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Chapter 1

Introduction to exercises

The exercises in this course requires you to do calculations which in principle can be done on
a hand-calculator.
However we assume that you use your laptop and use R as a calculator. This will enable

you to take the solutions with you home in the form of a �le with computer code that does the
analyses. It will also enable you to do analyses repeatedly on slightly di�erent sets of data.
At the end of the course you will get a complete set of solution suggestions. Many of these

will be quite elaborate, merely as an illustration of how to use the actually existing features in
R to produce solutions. They should not be taken as indications of what we assume that you
should be able to do.
So here is an indication of how you should use R:

1.1 What is R?

R is free program for data analysis and graphics. It contains all state of the art statistical
methods, and has become the preferred analysis tool for most professional statisticians in the
world. It can be used as simple calculator and as a very specialized statistical analysis and
reporting machinery.
The special thing about R is that you enter commands from the keyboard into a console

window, where you also see the results. This is an advantage because you end up with a
script that you can use to reproduce your analyses�a requirement in any scienti�c endeavour.
The disadvantage is that you somehow have to �nd out what to type. The practicals will

contain some hints, and you will mostly be using R as a calculator � type an expression, hit
the return key and you get the result on your screen.

1.2 Getting R

You can obtain R, which is free, from CRAN (the Comprehensive R Archive Network), at
http://cran.r-project.org/. Under �Download and Install R� click on �Download R

for Windows� and then click on �base� and further �Download R 3.4.1 for Windows�,
which is a self-extracting installer. This means that if you save it to your computer
somewhere and click on it, it will install R for you.
Apart from what you have downloaded there are several thousand add-on packages to R

dealing with all sorts of problems from ecology to �ance and incidentally, epidemiology. You

1
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must download these manually. In this course we shall only need the Epi package.

1.2.1 Starting R

You start R by clicking on the icon that the installer has put on your desktop. You should
edit the properties of this, so that R starts in the folder that you have created on your
computer for this course: Right-click on the R-icon, choose �Properties�, and then in the �eld
�Start in�, enter the relevant folder-name.
Once you have installed R, start it, and in the menu bar click on Packages→Install

package(s)..., chose a mirror (this is just a server where you can get the stu�), and the the
Epi package.
Once R (hopefully) has told you that it has been installed, you can type:

library( Epi )

to get access to the Epi package. You can get an overview of the functions and data sets in
the package by typing:

library( help=Epi )

1.2.2 Quitting R

Type q() in the console, and answer �No� when asked whether you want to save workspace
image.

1.3 Working with a script editor

1.3.1 Built-in editor in R

If you click on File→New script, R will open a window for you which is a text-editor very
much like Notepad.
If you write a commands in it you can transfer then to the R console and have them

executed by pressing CTRL-r. If nothing is highlighted, the line where the cursor is will be
transmitted to the console and the cursor will move to the next line. If a part of the screen is
highlighted the highlighted part will be transmitted to the console.

1.3.2 Rstudio

is a front-end to Rwith many facilities. It is a commercial product but there is a free version
which works excellent with many handy facilities; if you go to their website,
https://www.rstudio.com/, it is easy to download and install.
It is becoming the de-facto interface to R so it is a good idea to use it; you will �nd that it

is quite easy to get help on.

1.3.3 Try!

Now open a script by File→New script, and type:

https://www.rstudio.com/
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5+7
pi
1:10
N <- c(27,33,81)
N

Run the lines one at a time by pressing CTRL-r (if you are using RStudio it is CTRL-Enter),
and see what happens.
You can also type the commands in the console directly. But then you will not have a

record of what you have done. Well, you can press File→Save History and save all you
typed in the console (including the 73.6% commands with errors).

1.4 Getting a bit more training

If you are interested in using R in epidemiology, there is �A short introduction to R�, originally
written for the European Educational Programme in Epidemiology (and for the IARC
summer school in time trends in 2007). A revised version is at:
http://bendixcarstensen.com/Epi/R-intro.pdf.

1.5 Further reading

On the CRAN web-site the last menu-entry on the left is �Contributed� and will take you to a
very long list of various introductions to R, including manuals in esoteric languages such as
Danish, Finnish and Hungarian.
A very short (12 pages) and handy introduction found there is �A (very) short Introduction

to R� by Paul Torfs and Claudia Brauer
https://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf. That
will take you a long way.

http://bendixcarstensen.com/Epi/R-intro.pdf
https://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf


Chapter 2

Measures of Disease Occurrence �

Exercises

2.0 Using NORDCAN

2.0.1 Finding and opening NORDCAN

1. Launch your favourite browser, like Firefox or Internet Explorer.

2. Enter the website of the Association of the Nordic Cancer Registries: www.ancr.nu;
when there, click on the link Cancer Data, then NORDCAN - on the Web, and �nally
http://www-dep.iarc.fr/nordcan.htm.

3. On the page you just reached, choose the English �ag, leading you to the actual starting
page of The NORDCAN Project: www-dep.iarc.fr/NORDCAN/english/frame.asp

2.0.2 Cancer fact sheet on lung cancer

Create a cancer fact sheet for lung cancer in all the Nordic countries together by appropriate
choices from the pertinent menus on the left hand side. Find answers to the following
questions:

1. What were the average annual numbers of new cases in men and women during 2012�16?

2. How big were the estimated risks of getting cancer by 75 years of age for the two
genders?

3. How many men and women died each year from lung cancer during 2012�2016?

4. What were the numbers of men and women living with lung cancer at the end of 2016,
and how big were the corresponding proportions of lung cancer patients out of the whole
male and female populations?

5. Compare the trends of age-standardized incidence and mortality rates in men and
women. What kind of observations you make?

4
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2.0.3 Incidence of lung cancer

Learn more about the incidence rates of lung cancer among men in the Nordic Countries
during 2012-2016. Go to ONLINE ANALYSIS on the left and click on Incidence/Mortality.
Proceed to Tables and after text Standardized rates by click Countries. From the pertinent
boxes under the heading Cancer/Years* select �rst Lung and then pick up the requires years
by simultaneously pushing Ctrl key when doing the latter selections year by year.

1. Where was the incidence highest, where lowest? What were the crude rates in these two
regions?

2. Compare Finland and Norway. Can you �nd any real di�erence in the crude rates?
What about the age-standardized rates with di�erent standard populations? (The
explanation for the standardized rates and for possible discrepancies between them and
the crude rates will be given later on.)

2.0.4 Population size and person-years

Find out data on the population size and person-years, also by age, of all men in Finland in
the early 1990s and compare them with the numbers given on lecture slide 23. For that
purpose, go �rst to ONLINE ANALYSIS and click Incidence/Mortality. Then proceed down to
Population pyramid and select Finland from the pertinent box.

1. Select year 1992 from the scroll-down menu box on the right and execute. Compare the
population pyramids of men and women. Check out the total number of men and
compare with the person-years given for that year on lecture slide 23.

2. Select years 1993 and 1994 simultaneously by pushing Ctrl key when picking the second
one of these. Look at the total number on the bottom line of the table and compare
with the person-years given for that year on lecture slide 23. Has the population size
doubled?

2.0.5 Mortality from lung cancer

Learn more about the mortality rates of lung cancer among men in the Nordic Countries
during 2012�2016. Proceed as with the incidence of lung cancer above (ONLINE ANALYSIS →
Incidence/Mortality, etc.), but now complete the choices by changing the Data type into
Mortality and execute.

1. Where was the mortality highest, where lowest? What were the crude rates in these two
regions? Are they very di�erent from the corresponding incidence rates in task 1.3
above?

2. Compare Island and Sweden. Can you �nd any real di�erence in the crude rates? What
about the age-standardized rates with di�erent standard populations?

2.0.6 Prevalence of lung cancer

Learn more about the prevalence of lung cancer among men in the Nordic Countries at the
end of 2016. Under ONLINE ANALYSIS now click Prevalence. Then continue to Tables by and
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click on Countries. On the next page from the Cancer menu select Lung, and for the year
choose 2016 from the pertinent boxes.

1. Where was the total prevalence highest, where lowest? What were the prevalence
proportions in these two regions?

2. What was the prevalence proportion of cases diagnosed less than 1 year ago in all
Nordic countries jointly?

3. What was the prevalence proportion of cases diagnosed at least 5 years ago in all Nordic
countries jointly?

2.0.7 Lung cancer by age, period and cohort

We shall now look at incidence rates by di�erent time scales as exempli�ed on lecture slides
47 to 51.

1. Create a graph showing the age speci�c incidence and mortality of lung cancer among
men in Denmark during 2012-16. From Incidence/Mortality, under Graphs choose
Age-speci�c curves. Any comments to the graph?

2. Repeat the previous task for Finland and compare the curves between these two
countries.

3. Create graphs describing age-incidence curves of lung cancer among males in Denmark
for years 1955 and 2000. From Incidence/Mortality , under Graphs choose
Age-speci�c curves. Select Cancer/Sex and Country accordingly. Select the years from
the pertinent box by pushing Ctrl key when making the 2nd selection. Click on
Individual years, and execute. Take a look at the graphs �rst on the linear scale. After
that switch to the logarithmic scale by clicking on the gray text Toggle
Arithmetic/Logarithmic scale. Compare these curves with the corresponding ones for
Finland on lecture slide 48.

4. Create graphs describing trends in the age-speci�c incidence rates among males in
Denmark. From Incidence/Mortality , under Graphs choose Time-trends by age. For
Starting and Ending choose 1955 and 2000, respectively. Under Age for From choose 35-,
for Interval choose 5, and for Smoothing choose 5 years and execute. When the curves
appear, click on the gray text Toggle Arithmetic/Logarithmic scale. Compare these curves
with the corresponding ones for Finland found on lecture slide 48.

5. Create graphs describing age-incidence curves by birth cohort of lung cancer among
males in Denmark. From Incidence/Mortality , under Graphs choose
Time-trends by cohort. Select Cancer/Sex and Country as above and Age to 84, and
execute. When the curves appear, click on the gray text Age/Cohort (3). Compare these
curves with the corresponding ones for Finland found on lecture slide 51. You will also
notice that a similar table is displayed as on slide 47.
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2.0.8 Crude and standardized rates: stomach cancer

Obtain the crude and standardized incidence rates of male stomach cancer in the Nordic
countries for 2016.

1. In which country is the incidence highest when measured both by the crude rate and by
all the di�erent age-standardized rates?

2. Compare the age-standadized rate based on the World Standard Population of the
country in (a) with those of Cali and Birmingham in the 1980s given on lecture slide 62.

3. Why are the standardized rates of type ASR(N) not much di�erent from the crude
rates? Why are the ASR(W) and ASR(E) lower when compared to ASR(N)?

2.0.9 Cumulative risk by 75 y: stomach cancer

Obtain the estimated cumulative risks of male stomach cancer by 75 years of age in the
Nordic countries for 2016.

1. Where does this measure seem to be highest and where lowest, and how big they are?

2. Compare the �gures of these countries with those of Cali and Birmingham given on
lecture slide 75.

2.0.10 Relative survival

Now we shall have a look at the prognosis of lung cancer patients when compared with the
general population. Under ONLINE ANALYSIS proceed to Survival. On the next page under
Tables by click on Country and period. A new page is opened on which under Cancer select
Lung and under Survival time select 5-year.

1. In which country was the relative survival poorest and where it was most favourable
among male patients diagnosed in 2012�2016? What about female patients? How big
where the 5-year relative survival proportions?

