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Internet resources on cancer statistics

NORDCAN : Cancer Incidence and Mortality in the Nordic Countries, Version
4.0. Association of Nordic Cancer Registries, Danish Cancer Society,
2002. http://www-dep.iarc.fr/nordcan.htm
NORDCAN is a graphical package providing data on the incidence of, and

mortality from 40 major cancers for 80 regions of the Nordic countries

(Denmark, Finland, Iceland, Norway and Sweden). Using NORDCAN, these

data can be presented as a variety of tables and graphs that can be easily

exported or printed. NORDCAN allows countries and cancer sites to be grouped

and compared as desired.

GLOBOCAN 2008 : Cancer Incidence and Mortality Worldwide in 2008
http://globocan.iarc.fr/
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What is Epidemiology?

Some textbook de�nitions of epidemiology:
Greek: epi = upon, demos = people

▶ �study of the distribution and determinants of disease frequency in
man� (MacMahon and Pugh, 1970)

▶ �study of the distribution and determinants of health related states and
events in speci�ed populations,. . . � (Last (ed.) Dictionary of Epidemiology,
2000)

▶ �discipline on principles of occurrence research in medicine� (Miettinen,
1985)
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Di�erent epidemiologies

▶ descriptive epidemiology
▶ monitoring & surveillance of diseases for planning of health services
▶ a major activity of cancer registries, and other health data collectors

▶ etiologic or �analytic� epidemiology:
▶ study of cause-e�ect relationships
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Di�erent epidemiologies

▶ disease epidemiologies � e.g. of cancer, cardiovascular diseases, infectious
diseases, musculoskeletal disorders, mental health, . . .

▶ determinant-based epidemiologies
▶ occupational epidemiology
▶ nutritional epidemiology
▶ . . .

▶ clinical epidemiology
▶ study of diagnosis, prognosis and e�ectiveness of therapies in patient

populations
▶ basis of evidence-based medicine
▶ essential in health-services research
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Cancer i Norden 1997 (NORDCAN)

Frequency of cancer (all sites excl. non-melanoma skin) in Nordic male
populations expressed by di�erent measures:

New Crude ASR Cumul.
cases rate (World) risk SIR

Denmark 11,787 452 281 27.8 104
Finland 10,058 401 269 26.5 101
Iceland 633 464 347 32.6 132
Norway 10,246 469 294 29.4 109
Sweden 19 908 455 249 25.4 93

▶ Where is the frequency truly highest, where lowest?
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Questions on frequency & occurrence

How many women in Denmark:

▶ are carriers of breast cancer today? � prevalence

▶ will contract a new breast ca. during 2007? � incidence

▶ die from breast ca. in 2007? � mortality

▶ will be alive after 5 years since diagnosis among those getting breast ca. in
2007? � survival

▶ are cured from breast cancer during 2007? � cure

What are the proportions / rates of these?
What is the dimension (units) of these measures?
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What is risk?

What do we mean by �risk of disease S�?

(a) probability of getting S during a given risk period
→ incidence probability, (cumulative risk over the period)

(b) rate of that probability (relative to risk period)
→ hazard or intensity,

(c) probability of carrying S at a given time point

→ prevalence probability.

Most common use of �risk� is (a)
NB: �Risk� should not be used in the meaning of risk factor
In statistics, �hazard� mostly refers to notion probability per unit time.
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Risks are conditional probabilities

▶ All risks are conditional on a multitude of factors, like:
▶ length of risk period (e.g. next week or lifetime),
▶ age and sex,
▶ genetic constitution,
▶ health behaviour & environmental exposures.

▶ In principle each individual has a �personal� value for the risk of given
disease in any de�ned risk period, depending on his/her own risk factor
pro�le�not estimable from data

▶ Average risks of disease in large groups sharing common characteristics
(like gender, age, smoking status) are estimable through measures of
occurrence.
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Logarithms and exponentials

102 = 10× 10

103 = 10× 10× 10

102 × 103 = 105

103/102 = 101

(103)2 = 106

102/102 = 100 = 1

102/103 = 10−1 = 1/10

101/2 × 101/2 = 101

101/3 × 101/3 × 101/3 = 101

100.3010 = 2

log10(2) = 0.3010

100.4771 = 3

log10(3) = 0.4771

101 = 10

log10(10) = 1
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Multiplication and division

2× 3 = 6

100.3010 × 100.4771 = 100.7781

100.7781 = 6

log10(2) = 0.3010

log10(3) = 0.4771

0.3010 + 0.4771 = 0.7781

100.7781 = 6

In general: log(xy) = log(x) + log(y)

log(x/y) = log(x)− log(y)

log(xa) = alog(x)
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Natural logarithms e = 2.7183

loge(e) = 1

e0.6931 = 2

loge(2) = 0.6931

e1.0986 = 3

loge(3) = 1.0986

2× 3 = 6

e0.6931 × e1.0986 = e1.7918

e1.7918 = 6

In general: ex × ey = ex+y

ex/ey = ex−y

(ex)y = ex×y
Matematical reminder (math) 13/ 105



Names for the logartithms

Engineers and calculators:

log is the logarithm to base 10.

ln is the logarithm to base e, the natural log

Matematicians:

log is the logarithm to base e, the natural log

log10 is the logarithm to base 10.

We use log for the natural logarithm, and explicitly log10 when this is needed.
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Why natural logarithms?

For small values of x: ex ≈ 1 + x

e−x ≈ 1− x

ln(1 + x) ≈ x

ln(1− x) ≈ −x

For example: ln(1.01) = 0.01

ln(0.99) = −0.01

But: log10(1.01) = 0.4343× 0.01

log10(0.99) = 0.4343×−0.01

In general: log10(x) = 0.4343× ln(x)
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Basic measures of frequency or occurrence

Quanti�cation of the occurence of disease (or any other health-related state or
event) requires speci�cation of:

1. what is meant by a case, i.e., an individual in a population who has or gets
the disease
� more generally: possesses the state or undergoes the event of interest.
⇒ challenge to accurate diagnosis and classi�cation!

2. the population from which the cases originate.

3. the time point or period of observation.

Frequency measures (ELmeasures) 16/ 105



Basic measures of frequency or occurrence

Quanti�cation of the occurence of disease (or any other health-related state or
event) requires speci�cation of:

1. what is meant by a case, i.e., an individual in a population who has or gets
the disease
� more generally: possesses the state or undergoes the event of interest.
⇒ challenge to accurate diagnosis and classi�cation!

2. the population from which the cases originate.

3. the time point or period of observation.

