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Logarithms and exponentials

102 = 10× 10
103 = 10× 10× 10

102 × 103 = 105

103/102 = 101

(103)2 = 106

102/102 = 100 = 1
102/103 = 10−1 = 1/10

101/2 × 101/2 = 101

101/2 =
√

10

100.3010 = 2
log10(2) = 0.3010

100.4771 = 3
log10(3) = 0.4771

101 = 10
log10(10) = 1
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Multiplication and division

2× 3 = 6

log10(2) = 0.3010
log10(3) = 0.4771

0.3010 + 0.4771 = 0.7781
log10(6) = 0.7781

100.3010 × 100.4771 = 100.7781

100.7781 = 6

In general:

log(xy) = log(x) + log(y)
log(x/y) = log(x)− log(y)
log(xa) = a log(x)

log(1/x) = − log(x)
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Natural logarithms: e = 2.7183
loge(e) = 1

e0.6931 = 2
loge(2) = 0.6931
e1.0986 = 3

loge(3) = 1.0986

2× 3 = 6
e0.6931 × e1.0986 = e1.7918

e1.7918 = 6

In general:

ex = exp(x)
ex × ey = ex+y

ex/ey = ex−y

(ex)y = ex×y

1/ex = e−x
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Names for the logarithms

Engineers and calculators:
log is the logarithm to base 10.

ln is the logarithm to base e, the natural log

Matematicians:
log is the logarithm to base e, the natural log

log10 is the logarithm to base 10.
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Why natural logarithms?

For small values of x (relative to 1):

ex ≈ 1 + x

e−x ≈ 1− x

ln(1 + x) ≈ x

ln(1− x) ≈ −x

⇒

ln(1.01) = 0.01
ln(0.99) = −0.01
ln(1.04) ≈ 0.04
ln(1.20) = 0.182 6= 0.20

But:
log10(1.01) = 0.4343× 0.01
log10(0.99) = 0.4343×−0.01

log10(x) = 0.4343× ln(x)
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Hypothesis tests in statistical analysis

For two populations the hypothesis of equal means is

normally formulated as:

H0 : µ1 = µ2 ⇔ δ = µ1 − µ2 = 0

Statisticians would consider two models:

1:
xi1 ∼ N (µ1, σ

2)
xi2 ∼ N (µ2, σ

2)
2:

xi1 ∼ N (µ, σ2)
xi2 ∼ N (µ, σ2)

H0 would in this context then be:

Can model 1 be reduced to model 2 ?

Hypothesis testing is comparison of models.
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Comparing statistical models

• Can a complicated model be reduced to one describing

data in a simpler fashion?

This is the kind of model that one would like to see

accepted.

• Can a model be reduced to a model that describes data as

not varying with exposure / treatment?

This is the kind of model that one would like to see

rejected.

Relevance of p < 0.05 depends on context.
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Probability

In all scientific studies the outcome is subject to random

variation.

In case-control studies and association studies outcomes and

exposures are discrete:

• Case / Control

• Genotype: aa / aA / AA

“Measurement”-error described by probabilities for each

possible outcome.
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The binary probability model
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Conditional probabilities of failure
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Probability trees 10



Conditional probabilities of failure
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person has genotype aa.
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aa and fails.
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Relationship between follow–up studies and
case–control studies

In a cohort study, the relationship between exposure and

disease incidence is investigated by following the entire

cohort and measuring the rate of occurrence of new cases in

the different exposure groups.

The follow–up allows the investigator to register those

subjects who develop the disease during the study period and

to identify those who remain free of the disease.
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In a case-control study the subjects who develop the

disease (the cases) are registered by some other mechanism

than follow-up, and a group of healthy subjects (the controls)

is used to represent the subjects who do not develop the

disease.
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Rationale behind case-control studies

• In a follow-up study, rates among exposed and non-exposed

are estimated by:
D1

Y1

D0

Y0
where D are no. events and Y person-years.