2. By how many percent points did the relative survival proportion improve in male
patients of Norway during the 45 years since 1967-71?

3. Compare the relative survival between men and women overall. What is your general
observation on the direction of the di�erence?

2.1 Basic measures in a cohort

The �gure below shows the follow-up experience of members of a small study cohort between
1 January 2004 to 30 June 2009 from entry to follow-up until death (• if due to cancer C, ◦
for other causes) or censoring (end of line). Follow-up until the occurrence of cancer C is
shown with a broken line. For those subjects contracting cancer C, follow-up after diagnosis is
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shown with a solid line.

2004 2005 2006 2007 2008 2009

Date of follow−up

12

11

10

9

8

7

6

5

4

3

2

1

We shall calculate the values of the incidence rate of the disease and of various mortality
measures

1. What is the incidence rate (per 100 y) of cancer C during the period from 1 Jan 2004 to
31 Dec 2008? � Organize the computations as follows:

(i) Find out from the �gure, what are the individual contributions (in years) of
persons 1, 4, 5, and 12 to the total amount of person-time of follow-up pertinent to
this task.

(ii) The total person-time is 27 years. Assign this to variable Y.todis writing and
running the following command line:
> Y.todis <- 27

(iii) What is the total number of new cases of cancer C? � Assign this number to
variable Cases in the same way.

(iv) Obtain the incidence rate of cancer C assigning its value into variable Irate and
printing it as follows:
> Irate <- 100*Cases/Y.todis

> Irate

2. What is the mortality rate from cancer C during the same period? � Proceed with
similar steps as above:

(i)-(ii) What is the total person time now? Is it the same as before, or more, or less?
Assign this to variable Y.todth and run the command.

(iii) What is the total number of deaths from disease C? Assign this to variable Dth.C.
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(iv) Assign the mortality rate from C into variable Mrate.C and print

3. What is the mortality rate from all causes during the same period? Assign the total
number of deaths into Dth.all and compute the total mortality rate Mrate.all
applying the same principle as above.

4. What is the estimated 3-year mortality proportion (�risk� of death for a risk period of 3
years since entry) from all causes based on the result in the previous item and assuming
the constant rate model? � Apply the following command:
> Mprop3.all <- 1 - exp( - (Mrate.all/100)*3 )

and print the result. � Why division by 100 is necessary here?

5. What is the mortality rate Mrate.pts during the same period from all causes among the
patients with cancer C after the onset of C? The person-years for this task can be
obtained e.g. as follows:
> Y.distodth <- Y.todth - Y.todis;
Explain why. Count the pertinent number of deaths, compute the rate and print.

(f) What is the estimated 3-year mortality proportion Mprop3.pts after the onset of C
among the patients with C?

(g) What is the prevalence of C on 30 September 2006, and on 31 December 2008? � Find
out the sizes of the populations N1 and N2 as well as the numbers of prevalent cases C1
and C2 at the two time points, and compute the corresponding prevalence proportions
P1 and P2. from these.

Why the incidence or mortality proportions for 3-year or any other risk period, calculated by
the simple formula presented on slides 16 and 17, would be problematic in tasks 1 and 2?

Di�cult: The follow-up of the cohort is an example of a multistate set-up where a person
can be in each of 4 possible states: �Alive and well�, �Alive with cancer�, �Dead from cancer�
and �Dead from other causes�.

1. Draw four boxes, one for each state, and indicate with arrows the possible transitions
between them.

2. Indicate for each arrow how many transitions there were in the cohort.

3. Indicate in the boxes, how many person-years was lived in each box.

4. Identify the calculation of rates in this diagram.

2.2 Population life table

Consider the lifetable for the Danish population for the years 1991�95, in table 2.1.
The survival function in the table can be thought of as number of a hypothetical cohort of

100,000 persons starting at age 0, that will still be alive by age a.

1. Calculate the probability that a 40 year old man reaches age 70 / 80 / 90, respectively.

The Median Residual Lifetime is the time which half of the (currently living part of the
population) will survive and the other half not.

2. Find the MRL for men and women aged 40, respectively.
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Table 2.1: Life table for the Danish population for the period 1991�95.(From: Befolkningens
bevægelser 1998, Danmarks Statistik, 2000). S(a): The survival function (×100, 000); p(a):
Death probability (×100, 000); R(a): Expected residual life time.

Men Women Men Women

Age S(a) p(a) R(a) S(a) p(a) R(a) Age S(a) p(a) R(a) S(a) p(a) R(a)

0 100,000 712 72.53 100,000 541 77.84 50 92,470 575 25.72 95,542 400 29.92
1 99,288 59 72.05 99,459 52 77.27 51 91,938 606 24.86 95,159 434 29.03
2 99,230 33 71.09 99,407 32 76.31 52 91,381 642 24.01 94,746 464 28.16
3 99,197 30 70.11 99,375 22 75.33 53 90,795 728 23.16 94,306 506 27.29
4 99,168 26 69.14 99,353 19 74.35 54 90,133 829 22.33 93,829 561 26.42
5 99,142 22 68.15 99,335 15 73.36 55 89,386 909 21.51 93,302 618 25.57
6 99,121 20 67.17 99,319 14 72.37 56 88,573 991 20.70 92,726 683 24.73
7 99,101 23 66.18 99,305 14 71.38 57 87,696 1,136 19.91 92,093 765 23.89
8 99,079 25 65.20 99,291 15 70.39 58 86,700 1,315 19.13 91,388 841 23.07
9 99,055 20 64.21 99,276 14 69.40 59 85,560 1,431 18.38 90,619 940 22.26
10 99,035 18 63.22 99,263 11 68.41 60 84,335 1,595 17.64 89,767 1,052 21.47
11 99,017 17 62.24 99,252 13 67.42 61 82,990 1,804 16.92 88,823 1,132 20.69
12 99,001 20 61.25 99,239 14 66.43 62 81,493 1,924 16.22 87,817 1,215 19.93
13 98,981 24 60.26 99,225 14 65.44 63 79,925 2,070 15.53 86,750 1,326 19.16
14 98,957 26 59.27 99,211 17 64.45 64 78,271 2,290 14.84 85,600 1,461 18.42
15 98,931 36 58.29 99,195 19 63.46 65 76,478 2,494 14.18 84,349 1,596 17.68
16 98,896 49 57.31 99,175 21 62.47 66 74,571 2,780 13.53 83,003 1,711 16.96
17 98,847 61 56.34 99,154 23 61.48 67 72,498 3,045 12.90 81,583 1,848 16.25
18 98,787 76 55.37 99,132 32 60.50 68 70,290 3,336 12.29 80,075 2,015 15.54
19 98,711 95 54.41 99,100 41 59.52 69 67,945 3,752 11.70 78,462 2,187 14.85
20 98,618 93 53.46 99,059 36 58.54 70 65,396 4,058 11.13 76,746 2,361 14.17
21 98,526 87 52.51 99,023 32 57.56 71 62,742 4,420 10.58 74,934 2,621 13.50
22 98,441 90 51.56 98,991 35 56.58 72 59,969 4,864 10.05 72,970 2,873 12.85
23 98,352 87 50.60 98,957 33 55.60 73 57,052 5,291 9.54 70,874 3,078 12.22
24 98,266 91 49.65 98,924 30 54.62 74 54,033 5,778 9.04 68,692 3,316 11.59
25 98,177 102 48.69 98,894 35 53.64 75 50,911 6,271 8.57 66,415 3,676 10.97
26 98,076 106 47.74 98,860 41 52.65 76 47,718 6,783 8.11 63,973 4,074 10.37
27 97,972 105 46.79 98,820 40 51.67 77 44,481 7,346 7.66 61,367 4,370 9.79
28 97,869 112 45.84 98,780 42 50.70 78 41,214 8,030 7.23 58,685 4,818 9.20
29 97,759 119 44.89 98,738 48 49.72 79 37,904 8,710 6.82 55,858 5,365 8.66
30 97,643 125 43.94 98,690 52 48.74 80 34,603 9,471 6.42 52,861 5,925 8.12
31 97,522 134 43.00 98,639 60 47.77 81 31,326 10,389 6.04 49,729 6,610 7.60
32 97,391 150 42.06 98,580 65 46.79 82 28,071 11,293 5.68 46,442 7,451 7.10
33 97,245 159 41.12 98,516 61 45.82 83 24,901 12,149 5.34 42,982 8,337 6.63
34 97,090 158 40.18 98,456 72 44.85 84 21,876 13,043 5.01 39,398 9,230 6.19
35 96,936 168 39.25 98,385 90 43.88 85 19,023 14,200 4.69 35,762 10,137 5.77
36 96,773 187 38.31 98,297 105 42.92 86 16,321 15,642 4.38 32,137 11,407 5.36
37 96,592 210 37.38 98,194 118 41.97 87 13,768 17,076 4.10 28,471 12,688 4.99
38 96,390 228 36.46 98,078 119 41.02 88 11,417 18,402 3.84 24,858 13,835 4.64
39 96,170 251 35.54 97,961 131 40.06 89 9,316 20,246 3.59 21,419 15,391 4.30
40 95,928 283 34.63 97,833 157 39.12 90 7,430 21,659 3.37 18,123 16,864 4.00
41 95,657 296 33.73 97,680 164 38.18 91 5,821 22,775 3.17 15,066 18,541 3.71
42 95,374 293 32.83 97,520 176 37.24 92 4,495 24,923 2.96 12,273 20,439 3.44
43 95,094 304 31.92 97,348 201 36.30 93 3,375 26,578 2.77 9,765 22,521 3.19
44 94,806 323 31.02 97,153 211 35.38 94 2,478 28,725 2.59 7,565 24,601 2.97
45 94,500 347 30.12 96,948 231 34.45 95 1,766 30,641 2.44 5,704 26,453 2.78
46 94,171 383 29.22 96,724 264 33.53 96 1,225 33,252 2.30 4,195 28,752 2.60
47 93,810 431 28.33 96,468 293 32.61 97 818 34,446 2.19 2.989 30,269 2.44
48 93,406 478 27.45 96,186 316 31.71 98 536 33,589 2.08 2,084 31,732 2.29
49 92,959 527 26.58 95,882 355 30.81 99 356 37,944 1.88 1.423 35,125 2.12
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2.3 Incidence and mortality � acute leukaemia

In the table below are given the size (in 1000s) of the male population in Finland aged 0-14
years (the age range of "childhood" in pediatrics!) on the 31 December in each year from
1991 to 2000.

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Population 493 495 496 497 496 495 491 485 481 478

The following numbers of cases describe the incidence of and mortality from acute leukaemia
in this population for two calendar periods: 5 years 1993 to 1997 (source: NORDCAN), and
year 1999 only (source: Finnish Cancer Registry http://www.cancerregistry.fi/).

