19.0 19.1 18.9 19.2 19.2
31
7 4 5 7 2
18.9 192 18.9 19.0 19.2
0 1 4 3 6
19.1 18.9 19.2 19.2 19.1
30 T T T T
1983 1984 1985 1986 1987 1088

Calendar time 24/ 62



Tabulation by age, period and cohort

Age

2 1 2 1 2

5 19792 19801 19802 19811 19812

2 1
22 19825

1 2
22 19822
2

2 1
1 1983%

1 2
13 19832
1

2 1

H 19842

1

3
0

1982 19827 19827 qgg3 19837 10837 1ggq 19847 19842 19gg

Period

Gives triangular sets with
differing mean age,
period and cohort:

These correct midpoints
for age, period and
cohort must be used in
modelling.
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Model for triangular data

» One parameter per distinct value on each timescale.
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Model for triangular data

» One parameter per distinct value on each timescale.

» Example: 4 age-classes and 4 periods would give 32
observations and 30 parameters

» 8 age parameters
» 8 period parameters
» 14 cohort parameters

» Model:
log()\ap) = Q4+ Bp + Ve

» ...only 26 parameters identifiable.

26/ 62



Problem: Disconnected design!

Log-likelihood contribution from one triangle:

Dyplog(Aap) — Aap Yap = Dap(a + By +7¢) —exp(ag + By +ve) Yap
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Problem: Disconnected design!

Log-likelihood contribution from one triangle:

Diyplog(Map) — Aap Yap = Dap(aa + By +7¢) — exp(aa + By +7e) Yap

The total log-likelihood can be separated:

> Dylog(Aey) = Ay Yap + Y Dplog(Aap) — Aap Yap

a,pel/ a,ped
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Problem: Disconnected design!
Log-likelihood contribution from one triangle:
Daplog(Aap) = Aap Yap = Dap(cta + By + ) — expleg + By +7e) Yap

The total log-likelihood can be separated:

> Dylog(Aey) = Ay Yap + Y Dplog(Aap) — Aap Yap

a,pel/ a,ped

No common parameters between terms — two separate models:
One for upper triangles, one for lower.
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lllustration by Danish lung cancer data

> library( Epi )
> data( lungDK )
> lungDK[1:10,]
A5 P5 Chu
40 1943 1898
40 1943 1903
40 1948 1903
40 1948 1908
40 1953 1908
40 1953 1913
40 1958 1913
40 1958 1918
40 1963 1918
0 40 1963 1923

= O 00N O WN -
OFRrPrOFrRrROFRrROFR,ORT

43.
41.
43.
41.
43.
41.
43.
41.
43.
41.

Ax
33333
66667
33333
66667
33333
66667
33333
66667
33333
66667

1944.
1946.
1949.
1951.
1954.
1956.
1959.
1961.
1964 .
1966.

Px
667
333
667
333
667
333
667
333
667
333

1901

1911

1914.
1916.
1919.
.333
1924.

1921

Cx

.333
1904 .
1906.
1909.
.333

667
333
667

667
333
667

667

D
52
28
51
30
50
23
56
43
44
38

336233.
357812.
363783.
390985.
391925.
377515.
365575.
383689.
385878.
371361.

OO0 WwOo NN W=
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Rate per 100,000
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Now, separately fit models for upper and lower triangles:

> mx.u <- glm( D ~ factor(Ax) - 1 +

+ factor(Cx) +

+ factor(Px) + offset( log( Y/10°5 ) ), family=poisson,
+ data=1lungDK [lungDK$up==1,] )

> mx.l <- glm( D ~ factor(Ax) - 1 +

+ factor(Cx) +

+ factor(Px) + offset( log( Y/10°5 ) ), family=poisson,
data=1lungDK [lungDK$up==0,] )

+

> mx$deviance

[1] 284.7269

> mx.1l$deviance

[1] 134.4566

> mx.u$deviance

[1] 150.2703

> mx.l$deviance+mx.u$deviance
[1] 284.7269
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What'’s the problem?

» One parameter is assigned to each distinct value of the
timescales:
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What's the problem?