Frequency measures (ELmeasures) 16/ 105



Basic measures of frequency or occurrence

Quanti�cation of the occurence of disease (or any other health-related state or
event) requires speci�cation of:

1. what is meant by a case, i.e., an individual in a population who has or gets
the disease
� more generally: possesses the state or undergoes the event of interest.
⇒ challenge to accurate diagnosis and classi�cation!

2. the population from which the cases originate.

3. the time point or period of observation.

Frequency measures (ELmeasures) 16/ 105



Types of occurrence measures

▶ Longitudinal � incidence measures: incidence rate & incidence proportion

▶ Cross-sectional � prevalence measures.

General form of frequency or occurrence measures

numerator

denominator

Numerator: number of cases observed in the population.

Denominator: generally proportional to the size of the population from which
the cases emerge.

Numerator and denominator must cover the same population, and the same
period or same time point.
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Incidence measures

▶ Incidence proportion (cumulative risk) (Q) over a �xed risk period:

Q =
number of incident (new) cases during period

size of pop'n at risk at start of the period

Also called cumulative incidence (even �risk�; e.g. in IS).
NB. �Cumulative incidence� has other meanings, too.

▶ Indidence rate (I) over a de�ned observation period:

I =
number of incident (new) cases during period

sum of follow-up times of pop'n at risk

Also called incidence density or hazard.
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Example: Follow-up of a small cohort
| = entry, ◦ = exit with censoring; outcome not observed,
• = exit with outcome event (disease onset) observed

In
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Calendar Year
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dt dt d In
d
iv
id
u
al

5
4
3
2
1

d5t1.5 d5t3.5 d5

0 2 4 6
Follow-up time (y)

Complete follow-up in the 5-year risk period ⇒ can calculate both:

Inc. rate =
2 cases

5 + 3.5 + 5 + 1.5 + 5 years
= 10 per 100 years,

Inc. prop. = 2/5 = 0.4 or 40 per cent.
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Properties of incidence proportion (cumulative risk)

▶ Dimensionless quantity ranging from 0 to 1
(0% to 100%) = relative frequency,

▶ Estimates the average theoretical risk, i.e. the probability of the outcome
occurring during the risk period, in the population at risk � i.e. among
those who are still free from the outcome at the start of the period.

▶ Simple formula valid when the follow-up time is �xed & equals the risk
period, and when there are no competing events or censoring.

▶ Competing events & censoring ⇒
Calculations need to be corrected using special methods of survival analysis.
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Properties of incidence rate

▶ Like a frequency quantity in physics; measurement scale is time−1:
e.g. Hz = 1/second, 1/year, or 1/1000 y.

▶ Estimates the average underlying intensity or hazard rate of the outcome
in a population,

▶ Estimation accurate in the constant hazard model,
▶ Calculation straightforward also with competing events and censored

observations.
▶ Hazard usually depends on age ⇒ age-speci�c rates needed.

▶ Incidence proportions can be estimated from rates.
In the constant hazard model with no competing risks:

Q = 1− exp(−I ×∆) ≈ I ×∆
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Competing events and censoring

The outcome event of interest (e.g. onset of disease) is not always observed for
all subjects during the chosen risk period.

▶ Some subjects die (from other causes) before the event.
▶ Competing event, after which the outcome can no more occur.

▶ Others emigrate and escape national disease registration, or the whole study
is closed �now�, prematurely interrupting the follow-up of them.
▶ Censoring, withdrawal, or loss to follow-up

In both cases persons are removed from the risk population
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Person-years in dynamic populations

With a dynamic study population, individual follow-up times are always variable
and impossible to measure accurately.

Common approximation � mid-population principle:

1. Let the population size be Nb at beginning (tb) and Ne at the end (te) of
the observation period of length te − tb = ut

2. Mid-population for the period around t = (tb + te)/2: N̄t =
1
2
× (Nb +Ne).

3. Approximate person-years: Ỹt = N̄t × ut.

NB: The actual study population often contains some already a�ected, thus not
belonging to the population at risk. With rare outcomes their in�uence is small.
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1. Let the population size be Nb at beginning (tb) and Ne at the end (te) of
the observation period of length te − tb = ut

2. Mid-population for the period around t = (tb + te)/2: N̄t =
1
2
× (Nb +Ne).
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Male person-years in Finland 1991-95

Total male population (1000s) on 31 December by year:

1990 1991 1992 1993 1994 1995

2,431 2,443 2,457 2,470 2,482 2,492

Approximate person-years (1000s) in various periods:

1992: 1
2
× (2, 443 + 2, 457)× 1 = 2450

1993�94: 1
2
× (2, 457 + 2, 482)× 2 = 4937

1991�95: 1
2
× (2, 431 + 2, 492)× 5 = 12307.5

1991�95: (2, 431/2 + 2, 443 + 2, 457 + 2, 470 + 2, 482 + 2, 492/2) = 12313.5
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Mortality

Cause-speci�c mortality from cause C is described by
mortality rates de�ned like incidence rates, but

▶ cases are deaths from cause C, and

▶ follow-up is extended until death or censoring.

Cause-speci�c mortality proportion (cumulative risk) from cause depends on
all cause-speci�c rates, not only on the C-speci�c mortality rate.

Total mortality:

▶ cases are deaths from any cause.

Mortality depends on the incidence and the prognosis or case fatality of the
disease, i.e. the survival of those a�ected by it.
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Prevalence measures

▶ Point prevalence or simply prevalence P of a health state C in a
population at a given time point t is de�ned as:

P =
number of existing or prevalent cases of C

size of the whole population

▶ Can be computed from a cross-sectional study base.
▶ Empirical counterpart of P{random person has disease C}

▶ Period prevalence for period from t1 to t2 is like P but
▶ numerator refers to all cases prevalent already at t1

plus new cases occurring during the period, and
▶ denominator is the population size at t2
▶ Has no simple probability counterpart
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Example 4.1 (IS: p. 59)

o =

r =
d =
m =

disease
onset

recovery
death
migration

o r
o r

o m
o

m
o d

o r

t1 t2Time (t) -

Prevalence at time t1 : 2/10 = 0.2 = 20%
Prevalence at time t2 : 3/8 = 0.38 = 38%
Period prevalence: 6/8 = 0.75 = 75%
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Prevalence and incidence are related

Point prevalence of C at given time point t depends on the

▶ incidence of new cases of C before t, and the
▶ duration of C, depending in turn on the probability of

▶ cure or recovery from C, or
▶ survival of those a�ected

Simple case: In a stationary (�stable�) population, the

prevalence (P ), incidence (I), and average duration (d̄) of S

are related as
P = I × d̄

prevalence = incidence × duration

The approximation works well, when P < 0.1 (10%).
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Prevalence of cancer?