1993-97 1999

New cases of acute leukaemia 113 26
Deaths from acute leukaemia 22 3

1. Calculate the incidence rates of acute leukaemia in this population for the two periods.

2. Calculate similarly the mortality rates of leukaemia.

3. Is there evidence about any change in the incidence and/or mortality between these two
periods?

4. What would you conclude about the fatality of leukemia in children?

2.4 ATCB-trial � prostate cancer

The Alpha Tocopherol Beta Caroten (ATBC) Prevention Trial (N Engl J Med 1994; 330:
1029-35) addressed among other things the possible bene�ts of daily intake of vitamin E
supplements in reducing the incidence of cancer among male smokers. The study population
of 29,133 regularly smoking 50-69 years old Finnish men were randomized into two groups:
active treatment (vitamin E supplementation), and placebo (no supplementation). The
following results were obtained for cancer of the prostate after an average follow-up time of 6
years:

number incidence rate
treatment group of cases (per 10000 years)

vitamin E supplementation 99 11.6
no supplementation 151 17.8

1. Calculate the person-years at risk in the two study groups separately.

2. Estimate the �relative risk� (using incidence rate ratio) and �excess risk� (using rate
di�erence) for measuring the e�ect of daily supplementation with vitamin E on the risk
prostate cancer.

3. Estimate either the attributable fraction or preventive fraction, whichever more
appropriate, to describe the proportional impact of vitamin E supplementation.

4. Discuss the results. What can be concluded from these estimates?

http://www.cancerregistry.fi/
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2.5 Comparative measures � smokers vs. non-smokers

In the table below you see the mortality rates (per 1000 person-years, age-adjusted) from
three important causes of death among life-long non-smokers and regular smokers as observed
after 30 years follow-up of a large occupational cohort (men only).

lung other lung cardiovascular
cancer diseases diseases

smokers 2.0 3.0 15.0
non-smokers 0.2 1.0 9.0

1. Calculate for each cause of death the following e�ect measures for comparison between
smokers and non-smokers:

(a) �excess risk�, i.e. rate di�erence,

(b) �relative risk�, i.e. rate ratio,

(c) attributable fraction.

2. Discuss the results. What can be inferred about the biological strength and the public
health impact, respectively, of regular smoking regarding the three diseases.

2.6 Infant mortality

During 1978 in Finland 269 boys died at the age of <1 year. The size of this male age group
was 33,200 on 31 Dec 1977, and on 31 Dec 1978 it was 32,500. The number of boys born alive
during 1978 was 32,800.

1. Calculate the mortality rate (per 1000 person-years) in this age group of boys in the
year 1978 by the usual method.

2. In national vital statistics the infant mortality rate (IMR) is commonly computed as:

IMR =
no. of deaths in age group < 1 year during a calendar year

no. of live born children during the year
× 1000

Calculate the value of this measure for Finnish boys in 1978 from the given data and
compare it with the result in item 1.

3. Is the �infant mortality rate� in item 2 indeed a rate as de�ned in the lectures � why or
why not? Is it a proportion?

2.7 Standardization: Colon cancer

Age speci�c data on the incidence of colon cancer in male and female populations of Finland
during 1999 are given in the following table
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Males Females

Age Cases Mid- % Rate Cases Mid- % Rate Rate
group popul. of (/105y) popul. of (/105y) ratio

(1000s) all (1000s) all M/F

0�34 10 1157 46.0 0.9 22 1109 41.9 2.0 0.44
35�54 76 809 32.0 9.4 68 786 29.7 8.6 1.09
55�74 305 455 18.0 67 288 524 19.8 55 1.22
75+ 201 102 4.0 196 354 229 8.6 155 1.27

All 592 2523 100 732 2648 100

Calculate the following summary measures:

1. crude incidence rate in both populations and the rate ratio: males vs. females,

2. age-standardized rates and their ratio using the male population as the standard,

3. age-standardized rates and their ratio using the World Standard Population,

4. cumulative rates up to 75 years and their ratio,

5. cumulative risks up to 75 years and their ratio.

Compare and comment the results obtained in items 1 to 3.
Hint : Organize the calculations needed for summary measures such that the necessary

age-speci�c quantities are assigned into pertinent vectors, e.g. age-speci�c rates in women:
ratesF.a <- c(2.0, 8.6, 55, 155)

and weights from the male population:
wM <- c(46, 32, 18, 4)

and make use of the sum() function of R, for example, when computing the age-standardized
rate for women:

stdRateF_wM <- sum( wM * ratesF.a ) / sum( wM )

2.8 Standardized rates

Below is the number of cases (D) and the age-speci�c incidence rates (in cases per 100,000
person-years) from the Danish Cancer Register for the period 1983�87 for colon cancer,
rectum cancer and lung cancer, by sex.
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Colon Rectum Lung

Men Women Men Women Men Women

Age D Rate D Rate D Rate D Rate D Rate D Rate

0- 4 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

5- 9 2 0.25 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

10-14 0 0.00 1 0.11 0 0.00 0 0.00 0 0.00 0 0.00

15-19 3 0.30 7 0.73 1 0.10 0 0.00 1 0.10 0 0.00

20-24 4 0.39 8 0.82 1 0.10 1 0.10 8 0.78 4 0.41

25-29 13 1.36 5 0.55 2 0.21 3 0.33 4 0.42 1 0.11

30-34 18 1.89 27 2.96 11 1.15 4 0.44 7 0.73 14 1.53

35-39 50 4.81 38 3.83 19 1.83 26 2.62 46 4.43 35 3.52

40-44 51 5.42 75 8.29 43 4.57 29 3.21 116 12.32 109 12.05

45-49 94 12.68 124 16.92 81 10.92 75 10.24 262 35.33 209 28.52

50-54 173 26.23 231 34.36 157 23.81 104 15.47 592 89.76 421 62.62

55-59 316 49.31 338 50.22 273 42.60 193 28.67 1089 169.95 650 96.57

60-64 492 78.05 511 73.67 402 63.77 251 36.19 1884 298.86 795 114.62

65-69 737 134.35 695 109.04 533 97.16 369 57.89 2206 402.13 843 132.26

70-74 870 189.61 1006 171.59 601 130.99 430 73.34 2308 503.02 773 131.85

75-79 853 267.27 1081 225.24 539 168.88 427 88.97 1824 571.51 621 129.39

80-84 602 342.50 903 281.20 312 177.51 318 99.03 891 506.93 336 104.63

85-89 279 359.19 522 316.19 180 231.73 184 111.45 305 392.66 135 81.77

90+ 95 347.54 174 263.40 67 245.11 79 119.59 62 226.82 40 60.55

The e�ective population size in the period is 2,521,177 men and 2,596,061 women.
The data are available as the �le std-rates.txt in the course folder; you can read it into R

using:

> std <- read.table( "std-rates.txt", header=T )

1. How many person-years was accumulated by the Danish men aged 70�79 in the period
1983�87 ?

2. Calculate the crude rates for each sex and site.

3. Calculate the cumulative rates to ages 65, 70, 75 and 80.

4. Calculate the standardized rates, standardized to the world standard population:

Weight Weight Weight

Age (×1000) Age (×1000) Age (×1000)

0� 4 120 35�39 60 70�74 20

5� 9 100 40�44 60 75�79 10

10�14 90 45�49 60 80�84 5

15�19 90 50�54 50 85�89 3

20�24 80 55�59 40 90+ 2

25�29 80 60�64 40

30�34 60 65�69 30

5. Calculate the male-female ratios of the crude, the standardized and the cumulative
rates. Why are they not the same?

6. Calculate the age-speci�c male-female rate-ratios. Comment on the results.
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2.9 Survival: cancer of the tongue

The survival of males in Finland with cancer of the tongue diagnosed during 1967-74 was
studied by Hakulinen et al. (1981). Sizes of risk sets, numbers of deaths and losses
(censorings) tabulated into 1 year subintervals since the diagnosis are given in the following
table.

Year size of no. of no. of e�ect. prop. prop. cumul.
of FU risk set deaths losses denom. deaths surviv. survival

0� 130 45 7 0.644

1� 78 24 9 73.5 0.673

2� 45 5 7 41.5 0.382

3� 33 2 6 0.067

4� 25 1 5

5� 19 � 7 15.5 0.0 1.0 0.340

6� 12 � 6

1. Complete this table by appropriate �gures using the actuarial life table method.

2. Based on the results obtained above draw a survival curve and estimate graphically the
median and the quartiles, if possible, of the survival time distribution.

2.10 Conditional survival

For Danish patients diagnosed with cancer of colon and rectum in the period 1978�87 we
found the following probabilities of death (in %):

Year from Colon Rectum

diagnosis Men Women Men Women

1st 43.44 42.13 36.60 34.29
2nd 22.80 19.11 24.00 21.86
3rd 16.74 14.60 21.02 15.67
4th 13.84 10.62 15.59 13.54
5th 11.00 8.69 14.55 11.40
6th 10.13 7.36 9.95 11.17
7th 8.67 5.65 11.37 8.99
8th 7.97 5.51 8.69 8.55
9th 7.42 5.37 10.07 8.14
10th 7.75 5.94 5.16 7.26
11th 4.91 5.66 7.14 2.57
12th 6.72 5.42 6.06 5.63
13th 6.20 6.25 5.00 2.13
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1. Calculate for each of the groups the cumulative probability of surviving 1, 3, and 5 years
respectively.

2. Calculate the conditional probabilities of surviving 3 and 5 years after diagnosis given
that a Danish patient already has survived 1 year.

From Young, Ries & Pollack: �Cancer Patient Survival Among Ethnic Groups in the United
States�, JNCI, vol 73, pp. 341�52, we �nd that for white anglosaxons the cumulative survival
probabilities for colon and rectum cancer patients diagnosed 1973�79 in the SEER areas are
(in %):

Years from Colon Rectum

diagnosis Men Women Men Women

1 68 69 74 74
3 46 48 48 50
5 36 39 35 39

3. Calculate the conditional probabilities of surviving 3 and 5 years after diagnosis given
that a U.S. patient already has survived 1 year.

4. Compare the cumulative survival probabilities and the conditional survival probabilities
given survival of the �rst year between Denmark and USA.

2.11 Lexis diagram

In the Lexis diagram below displayed follow-up times of a small occupational cohort over the
years 1990-2009 and the age range 40-54 years (this example is modi�ed from a similar one in
B&D). Each line runs from the entry to follow-up until either the diagnosis of cancer (•), or
censoring or withdrawal (no symbol) due to death from other causes or migration.
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1. Calculate the numbers of new cases of cancer, and person-years at risk in all the three
5-year agebands: 40-44, 45-49, and 50-54 years for each of the 5-year calendar periods
1990-94, 1995-99, and 2000-04 separately.

Hint 1: Execute some division of labour in your group, so that not everybody is
calculating these items for all periods.

Hint 2: The data set is available as an example dataset, occup, in the Epi package. Try:

> library( Epi )
> ### data( occup )
> occup <- read.table("http://BendixCarstensen.com/NSCE/R/occup.txt", header=TRUE)
> str( occup )
> occup
> ### example( occup )

2. Calculate the numbers of new cases of cancer, person-years at risk in the three 5-year
age groups: 40-44, 45-49, and 50-54 years for a birth cohort born in 1952-61.

3. Continuing from the previous item, estimate the cumulative rate and the cumulative
risk over the whole 15-year age range for the chosen birth cohort.
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NB. Estimation of the cumulative risk by the simple formula, presented on lecture slide
63, in which the competing risk of death is ignored, is not so problematic here, because
of the relatively young age range covered, in which the mortality is expected to be quite
low.

4. The age-speci�c incidences (per 100,000 person-years) in the three 5-year age-groups
during 1990�2010 in the whole population of the country were 100, 200, and 400,
respectively, so there was no variation between the subperiods. Assuming that this is an
appropriate reference population, calculate the expected number of cases for the index
occupational cohort for the same period. Compare the observed and expected number
of cases by standardised incidence ratio, SIR.