The rate ratio is estimated by:

D1

Y1

/
D0

Y0
=
D1

D0

/
Y1

Y0

Necessary to classify both cases and person-years by

exposure.
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• In a case-control study we use the same cases, but select

controls to represent the distribution of risk time between

exposed and unexposed:

H1

H0
≈ Y1

Y0

Therefore the rate ratio is estimated by:

D1

D0

/
H1

H0

• Controls represent risk time, not disease-free persons.
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Case–control probability tree
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The case-control ratio (disaese odds):

D1

H1
=
S1

s1
× π1

1− π1

D0

H0
=
S0

s0
× π0

1− π0

Odds-ratio = ORstudy =
D1/H1

D0/H0
=
π1/(1− π1)
π0/(1− π0)

= ORpopulation

but only if S1/s1 = S0/s0, i.e. if sampling fractions are

independent of exposure:

S1 = S0 and s1 = s0

S sampling fraction for cases — large

s sampling fraction for controls — small

Case-kontrol studier 17



Estimation from case-control study

Odds-ratio of disease between exposed and unexposed given

inclusion in the study:

OR =
ω1

ω0
=

π1

1− π1

/
π0

1− π0

is the same as the odds-ratio of disease between exposed and

unexposed in the “study base”, provided that is the selection

mechanism (sampling fractions) is only depending on

case/control status.
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Log-likelihood for case-control studies

Likelihood: Probability of observed data given the statistical

model.

Log-Likelihood (conditional on being included) is a binomial

likelihood with odds ω0 and ω1 = θω0

D0 ln(ω0)−N0 ln(1 + ω0) +D1 ln(θω0)−N1 ln(1 + θω0)

Odds-ratio (θ) is the ratio of ω1 to ω0, so:

ln(θ) = ln(ω1)− ln(ω0)

Case-kontrol studier 19



Estimates of ln(ω1) and ln(ω0) are:

ln
(
D1

H1

)
and ln

(
D0

H0

)
with standard errors:√

1
D1

+
1
H1

and

√
1
D0

+
1
H0

Exposed and unexposed form two independent bodies of

data, so the estimate of ln(θ) [= ln(OR)] is

ln
(
D1

H1

)
− ln

(
D0

H0

)
, s.e. =

√
1
D1

+
1
H1

+
1
D0

+
1
H0
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Computing c.i. for odds-ratios

ÔR =
D1/H1

D0/H0
s.e.[ln(OR)] =

√
1
D1

+
1
H1

+
1
D0

+
1
H0

95% c.i. for ln(OR):

ln(OR)± 1.96× s.e.[ln(OR)]

95% c.i. for OR by taking the exponential:

OR ×
÷ exp (1.96× s.e.[ln(OR)])︸ ︷︷ ︸

error factor
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Kir 6.2 homozygotes and diabetes

Genotype Diabetes cases Population controls

KK 134 124

EE/EK 669 738

What is the odds-ratio of diabetes associated with being

homozygous for the K-allele?

This compares KK genotypic persons with EE and EK seen

as one group.

How precisely is this odds-ratio determined?

Case-kontrol studier 22



OR =
D1/H1

D0/H0
=

134/124
669/738

=
1.081
0.907

= 1.192 = 1.19

s.e.(ln[OR]) =
√

1
D1

+
1
H1

+
1
D0

+
1
H0

=

√
1

134
+

1
124

+
1

669
+

1
738

= 0.136

The 95% limits for the odds-ratio are:

OR ×
÷ exp(1.96× 0.136) = 1.192 ×

÷ 1.304 = (0.91− 1.55)
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K-carriers and diabetes: your turn!
Genotype Diabetes cases Population controls

EK/KK 516 532

EE 287 330

What is the odds-ratio of diabetes associated with being a

carrier for the K-allele?

This compares KK/EK persons with EE persons.

How precisely is this odds-ratio determined — give a 95% c.i.
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Solution to exercise

OR =
D1/H1

D0/H0
=

516/532
287/330

=
0.970
0.870

= 1.115

s.e.(ln[OR]) =

√
1

516
+

1
532

+
1

287
+

1
330

= 0.102

The 95% limits for the odds-ratio are:

OR ×
÷ exp(1.96× 0.102) = 1.115 ×

÷ 1.22 = (0.91− 1.22)
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More levels of exposure — genotypes
case/ OR

Diabetes Population control relative

Genotype cases controls odds to (0)

EE (0) 287 330 0.870 1.000

EK (1) 382 408 0.936 1.077

KK (2) 134 124 1.081 1.243

The relationship of case-control ratios is what matters.

Odds-ratio of diabetes for EK vs. EE is 1.08

Odds-ratio of diabetes for KK vs. EE is 1.24

Odds-ratio of diabetes for KK vs. EK is

Case-kontrol studier 25



Odds-ratio (OR) and rate ratio (RR)

• If the disease probability, π, in the study period is small:

π = cumulative risk ≈ cumulative rate = λT

with λ the rate and T the study period.