▶ How do we know, whether and when cancer is cured?

▶ ⇒ Existing or prevalent case problematic to de�ne.

▶ NORDCAN: Prevalence of cancer C at time point t in the target population
refers to the • number & proportion of population members who
▶ are alive and resident in the population at t, and
▶ have a record of an incident cancer C diagnosed before t.

▶ Partial prevalence: Cases limited to those diagnosed during a �xed time
in the past; e.g. within last
▶ 1 y (initial treatment period),
▶ 3 y (clinical follow-up),
▶ 5 y (cure?)
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Ex: Cancer with poor and with good prognosis

Age-standardizeda incidence, mortality, prevalence, and survival for cancers of
kidney and thyroid in women of Finland:

Kidney Thyroid

Incidence rate in 2011 (per 105 y) 12 11
Mortality rate in 2011 (per 105 y) 5 1
Prevalence on 31.12.2011 (per 105) 92 198
� diagnosed < 1 y ago 9 10

� diagnosed < 3 y ago 24 29

� diagnosed < 5 y ago 35 47

� diagnosed > 5 y ago 57 151

5-y relative survival; cases 2004�8 (%) 64 90

a Standard: Nordic population in 2000
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Comparative measures
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Measures of e�ect � comparative measures

▶ Quanti�cation of the association between a determinant
(risk factor) and an outcome (disease) is based on

▶ comparison of occurrence between the index (�exposed�) and the
reference (�unexposed�) groups by
▶ relative comparative measures (ratio)
▶ absolute comparative measures (di�erence)

▶ Interpreted as the e�ect of exposure
�using the assumption that the direction of causality is from exposure to
outcome.

▶ Causality is assumed; e�ect is measured (estimated from data)

▶ Yet, caution is needed in inferences on causal e�ects, as often the groups to
be compared su�er from poor comparability ⇔ Confounding.
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Relative comparative measures

Generic name �relative risk� (RR) comparing occurrences between exposed (1)
and unexposed (0) groups can refer to:

▶ incidence rate ratio IR = I1/I0,

▶ incidence proportion ratio IPR = Q1/Q0,

▶ incidence odds ratio IOR = [Q1/(1−Q1)]/[Q0/(1−Q0)],

▶ prevalence ratio PR = P1/P0, or

▶ prevalence odds ratio POR = [P1/(1− P1)]/[P0/(1− P0)],

depending on study base and details of its design.

Incidence rate ratio IR = I1/I0 is the most commonly used comparative measure
in cancer epidemiology.
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Absolute comparative measures

Generic term �excess risk� or �risk di�erence� (RD) btw exposed and
unexposed can refer to

▶ incidence rate di�erence ID = I1 − I0,

▶ incidence proportion di�erence IPD = Q1 −Q0, or

▶ prevalence di�erence PD = P1 − P0.

Use of relative and absolute comparisons

▶ Ratios � describe the beginitemizeological strength of the exposure

▶ Di�erences � inform about its public health importance.
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Example (IS, Table 5.2, p.97)

Relative and absolute comparisons between the exposed and the unexposed to
risk factor X in two diseases.

Disease A Disease B

Incidence rate among exposeda 20 80
Incidence rate among unexposeda 5 40
Rate ratio 4.0 2.0
Rate di�erencea 15 40
a Rates per 100 000 pyrs.

Factor X has a stronger biological potency for disease A, but it has a greater
public health importance for disease B.
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Attributable fraction (excess fraction)

▶ Measures of potential impact:
Combination of absolute and relative comparisons.

▶ This measure estimates the fraction out of all new cases of disease
among those exposed, which are attributable to (or �caused� by) the
exposure itself, and which thus could be avoided if the exposure were absent.

▶ When the incidence is higher in the exposed, the attributable fraction
(AF) for the exposure or risk factor is de�ned as:

AF =
I1 − I0

I1
=

RR− 1

RR
.

Also called excess fraction (or even �attributable risk� in old texts).
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Population attributable fraction

▶ Suppose we ask instead:

▶ �How large a fraction of all cases in the population would be prevented, if

the exposure were eliminated?�

▶ The answer to this question depends in addition on

pE = proportion of exposed in the population.

▶ Population attributable (excess) fraction (PAF) is de�ned:

PAF =
I − I0

I
=

pE(RR− 1)

1 + pE(RR− 1)

▶ AF: biological impact of exposure,

▶ PAF: impact of exposure on the population level.
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Attributable fraction illustrated

▶ The population is divided into exposed and unexposed.

▶ The rate I1 among the exposed would be I0, i.e. the same as in the
unexposed, if the exposure had no e�ect.

▶ The excess incidence I1 − I0 is caused by the exposure.

▶ AF = I1 − I0
I1

,

= fraction of
black area
out of total
black + gray area.

Unexposed Exposed

1 − pE pE

ACI1 − I0

I0

I1

I0
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PAF illustrated

▶ Total incidence I in the population � a wenditemizeghted average:

I = pE × I1 + (1− pE)× I0 (total area)

would equal I0, if exposure had no e�ect

▶ Excess incidence caused by exposure: I − I0 = pE × (I1 − I0) (black area).

▶ PAF = I − I0
I ,

= fraction of
black area
out of total
black + gray area.

Unexposed Exposed

1 − pE pE

ACI1 − I0

I0

I1

I0
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Prevented fractions

▶ When the incidence in exposed is lower, we de�ne the prevented fraction:

PF =
I0 − I1

I0
= 1− RR

also called relative risk reduction
= percentage of cases prevented among the exposed due to the exposure.

▶ Used to evaluate the relative e�ect of a preventive intervention (�exposure�)
vs. no intervention.

▶ Population prevented fraction (PPF) combines this with the prevalence
of exposure in the population:

PPF =
I0 − I

I0
= pE × (1− RR),

measuring the relative reduction in caseload attributable to the presence of
preventive factor in the population.
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Smoking on mortality by cause (IS: Ex 5.14, p. 98)

Underlying Never Current Rate Rate Attributable
cause of smoked cigarette ratio di�er- fraction
death regularly smoker enceb (%)

Rateb Rateb

(1) (2) (2)/(1) (2)− (1)
(2)− (1)

(2)
× 100

Cancer type
All sites 305 656 2.2 351 54
Lung 14 209 14.9 195 93
Oesophagus 4 30 7.5 26 87
Bladder 13 30 2.3 17 57

Respiratory diseases 107 313 2.9 206 66
Vascular diseases 1037 1643 1.6 606 37
All causes 1706 3038 1.8 1332 44

a Data from Doll et al., 1994a. b Age-adjusted rates per 100 000 pyrs.
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Rates on several time scales

can be studied on various distinct time scales, e.g.