Comment on the result.

2.12 Cumulative rates

In the period 1935�47 a large number of persons undergoing cerebral angiography were
injected with Thorotrast, a contrast medium containing radioactive Thorium. In order to
assess the elevation of the mortality related to the injection of Thorotrast, a control group of
patients was selected who had also undergone cerebral angiography on similar indications in
the period 1946�63, but with another contrast medium.
Below is a table of deaths and person-years at risk for the two groups, by current age.

Thorotrast Controls

Current age No. Deaths Person-years No. deaths Person-years

0�19 5 572.1 11 1536.1
20�29 17 1974.2 16 2449.1
30�39 58 3489.0 35 4228.8
40�49 100 4502.2 67 5822.3
50�59 184 4433.5 137 6647.0
60�69 205 2998.1 211 5780.3
70�79 137 1134.4 206 3113.6
80+ 45 261.5 114 939.8

Total 751 19365.4 797 30517.6

Calculate the following three things:

1. The estimates of the overall rates in each of the two groups and the rate ratio.

2. A con�dence interval for the rate-ratio between the two groups.

3. The cumulative rates to 70 and 80 years in the two groups.

4. The ratio of the cumulative rates.

5. Comment on the results.
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2.13 Attributable risk

Consider again the Thorotrast-study material from exercise 2.12 Remember the de�nition and
interpretation of Attributable risk from the lectures.

1. Calculate the attributable risk of Thorotrast exposure on death of patients undergoing
cerebral angiography:

(a) Based on the crude relative risk.

(b) Based on the relative risk from the cumulative rates to age 70.

(c) Based on the relative risk from the cumulative rates to age 80.

Comment on the di�erences, and calculate the number of deaths attributable to
Thorotrast in the three cases.

2. Calculate the attributable risk in each age-group.

3. Calculate the number of deaths attributable to Thorotrast in each group, and compare
the sum to the previous results.



Chapter 3

Analysis of Epidemiological Data �

Exercises

3.1 Single incidence rates

In Kuwait during 1987 six deaths from stomach cancer were registered in males aged 45 to 54
years, and 89 000 men of this age group were living in the country at that time. In Egypt the
corresponding �gures in the same male age group during 1987 were 53 cases and 1 819 000
men. Calculate for both countries the following quantities:

1. mortality rate,

2. 95% con�dence interval of the �true� rate based on SE of the rate (and error margin),

3. 95% con�dence interval of the rate based on SE of the log-rate (and error factor).
Compare this with the interval obtained in 2.

3.2 Non-signi�cant di�erence

A cohort of electric engineers, graduated from a certain university of technology during a
speci�ed time interval, were followed-up over a period of 50 years. One out of the 10 female
graduates and 1 out of the 200 male graduates developed breast cancer during the follow-up.
The di�erence in the incidence between males and females was �not statistically signi�cant�
(P > 0.05).
How should this result be interpreted? Choose one from the following alternatives:

1. The results provide supporting evidence for the hypothesis no real di�erence between
males and females in the breast cancer risk among electric engineers.

2. The results are consistent with the universal observation that the risk of breast cancer
among females is clearly higher than that in males.

3. No conclusion can be made from this result concerning the male/female contrast in
breast cancer incidence among graduates of electric engineering.

4. Other conclusion, what?

20
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3.3 Preventive trial

Read the following abstract of the ATBC Cancer Prevention Study and Figure 2 in it (here
shown as �gure 1), displaying its major results on cancer incidence, and do the following tasks:

1. State the study hypothesis and the corresponding null hypothesis concerning the e�ect
of receiving daily beta carotene supplements vs. not receiving them on the incidence of
lung cancer.

2. Calculate the person-years in the group receiving ceta carotene supplements (the
�exposed�) and in the group receiving placebo (�unexposed�).

3. Calculate the point estimate and the 95% con�dence interval for the hazard rate ratio
ρ = λ1/λ0 of lung cancer between the exposed and the unexposed.

4. Calculate the point estimate and the 95% con�dence interval for the hazard rate
di�erence δ = λ1 − λ0 of lung cancer between the exposed and the unexposed.

5. Calculate a test statistic and the associated P value corresponding to the null
hypothesis stated in item (a).

6. Discuss the results. Can the estimated relative rate be confounded by age and/or
smoking, as the analysis was not strati�ed by these factors?

The E�ect of Vitamin E and Beta Carotene on the Incidence of Lung

Cancer and Other Cancers in Male Smokers

The Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group

Background: Epidemiologic evidence indicates that diets high in carotenoid-rich fruits and

vegetables, as well as high serum levels of vitamin E (alpha-tocopherol) and beta carotene, are

associated with a reduced risk of lung cancer.

Methods: We performed a randomized, double-blind, placebo-controlled primary-prevention trial

to determine whether daily supplementation with alpha-tocopherol, beta carotene, or both would

reduce the incidence of lung cancer and other cancers. A total of 29,133 male smokers 50 to 69 years

of age from southwestern Finland were randomly assigned to one of four regimens: alpha-tocopherol

(50 mg per day) alone, beta carotene (20 mg per day) alone, both alpha-tocopherol and beta

carotene, or placebo. Follow-up continued for �ve to eight years.

Results: Among the 876 new cases of lung cancer diagnosed during the trial, no reduction in

incidence was observed among the men who received alpha-tocopherol (change in incidence as

compared with those who did not, −2 percent; 95 percent con�dence interval, −14 to 12 percent).

Unexpectedly, we observed a higher incidence of lung cancer among the men who received beta

carotene than among those who did not (change in incidence, 18 percent; 95 percent con�dence

interval, 3 to 36 percent). We found no evidence of an interaction between alpha-tocopherol and beta

carotene with respect to the incidence of lung cancer. Fewer cases of prostate cancer were diagnosed

among those who received alpha-tocopherol than among those who did not. Beta carotene had little

or no e�ect on the incidence of cancer other than lung cancer. Alpha-tocopherol had no apparent

e�ect on total mortality, although more deaths from hemorrhagic stroke were observed among the
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Figure 3.1: Number and Incidence (per 10 000 Person-Years) of Cancers, According to Site,
among Participants Who Received Alpha-Tocopherol Supplements and Those Who Did Not
(Upper Panel) and among Participants Who Received Beta Carotene Supplements and Those
Who Did Not (Lower Panel).

men who received this supplement than among those who did not. Total mortality was 8 percent

higher (95 percent con�dence interval, 1 to 16 percent) among the participants who received beta

carotene than among those who did not, primarily because there were more deaths from lung cancer

and ischemic heart disease.

Conclusions: We found no reduction in the incidence of lung cancer among male smokers after

�ve to eight years of dietary supplementation with alpha-tocopherol or beta carotene. In fact, this

trial raises the possibility that these supplements may actually have harmful as well as bene�cial

e�ects.

(New England Journal of Medicine, Volume 330, pp. 1029�1035, April 14, 1994, Number 15).
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3.4 Preventive trial � interpretation

We continue with the ATBC Cancer Prevention Study complementing its results with those of
two other randomized trials that addressed the same hypothesis on the possible bene�cial
e�ect of beta caroten supplementation on lung cancer incidence.

1. In the ATBC study the observed rate ratio of lung cancer associated with daily intake of
beta caroten supplement appeared to be �statistically signi�cantly� di�erent from 1
(P = 0.01). However, the direction of the estimated rate ratio was opposite to that of
the original study hypothesis, which was based on the observational evidence that
motivated the trial.

Do you think that this result provides a su�cient basis to conclude that beta caroten
supplementation is actually harmful?

2. In the Beta Carotene and Retinol E�cacy Trial conducted in USA, a total of 18 314
smokers, former smokers, and workers exposed to asbestos were randomized into two
groups: active-treatment group and placebo group (N Engl J Med 1996; 334: 1150-1155).
The active-treatment group received a combination of 30 mg of beta carotene per day
and 25 000 IU of retinol (vitamin A) in the form of retinyl palmitate per day. After a
follow-up of 4.0 years on average, the active-treatment group had a relative rate of lung
cancer of 1.28 (95 % CI, 1.04 to 1.57; P = 0.02) as compared with the placebo group.

Taken this result together with that of the ATBC trial, what can we now say about the
accumulated evidence on the e�ects of beta caroten on the incidence of lung cancer
among smokers? Would we now be more convinced about the harmfulness of this form
of vitamin supplementation?

3. A third beta caroten trial was conducted in a study population of 22071 male American
physicians (N Engl J Med 1996; 334: 1145-1149). After 13 years follow-up the point
estimate of the rate ratio of lung cancer between the beta caroten and the placebo
groups among the subset of current smokers in that study population was 0.9, i.e. lower
than 1 but �non-signi�cant� (95% CI 0.58-1.40, P = 0.63).

Is this result in con�ict with the results of the two other trials quoted above?

4. In the American physicians' study, among nonsmokers the observed rate ratio of lung
cancer between beta caroten and placebo groups was 0.78 (95% CI 0.34-1.79, P = 0.56).

What can we conclude about the e�ect of beta caroten supplementation in non-smoking
men on the basis of these results? Is it di�erent from that among regular smokers?

3.5 Geographical variation

Geographical variation in the incidence of certain form of cancer D in a country C was
mapped using two classi�cations for dividing the area: (a) by county, and (b) by central
hospital district. In the �gure 2 the adjusted incidences (per 100,000 person years) of D are
given for certain areas according to both divisions.
In addition are given stars indicating that the �gure in question is signi�cantly di�erent

(p < 0.01) from the average incidence of D in the whole country, which was 1 per 100,000
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Subdivision by counties

1.6 **
2.1
2.3
2.2

Subdivision by hospital districts

1.4
1.7
1.6

2.2 **

Figure 3.2: Geographical division by county (top) and hospital district (bottom).

person-years. The two divisions seem to give somewhat contradictory results. How can we
explain this apparent paradox?

3.6 E�ciency of study design

You are designing a cohort study to estimate the relative risk associated with a certain
exposure factor X. Initially you are planning to recruit 10 000 persons to the cohort, such
that 2000 would be exposed and 8000 unexposed to X, and you intend to have a 5 year
follow-up period. A statistician points out that the con�dence interval of your relative risk
estimate is likely to be too wide. You cannot a�ord to enroll more than 10 000 individuals to
the cohort. How could you change your research plan in principle such that the con�dence
interval would become shorter without increasing the total number of study subjects?



Analysis of Epidemiological Data: ExercisesAnalysis of Epidemiological Data � Exercises 25

3.7 Case-control study: MI

In the table below are results presented from an unmatched case-control study on the
association between physical activity (PA) and risk of myocardial infarction (MI) strati�ed by
gender.

Table 3.1: Table of cases and controls by sex and PA (physical activity) index

Gender PA index Cases Controls Total

Men 2500+ kcals 141 208 349
< 2500 kcals 144 112 256

Total 285 320 605

Women 2500+ kcals 49 58 107
< 2500 kcals 32 45 77

Total 81 103 184

Both 2500+ kcals 190 266 456
< 2500 kcals 176 157 333

Total 366 423 789

1. Calculate the point estimate (and the 95% con�dence interval) of the rate ratio in both
genders separately.

2. What can you say of the possible modi�cation of the e�ect of PA by gender; is the
relative risk di�erent in males than in females?

