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1 Single life-events

We assume that a number of life-events of similar type can occur during the (early) life of a
child and we want to assess to what extent these influence the occurrence rate of T1D
(incidence rates).

Suppose that life-events of type Xj, j = 1 . . . occur at ages tj, and assume for the sake of
the argument that the incidence rate of T1D as a function of age, a, is λ(a) if no life-events
occur.

We can contemplate two conceptually different models for the influence of life-events on
T1D occurrence:

• occurrence of Xj at tj influences incidence rates primarily as a function of a− tj (of
course only for a > tj) — that is as a function of time since life-event.

• occurrence of Xj at tj influences incidence rates primarily as a function of tj, that is,
as a function of age at life-event.

In principle there is nothing that requires us to choose one or the other, both can be
accommodated.

1.1 Mathematical formulation

The prerequisite for the following is that we have tools to estimate a non-linear dependence
of occurrence rates on age and time. The machinery for this is, briefly described, to take
the follow-up for each person and split it in small intervals (1 or 3 months, say) and fit a
model where incidence rates depend on the time (age, times since life-event, time at
life-event) as calculated in each interval. The crucial point is estimation of the effects of
these as smooth continuous effects of the time scales.

The simplest possible model is the model where incidence rates depends only on age
(well, separately for each sex), to see what kind of function to expect, see the leftmost
curves in figure 3.3 on p. 21 of http://bendixcarstensen.com/SDC/T1APC/t1apc.pdf.

The effect of life-events are described relative to these age-specific incidence curves as
rate-ratios or hazard ratios (HRs); in the most general form:

λ(a|Xj at tj) = λ(a)× [ζ(tj)× ξ(a− tj)]I(tj>a)

where I(tj > a) is an indicator function which is 0 for a < tj and 1 otherwise, and

• ζ(tj) is the HR associated with life-event occurrence at age tj — assumed to be the
same regardless of age. Thus if Xj occurs at tj, the assumption is that the
age-specific rates if T1D jumps by a factor ζ(tj), but otherwise has the same shape
by age. Thus if ζ(t) is uniformly equal to 1, then there is no general effect of Xj on
the T1D occurrence.

• ξ(dj) = ξ(a− tj) is the effect of occurrence of Xj as a function of the time since
occurrence of Xj (duration, dj). If there is no immediate effect, we would expect this
to start at 1 (that is for dj = 0) and then possibly increase over time.

http://bendixcarstensen.com/SDC/T1APC/t1apc.pdf
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However, the model above assumes a particular form of the effect of the time at life-event
and the time since life-event. A more general form would be to have a completely general
interaction:

λ(a|Xj at tj) = λ(a)× κ(tj, a− tj) (1)

That is, the occurrence of Xj has an effect that depends in a completely general way on
age at occurrence and time since occurrence of the life-event. The reporting of such effects
would be as a set of curves showing how the occurrence rates (T1D incidence) depend on
age for different ages of life-event.

1.2 Graphical example

Here we generate a graph showing an example of such effects of a single life-event and how
to report them.

> # Generate a plot and read 20 points from mouse-clicks
> plot(seq(0,20,,50),seq(2,11,,50))
> zz <- locator(20)
> rates <- zz$y
> ages <- zz$x
> save( ages, rates, file="bogus.Rda" )

Here is the code that generates the plots, using ad-hoc assumptions about the effects:

> library( Epi )
> load( file="bogus.Rda")
> m0 <- lm( log(rates) ~ Ns(ages,knots=seq(2,18,,5)) )
> pa <- seq(0,20,0.1)
> pr <- predict( m0, newdata=data.frame(ages=pa) ) * 7
> a3 <- ifelse( pa> 3, 1.5, 1 )
> a7 <- ifelse( pa> 7, 1.2, 1 )
> a12 <- ifelse( pa>12, 1.1, 1 )
> p3 <- exp( pmax( 0, pa- 3 ) * 0.05 )
> p7 <- exp( pmax( 0, pa- 7 ) * 0.03 )
> p12 <- exp( pmax( 0, pa-12 ) * 0.01 )
> allcrv <- cbind( p12*pr, p7*pr, p3*pr, pr,
+ a12*pr, a7*pr, a3*pr, pr,
+ p12*a12*pr, p7*a7*pr, p3*a3*pr, pr )[,c(4,1:3,8,5:7,12,9:11)]
> clr <- c("red","limegreen","blue","black")[4:1]
> wh <- c(1:31,NA,32:71,NA,72:121,NA,122:201)
> par( mfrow=c(1,2) )
> matplot( pa[wh], allcrv[wh,],
+ type="l", lwd=c(8,3,3,3), col=clr,
+ lty=rep(c("11","42","solid"),each=4), log="y", ylim=c(5,50),
+ xlab="Age at follow-up", ylab="Incidence rate of T1D")
> abline(v=3,col="blue")
> abline(v=7,col="limegreen")
> abline(v=12,col="red")
> matplot( pa[wh], allcrv[wh,]/pr[wh],
+ type="l", lwd=c(8,3,3,3), col=clr,
+ lty=rep(c("11","42","solid"),each=4), log="y", ylim=c(0.5,5),
+ xlab="Age at follow-up", ylab="Incidence rate-ratio of T1D")
> abline(v=3,col="blue")
> abline(v=7,col="limegreen")
> abline(v=12,col="red")