Time scale Origin: date of . . .

age birth
calendar time 1900-1-1
exposure time �rst exposure
follow-up time entry to study

duration of disease diagnosis

▶ Age is usully the strongest time-dependent determinant of health outcomes.

▶ Age is also often correlated with cumulative exposure
(e.g. years of smoking).
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Follow-up of a small geriatric cohort
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Overall rate: 4 cases/53.5 person-years = 7.5 per 100 y.
But the �true� rate varies by age, it is higher among the old.
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Splitting follow-up into agebands

▶ To describe, how incidence varies by age, individual person-years from age of
entry to age of exit must �rst be split or divided into narrower agebands.

▶ Usually these are based on common 5-year age grouping.

▶ Numbers of cases are equally divided into same agebands.

▶ Age-speci�c incidence rate for age group k is

Ik =
number of cases observed in ageband

person-years contained in ageband

▶ Underlying assumption: piecewise constant rates (in each age band)
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P-years and cases in agebands: age-speci�c rates

Ageband

Subject 70-74 75-79 80-84 Total

1 5.0 5.0 3.5 13.5
2 4.5 - - 4.5
3 4.5 1.0 - 5.5
4 4.0 2.0 - 6.0
5 3.0 5.0 5.0 13.0
6 - 3.0 2.0 5.0
7 - - 3.0 3.0
8 - - 3.0 3.0

Sum of person-years 21.0 16.0 16.5 53.5
Cases 1 1 2 4
Rate (/100 y) 4.8 6.2 12.1 7.5

Age-speci�c rates overall
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Ex. Lung cancer incidence in Finland by age and period
(compare IS, Table 4.1)

Calendar Age group (y)

period 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85+

1953-57 21 61 119 209 276 340 295 279 193 93
1958-62 22 65 135 243 360 405 429 368 265 224
1963-67 24 61 143 258 395 487 509 479 430 280
1968-72 21 61 134 278 424 529 614 563 471 358
1973-77 16 50 134 251 413 541 629 580 490 392
1978-82 13 36 115 234 369 514 621 653 593 442
1983-87 11 31 74 186 347 450 566 635 592 447
1988-92 9 25 57 128 262 411 506 507 471 441
1993-97 7 22 48 106 188 329 467 533 487 367
1998-02 5 14 46 77 150 239 358 445 396 346

▶ Rows: age-incidence pattern in di�erent calendar periods.

▶ Columns: Trends of age-speci�c rates over calendar time.
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Lung cancer rates by age and period
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▶ Age-incidence curves: overall level and peak age variable across periods.
▶ Time trends inconsistent across age groups: decline onset at di�erent dates.
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Incidence by age, period & cohort

▶ Secular trends of speci�c and adjusted rates show, how the
�cancer burden� has developed over periods of calendar time.

Birth cohort = people born during the same limited time interval, e.g. single
calendar year, or 5 years period.

▶ Analysis of rates by birth cohort reveals, how the level of incidence (or
mortality) di�ers between successive generations.
� May re�ect di�erences in risk factor levels across birth cohorts.

▶ Often more informative about �true� age-incidence pattern than age-speci�c
incidences of single calendar period.
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Age-speci�c rates by birth cohort

Calendar Age group (y)

period 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79

1953-57 21 61 119 209 276 340 295 279

1958-62 22 65 135 243 360 405 429 368

1963-67 24 61 143 258 395 487 509 479 A

1968-72 21 61 134 278 424 529 614 563

1973-77 16 50 134 251 413 541 629 580

1978-82 13 36 115 234 369 514 621 653 B

1983-87 11 31 74 186 347 450 566 635

1988-92 9 25 57 128 262 411 506 507

1993-97 7 22 48 106 188 329 467 533 C

1998-02 5 14 46 77 150 239 358 445

E: 1947/48 D: 1932/33

A = synthetic cohort born around 1887/88, B: 1902/03, C: 1917/18

Diagonals re�ect age-incidence patterns in various birth cohorts.
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Age-incidence curves in 5 birth cohorts
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Split of follow-up by age and period

▶ Incidence of (or mortality from) disease C in special cohort of exposed
(e.g. occupational group, patients on certain treatment)

→ often compared to incidence in an external reference or �general� population.

▶ Adjustment for age and calendar time needed, e.g. by
comparing observed to expected cases with SIR (see p. 70-74).

⇒ Cases and person-years in the study cohort must be split by more than one
time scale (age).
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Example (adapted from C&H, Tables 6.2 & 6.3, p. 54)

Entry and exit dates for a small cohort of four subjects

Subject Born Entry Exit Age at entry Outcome

1 1954 1993 2002 39 Migrated
2 1974 1998 2005 24 Disease C
3 1964 1995 2011 31 Study ends
4 1970 1998 2006 28 Unrelated death

Subject 1: Follow-up time spent in each ageband

Age band Date in Date out Time (years)

35�39 1993 1994 1
40�44 1994 1999 5
45�49 1999 2002 3
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Example: (cf. C&H, Figures 6.1 & 6.2, p. 55)

Follow-up of cohort members by calendar time and age:
| entry
• exit because of disease onset (outcome of interest)
◦ exit due to other reason (censoring)
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Person-years by age and period (cf. C&H, Figure 6.4)

Subject 1: Follow-up jointly split by age and calendar time:

Follow-up time
1 1 4 1 2

Age
35 40 45 50

Year
1990 1995 2000 2005

This person contributes person-time into 5 di�erent cells de�ned by ageband &
calendar period
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Follow-up in Lexis-diagrams (cf. C&H, pp. 58-59)
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Follow-up lines run diagonally through di�erent ages and calendar periods.

Incidence rates can depend both on age and calendar time:
See the Lexis functions in the Epi package.
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Standardization
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Standardization of rates

▶ Incidence of most cancers (and many other diseases) increases strongly by
age in all populations.

⇒ Most of the caseload comes from older age groups.

▶ Crude incidence rate = total no. of new cases
total person-years

,

• numerator = sum of age-speci�c numbers of cases,
• denominator = sum of age-speci�c person-years.

▶ This is generally a poor summary measure.

▶ Comparisons of crude incidences between populations can be very
misleading, when the age structures di�er.