3. Is gender a confounder for the association between PA and MI; on what grounds?

4. Calculate the crude point estimate of the rate ratio, unadjusted for gender.

5. Calculate the gender-adjusted summary estimate of the rate ratio (and its 95 %
con�dence interval), using glm with binomial error as indicated in the lecture slides.

6. Compare this with the crude one.

7. Is there e�ect-modi�cation by sex?

8. How would you report this?

3.8 Case-control study: Neonates

Cnattingius et al. (JNCI 1995; 87 (June 21): 908-914) reported a case-control study on
prenatal and neonatal risk factors for childhood lymphatic leukaemia in children. From the
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National Cancer Register of Sweden they collected all cases of this disease reported in
children under 15 years of age from 1973 through 1989. Five controls for each case, matched
for age and gender, were obtained from the Medical Birth Register of Sweden. The data on
potential risk factors in both cases and controls were obtained from the latter register, too.
One of the �ndings was that 8 children with leukaemia and 2 of the control children had

Down's syndrome.

1. On the basis of this information only, can you obtain any reasonable approximations for
the following quantities:

(a) a crude estimate of the relative hazard of leukemia in children with Down's
syndrome as compared with children without this chromosome abnormality,

(b) an approximate 95% con�dence interval for the hazard ratio. What assumptions
are needed in order that these approximations would be credible?

2. What additional data would be needed to obtain adequate estimates and con�dence
intervals?

3.9 Matched case-control study: Chemicals

A certain chemical exposure E was studied as a potential risk factor of cancer D in a
case-control study with 20 cases and 20 controls. The following observations were made on
the exposure status (+ = exposed, − = nonexposed) of each case and control:

No. case control No. case control

1. + − 11. − +
2. + − 12. + +
3. − − 13. + −
4. + + 14. − −
5. − + 15. + −
6. + − 16. + −
7. + − 17. + −
8. + − 18. + +
9. + + 19. − −
10. − − 20. + −

1. Calculate the point estimate (with the approximate 95% con�dence interval) of the
hazard rate ratio associated with the exposure, as well as the test statistic and P-value
corresponding to the null hypothesis of no e�ect, assuming that the study subjects have
been obtained

(a) by choosing the control group as a random sample of the source population of the
cases without any matching, so that cases and controls labelled with the same
ordinal number above are not related to each other,

(b) by choosing for each case patient an individual control subject with the same age,
and gender, such that each control is matched with the case having the same
ordinal number above.
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2. What appears to be the consequence to the rate ratio estimate here, if matching was
applied in collecting the data but ignored in the analysis?

3.10 Cohort study and SMR

An occupational cohort study was started to estimate cancer mortality among male employees
having a history of been working in a certain industry I during a certain time period,
comparing it with that in a reference population which comprised economically active males
at the same socioeconomic level living in the same area but not working in industry I. The
results are displayed in the table on the next page. Calculate the following quantities:

1. Age-speci�c mortality rates in both populations and their ratios between the
I-employees and the reference population. Does the rate ratio appear heterogenous over
the age groups?

2. Crude mortality rates in the two populations and their ratio.

3. Age-adjused summary estimate of the rate ratio, using glm with Poisson error as
indicated in the lectures.

4. Standardised mortality ratio (SMR).

5. Standardised mortality rates in the populations and their ratio using the reference
population as the standard.

6. Are the rate ratio estimates sensitive to the choice of standard population?

7. Is there e�ect modi�cation by age?

8. Is age a confounder in these analyses?

Employees in I Reference population

Age group Deaths Person-years Deaths Person years

30�39 11 10,000 15 30,000
40�49 15 6,000 60 50,000
50�59 10 2,000 150 70,000

Total 36 18,000 225 150,000

3.11 Trial of tolbutamide

The e�ect of treating middle-aged and elderly diabetic subjects with a drug called
tolbutamide vs. placebo as investigated in a famous randomised clinical trial (University
Group Diabetes Program 1970). During a �xed follow-up period of 5 years with no losses, 30
out of the 204 patients randomised to tolbutamide died, and 21 out of the 215 patients in the
placebo group died, too.

1. Calculate the following quantities:
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(a) Incidence proportions (cumulative incidences) of death in both groups.

(b) Estimate of the risk ratio with its approximate 95% con�dence interval between
tolbutamide and placebo.

(c) Estimate of the risk di�erence and its approximate 95% con�dence interval
between tolbutamide and placebo.

2. Is tolbutamide dangerous to diabetics?



Chapter 4

Basic concepts in survival and

demography

The following is a summary of relations between various quantities used in analysis of
follow-up studies. They are ubiquitous in the analysis and reporting of results. Hence it is
important to be familiar with all of them and the relation between them.

4.1 Probability

Survival function:

S(t) = P{survival at least till t}
= P{T > t} = 1− P{T ≤ t} = 1− F (t)

where T is the variable �time of death�

Conditional survival function:

S(t|tentry) = P{survival at least till t| alive at tentry}
= S(t)/S(tentry)

Cumulative distribution function of death times (cumulative risk):

F (t) = P{death before t}
= P{T ≤ t} = 1− S(t)

Density function of death times:

f(t) = lim
h→0

P{death in (t, t+ h)} /h = lim
h→0

F (t+ h)− F (t)

h
= F ′(t)

29
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Intensity:

λ(t) = lim
h→0

P{event in (t, t+ h] | alive at t} /h

= lim
h→0

F (t+ h)− F (t)

S(t)h
=

f(t)

S(t)

= lim
h→0

− S(t+ h)− S(t)

S(t)h
= − d logS(t)

dt

The intensity is also known as the hazard function, hazard rate, mortality/morbidity
rate or simply �rate�.

Note that f and λ are scaled quantities, they have dimension time−1.

Relationships between terms:

− d logS(t)

dt
= λ(t)

⇕

S(t) = exp

(
−
∫ t

0

λ(u) du

)
= exp

(
−Λ(t)

)
The quantity Λ(t) =

∫ t

0
λ(s) ds is called the integrated intensity or the cumulative

rate. It is not an intensity (rate), it is dimensionless, despite its name.

λ(t) = − d log(S(t))

dt
= −S ′(t)

S(t)
=

F ′(t)

1− F (t)
=

f(t)

S(t)

The cumulative risk of an event (to time t) is:

F (t) = P{Event before time t} =

∫ t

0

λ(u)S(u) du = 1− S(t) = 1− e−Λ(t)

For small |x| (< 0.05), we have that 1− e−x ≈ x, so for small values of the integrated
intensity:

Cumulative risk to time t ≈ Λ(t) = Cumulative rate

4.2 Statistics

Likelihood contribution from follow up of one person:
The likelihood from a number of small pieces of follow-up from one individual is a
product of conditional probabilities:

P{event at t4|entry at t0} = P{survive (t0, t1)| alive at t0} ×
P{survive (t1, t2)| alive at t1} ×
P{survive (t2, t3)| alive at t2} ×
P{event at t4| alive at t3}
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Each term in this expression corresponds to one empirical rate1

(d, y) = (#deaths,#risk time), i.e. the data obtained from the follow-up of one person
in the interval of length y. Each person can contribute many empirical rates, most with
d = 0; d can only be 1 for the last empirical rate for a person.

Log-likelihood for one empirical rate (d, y):

ℓ(λ) = log
(
P{d events in y follow-up time}

)
= d log(λ)− λy

This is under the assumption that the rate (λ) is constant over the interval that the
empirical rate refers to.

Log-likelihood for several persons. Adding log-likelihoods from a group of persons (only
contributions with identical rates) gives:

D log(λ)− λY,

where Y is the total follow-up time (Y =
∑

i yi), and D is the total number of failures
(D =

∑
i di), where the sums are over individuals' contributions with the same rate, λ,

for example from the same age-class fro all individuals.

Note: The Poisson log-likelihood for an observation D with mean λY is:

D log(λY )− λY = D log(λ) +D log(Y )− λY

The term D log(Y ) does not involve the parameter λ, so the likelihood for an observed
rate (D, Y ) can be maximized by pretending that the no. of cases D is Poisson with
mean λY . But this does not imply that D follows a Poisson-distribution. It is entirely a
likelihood based computational convenience. Anything that is not likelihood based is
not justi�ed.

A linear model for the log-rate, log(λ) = Xβ implies that

λY = exp
(
log(λ) + log(Y )

)
= exp

(
Xβ + log(Y )

)
Therefore, in order to get a linear model for log(λ) we must require that log(Y ) appear
as a variable in the model for D ∼ (λY ) with the regression coe�cient �xed to 1, a
so-called o�set-term in the linear predictor.

4.3 Competing risks

Competing risks: If there are more than one, say 3, causes of death, occurring with
(cause-speci�c) rates λ1, λ2, λ3, that is:

λc(a) = lim
h→0

P{death from cause c in (a, a+ h] | alive at a} /h, c = 1, 2, 3

The survival function is then:

S(a) = exp

(
−
∫ a

0

λ1(u) + λ2(u) + λ3(u) du

)
1This is a concept coined by BxC, and so is not necessarily generally recognized.



32 4.4 Demography Practicals for NSCE, Copenhagen 2022

because you have to escape all 3 causes of death. The probability of dying from cause 1
before age a (the cause-speci�c cumulative risk) is:

F1(a) = P{dead from cause 1 at a} =

∫ a

0

λ1(u)S(u) du ̸= 1− exp

(
−
∫ a

0

λ1(u) du

)
The term exp(−

∫ a

0
λ1(u) du) is sometimes referred to as the �cause-speci�c survival�,

but it does not have any probabilistic interpretation in the real world. It is the survival
under the assumption that only cause 1 existed and that the mortality rate from this
cause was the same as when the other causes were present too.

Together with the survival function, the cause-speci�c cumulative risks represent a
classi�cation of the population at any time in those alive and those dead from causes 1,
2 and 3 respectively:

1 = S(a) +

∫ a

0

λ1(u)S(u) du+

∫ a

0

λ2(u)S(u) du+

∫ a

0

λ3(u)S(u) du, ∀a

Subdistribution hazard Fine and Gray de�ned models for the so-called subdistribution
hazard, λ̃i(a). Recall the relationship between between the hazard (λ) and the
cumulative risk (F ):

λ(a) = −
d log

(
S(a)

)
da

= −
d log

(
1− F (a)

)
da

When more competing causes of death are present the Fine and Gray idea is to use this
transformation to the cause-speci�c cumulative risk for cause 1, say:

λ̃1(a) = −
d log

(
1− F1(a)

)
da

Here, λ̃1 is called the subdistribution hazard; as a function of F1(a) it depends on the
survival function S, which depends on all the cause-speci�c hazards:

F1(a) = P{dead from cause 1 at a} =

∫ a

0

λ1(u)S(u) du

The subdistribution hazard is merely a transformation of the cause-speci�c cumulative
risk. Namely the same transformation which in the single-cause case transforms the
cumulative risk to the hazard. It is a mathematical construct that is not interpretable
as a hazard despite its name.

4.4 Demography

Expected residual lifetime: The expected lifetime (at birth) is simply the variable age (a)
integrated with respect to the distribution of age at death:

EL =

∫ ∞

0

af(a) da

where f is the density of the distribution of lifetime (age at death).
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The relation between the density f and the survival function S is f(a) = −S ′(a), so
integration by parts gives:

EL =

∫ ∞

0

a
(
−S ′(a)

)
da = −

[
aS(a)

]∞
0
+

∫ ∞

0

S(a) da

The �rst of the resulting terms is 0 because S(a) is 0 at the upper limit and a by
de�nition is 0 at the lower limit.