>

One parameter is assigned to each distinct value of the
timescales:

ordering and position of the observations on the scales is not
used in the modelling

— the exchangeability assumption again

Solution: model effects with smooth functions of the mean
age, period and cohort with three functions:

)\ap = f(a’) + g(p) + h(C)

Fixes the problem with non-equidistant age, period and cohort
classes

The practical problem is how to choose a reasonable
parametrization of these functions, and how to get estimates, i«



The identifiability problem still exists:

c=p—a & p—a—c=0
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The identifiability problem still exists:

c=p—a & p—a—c=0

Ny =

- Me — 7C

A decision on parametrization is needed.
It must be external to the model.

...and is alien to the chosen parametrization of the APC-effects
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Parametrization principle

1. The age-function should be interpretable as log age-specific
rates in cohort ¢y after adjustment for the period effect.
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Parametrization principle

1.

The age-function should be interpretable as log age-specific
rates in cohort ¢y after adjustment for the period effect.

The cohort function is 0 at a reference cohort ¢y, interpretable
as log-RR relative to cohort ¢y.
The period function is 0 on average with 0 slope, interpretable

as log-RR relative to the age-cohort prediction. (residual
log-RR).
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Implementation:
1. Obtain any set of parameters f(a), §(p), h(c).
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Implementation:

1. Obtain any set of parameters f(a), §(p), h(c).
2. Extract the trend from the period effect:

9(p) = 9(p) — (u+ Bp)
3. Then use the functions:

fla)=f(a) + p+ Ba+ h(c) + Beo
(p)=9(p) —n—PBp

g
h(c) = h(c) + B¢ — h(e) — Bey
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Implementation:

1.
2.

Obtain any set of parameters f(a), §(p), h(c).
Extract the trend from the period effect:
9(p) = 4(p) — (n+ Bp)
Then use the functions:
fa) =f(a) + p+ Ba+ h(co) + Beo
9(p)=9(p) —p—=Bp
h(c) = h(c) + B¢ — h(cy) — B
Extracting trend requires an inner product to project colums
of g(p) on the orthogonal of (1ip)
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Implementation:

1.
2.

Obtain any set of parameters f(a), §(p), h(c).
Extract the trend from the period effect:

9(p) = 9(p) — (n+ Bp)
Then use the functions:
fa) =f(a) + p+ Ba+ h(co) + Beo
9(p)=9(p) —p—=Bp
h(c) = h(c) + Bc — h(cy) — Bey
Extracting trend requires an inner product to project colums

of g(p) on the orthogonal of (1:p), in the literature implicitly
assumed to be induced by the identity, — a bold assumption

36/ 62



How to?

Implemented in apc.fit in the Epi package

ml <- apc.fit( A=lungDK$Ax,
P=1ungDK$Px,
D=1ungDK$D,
Y=1ungDK$Y/1075,
ref.c=1900 )
apc.plot( m1 )

Consult the help page for details.
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Joint occurrence of Diabetes and Cancer
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Joint occurrence of Diabetes and Cancer
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Incidence rates per 1000 PY
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Predicted rates — cross-sectional 1995-2010
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Continuous rates

1-month cumulative rates — transition probabilities

(1 — exp(—(As + Ay + Ag))) A/ (A1+ Ao+ Ag),i=1,2,3

1-month transition probabilities (x10*) at age 66 years:

to
from Well DM DM-Ca
Well 9966 8 . 13
DM . 9943 16
DM-Ca 9582
Ca . . . 9819
Ca-DM
D-W
D-DM
D-Ca
D-DC
D-CD

Ca Ca-DM

D-Ww D-DM D-Ca D-DC
14 .

41 .

. 418

172 .

. 10000

. 10000 .
. 10000 .
. 10000

D-CD Sum
. 10000

. 10000

. 10000

. 10000
134 10000
. 10000

. 10000

. 10000
10000

. 10000 10000
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Lifetime
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Continuous time rates

» Transition rates between states:
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Continuous time rates

» Transition rates between states:

» based on 1-year tabulation of data
» age-period-cohort models
» using smooth effects of age, period and cohort

» State probabilities simple closed-form function of rates
» Numerical integration of known functions trivial
» Matrix multiplication trivial

All simplified by a parametric form for rates as function of time
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EBMT transplant data

lacobelli & Carstensen: Multistate Models with Multiple Timescales, Stat Med 2013, [5]

Trans
30,504.1

2,246
(7.4) Relap
*| 6,065
3,683
12.1
( ) 1,076
(17.6)
Dead
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EBMT transplant data

lacobelli & Carstensen: Multistate Models with Multiple Timescales, Stat Med 2013, [5]

Trans
30,504.1
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Dead(Tr)
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(7.4)
A