▶ Adjustment or standardization for age needed!
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Ex. Male stomach cancer in Cali and Birmingham
(IS, Table 4.2, p. 71)

Cali Birmingham

Male Incid. Male Incid.
Male Popu- Rate Male Popu- Rate
cases lation (/105y) cases lation (/105y)

Age 1982 1984 1982 1983 1985 1983 Rate
(y) -86 (×103) -86 -86 (×103) -86 ratio

0�44 39 524.2 1.5 79 1 683.6 1.2 1.25

45-64 266 76.3 69.7 1037 581.5 44.6 1.56

65+ 315 22.4 281.3 2352 291.1 202.0 1.39

Total 620 622.9 19.9 3468 2 556.2 33.9 0.59

▶ In each age group Cali has a higher incidence
� but the crude incidence is higher in Birmingham.

▶ Is there a paradox?
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Comparison of age structures (IS, Tables 4.3, 4.4)

% of male population

Age Cali B'ham Finland World
(years) 1984 1985 2011 Stand.

0�44 84 66 56 74
45�64 12 23 29 19
65+ 4 11 15 7
All ages 100 100 100 100

The fraction of old men greater in Birmingham than in Cali.

⇒ Crude rates are confounded by age.

⇒ Any summary rate must be adjusted for age.
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Adjustment by direct standardisation

Age-standardised incidence rate (ASR):

ASR =
K∑
k=1

weightk × ratek / sum of weights =
K∑
k=1

wk × ratek, (
K∑
k=1

wk = 1)

▶ A weighted average of age-speci�c rates over the age-groups
k = 1, . . . , K.

▶ Weights describe the age distribution of some standard population.

▶ Standard population can be
▶ real (e.g. one of the populations compared, or their total), or
▶ �ctitious (e.g. World Standard Population, WSP)

▶ Choice of standard population always more or less arbitrary.
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▶ Choice of standard population always more or less arbitrary.
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Some standard populations:

Age group (years) African World European NORDCAN (2000)

0�4 10 000 12 000 8 000 5 900
5�9 10 000 10 000 7 000 6 600
10�14 10 000 9 000 7 000 6 200
15�19 10 000 9 000 7 000 5 800
20�24 10 000 8 000 7 000 6 100
25�29 10 000 8 000 7 000 6 800
30�34 10 000 6 000 7 000 7 300
35�39 10 000 6 000 7 000 7 300
40�44 5 000 6 000 7 000 7 000
45�49 5 000 6 000 7 000 6 900
50�54 3 000 5 000 7 000 7 400
55�59 2 000 4 000 6 000 6 100
60�64 2 000 4 000 5 000 4 800
65�69 1 000 3 000 4 000 4 100
70�74 1 000 2 000 3 000 3 900
75�79 500 1 000 2 000 3 500
80�84 300 500 1 000 2 400
85+ 200 500 1 000 1 900

Total 100 000 100 000 100 000 100 000
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Stomach cancer in Cali & Birmingham

Age-standardized rates by the World Standard Population:

Cali Birmingham

Age Ratea Weight Ratea Weight

0�44 1.5× 0.74= 1.11 1.2× 0.74= 0.89
45�64 69.7× 0.19= 13.24 44.6× 0.19= 8.47
65+ 281.3× 0.07= 19.69 202.0× 0.07= 14.14

Age-standardised rate 34.04 23.50

▶ ASR in Cali higher � coherent with the age-speci�c rates.
▶ Summary rate ratio estimate: standardized rate ratio

SRR = 34.0/23.5 = 1.44.

▶ This is also called as comparative mortality �gure (CMF), when the
outcome is death (from cause C or from all causes).
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Cumulative rate and �cumulative risk�

▶ A neutral alternative to arbitrary standard population for age-adjustment is
provided by cumulative rate:

CumRate =
K∑
k=1

widthk × ratek,

▶ Weights are now widths of the agebands to be included, usually up to 75 y.
▶ NORDCAN & GLOBOCAN use the transformation:

CumRisk = 1− exp(−CumRate),

calling it as the cumulative risk of getting the disease by given age, in the
absence of competing causes.

▶ Since competing events are present, the probability
interpretation of CumRisk is somewhat problematic.
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Stomach cancer in Cali & Birmingham

From age-speci�c rates of Table 4.2, the cumulative rates up to 65 years and
their ratio are

Cali: 45 y × 1.5
105y

+ 20 y × 69.7
105y

= 0.0146 = 1.46 per 100

B'ham: 45 y × 1.2
105y

+ 20 y × 44.6
105y

= 0.0095 = 0.95 per 100

ratio: 1.46/0.95 = 1.54

�Cumulative risks� & their ratio up to 65 y:

Cali: 1− exp(−0.0146) = 0.0145 = 1.45%

B'ham: 1− exp(−0.0095) = 0.0094 = 0.94%

ratio: 1.45/0.94 = 1.54

Cumulative rate and cumulative risk are roughly the same of < 0.05.

NB: For more appropriate estimates of cumulative risks, correction for total
mortality (competing event) needed.
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Cum. measures in B'ham with 5-y groups (IS, Fig 4.11)

Age-group (years) Incidence rate (per 100 000 pyrs)

0�4, . . . , 15�19 0.0
20�24, 25�29 0.1
30�34 0.9
35�39 3.5
40�44 6.7
45�49 14.5
50�54 26.8
55�59 52.6
60�64 87.2
65�69 141.7
70�74 190.8

Sum 524.9

Cumulative rate 0-75 y = 5 y× 524.9

105 y
= 0.0262 = 2.6 per 100

�Cumulative risk� 0-75 y = 1− exp(−0.0262) = 0.0259 = 2.6%.
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Cumulative and life-time risks

It is, of course, an interesting and relevant question to ask:
�What are my chances of getting cancer C, say, in the next 10 years, between

ages 50 to 75 years, or during the whole lifetime? �

This is not easy to answer.

▶ Fully individualized risks are unidenti�able.

▶ Age-speci�c and standardized rates are not very informative as such.

▶ Average cumulative risks are often estimated from cumulative rates using
the simple formula above.

▶ Yet, these naive estimates �ctitiously presume that a person would not die
from any cause before cancer hits him/her, but could even survive forever!
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Total mortality and incidence of two cancers, Finland 2005
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Estimation of cumulative risks

▶ The probability of contracting cancer during realistic lifespan or in any age
range depends not only on age-speci�c hazard rates of cancer itself but also
of probabilities of overall survival up to relevant ages,

▶ Hence, the dependence of total mortality by age in the population at risk
must be incorporated in the estimation of cumulative risks of cancer.

▶ When this is properly done, the corrected estimates of cumulative risk will
always be lower than the uncorrected �risks�.