Hence the expected lifetime can be computed as the integral of the survival function.

The expected residual lifetime at age a is calculated as the integral of the conditional
survival function for a person aged a:

EL(a) =

∫ ∞

a

S(u)/S(a) du

Lifetime lost due to a disease is the di�erence between the expected residual lifetime for a
diseased person and a non-diseased (well) person at the same age. So all that is needed
is a(n estimate of the) survival function in each of the two groups.

LL(a) =

∫ ∞

a

SWell(u)/SWell(a)− SDiseased(u)/SDiseased(a) du

Note that the de�nition of the survival function for a non-diseased person requires a
decision as to whether one will consider non-diseased persons immune to the disease in
question or not. That is whether we will include the possibility of a well person getting
ill and subsequently die. This does not show up in the formulae, but is a decision
required in order to devise an estimate of SWell.

Lifetime lost by cause of death is using the fact that the di�erence between the survival
probabilities is the same as the di�erence between the death probabilities. If several
causes of death (3, say) are considered then:

S(a) = 1− P{dead from cause 1 at a}
− P{dead from cause 2 at a}
− P{dead from cause 3 at a}

and hence:

SWell(a)− SDiseased(a) = P{dead from cause 1 at a|Diseased}
+ P{dead from cause 2 at a|Diseased}
+ P{dead from cause 3 at a|Diseased}
− P{dead from cause 1 at a|Well}
− P{dead from cause 2 at a|Well}
− P{dead from cause 3 at a|Well}

So we can conveniently de�ne the lifetime lost due to cause 2, say, by:

LL2(a) =

∫ ∞

a

P{dead from cause 2 at u|Diseased & alive at a}

−P{dead from cause 2 at u|Well & alive at a} du
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These quantities have the property that their sum is the total years of life lost due to
the disease:

LL(a) = LL1(a) + LL2(a) + LL3(a)

The terms in the integral are computed as (see the section on competing risks):

P{dead from cause 2 at x|Diseased & alive at a} =

∫ x

a

λ2,Dis(u)SDis(u)/SDis(a) du

P{dead from cause 2 at x|Well & alive at a} =

∫ x

a

λ2,Well(u)SWell(u)/SWell(a) du



Chapter 5

Measures of Disease Occurrence �

Solutions

5.1 Basic measures in a cohort

1. We may obtain the total person-time Y as the sum of individual person-times (in years)
since entry until exit: onset of disease, or death or censoring. Note also that we count
follow-up maximally up to the end of 2008. Below is shown how the calculation is done:

> options( width=110 )
> Y.todis <- 2.5 + 3.5 + 1.5 + 3.0 + 4.5 + 0.5 +
+ 1.0 + 2.5 + 2.5 + 2.5 + 1.5 + 1.5
> Y.todis

[1] 27

The number of cases of cancer C is D = 5. Thus, the incidence rate is I = D/Y = 5/27
y. It is computed as follows, expressed as cases per 100 years:

> Cases <- 5
> Irate <- 100*Cases/Y.todis
> round(Irate, 1)

[1] 18.5

2. The follow-up continued after onset of cancer for the 5 a�ected subjects; thus the total
amount of person-years (until death, censoring or 31.12.2008) will be:

> Y.todth <- Y.todis + 2 + 1.5 + 1 + 0.5 + 0.5
> Y.todth

[1] 32.5

The number of deaths from cancer C was 1 (recall, that we still only do follow-up till
31.12.2008), so the mortality rate (per 100 years) from C in the cohort is:

35
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> Dth.C <- 1
> Mrate.C <- 100*Dth.C/Y.todth
> round(Mrate.C, 1)

[1] 3.1

3. If we look at the total mortality, the total person-time is same as above, but now the
number of cases is 4. Hence, the mortality rate is found from

> Dth.all <- 4
> Mrate.all <- 100*Dth.all/Y.todth
> round( Mrate.all, 1 )

[1] 12.3

the unit for the rate again being per 100 person-years. The 3-year mortality proportion
(%) is obtained from

> Mprop3.all <- 1 - exp( - (Mrate.all/100)*3 )
> round(100*Mprop3.all, 1)

[1] 30.9

Division by 100 in the formula is necessary, because the mortality rate was expressed as
per 100 years but the length of the 3-year risk period was expressed in years.

4. The person-years among the 5 cancer patients (recall, still only up to 31.12.2008):

> Y.distodth <- Y.todth - Y.todis
> Y.distodth

[1] 5.5

There were 2 deaths among these patients, so the mortality rate (/100 years) for them
is:

> D.pts <- 2
> Mrate.pts <- 100*D.pts / Y.distodth
> round( Mrate.pts, 1 )

[1] 36.4

and hence the 3-year mortality proportion (i.e. the predicted fraction dead after three
years, or 3-year cumulative risk) in percent is estimated as

> Mprop3.pts <- 1 - exp( -(Mrate.pts/100)* 3 )
> round( 100*Mprop3.pts, 1 )

[1] 66.4

5. The prevalence of cancer on 30 September 2006 was 1/7 = 14% and on 31 December
2008 it was 3/5 = 60%, obtained as follows:
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> N1 <- 7 ; N2 <- 5
> D1 <- 1 ; D2 <- 3
> P1 <- 100*D1/N1; P2 <- 100*D2/N2
> round( c(P1, P2), 1)

[1] 14.3 60.0

or if we want to add nice labels:

> Prev <- c(D1, D2)/c(N1, N2)
> names(Prev) <- c("30sep2006","31dec2008")
> round( 100*Prev, 1 )

30sep2006 31dec2008
14.3 60.0

The simple formula for computing the incidence proportion or the mortality proportion for a
given cause of death ignores the incidence of competing events, for instance death before
getting cancer when assessing the incidence proportion of cancer, and death from other causes
when considering the cause-speci�c mortality proportion. When, however, the total mortality
is estimated, there are no competing events.

5.1.1 Multistate set-up

The answer to the last questions about drawing boxes can be answered by setting up the the
cohort as a Lexis object:

> library( Epi )

First we set up the follow-up of the cohort in a data frame with variables doe: date of entry,
dox: date of exit, ddx: date of cancer diagnosis, xst: exit status:

> coh <- data.frame( doe=c("2004-01-01",
+ "2004-01-01",
+ "2004-01-01",
+ "2004-07-01",
+ "2004-07-01",
+ "2005-01-01",
+ "2005-07-01",
+ "2006-01-01",
+ "2006-01-01",
+ "2006-07-01",
+ "2007-01-01",
+ "2007-01-01" ),
+ dox=c("2008-07-01",
+ "2009-07-01",
+ "2005-07-01",
+ "2007-07-01",
+ "2009-07-01",
+ "2006-07-01",
+ "2006-07-01",
+ "2008-07-01",
+ "2009-07-01",
+ "2009-07-01",
+ "2009-07-01",



38 5.1 Basic measures in a cohort Practicals for NSCE, Copenhagen 2022

+ "2008-07-01" ),
+ ddx=c("2006-07-01",
+ "2007-07-01",rep(NA,3),
+ "2005-07-01",rep(NA,2),
+ "2008-07-01",NA,
+ "2008-07-01",NA),
+ xst=factor(c(2,1,3,3,1,3,1,1,2,1,1,1),
+ labels= c("Well","Dead-Ca","Dead-Oth")),
+ id=1:12 )
> coh

doe dox ddx xst id
1 2004-01-01 2008-07-01 2006-07-01 Dead-Ca 1
2 2004-01-01 2009-07-01 2007-07-01 Well 2
3 2004-01-01 2005-07-01 <NA> Dead-Oth 3
4 2004-07-01 2007-07-01 <NA> Dead-Oth 4
5 2004-07-01 2009-07-01 <NA> Well 5
6 2005-01-01 2006-07-01 2005-07-01 Dead-Oth 6
7 2005-07-01 2006-07-01 <NA> Well 7
8 2006-01-01 2008-07-01 <NA> Well 8
9 2006-01-01 2009-07-01 2008-07-01 Dead-Ca 9
10 2006-07-01 2009-07-01 <NA> Well 10
11 2007-01-01 2009-07-01 2008-07-01 Well 11
12 2007-01-01 2008-07-01 <NA> Well 12

Once we have the data frame, we can set it up as a Lexis object, which is designed to keep
track of states and time-scales. In this case we only have one time scale, calendar time, which
we call per (period), coded as fractions of years1:

> cL <- Lexis( entry = list(per=cal.yr(doe)),
+ exit = list(per=cal.yr(dox)),
+ exit.status = xst,
+ id = id,
+ data = coh )

NOTE: entry.status has been set to "Well" for all.

Once the data is set up, we can summarize the number of transitions between states and the
number of person-years spent in each state:

> summary( cL )

Transitions:
To

From Well Dead-Ca Dead-Oth Records: Events: Risk time: Persons:
Well 7 2 3 12 5 34.97 12

But we need to enter the cancer diagnoses, so we cut the follow-up at cancer diagnosis:

> cL <- cutLexis( cL,
+ cut = cal.yr(cL$ddx),
+ new.state = "Cancer",
+ precursor.states = "Well" )
> summary( cL )

1This works because the dates are character strings in ISO-format �yyyy-mm-dd�, otherwise a format argu-

ment would have to be supplied to cal.yr.
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Transitions:
To

From Well Cancer Dead-Ca Dead-Oth Records: Events: Risk time: Persons:
Well 5 5 0 2 12 7 27.97 12
Cancer 0 2 2 1 5 3 7.00 5
Sum 5 7 2 3 17 10 34.97 12

In a Lexis object, each record represents a piece of follow-up for a person. The variable
lex.Cst indicates the state where the follow-up takes place. So the records with lex.Cst

equal to "Well" corresponds to the broken lines in the �gure, and the records with lex.Cst

equal to "Cancer" corresponds to the full lines in the �gure, the follow-up after cencer
diagnosis:

> cL[order(cL$lex.id,cL$per),]

lex.id per lex.dur lex.Cst lex.Xst doe dox ddx xst id
1 2004.00 2.5 Well Cancer 2004-01-01 2008-07-01 2006-07-01 Dead-Ca 1
1 2006.50 2.0 Cancer Dead-Ca 2004-01-01 2008-07-01 2006-07-01 Dead-Ca 1
2 2004.00 3.5 Well Cancer 2004-01-01 2009-07-01 2007-07-01 Well 2
2 2007.49 2.0 Cancer Cancer 2004-01-01 2009-07-01 2007-07-01 Well 2
3 2004.00 1.5 Well Dead-Oth 2004-01-01 2005-07-01 <NA> Dead-Oth 3
4 2004.50 3.0 Well Dead-Oth 2004-07-01 2007-07-01 <NA> Dead-Oth 4
5 2004.50 5.0 Well Well 2004-07-01 2009-07-01 <NA> Well 5
6 2005.00 0.5 Well Cancer 2005-01-01 2006-07-01 2005-07-01 Dead-Oth 6
6 2005.50 1.0 Cancer Dead-Oth 2005-01-01 2006-07-01 2005-07-01 Dead-Oth 6
7 2005.50 1.0 Well Well 2005-07-01 2006-07-01 <NA> Well 7
8 2006.00 2.5 Well Well 2006-01-01 2008-07-01 <NA> Well 8
9 2006.00 2.5 Well Cancer 2006-01-01 2009-07-01 2008-07-01 Dead-Ca 9
9 2008.50 1.0 Cancer Dead-Ca 2006-01-01 2009-07-01 2008-07-01 Dead-Ca 9
10 2006.50 3.0 Well Well 2006-07-01 2009-07-01 <NA> Well 10
11 2007.00 1.5 Well Cancer 2007-01-01 2009-07-01 2008-07-01 Well 11
11 2008.50 1.0 Cancer Cancer 2007-01-01 2009-07-01 2008-07-01 Well 11
12 2007.00 1.5 Well Well 2007-01-01 2008-07-01 <NA> Well 12