• For small π, 1− π ≈ 1, so:

OR =
π1/(1− π1)
π0/(1− π0)

≈ π1

π0
≈ λ1

λ0
= RR

π small ⇒ OR estimate of RR.
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Case-control studies and genetic association

Problem: Want to examine if a (biological candidate) gene

influences disease status.

Idea: If the gene influences disease status the genotype

distribution should be different from cases and controls.

Approach:

• Sample cases and control.

• Genotype all individuals

• Examine whether the genotype distribution is different from

cases to control.

Case-control studies and genetic association 27



Wt Het Hom

Genotype AA Aa aa

Diabetics πWt πHet πHom
Non-diabetics π∗Wt π∗Het π∗Hom

With πWt + πHet + πHom = 1 and π∗Wt + π∗Het + π∗Hom = 1

Test of homogeneity (i.e., identical genotype distribution) for

cases and controls:

H0 : πWt = π∗Wt, πHet = π∗Het

Equivalent:

H0 : OR(Het vs Wt) = OR(Hom vs. Wt) = 1

Case-control studies and genetic association 28



Test for homogeneity of genotype distributions (aka

association or independence):

• Likelihood ratio test.
• Chi-square test.
• Fisher’s exact test.

Tests asymptotically equivalent.

Rule of thumb: expected number of observations ≥ 5 for

asymptotics to hold.

#affection status #genotype

# individuals

Case-control studies and genetic association 29



Example:

Genotype Wt Het Hom

Diabetics 10 15 12

Non-diabetics 56 40 10

Results:

OR(Het vs Wt) = 2.10 (0.86 ; 5.15)

OR(Hom vs. Wt) = 6.72 (2.29 ; 19.70)

LR test, χ2(2) = 12.602, p = 0.0018
χ2(2) = 13.44, p = 0.0012
Fisher’s exact test: p = 0.0017

Case-control studies and genetic association 30



Genetics 101

Recall: The mode of inheritance is:

Recessive. If two copies of the disease allele are needed

before a person becomes affected.

Dominant. If just one copy of the disease allele results in a

person becoming affected.

Additive. If each copy of the disease allele increases the

disease risk (i.e., multiply the OR’s by the same amount, ψ)

Note: dominance/recessive are dual terms.

Genetics 31



Want to determine the mode of inheritance?

Test for recessive

Hrecessive : OR(Het vs Wt) = 1

Test for dominance

Hdominance : OR(Het vs Hom) = 1

Test for additivity

Hadditive : OR(Wt vs Het) = OR(Het vs Hom)

(aka Co-dominance or Multiplicative penetrance model)

Genetics 32



Summary of possible tests
Genotype association

Recessive Additive Dominant

Can still test for “no effect of genotype” after determining

mode of inheritance.

Models summarized as follows:

Genotype ED

BC
oo

��vvmmmmmmmmmmmmmm

((QQQQQQQQQQQQQQ

Dominant

((RRRRRRRRRRRRRRR
Additive

��

Recessive

vvmmmmmmmmmmmmmmm

No effect
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Example

Cases Controls
Wt 10 56

Het 15 40
Hom 12 10

Test for H−W equilibrium
χ2 p

Cases 1.291 0.256
Controls 0.522 0.470

Both 1.813 0.404

Genotype model
OR( Het  vs.  Wt ): 2.10 ( 0.86 ; 5.15 )

OR( Hom  vs.  Wt ): 6.72 ( 2.29 ; 19.70 )

Dominant
OR( Het/Hom  vs.  Wt ): 
3.02 ( 1.33 ; 6.86 )

Co−dominant
OR( Hom  vs.  Het )= OR( Het  vs.  Wt ):

2.54 ( 1.48 ; 4.35 )

Recessive
OR( Hom  vs.  Wt/Het ): 

4.61 ( 1.79 ; 11.89 )

Null model
OR = 1

χ2(2)= 12.602 , p= 0.002

χ2 = 4.997 , p= 0.025

χ2 = 7.605 , p= 0.006 χ2 = 12.335 , p= 0.000

χ2 = 0.267 , p= 0.605 χ2 = 2.685 , p= 0.101

χ2 = 9.917 , p= 0.002

Summary of tests 34



Statistics 101

Test a null hypothesis at significance level α = 0.05:

p < α reject the null hypothesis

p ≥ α fail to reject the null hypothesis

Bear in mind your null hypothesis
when interpreting results!