▶ The magnitude of bias in the latter grows by age, but is reduced with
increased life expectancy.
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Cumulative measures, Finland 2005
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Greater di�erences in males re�ect shorter life expectancy and relatively high
rates of prostate ca. in old ages.
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Special cohorts of exposed subjects

▶ Occupational cohorts, exposed to potentially hazardous agents, e.g.
asbestos workers, uranium miners (see Johanna's lecture on cohort studies)

▶ Cohorts of patients on intensive treatment, which may have harmful
long-term side-e�ects, e.g. people with a history of childhood cancer.

▶ Often no internal comparison group of unexposed subjects available.

Question: Do incidence or mortality rates in the exposed target cohort di�er
from those of a roughly comparable reference population?

Reference rates obtained from:

▶ population statistics (mortality rates)

▶ disease & hospital discharge registers (incidence)
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Observed and expected cases�SIR (indirect standardization)

▶ Compare rates in a study cohort with a standard set of age�speci�c rates
from the reference population.

▶ Reference rates normally based on large numbers of cases, so they are
assumed to be �known� without error.

▶ Calculate expected number of cases, E, if the standard age-speci�c rates
had applied in our study cohort.

▶ Compare this with the observed number of cases, D, by the
standardized incidence ratio (SIR)

SIR = D/E, SE(log[SIR]) = 1/
√
D

▶ Analogously, standardized mortality ratio (SMR) with death as outcome.
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Example: Hormone therapy and breast cancer

▶ A cohort of 974 women treated with hormone (replacement) therapy (HT)
were followed up.

▶ D = 15 incident cases of breast cancer were observed.

▶ Person-years (Y ) and reference rates (λ∗
a, per 100000 y) by age group:

Age Y λ∗
a E

40�44 975 113 1.10
45�49 1079 162 1.75
50�54 2161 151 3.26
55�59 2793 183 5.11
60�64 3096 179 5.54∑

16.77
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Ex: HT and breast ca. (cont'd)

▶ �Expected� cases at ages 40�44:

975× 113

100 000
= 1.10

▶ Total �expected� cases is E = 16.77

▶ SIR = 15/16.77 = 0.89.

▶ Error-factor: exp(1.96×
√

1/15) = 1.66

▶ 95% con�dence interval is:

0.89
×
÷ 1.66 = (0.54, 1.48)
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SIR for Cali with Birmingham as reference (IS: Fig. 4.9)

Total person-years at risk and expected number of cases in Cali 1982-86 based on
age-speci�c rates in Birmingham

Age Person-years Expected cases in Cali

0�44 524 220 × 5 = 2 621 100 0.000012 × 2 621 100 = 31.45
45�64 76 304 × 5 = 381 520 0.000446 × 381 520 = 170.15
65+ 22 398 × 5 = 111 990 0.002020 × 111 990 = 226.00

All ages = 3 114 610 Total expected (E) 427.82

Total observed number O = 620.

Standardised incidence ratio:

SIR =
O

E
=

620

427.8
= 1.45 (or 145 per 100)
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Crude and adjusted rates compared (IS: Table 4.6)

Cali, B'ham, Rate
1982-86 1983-86 ratio

Crude rates (/105 y) 19.9 33.9 0.59

ASR (/105 y)B with 3 broad age groups 48.0 33.9 1.42

ASR (/105 y)C �"� 19.9 14.4 1.38

ASR (/105 y)W �"� 34.0 23.5 1.44

Cum. rate < 65 y (per 1000) �"� 14.6 9.5 1.54

ASR (/105 y)W with 18 5-year age groups 36.3 21.2 1.71

Cum. rate < 75 y (per 1000) �"� 46.0 26.0 1.77

Standard population: B Birmingham 1985, C Cali 1985, W World SP

NB: The ratios of age-adjusted rates appear less dependent on the choice of
standard weights than on the coarseness of age grouping.

Narrow age groups are preferred, we do have computers. . .
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SURVIVAL ANALYSIS

Questions of interest on the prognosis of cancer:

▶ what are the patients' chances to survive at least 1 year, or 5 years etc.,
since diagnosis?

Survival analysis: In principle like incidence analysis but

▶ population at risk = patients with cancer,

▶ basic time variable = time since the date of diagnosis, on which the
follow-up starts,

▶ outcome event of interest = death,

▶ measures and methods used somewhat di�erent from those used in
incidence analysis.
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Follow-up of 8 out of 40 breast cancer patients
(from IS, table 12.1., p. 264)

No. Age Sta- Date of Date at Vital Cause Full Days
(y) gea diag- end of status of years from

nosis follow-up at end of deathc from diagn's
follow-up diagn's up to

up to end of
end of follow-up

follow-up

1 39 1 01/02/89 23/10/92 A � 3 1360
3 56 2 16/04/89 05/09/89 D BC 0 142
5 62 2 12/06/89 28/12/95 A � 6 2390

15 60 2 03/08/90 27/11/94 A � 4 1577
22 64 2 17/02/91 06/09/94 D O 3 1297
25 42 2 20/06/91 15/03/92 D BC 0 269
30 77 1 05/05/92 10/05/95 A � 3 1100
37 45 1 11/05/93 07/02/94 D BC 0 272
a 1 = absence of regional lymph node involment and metastases
2 = involvement of regional lymph node and/or presence of metastases

b A = alive; D = dead; c BC = breast cancer; O = other causes
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Follow-up of breast ca. patients (cont'd)

| entry = diagnosis; • exit = death; ◦ exit = censoring
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(IS: Figure 12.1, p. 265)
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Life table or actuarial method

Commonly used in population-based survival analysis by cancer registries.
(In clinical applications the Kaplan-Meier method is more popular.)

(1) Divide the follow-up time into subintervals k = 1, . . . K;
most of these having width of 1 year.

Often the �rst year is divided into monthly intervals, or at two intervals with
widths of 3 mo and 9 mo, respectively.