2004 2005 2006 2007 2008 2009

Date of follow−up

12

11

10

9

8

7

6

5

4

3

2

1

With this set-up we can draw a 1-dimensional Lexis-diagram (actually the �gure above),
and add a few bells and whistles to produce the �gure used in the exercise text
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> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plot( cL, ylim=c(12.5,0.5), ylab="", xlab="Date of follow-up",
+ bty="n", las=1, yaxt="n", xlim=c(2004,2009.5),
+ lty=1, col=c("transparent","black")[as.integer(cL$lex.Cst)], lwd=4 )
> abline( v=2003+seq(0,7,0.5), col="gray" )
> lines( cL, lty="11", col=c("black","transparent")[as.integer(cL$lex.Cst)], lwd=4 )
> axis( side=2, labels=1:12, at=1:12, las=1, lty=0 )
> # This is just to get the points of death to look nice
> points( cL, col="white", pch=c(NA,NA,16,16)[as.integer(cL$lex.Xst)], cex=1.6 )
> points( cL, col="black", pch=c(NA,NA,16,1 )[as.integer(cL$lex.Xst)], cex=1.6, lwd=3 )
> points( cL, col="black", pch=c(NA,NA,1 ,1 )[as.integer(cL$lex.Xst)], cex=1.6, lwd=3 )

We can also show the states and transitions and person-years in a plot:

> boxes( cL, boxpos=T )

Well
28.0

Cancer
7.0

Dead−CaDead−Oth

5
(0.2)

2
(0.1)

2
(0.3)

1
(0.1)

Well
28.0

Cancer
7.0

Dead−CaDead−Oth

Well
28.0

Cancer
7.0

Dead−CaDead−Oth

Well
27.0

Cancer
5.5

Dead−CaDead−Oth

5
(0.2)

2
(0.1)

1
(0.2)

1
(0.2)

Well
27.0

Cancer
5.5

Dead−CaDead−Oth

Well
27.0

Cancer
5.5

Dead−CaDead−Oth

Figure 5.1: Follow-up of a small cohort across 4 states. The left panel is for the entire follow-
up, the right for follow-up censored at 31.12.2008.

However, this is for the entire follow-up, and we want the follow-up to end at 31.12.2008 (or
1.1.2009), so we split the follow-up of the cohort in order to be able to restrict to the
follow-up before that:

> cS <- splitLexis( cL, breaks=2009 )

Now we can show how the follow-up for each person is split in several intervals; each line in the
data frame corresponds to a single follow-up interval, so persons may contribute several lines.
Variables are: per is the start of each follow-up interval, lex.dur is the length of the

interval, lex.Cst is the Current state i.e. the state in which the follow-up takes place and
lex.Xst is the eXit state, i.e. the state to whic the person exits at the end of the interval.

> cS[order(cS$lex.id),1:8]

lex.id per lex.dur lex.Cst lex.Xst doe dox ddx
1 2004.00 2.50 Well Cancer 2004-01-01 2008-07-01 2006-07-01
1 2006.50 2.00 Cancer Dead-Ca 2004-01-01 2008-07-01 2006-07-01
2 2004.00 3.50 Well Cancer 2004-01-01 2009-07-01 2007-07-01
2 2007.49 1.51 Cancer Cancer 2004-01-01 2009-07-01 2007-07-01
2 2009.00 0.50 Cancer Cancer 2004-01-01 2009-07-01 2007-07-01
3 2004.00 1.50 Well Dead-Oth 2004-01-01 2005-07-01 <NA>
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4 2004.50 3.00 Well Dead-Oth 2004-07-01 2007-07-01 <NA>
5 2004.50 4.50 Well Well 2004-07-01 2009-07-01 <NA>
5 2009.00 0.50 Well Well 2004-07-01 2009-07-01 <NA>
6 2005.00 0.50 Well Cancer 2005-01-01 2006-07-01 2005-07-01
6 2005.50 1.00 Cancer Dead-Oth 2005-01-01 2006-07-01 2005-07-01
7 2005.50 1.00 Well Well 2005-07-01 2006-07-01 <NA>
8 2006.00 2.50 Well Well 2006-01-01 2008-07-01 <NA>
9 2006.00 2.50 Well Cancer 2006-01-01 2009-07-01 2008-07-01
9 2008.50 0.50 Cancer Cancer 2006-01-01 2009-07-01 2008-07-01
9 2009.00 0.50 Cancer Dead-Ca 2006-01-01 2009-07-01 2008-07-01
10 2006.50 2.50 Well Well 2006-07-01 2009-07-01 <NA>
10 2009.00 0.50 Well Well 2006-07-01 2009-07-01 <NA>
11 2007.00 1.50 Well Cancer 2007-01-01 2009-07-01 2008-07-01
11 2008.50 0.50 Cancer Cancer 2007-01-01 2009-07-01 2008-07-01
11 2009.00 0.50 Cancer Cancer 2007-01-01 2009-07-01 2008-07-01
12 2007.00 1.50 Well Well 2007-01-01 2008-07-01 <NA>

> boxes( subset(cS,per<2009), boxpos=TRUE )

The results of the two di�erent calculations are shown in �gure 5.1.

5.2 Population life table

1. The probability that a 40 year old man reaches age 70 is the conditional probability
that a man reaches 70 given that he already has reached 40, and this is, using the
survival function from the life table:

65, 396

95, 928
= 0.6817

and for ages 80 and 90 we get:

34, 603

95, 928
= 0.3607

7, 430

95, 928
= 0.0775

Or, using R:

> num <- c(65396,34603,7430)
> den <- rep(95928,3)
> names( num ) <- c("70","80","90")
> round( num/den, 4 )

70 80 90
0.6817 0.3607 0.0775

2. The median residual lifetime after 40 is the time until half of those alive at 40 have died.
Out of a generation of 100,000 men in the table, 95,928 were alive at age 40. Thus we
want to know when 95, 928/2 = 47, 964 are left alive. This is seen to be somewhere
between 75 and 76 years. This age-class has a death probability of 0.06271 (p(75)), i.e.
for the mortality rate in the group, λ75 we have 1− exp(−λ75 × 1 year) = 0.06271, i.e.
λ75 = − ln(1− 0.06271)/1 year = 0.06476/year. The time, ℓ, needed for 50,911 alive at
75 to be reduced to 47,964 is the solution to:

exp(−0.06476/year× ℓ) =
47, 964

50, 911
⇔ ℓ = − log

(
47, 964

50, 911

)/
0.06476 = 0.92
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> -log(47964/50911)/(-log(1-0.06271))

[1] 0.9207217

So at age 75.92 the remaining number of people is 47,964. Therefore the median
residual lifetime for men at 40 is 75.92− 40 = 35.92 years.

For women we �nd that 97,833 are alive at 40, and that 97, 833/2 = 48, 916.5 are left at
some point between 81 and 82. As the death probability for this ageclass is 0.06610 the
mortality rate is − ln(1− 0.06610)/ year = 0.06839/ year, and as 49,729 are alive at 81
we solve:

exp(−0.06839/year× ℓ) =
48, 916.5

49, 729
⇔ ℓ = − log

(
48, 916.5

49, 729

)/
0.06839 = 0.24

Thus, the median residual lifetime for women aged 40 is 81.24− 40 = 41.24 years.

Thus more than half of the men reaching 40 have lived more than half of their life,
whereas less than half of the women reaching 40 have.

5.3 Incidence and mortality � acute leukaemia

The population size (in 1000s) at the end of each year:

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Population 493 495 496 497 496 495 491 485 481 478

1993-97 1999

person-years (in 100000s) 1
2
× (4.95 + 4.91)× 5 = 24.65 1

2
× (4.85 + 4.81)× 1 = 4.83

(a): incidence rate (per 105 y) 113/24.65 = 4.6 26/4.83 = 5.4
(b): mortality rate (per 105 y) 22/24.65 = 0.9 3/4.83 = 0.6

1. The incidence rates requires the person-years. The simple approach is to take the
average of the population at each end of the period, i.e. for the �rst 31.12.1992 and
31.12.1997 and for the second 31.12.1998 and 31.12.1999:

> Y <- c( 495+491, 485+481 )/2 * c(5,1)
> names(Y) <- c("1993-97","1999")
> Y

1993-97 1999
2465 483

Alternatively, the person-years in the �rst period could be calculated by computing the
person-years for each of the 5 years in the period separately; giving 1/2 for the 1992 and
1997 and 1/1 for the intermediate ones:

> Y[1] <- 495/2+496+497+496+495+491/2
> Y
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1993-97 1999
2477 483

With this, the incidence rates (per 100,000 y) are (since Y is expressed in 1000s):

> ir <- c(113, 26)/Y * 10^2
> round( ir, 2 )

1993-97 1999
4.56 5.38

2. The mortality rates (also per 100,000 y) are computed similarly:

> mr <- c(22, 3)/Y * 10^2
> round( mr, 2 )

1993-97 1999
0.89 0.62

3. At �rst glance it looks as if the incidence has come up, but the mortality has gone
down. However, the evidence is way too thin to draw any conclusions. More formal
assessment requires appropriate statistical analysis of the error margin of the contrast
between the observed rates of the two periods. � See the materials of "Analysis of
epidemiologic data".

4. As the observed mortality-to-incidence ratios (M/I ratio) of leukaemia in these
periods, 22/113 = 0.19 and 3/26 = 0.12, are quite low, this suggests that the great
majority of children contracting leukaemia would have survived. However, a more
appropriate assessment of the question requires proper survival analysis, based on
following-up those children with leukaemia over a su�ciently long period.