Relap
6,106.5
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EBMT transplant data

lacobelli & Carstensen: Multistate Models with Multiple Timescales, Stat Med 2013, [5]

Trans
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EBMT transplant data
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Trans
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EBMT transplant data

lacobelli & Carstensen: Multistate Models with Multiple Timescales, Stat Med 2013, [5]

Trans
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3,683

() (12.1)

Dead(Tr)

2,246

0

Relap
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EBMT transplant data

lacobelli & Carstensen: Multistate Models with Multiple Timescales, Stat Med 2013, [5]

2,246
Trans 7.4 Relap
30,504.1 )\(t) 6,106.5
3,683 1,076
(12.1) (17.6)
pr(t) Hr(t. T, tr)
Dead(Tr) Dead(Relap)

other covariates: Age and date at Tx, sex, donor type, CML type
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Markov property: Empirical question
Model for mortality rates:

» ¢ time since transplant
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Markov property: Empirical question
Model for mortality rates:

» 1 time since transplant
7 time since relapse (if relapsed)

v

t, time from transplant to relapse

v

Fit the model for all transitions:

v

» split follow-up time
» fit Poisson model with covariates
» and spline terms for each time scale.

Lexis machinery from the Epi package for R

v

v

... for representation and manipulation of follow-up data.
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Using the Lexis machinery [6, 7]

cmlT <- Lexis(entry = list(cal = cal.yr(dot),

age = cal.yr(dot)-cal.yr(dob),
tst = 0),
exit = list(cal = cal.yr(dof)),
exit.status = dead,
states = c("Transplant","Dead"),
data = cml )

cmll <- cutLexis( cmlT, cut
new.state

new.scale

precursor.states

cal.yr(cmlT$dor),
"Relapse",

"tSr" s
"Transplant")

> subset( cmlL, lex.id==151 )[,1:8]
id cal age tst tsr lex.dur lex.Cst lex.Xst covariates

151 1987.28 36.22 0.00 NA 1.87 Trans Relap
151 1989.16 38.10 1.87 O 4.93 Relap Dead
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Mortality rate per 1000 PY

log(p) = h(t)+k(r)+g(t —r)+ Xp
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log(p) = h(1)+k(r)

+ Xp
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Model summary

» Mortality of relapsed patients depends on
when they relapsed.

57/ 62



Model summary

» Mortality of relapsed patients depends on
when they relapsed.

» We also checked if the mortality depended on
time since they relapsed.
It did not.

57/ 62



Model summary
» Mortality of relapsed patients depends on
when they relapsed.

» We also checked if the mortality depended on
time since they relapsed.
It did not.

» Note: It is an empirical question what timescales to use.

57/ 62



Model summary

» Mortality of relapsed patients depends on
when they relapsed.

» We also checked if the mortality depended on
time since they relapsed.
It did not.

» Note: It is an empirical question what timescales to use.

» Note: In order to compute probabilities, we need a model for
the relapse rates () in addition to the mortality rates (u 7, ir)

57/ 62



Model summary

>

v

Mortality of relapsed patients depends on
when they relapsed.

We also checked if the mortality depended on
time since they relapsed.
It did not.

Note: It is an empirical question what timescales to use.

Note: In order to compute probabilities, we need a model for
the relapse rates () in addition to the mortality rates (u 7, ir)

... unfortunately not a Markov model
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Not Markov: the hard way

t

P{T at ¢} :exp( —/ A(s) + uT(s)ds)

0

P {D(T) at ¢} :/()tuT(s)exp( —/Os)\(u) + pur(u) dur) ds

¢
P{R at t} :/ P {Relapsed at s}
0

x P {Survive in Relapse from s to t} ds

= /Ot)\(s)exp( —/Osk(u) + pr(u) du)

t

X exp( 7/5 wr(u,s) du) ds

P {D(R) at t} =1 — P{T at t} — P{D(T) at ¢t} — P {R at t}
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Summary & Conclusions

» T he world is continuous
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Summary & Conclusions

» The world is continuous

» Effects of time likely to be continuously, smoothly varying
» Continuous time formulae easiest to handle

» Statistical models should reflect this:

» Parametric form of time-effects allow direct implementation of
probability theory
» Corrolary: Choice of time scales is an empirical problem

» Reporting of models should reflect this
» Stick to this world: Fewer tables — more graphs!

Thanks for your attention
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