Generally: focus less on the p-value. The CI of the OR’s hold

more information!

Statistics 101 35



Common situation:

Test for homogeneity of genotype distributions. p < 0.05
We reject the null hypothesis of homogeneity

Test for mode of inheritance.
p < 0.05 We reject the null hypothesis of a given mode of

inheritance

Statistics 101 36



Hardy-Weinberg equilibrium

A locus is in Hardy-Weinberg equilibrium if the frequencies of

the genotypes depend only on the frequencies of the alleles

constituting the genotype (i.e., the two alleles occur

independently of each other).

Genotype AA Aa aa

General πAA πAa πaa
HWE p2

A 2pApa p2
a

HWE 37



Autosomal locus:

After one generation, an autosomal locus for population

exhibiting random mating will be in HWE.

Random mating: each individual selects a mate completely at

random.

In practice: mating need only be random with respect to the

examined genotype. If the genotype is not related to anything

used to choose the mate then random mating satisfied.

HWE 38



X-linked locus:

The distribution of genotypes at an X-linked locus will

converge toward HWE.
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Deviation from HWE

In general: association between the disease and genotype will

result in HWE not being true for cases or controls.

Thus, deviation from HWE preliminary evidence of

association.

Exception: additive association does not lead to changes in

HWE.

Alternative cause: genotyping errors!

• Ghosting, stuttering (homozygote → heterozygote)

• Allele dropout (heterozygote → homozygote)

HWE 40



Why look at HWE?

The alleles occur independently of genotype — can look at

alleles instead of genotypes.

Wt Het Hom

Genotype AA Aa aa

Diabetics nWt nHet nHom
Non-diabetics n∗Wt n∗Het n∗Hom

becomes

Allele A a

Diabetics 2 · nWt + nHet 2 · nHom + nHet
Non-diabetics 2 · n∗Wt + n∗Het 2 · n∗Hom + n∗Het

HWE 41



Regular 2× 2 table with one OR: OR(A vs a).

Test for no association between allele and disease status:

H0 : OR(A vs a) = 1

To look at alleles (i.e., chromosomes independently) the

assumption of HWE is essential!

HWE 42



Requirements to consider alleles:

• Cases and controls should be in HWE.

• Test of association is valid if the population is in HWE

(then under H0 both cases and controls will be in HWE).

To use standard methods for calculating CI for OR(A vs a)

we need

• Rare disease (controls will be in HWE)

• Additive model (cases will also be in HWE)

There are no reason to consider alleles instead of genotypes.

HWE 43



Proposition: if both cases and controls are in HWE then

the additive model (multiplicative penetrance model) is true.

The reverse is not necessarily true.

HWE 44



Complex diseases

Potential problems:

• Broad definition of disease (combination of sub-diseases)

• Random mating (diabetes, obesity)

• Population admixture

• Late onset disease

Complex diseases 45



Statistical programs

SPSS, SAS, R Regular statistical problem “easily” solved.

Assotest Windows-based program for genotype/allele

association testing.

Web-Assotest Web based program for genotype/allele

association testing, HWE, mode of inheritance.

Programs 46



Assotest

Download from www.ekstroem.com

Assotest 47
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Fisher’s exact test

Advantages:

• Exact — don’t worry about asymptotics

Disadvantages:

• Provides no information about the relationship of genotype

effects

• Computationally intensive

Fisher’s test 49



Web-Assotest

Address: www.ekstroem.com/assotest/assotest.html

Web-Assotest 50



Example

Cases Controls
Wt 10 56

Het 15 40
Hom 12 10

Test for H−W equilibrium
χ2 p

Cases 1.291 0.256
Controls 0.522 0.470

Both 1.813 0.404

Genotype model
OR( Het  vs.  Wt ): 2.10 ( 0.86 ; 5.15 )

OR( Hom  vs.  Wt ): 6.72 ( 2.29 ; 19.70 )

Dominant
OR( Het/Hom  vs.  Wt ): 
3.02 ( 1.33 ; 6.86 )

Co−dominant
OR( Hom  vs.  Het )= OR( Het  vs.  Wt ):

2.54 ( 1.48 ; 4.35 )

Recessive
OR( Hom  vs.  Wt/Het ): 

4.61 ( 1.79 ; 11.89 )

