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Inference in Multistate models

P.K. Andersen & N. Keiding
Interpretability and Importance of Functionals in Competing Risks
and Multistate Models, Stat Med, 2011 [?]:

1. Do not condition on the future

2. Do not regard individuals at risk after they have died

3. Stick to this world
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Conditioning on the future

I . . . also known as “Immortal time bias”, see e.g.
S. Suissa:
Immortal time bias in pharmaco-epidemiology, Am. J.
Epidemiol, 2008 [?].

I Including persons’ follow-up in the wrong state

I . . . namely one reached some time in the future

I Normally caused by classification of persons instead of
classification of follow-up time
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Why these mistakes?

I Time is usually absent from survival analysis results

I . . . because time is taken to be a response variable observed
for each person

I Unit of analysis is often seen as the person

I Non/Semi-parametric survival model interface invites this
misconception

I Persons classified by exposure (the latest, often)

I The real unit of observation should be person-time
I . . . intervals of time, each with different value of

I time
I other covariates
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Time

I Time is a covariate — determinant of rates

I Response variable in survival / follow-up is bivariate:

I Differences on the timescale (risk time, “exposure”)
I Events

I The relevant unit of observation is person-time:

I small intervals of follow-up — “empirical rates”
I (dit , yit): (event, (sojourn) time) for individual i at time t .
I y is the response time, t is the covariate time

I Covariates relate to each interval of follow-up

I Allows multiple timescales, e.g. age, duration, calendar time
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“Stick to this world”

In the paper by Andersen & Keiding this is primarily aimed at the
use of “net survival”, that is the calculation of

exp

(
−
∫ t

0

λc(s) ds

)
for a single cause of death
— formally for a non-exhaustive exit rate from a state.

Survival probability in the situation where:

1. all other causes of death are absent
2. the mortality, λc from cause c is unchanged

. . . which is indeed not of this world.
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Sticking to this world

I A further feature of “this world”:

I it is continuous

I no thresholds in the effect of time

I specifically, death and disease rates vary smoothly by

I age
I calendar time
I disease duration
I . . .
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DM mortality in Australia

I Rates will typically depend on several time scales

I Mortality among Australian DM patients:

a: (current) age — time since birth
d : (current) duration of diabetes — time since

diagnosis
e: age at diagnosis of diabetes: e = a − d

I Only two time scales here: a and d

I log(λ(a, d)) = f (a) + g(d) + h(e)

I Separate effects are not identifiable — only the 2nd order

I — this is the APC-modeling problem again
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Australia DM mortality

I APC parametrization used (on the log-rate scale)
I age at diagnosis, e, constrained to be 0 on average, with average

slope 0
I duration of diabetes, d , constrained to be 0 at d = 2 years
I current age, a, models the age effect for duration 2 years

I Classical reporting of time scale effects as separate is not
sensible:

I “. . . the effect of diabetes duration for a fixed age. . . ”
I — don’t people get older as the duration of disease increase?

I must be reported jointly
I show select fitted values to illustrate the actual effects (and

their relative size)
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Joint reporting of time effects

I Only possible in graphical form

I Reveals structures that can only be seen with difficulty from
the separate effects

I . . . as well as structures that cannot

I Always has the form of predictions of rates:

I requires access to estimates of the predicted rates

I . . . which is a bit of a detour from Cox-type models.
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Summary & Conclusions

I The world is continuous
I Effects of time likely to be continuously, smoothly varying
I A single time scale is rarely sufficient
I Different timescales require joint reportng
I Continuous time formulae easiest to handle

and statistical models should reflect this:
I Parametric form of time-effects allow direct implementation of

probability theory
I Corrolary: Choice of time scales is an empirical problem

I Non/Semi-parametric survival model not well suited for this
I Stick to this world: Fewer tables — more graphs!

Thanks for your attention
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