(2) Tabulate from original data for each interval

Nk = size of the risk set, i.e. the no. of subjects still alive and under follow-up at
the start of interval,

Dk = no. of cases, i.e. deaths observed in the interval,

Lk = no. of losses, i.e. individuals censored during the interval before being
observed to die.
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Life table items for breast ca. patients

(IS: Table 12.2., p. 273, �rst 4 columns)

Inter- Years No. at No. of No. of
val since start of deaths losses

diagnosis interval
(k) (Nk) (Dk) (Lk)

1 0� < 1 40 7 0
2 1� < 2 33 3 6
3 2� < 3 24 4 3
4 3� < 4 17 4 4
5 4� < 5 9 2 3
6 5� < 6 4 1 2
7 6� < 7 1 0 1

Total 21 19
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Life table calculations (cont'd)

(3) Calculate and tabulate for each interval

N ′
k = Nk − Lk/2 = corrected size of the risk set, or

�e�ective denominator� at start of the interval,

qk = Dk/N
′
k = estimated conditional probability of dying

during the interval given survival up to its start,

pk = 1− qk = conditional survival proportion over the int'l,

Sk = p1 × · · · × pk = cumulative survival proportion from
date of diagnosis until the end of the kth interval

= estimate of survival probability up to this time point.
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Follow-up of breast ca. patients (cont'd)

Actuarial life table completed (IS, table 12.2, p. 273)

Inter- Years No. No. No. E�ec- Cond'l Survival Cumul.
val since at of of tive prop'n prop'n survival;

dia- start deaths losses deno- of deaths over est'd
gnosis of in- minator during int'l survival

terval int'l prob'ty
(k) (Nk) (Dk) (Lk) (N ′

k) (qk) (pk) (Sk)

1 0� < 1 40 7 0 40.0 0.175 0.825 0.825
2 1� < 2 33 3 6 30.0 0.100 0.900 0.743
3 2� < 3 24 4 3 22.5 0.178 0.822 0.610
4 3� < 4 17 4 4 15.0 0.267 0.733 0.447
5 4� < 5 9 2 3 7.5 0.267 0.733 0.328
6 5� < 6 4 1 2 3.0 0.333 0.667 0.219
7 6� < 7 1 0 1 0.5 0.0 1.0 0.219

1-year survival probability is thus estimated 82.5% and
5-year probability 32.8%.
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6 5� < 6 4 1 2 3.0 0.333 0.667 0.219
7 6� < 7 1 0 1 0.5 0.0 1.0 0.219

1-year survival probability is thus estimated 82.5% and
5-year probability 32.8%.
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Comparison to previous methods

▶ Complement of survival proportion Qk = 1− Sk

= incidence proportion of deaths.

Estimates the cumulative risk of death from the start of follow-up till the
end of kth interval.

▶ Indidence rate in the kth interval is computed as:

Ik =
number of cases (Dk)

approximate person-time (Ỹk)

where the approximate person-time is given by

Ỹk =

[
Nk −

1

2
(Dk + Lk)

]
× width of interval

The dead and censored thus contribute half of the interval width.
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Survival curve and other measures

Line diagram of survival proportions through interval endpoints provides graphical
estimates of interesting parameters of the survival time distribution, e.g.:

▶ median and quartiles: time points at which the
curve crosses the 50%, 75%, and 25% levels

▶ mean residual lifetime: area under the curve, given that it decreases all
the way down to the 0% level.

NB. Often the curve ends at higher level than 0%, in which case some measures
cannot be calculated.
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Survical curve of breast ca. patients (IS: Fig 12.8)
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Relative survival analysis

▶ Another interesting and relevant question:

�How much worse are the chances of a cancer patient to survive, say, 5

years, as compared with a comparable person without the disease?�

▶ An answer is provided by relative survival proportions:

Rk = Sobs
k /Sexp

k , where

• Sobs
k = observed survival proportion in cancer patient group k

by age, gender and year of diagnosis,

• Sexp
k = expected survival proportion based on the age-speci�c mortality

rates of the same gender and calendar time in a reference population
(compare with calculations of SIR!)

+ No information on causes of death needed.
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CONCLUSION

Measuring and comparing disease frequencies

▶ not a trivial task but

▶ demands expert skills in epidemiologic methods.

Major challenges:

▶ obtain the right denominator for each numerator,

▶ valid calculation of person-years,

▶ appropriate treatment of time and its various aspects,

▶ removal of confounding from comparisons.
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Introduction to R

What is R?

▶ A practical calculator:

• You can see what you compute
• . . . and change easily to do similar calculations.

▶ A statistical program.

▶ An environment for data analysis and graphics.

▶ A programming language

▶ Developed by international community of volunteers.

▶ Free.

▶ Runs on any computer.

▶ Updated every 6 months.
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What does R o�er for epidemiologists?

▶ Descriptive tools
▶ Versatile tabulation

▶ High-quality graphics

▶ Analytic methods
▶ Basic epidemiologic statistics

▶ Survival analysis methods

▶ Common regression models and their extensions

▶ Other. . .

But these are provided by e.g. SPSS, SAS and Stata too, so . . . ?

Many features of R are more appealing in the long run.
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Graphics in R

▶ Versatile, �exible, high quality, . . .

▶ Various high-level graphic functions available.

▶ Easy to add items (points, lines, text, legends . . . )
to an existing graph.

▶ Fine tuning of symbols, lines, axes, colours, etc. by
graphical parameters (> 67 of them!)
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Total mortality and lung ca incidence in DK
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Survival of cervix ca patients (C&H, 34)
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Lexis diagram of Welsh nickel cohort
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Rate ratios with con�dence intervals
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Getting your graphs out

▶ Graphs can be saved to disk in almost any format

▶ .eps, .pdf, .bmp, .jpg, .png, . . .

▶ Save graphs from the screen or write directly to a �le.

▶ You can also directly transport an R graph as a meta�le into a Word
document
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Tools for nearly anything!

▶ Thousands of add-on packages.

▶ Several packages for epidemiological analyses:
▶ Epi: focus on chronic disease epidemiology:

▶ Cohort studies, splitting follow-up time
▶ Lexis diagram, several timescales
▶ Multistate model support
▶ Advanced tabulation
▶ Informative reporting of estimation results
▶ �Epidemiology with R�

▶ epicalc:
▶ epitools: Mostly infectious diseases.
▶ epiR: Leaning towards veterinary epidemiology.

▶ Packages can be installed and updated from within R.
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Running R

▶ Interactive but not mouse-driven!

▶ Commands typed from keyboard.

▶ More practical: commands written and saved in a
script �le from which they are run.

▶ Execution of tasks:
▶ evaluation of expressions contained in commands,
▶ based on calls of functions.

Di�cult to learn & slow to use?

▶ Maybe in the beginning.

