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1 Familial aggregation of DM 1

1 Familial aggregation of DM

With the construction of the NDR and of the family register it is possible to assess who is
related to whom genetically (with some minor uncertainty from adoptions etc.) as
parents/children and siblings.

The classical way of looking at genetic associations’ influence on clinical/disease
outcomes is with models that includes random effects, that is random variables that are
supposed to represent shared frailty, susceptibility, clinical features etc.

These models easily extend to intensity models (incidence / mortality), normally called
frailty models, referring to the interpretation of the random effects.

2 Marital aggregation of DM

As opposed to familial relations, marital (co-habitation included here) relations come and
go, and so in terms of shared frailty models we would expect to have frailties that switched
on and off during life as marriages come and go.

However it seems more appropriate to use the registers of marriage/cohabitation and
diabetes occurrence to classify the life course of each person in (at least) the following
states.

• single, never cohab

• cohab

• post-cohab

• widowed

In this setup, “cohab” can mean either cohabitation without marriage or married,
optionally having separate categories for the two.

These states must be operationalized in such a way that any given person can be
allocated to precisely one state at each point in time.

In order to capture the diabetes status and the effect of this on cohabitants, cohab (and
subsequent) states must be subdivided by the state of the spouse into:

• no DM

• DM at cohabitation start

• DM during cohabitation

2.1 Generalization to networks

Cohabitation is a very simple and special type of network, with a very limited number of
(DM relevant) states, but other and more general types of network may be defined in terms
of work relationships or geographical proximity. If these contain a lot of people at any
given time, explicit enumeration of all possible states (such as number of colleagues) is not
feasible, and some sort of continuous score of your network (at any given time) is required,
either as the number or fraction of your network affected by, say, diabetes.



2 DM family

On top of this, a person’s network can be subdivided by proximity (distance), and the
scores (number,fraction) recorded as a continuous function of proximity.

In the cohabitation setting you essentially only have (at most) one person in your
network, so not only do you not have to bother about proximity, but you also only have a
binary state of your network, namely either affected or not.

So general network analysis seems to involve some sort of time-varying exposure which
essentially is an exposure (diabetes prevalence) at each point in your network. The
simplest possible just a prevalence as a function of proximity, but the number in your
network may be of particular interest too.

2.1.1 Modeling and reporting

The question of relevance is thus how exposures at different proximities influence your risk.
The simplest cohabitation setting only has 0 or 1 in your proximity and that person is
either DM or not, so it reduces to a 3-level categorical variable (single/cohab no DM/cohab
DM), changing by (calendar) time.

In the general network setting, each person’s network status (covariates, state
membership, . . . ) is two functions of proximity; the number in the network and some
diabetes score (prevalence for example).

Thus, follow-up of a person has for each little interval, two functions as covariates, so the
question is how to model (quantify) and in particular report the effect of such functions. In
the first place assuming that the effects are independent of age and other “classical”
covariates we would have a score for each proximity, d, say, (distance), sd, d = 0, 1, 2, . . . —
think of this as for example the prevalence of diabetes in a certain distance from a person
(at a give time).

The log-rate of diabetes occurrence could then be modelled as:

log λ(t) = f(a, p, c) +
∑
d

βdsd

If this type of analysis should be meaningful, we would presumably impose some sort of
monotonicity constraint on the βds say βd = α0 + α1d+ α2d

2, so the model would be:

log λ(t) = f(a, p, c) +
∑
d

(α0 + α1d+ α2d
2)sd

= f(a, p, c) + α0

∑
d

sd + α1

∑
d

dsd + α2

∑
d

d2sd

This shows one way of reducing the recorded scores at a large number of distances to form
a parametric model for the risk.

The reporting of the estimates from this model would be as a 2nd order polynomial
(parabola) as a function of proximity (d), under an assumption of say uniform distribution
of scores over the network. Note that the setup with score as a predictor, requires a
particular assumption of the scores in order to report model predictions.

Moreover, this is a particularly simple model assuming:

• there is no time-lag between the score (sd) and the outcome

• the effect of proximity (the 2nd order polynomial) is the same for all levels of the score
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The former could be alleviated by lagging the network information (but there is very little
information in actual data to support a particular lag). The latter is basically just an
interaction, so that we instead of reporting a set of parallel polynomials showing the
incidence rates as a function of proximity for different levels of scores, the polynomial
would no longer be parallel.

3 Modeling

This is thus a classification of all lifetime in all persons in Denmark, and as such represents
a categorical (time-varying) exposure.

The (relative) diabetes occurrence rates between the states reflect combined effects of
common environment and preferential mating. If a detailed model for these effects is
defined it may be possible to tease these effects apart.

3.1 Timescales

Furthermore, in the analysis of (DM incidence) rates we must include age (preferably
separately for each sex) as well as time since cohabitation, time since partner’s DM (in the
relationship?) and presumably also time since start and end of cohabitation as such, and of
course time since widowhood. Moreover some differences of these might be of interest, such
as age at cohabitation, length of cohab at cessation etc.

In full generality, any multistate model can be expanded to let the transition intensities
depend on time since entry into any previously visited state, as well as the point of entry
evaluated on any timescale available. This of course becomes excessively weedy in practice,
so the point is to make sufficiently simple and precise definitions.
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