The coloured effects in the right panel in figure 1 are the terms that were named κ in
formula 1. Note that each point on the coloured curves correspond to a particular
combination of tj (age at life-event) and a− tj (time since) life-event, so the completely
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Figure 1: Example of reporting effects of life-events occurring at ages 3, 7 and 12 years.
In the left panel, the thick black line is the incidence rates for children with no life-event.
The three coloured lines refer to rates for children seeing a life-event at ages 3, 7 and 12
years respectively.
The broken lines are from the model where we assume that the effect of an life-event is im-
mediate and constant after the life-event — this is the type of assumption that is made in a
“Cox-model with life-event as time-dependent variable”.
The dotted lines are from the model where we assume that the effect of an life-event gradu-
ally increases from nothing as time since life-event increases. In this example we have just
assumed the effect to be log-linear.
The right hand panel is the corresponding hazard-ratios (incidence rate-ratios) between a per-
sons with a life-event at 3, 7 and 12 years and a person without life-event. The assumption
here is that both the immediate and the long-term effects are larger the younger the person is
at life-event occurrence. These are of course effects that must be estimated from the observed
data.

general specification of κ actually allows the coloured lines to have any shape and position.
In practice we would impose restrictions on the shape and position of the curves to make
the problem tractable.

The shape assumption used in figure 1 is that the RRs are linear as a function of time
since life-event, but what is not immediately apparent from the figure is exactly how the
slope of the curves are assumed to depend on tj — in this case apparently decreasing by
increasing tj. Likewise, we also assumed that the position (essentially the jump at
life-event time tj) was decreasing by tj in some way.

So in reality we have only assumed that:

κ(tj, a− tj) = f(tj) + g(tj)(a− tj)
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for some functions f and g, where (as can be seen from the code) f(3) = 1.5, f(7) = 1.2,
f(12) = 1.1 (the as) and g(3) = exp(0.05) = 1.051, g(7) = exp(0.03) = 1.030,
g(12) = exp(0.01) = 1.010 (the ps), but in any practical setting we must impose some
parametric restrictions on f and g and estimate their shape. But the practical reporting
would still be by graphs as shown in figure 1.

2 Several life-events

The curves in figure 1 exemplify one possible way of modeling the effect of one particular
life-event. The “counting” approach would formally correspond to assuming that all types
of life-events had the same effect as function of age at life-event and time since life-event. It
would in principle be possible to model effects of different types of life-events separately,
assuming an additive effect (on the log-scale).

Note however that this type of assumption is a sort of independence type of assumption,
where the effect of life-event type Xa is the same, regardless of whether Xb has occurred or
not. If we want to include “synergies” it would be possible to assume that the effect of Xa

was dependent on, say, the number of previous life-events. One simple way of
accommodating this would be to define a variable N(a) counting the number of life-events
before age a, and expanding the model to:

λ(a|Xjattj) = λ(a)× κ(tj, a− tj)× exp
(
β
(
N(a)− 1

))
The reason that we use N(a)− 1 is that this makes the last term go away (that is be equal
to 1) for the first life-event (where N(a) = 1), allowing an interpretation of κ(tj, a− tj) as
the effect of Xj as the first life-event, and eβ as the factor that attenuates (if β < 0) or
increases (if β > 0) the effect of Xj per previously seen life-event.

3 Terminological caveat

In this study the exposures are life-events, whereas the outcome of interest is a disease
event, namely T1D. So there is ample room for misunderstandings, and I suggest that the
exposures be always referred to as life-events, and that the outcome as T1D occurrence
(rates) wherever possible.
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