▶ Versatility and �exibility rewarding in the long run.
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R as a simple calculator

Write the arithmetic expression on the empty line after the prompt and press
Enter. The result is displayed immediately:

> 2+2

[1] 4

> 3*5 - 6/2

[1] 12

> (2+3)^2

[1] 25

> sqrt( 1/12 + 1/17 )

[1] 0.377037

> exp( 1.96 * sqrt( 1/12 + 1/17 ) )

[1] 2.093825
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R as a smart calculator

Simple summary of results from a cohort study:

Exposed Unexposed

No. of cases/Person-years 20/2000 25/5000
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R as a smart calculator

▶ Numbers of cases and person-years are �rst assigned & saved into vectors D
and Y;

▶ Incidence rates in the two groups as well as their ratio and di�erence are
then calculated and printed:

> D <- c(20, 25) ; Y <- c(2000, 5000)
> rate <- 1000*D/Y ; rate

[1] 10 5

> ratio <- rate[1]/rate[2] ; diff <- rate[1]-rate[2]
> c(ratio, diff)

[1] 2 5
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A couple of important things

▶ Names of variables (or any other objects)
▶ Start with a letter from A,...,Z or a,..., z;

lower case separated from upper case, e.g. 'x' ̸= 'X'
▶ Letters, integers 0, ..., 9, dots '.', and

underlines ' ' allowed after 1st letter.

▶ Assignment operator '<-' (consists of '<' and '-')
▶ assigns a value to an object, for example

> A <- 5+2 ; A
[1] 7

means that a numeric variable A is given 5+2 = 7 as its value, and is then
printed

▶ the equal sign = is also allowed as assignment operator.
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Vectors and their arithmetics

A vector is ordered set of numbers (or other elements of the same type)

▶ Can be assigned values elementwise by function c()

▶ Vector x with 4 elements 1, 2, 4, 7 assigned and printed:
> x <- c(1,2,4,7)
> x
[1] 1 2 4 7

▶ Arithmetic operations +, -, *, /, � (power) for vectors of same length
i.e. same number of

▶ Outcome: a new vector whose elements are results of the operation on the
corresponding elements in original vectors.

▶ Function seq( ) generates regular sequences.
▶ Function rep( ) replicates same element(s).
▶ Common mathematical functions, like sqrt(), log(), exp() work in the

same way for numeric vectors.
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▶ Common mathematical functions, like sqrt(), log(), exp() work in the

same way for numeric vectors.

R and how we use it (R-start) 101/ 105



Vectors and their arithmetics

A vector is ordered set of numbers (or other elements of the same type)

▶ Can be assigned values elementwise by function c()

▶ Vector x with 4 elements 1, 2, 4, 7 assigned and printed:
> x <- c(1,2,4,7)
> x
[1] 1 2 4 7

▶ Arithmetic operations +, -, *, /, � (power) for vectors of same length
i.e. same number of

▶ Outcome: a new vector whose elements are results of the operation on the
corresponding elements in original vectors.

▶ Function seq( ) generates regular sequences.
▶ Function rep( ) replicates same element(s).
▶ Common mathematical functions, like sqrt(), log(), exp() work in the

same way for numeric vectors.

R and how we use it (R-start) 101/ 105



R script � commands in a �le

R script �le is an ASCII �le containing a sequence of R commands to be
executed.

The script editor of R works as follows:

1. In RGui open the script editor window: File - New script, or when editing an
existing script �le: File - Open script,

2. Write the command lines without prompt > or +.

3. Save the script �le: File - Save e.g. as c:\...\mycmds.R
or with some other �le name having extension .R
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R script (cont'd)

4. Paint the lines to be excecuted and paste them on the console window using
the third icon on the toolbar.

5. Edit the �le using Edit menu, save & continue.

▶ To run an entire script �le, write in console window:
source("c:/.../mycmds.R", echo=TRUE)

▶ The script can also be written and edited by any external editor programs
(like Notepad).

▶ R Studio � very versatile interface; see https://www.rstudio.com/.
This may be what most of you have been introduced to.

R and how we use it (R-start) 103/ 105

https://www.rstudio.com/


R script (cont'd)

4. Paint the lines to be excecuted and paste them on the console window using
the third icon on the toolbar.

5. Edit the �le using Edit menu, save & continue.

▶ To run an entire script �le, write in console window:
source("c:/.../mycmds.R", echo=TRUE)

▶ The script can also be written and edited by any external editor programs
(like Notepad).

▶ R Studio � very versatile interface; see https://www.rstudio.com/.
This may be what most of you have been introduced to.

R and how we use it (R-start) 103/ 105

https://www.rstudio.com/


R script (cont'd)

4. Paint the lines to be excecuted and paste them on the console window using
the third icon on the toolbar.

5. Edit the �le using Edit menu, save & continue.

▶ To run an entire script �le, write in console window:
source("c:/.../mycmds.R", echo=TRUE)

▶ The script can also be written and edited by any external editor programs
(like Notepad).

▶ R Studio � very versatile interface; see https://www.rstudio.com/.
This may be what most of you have been introduced to.

R and how we use it (R-start) 103/ 105

https://www.rstudio.com/


R script (cont'd)

4. Paint the lines to be excecuted and paste them on the console window using
the third icon on the toolbar.

5. Edit the �le using Edit menu, save & continue.

▶ To run an entire script �le, write in console window:
source("c:/.../mycmds.R", echo=TRUE)

▶ The script can also be written and edited by any external editor programs
(like Notepad).

▶ R Studio � very versatile interface; see https://www.rstudio.com/.
This may be what most of you have been introduced to.

R and how we use it (R-start) 103/ 105

https://www.rstudio.com/


R script (cont'd)

4. Paint the lines to be excecuted and paste them on the console window using
the third icon on the toolbar.

5. Edit the �le using Edit menu, save & continue.

▶ To run an entire script �le, write in console window:
source("c:/.../mycmds.R", echo=TRUE)

▶ The script can also be written and edited by any external editor programs
(like Notepad).

▶ R Studio � very versatile interface; see https://www.rstudio.com/.
This may be what most of you have been introduced to.

R and how we use it (R-start) 103/ 105

https://www.rstudio.com/


R in this course

▶ The main purpose is to inform you about the existence and potential of R,
which you might �nd useful in any future work involving serious
epidemiologic data analysis.

▶ Here, R will be used only as a simple calculator.

▶ No need for a lot of the more fancy stu�.

▶ The script editor will help you keep your solutions for future reference.

▶ After the course, solutions to all exercises will be provided.

▶ A good workbook introduction to R:
http://bendixcarstensen.com/Epi/R-intro.pdf
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Practicals

Bendix Carstensen & Esa Läärä

Nordic Summerschool of
Cancer Epidemiology
Danish Cancer Society / NCU,August 2022 / January 2023

http://BendixCarstensen.com/NSCE/2022 prac-seq

http://BendixCarstensen.com/NSCE/2022


How to do with practicals

▶ Read the text

▶ Find out what you want to do

▶ Then start using R

▶ Sequence of practicals:

1. Tuesday: 0, 1, 3, 4, 5, 7, 11, 12, 13
2. Monday: 7, 8, 2, 9, 10

Practicals (prac-seq) 105/ 105
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