Null model
OR = 1

χ2(2)= 12.602 , p= 0.002

χ2 = 4.997 , p= 0.025

χ2 = 7.605 , p= 0.006 χ2 = 12.335 , p= 0.000

χ2 = 0.267 , p= 0.605 χ2 = 2.685 , p= 0.101

χ2 = 9.917 , p= 0.002
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Direct comparison

Assotest Web-assotest

Windows Web based

Genotype/allele association All models

Exact/asymptotic tests Asymptotic tests

p-values only p-values and CI

HWE HWE

Total population HWE Simultaneous HWE

Assotest vs. Web-assotest 52



Opgave 1
Vis følgende sætning:

Hvis b̊ade cases og kontroller er i HWE er kravene til den

additive model opfyldt (alts̊a at OR(Wt vs Het) = OR(Het

vs Hom)).

Giv et eksempel, der viser, at det modsatte ikke behøver være

sandt.

Opgave 2
Betragt nedenst̊aende datasæt

Assotest vs. Web-assotest 53



Genotype AA Aa aa

Diabetics 10 15 12

Non-diabetics 56 40 10

Udregn allelfrekvenser og konfidensintervaller for pA og pa.

Assotest vs. Web-assotest 54



Confounding

• Epidemiology relies on observational studies of experiments

of nature

• Often these are poor experiments

— no control for confounding by extraneous influences

• Definition:

A confounder is a variable whose influence we would

have controlled if we had been able to design the

natural experiment.
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Example: confounding by age

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

0.8

0.2

�
���

���
��

HH
HHH

HHHH

0.1

0.9

�
���

���
��

HHH
HHH

HHH

0.3

0.7

Age

< 55

55+

F

S

F

S
Unexposed subjects

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

0.4

0.6

�
���

���
��

HH
HHH

HHHH

0.1

0.9

�
���

���
��

HH
HHHH

HHH

0.3

0.7

Age

< 55

55+

F

S

F

S
Exposed subjects

Confounding 56



• Probability of failure for unexposed:

(0.8× 0.1) + (0.2× 0.3) = 0.14

• Probability of failure for exposed:

(0.4× 0.1) + (0.6× 0.3) = 0.22

• Difference entirely due to difference in age structure.

• When there is a true effect, its magnitude can be distorted

by such influences.
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Confounding when RR = 2
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• The true relative risk, RRT = 0.2/0.1 = 0.4/0.2 = 2

• Probability of failure for unexposed:

( × ) + ( × ) =

• Probability of failure for exposed:

( × ) + ( × ) =

• The apparent relative risk:

RRO =

Confounding 59



• The true relative risk, RRT = 0.2/0.1 = 0.4/0.2 = 2

• Probability of failure for unexposed:

(0.8× 0.1) + (0.2× 0.2) = 0.12

• Probability of failure for exposed:

(0.4× 0.2) + (0.6× 0.4) = 0.32

• The apparent relative risk:

RRO = 0.32/0.12 = 2.67
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Confounding
A confounder is:

• Associated with outcome:

The older persons have higher disease probability.

• Associated with the exposure:

The older persons are more / less likely to be exposed.

• Is not a result of either exposure or disease.

Not a statistical property. Cannot be seen from tables.

• Common sense is required!
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Controlling confounding

In controlled experiments there are two ways of controlling

confounding:

1. Randomization of subjects to experimental groups so that

the distributions of the confounder are the same.

2. Hold the confounder constant.
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Standardization is a statistical technique for controlling for

extraneous variables in the analysis of an observational study:

• Direct standardization simulates randomization by

equalising the distribution of extraneous variables.

• Indirect standardization simulates the second method:

holding extraneous variables constant.

The latter is the preferred technique in observational studies.

It leads to proper statistical modelling.
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Indirect standardization

• Aim is to hold age (the confounder) constant.

• Compare exposed and unexposed within age strata

• But this leads to several experiments, each one rather

small, hence imprecise.

• Calculate a single combined estimate of the exposure effect

over all strata.

• This procedure implies a model in which there is no

(systematic) variation of effect over strata.
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Confounding by age in genetic studies

• Age is associated with outcome — disease, in this case

diabetes.

• Age is associated with exposure — genotype,

only if genotype is associted with mortality.

Otherwise the genotype distribution will be similar in all

age-groups.

Age is not likely to be a confounder in genetic association

studies.
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Meta-analysis

If several case-control studies are conducted in different

populations, they cannot be regarded as one because:

• Study population may be associated with outcome — in

this case occurrence of diabetes.

• Study population may be associated with exposure — in

this case genotype distribution.

Thus study population should be regarded as a confounder.
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Model for confounder control

Assumption of similar effect across studies in different

populations: ORp = θ independent of p, so for odds of

disease ωp1:

ωp1 = θωp0

Odds of disease increase by the same amount, θ, by

exposure, regardless of study.

But the disease odds among unexposed, ωp0, may vary

between studies.
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On the log-scale:

ln
(

πp1
1− πp1

)
= ln(ωp1) = ln(θ) + ln(ωp0)
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Model for case-control studies

Case-control studies has different sampling fractions for cases

(S, large) and controls (s, small):

ln[odds(case | incl.,p)] = ln
[

πp1
1− πp1

× Sp
sp

]

= ln
[

πp1
1− πp1

]
+ ln

[
Sp
sp

]

= ln(θ) + ln(ωp1) + ln
[
Sp
sp

]
︸ ︷︷ ︸

intercept, population
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Logistic regression model with effects of exposure and study

population. Estimates for effect of population is irrelevant,

since sampling fractions most likely depends on population.

But population must be in the model.

The model with

• exposure ( genotype )

• confounder (study population)

is the meta-analysis model.
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Meta-analysis

Analysis with study population as controlling variable.

Still two things to consider:

• How is the genotype effect: dominant, co-dominant or

recessive?

Similar to the analysis for one population. But in stratified

model.

• Is the effect same across populations?

Test for homogeneity of effect (interaction)
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Genotype model
OR( EK  vs.  EE ): 1.04 ( 0.90 ; 1.21 )
OR( KK  vs.  EE ): 1.54 ( 1.24 ; 1.91 )

χhom
2 ( 10 )= 18.773 , p= 0.043

Dominant
OR( KK / KK  vs.  EE ): 
1.14 ( 0.99 ; 1.32 )
χhom

2 ( 5 )= 10.833 , p= 0.055

Co−dominant
OR( KK  vs.  EK )= OR( EK  vs.  EE ):

1.19 ( 1.08 ; 1.32 )
χhom

2 ( 5 )= 8.105 , p= 0.151

Recessive
OR( KK  vs.  EK / EE ): 

1.50 ( 1.23 ; 1.83 )
χhom

2 ( 5 )= 7.795 , p= 0.168

Null model
OR = 1

χ2( 2 )= 16.870 , p= 0.000

χ2(1) = 13.471 , p= 0.000

χ2(1) = 3.399 , p= 0.065 χ2(1) = 11.535 , p= 0.001

χ2(1) = 5.335 , p= 0.021 χ2(1) = 0.302 , p= 0.583

χ2(1) = 16.568 , p= 0.000
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General model: EK vs. EE (lower) KK vs. EE (upper)
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Recessive model: KK vs. EK / EE
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Co−dominant model: KK vs. EK = EK vs. EE
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Dominant model: KK / EK vs. EE
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Do the studies actually show the same?

Apart from the visual inspection of the diagram, formal tests

for the models separately may be of interest.

Look at the top left corner in the 2× 2 figure layout.

Which studies support a dominant / co-dominant / recessive

model?

Is this consonant with what you see in the next tables?
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Test for models, single studies

χ2 Model

Dominant Co-dominant Recessive d.f.

UKPDS 9.133 4.759 0.001 1

Fr 4.116 0.451 1.543 1

UK1 3.655 3.521 0.758 1

UK2 0.027 1.234 4.051 1

Utah 3.480 5.923 4.456 1

DK 0.999 0.115 0.470 1

All 21.411 16.003 11.280 6
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Test for models, single studies

p-values Model

Dominant Co-dominant Recessive

UKPDS 0.003 0.029 0.979

Fr 0.042 0.502 0.214

UK1 0.056 0.061 0.384

UK2 0.869 0.267 0.044

Utah 0.062 0.015 0.035

DK 0.317 0.735 0.493

All 0.002 0.014 0.080
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Two different kinds of tests for Dominant / Co-dominant /

Recessive:

• Test in stratified model, assuming same effect in all

populations.

This is the test shown in the diagram.

• Test in separate models added up.

Tests for mode of action, allowing for separate effects

between populations.

This is the test in the last line of the table. (Not default

output of the meta-analysis program).
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