5.4 ATCB-trial � prostate cancer

The Alpha Tocopherol Beta Caroten (ATBC) Prevention Trial (N Engl J Med 1994; 330:
1029-35) addressed among other things the possible bene�ts of daily intake of vitamin E
supplements in reducing the incidence of cancer among male smokers. The study population
of 29,133 regularly smoking 50-69 years old Finnish men were randomized into two groups:
active treatment (vitamin E supplementation), and placebo (no supplementation). The
following results were obtained for cancer of the prostate after an average follow-up time of 6
years:

number incidence rate
treatment group of cases (per 10,000 years)

vitamin E supplementation 99 11.6
no supplementation 151 17.8
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1. Since the incidence rate I is computed from the no. cases, D, and person-years Y as
I = D/Y , it follows that: Y = D/I. Accordingly, we compute the person-years in the
two groups:

99

11.6/10000 y
= 85345 y,

151

17.8/10000 y
= 84831 y

In R this would go:

> rate <- c(11.6,17.8)
> D <- c(99,151)
> names(rate) <- names(D) <- c("VitE","Plc")
> D / (rate/10000)

VitE Plc
85344.83 84831.46

2. The comparative measures:

(i) �Relative risk�: incidence rate ratio = 11.6/17.8 = 0.652,

> rate[1]/rate[2]

VitE
0.6516854

(ii) �Excess risk�: rate di�erence = 11.6− 17.8 = −6.2 per 10000 y,

> rate[1]-rate[2]

VitE
-6.2

3. As the incidence among the exposed is lower, we compute the prevented fraction: from
rates: PF = (17.8− 11.6)/17.8 = 0.348 = 35%,

> PF <- (rate["Plc"]-rate["VitE"])/rate["Plc"]
> 100*round(PF,3)

Plc
34.8

4. The results are promising. However, among other things statistical imprecision in these
�gures has to be assessed.
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5.5 Comparative measures � smokers vs. non-smokers

1. The comparative measures as computed from the mortality rates are:

lung other lung cardiovascular
cancer diseases diseases

Mortality rates
smokers 2.0 3.0 15.0
non-smokers 0.2 1.0 9.0

rate di�erence (per 1000 y) 1.8 2.0 6.0
rate ratio 10.0 3.0 1.7
attributable fraction (%) 90 67 40

These mesaures can be computed from the original table. First we enter the mortality
rates in two vectors; one for smokers and one for non-smokers, and annotate them with
the causes

> sm <- c(2.0,3.0,15.0)
> ns <- c(0.2,1.0,9.0)
> names(sm) <- names(ns) <- c("Lung Ca","Oth lung","CVD")
> rbind( sm, ns )

Lung Ca Oth lung CVD
sm 2.0 3 15
ns 0.2 1 9

Then we compute the three di�erent measures:

> diff <- sm-ns
> ratio <- sm/ns
> AF <- (ratio - 1)/ratio
> round( rbind( diff, ratio, 100*AF ), 1 )

Lung Ca Oth lung CVD
diff 1.8 2.0 6.0
ratio 10.0 3.0 1.7

90.0 66.7 40.0

2. The strongest biological e�ect is seen for lung cancer, as is apparent from the large
values of the rate ratio and AF. However, as seen from the rate di�erence, i.e. the
excess mortality rate, the population impact is by far the largest for CVD mortality.

5.6 Infant mortality

1. Approximate person-years: 1
2
(33200 + 32500)× 1 y = 32850 years;

rate = 269/32850 y = 8.19 per 1000 y
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> Y <- (33200 + 32500)/2
> D <- 269
> I <- 1000* D/Y
> round( c( D, Y, I ), 2)

[1] 269.00 32850.00 8.19

2. IMR = 269/32,800 = 8.20 per 1000 liveborn. � Note the unit!

> B <- 32800
> IMR <- 1000* D/B
> round( c(D, B, IMR), 2)

[1] 269.0 32800.0 8.2

3. IMR is not a rate, although in many populations the denominator is a close
approximation to the person-years in age group 0. In this measure the numerator is not
completely included in the denominator, so it is not a proportion either. Some infants
(< 1 y of age) dying during 1978 are, namely, born in 1977! It would be more
appropriate to call this measure as infant motality ratio.

5.7 Standardization: Colon cancer

Age speci�c data on the incidence of colon cancer in male and female populations of Finland
during 1999 are given in the following table

Males Females

Age Cases Mid- % Rate Cases Mid- % Rate Rate
group popul. of (/105y) popul. of (/105y) ratio

(1000s) all (1000s) all M/F

0�34 10 1157 46.0 0.9 22 1109 41.9 2.0 0.44
35�54 76 809 32.0 9.4 68 786 29.7 8.6 1.09
55�74 305 455 18.0 67 288 524 19.8 55 1.22
75+ 201 102 4.0 196 354 229 8.6 155 1.27

All 592 2523 100 732 2648 100

To be able to manipulate these numbers we put them in a matrix, tun this into a dataframe
and give the columns sensible names. In practice this is done by copy-paste from the
pdf-document and then in the R-script-editor add the �c()� and the commas:

> M <- matrix(
+ c(10,1157,46.0,0.9,22,1109,41.9,2.0,0.44
+ ,76,809,32.0,9.4,68,786,29.7,8.6,1.09
+ ,305,455,18.0,67,288,524,19.8,55,1.22
+ ,201,102,4.0,196,354,229,8.6,155,1.27), nrow=4, byrow=T )
> M <- data.frame(M)
> names(M) <- c("mca","mpy","mp","mr",
+ "fca","fpy","fp","fr","rr")
> M
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mca mpy mp mr fca fpy fp fr rr
1 10 1157 46 0.9 22 1109 41.9 2.0 0.44
2 76 809 32 9.4 68 786 29.7 8.6 1.09
3 305 455 18 67.0 288 524 19.8 55.0 1.22
4 201 102 4 196.0 354 229 8.6 155.0 1.27

Once we have the numbers in a dataframe we can do all the calculations using the with( M,

...).

1. Crude incidence rates and M/F RR based on these (rates per 100,000 PY):

> rates <-
+ with( M, c( sum(mca)/sum(mpy)*100,
+ sum(fca)/sum(fpy)*100 ) )
> rates[3] <- rates[1]/rates[2]
> names(rates) <- c("M rate","F rate","M/F RR")
> round( rates, 2 )

M rate F rate M/F RR
23.46 27.64 0.85

2. The age-standardized rates using the male population as standard, is simply the
weighted average of the age-speci�c rates:

> wm <- with( M, mpy/sum(mpy) )
> rates <-
+ with( M, c( sum(mca/mpy*wm)*100,
+ sum(fca/fpy*wm)*100 ) )
> rates[3] <- rates[1]/rates[2]
> names(rates) <- c("M rate","F rate","M/F RR")
> round( rates, 2 )

M rate F rate M/F RR
23.46 19.85 1.18

3. Using the world standardized population (WSP) is just using the same code but
de�ning the weights di�erently. We can snatch the WSP from the slides:

> WSP <- c(96,24,100,90,90,80,80,60,60,60,60,50,40,40,30,20,10,5,3,2)
> WSP

[1] 96 24 100 90 90 80 80 60 60 60 60 50 40 40 30 20 10 5 3
[20] 2

But our age-classes are wider, so the weights we need are the sum of the �rst 8, the next
4, the next 4 and the last 3. Note that there is no �[1]� in the �rst assignment, because
the wt is created as a vector of length 1 there, and then later expanded:

> wt <- sum(WSP[1:8])
> wt[2] <- sum(WSP[9:12])
> wt[3] <- sum(WSP[13:16])
> wt[4] <- sum(WSP[17:19])
> wt <- wt/sum(wt)
> wt
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[1] 0.62124248 0.23046092 0.13026052 0.01803607

> rates <-
+ with( M, c( sum(mca/mpy*wt)*100,
+ sum(fca/fpy*wt)*100 ) )
> rates[3] <- rates[1]/rates[2]
> names(rates) <- c("M rate","F rate","M/F RR")
> round( rates, 2 )

M rate F rate M/F RR
14.99 13.17 1.14

4. The cumulative rates to age 75 are just using weights equal to the length of the
intervals, only using the �rst 3 intervals. But now we also need to use the proper rates,
i.e. in units of cases per 1 year:

> wy <- c(35,20,20)
> rates <-
+ with( M[1:3,], c( sum(mca/mpy*wy)/1000,
+ sum(fca/fpy*wy)/1000 ) )
> rates[3] <- rates[1]/rates[2]
> names(rates) <- c("M cum.rate","F cum.rate","M/F RR")
> round( rates, 4 )

M cum.rate F cum.rate M/F RR
0.0156 0.0134 1.1618

5. Using cumulative risks amounts to converting to risk before taking the ratio, otherwise
the code is the same:

> risks <- 1 - exp( -rates )
> risks[3] <- rates[1]/rates[2]
> names(risks) <- c("M cum.risk","F cum.risk","M/F RR")
> round( risks, 4 )

M cum.risk F cum.risk M/F RR
0.0155 0.0133 1.1618

It is seen that the comparison based on the crude rates can be quite misleading. But you may
equally well say that the comparison based on comparing a single standardized rate may also
be somewhat misleading, because it conceals the important information that the rate ratio
varies by age.

5.8 Standardized rates

1. The rates (λ) are calculated using the number of cases (N)and the accumulated
person-years (Y ) in each age-category:

λ =
N

Y
⇔ Y =

N

λ



Measures of Disease Occurrence: Solutions Measures of Disease Occurrence � Solutions 49

thus the person-years for men in ages 70�74 is

2308

503.02
× 100, 000 = 458, 829

and in ages 75�79:
1824

571.51
× 100, 000 = 319, 155

so the total amount of person-years in ages 70�79 is 777,983. This is accumulated over a
5-year period (1983�87), so the e�ective population size (average number of men aged
70�79) is 777, 983/5 = 155, 597.

2. The crude, cumulative and rates standardized rates, and the corresponding male-female
rate ratios are can be computed using R as a simple calculator.

First read the data and see how they look:

> std <- read.table( "std-rates.txt", header=T )
> str( std )

'data.frame': 114 obs. of 5 variables:
$ age : int 0 5 10 15 20 25 30 35 40 45 ...
$ sex : chr "M" "M" "M" "M" ...
$ typ : chr "Colon" "Colon" "Colon" "Colon" ...
$ D : int 0 2 0 3 4 13 18 50 51 94 ...
$ rate: num 0 0.25 0 0.3 0.39 ...

Since we have given that the number of male-person-years is 2,521,177 and the female is
2,596,061, we just need the total number of cases to compute the crude rates (using the
subsetting rules):

> raw.colon.m <- sum( subset( std, sex=="M" & typ=="Colon" )$D ) / 25.21177
> raw.rectum.f <- sum( subset( std, sex=="F" & typ=="Rectum" )$D ) / 25.96061
> c(raw.colon.m,raw.rectum.f)

[1] 184.5170 96.0301

Similar computations are made for the other combinations of sex and type of cancer.

3. The cumulative rates are just the sum of the rates up to a given age, multiplied by the
interval length:

> cum65.colon.m <- sum( subset( std, sex=="M" & typ=="Colon" & age<66 )[,"rate"] ) * 5
> cum65.colon.m

[1] 1575.2

Similar computations are made for the other combinations of sex, type of cancer and
age-limit.

4. The standardized rates are just the observed rates multiplied by the de�ned weights and
then summed over all ages. Therefore we �rst need to enter a vector of weights for doing
the standardizations (and make sure the weight sum to 1 by dividing with the sum)
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> wt <- c(120,100,90,90,80,80,60,60,60,60,50,40,40,30,20,10,5,3,2)
> wt <- wt / sum(wt )
> wt

[1] 0.120 0.100 0.090 0.090 0.080 0.080 0.060 0.060 0.060 0.060 0.050 0.040
[13] 0.040 0.030 0.020 0.010 0.005 0.003 0.002

Now we can compute the standardized rates (note that the multiplication with wt is
inside the argument to sum:

> std.colon.m <- sum( subset( std, sex=="M" & typ=="Colon" )$D*wt )
> std.rectum.f <- sum( subset( std, sex=="F" & typ=="Rectum" )$D*wt )
> c(std.colon.m,std.rectum.f)

[1] 107.657 57.560

In summary the results for the �rst parts of the exercise are:

Colon Rectum Lung
Men Women ratio Men Women ratio Men Women ratio

per 100,000 person-years
Crude rate 36.90 44.26 0.83 25.56 19.21 1.33 92.06 38.41 2.40
Standardized rate 22.07 20.62 1.07 15.88 9.55 1.66 58.52 23.15 2.53

%
Cumulative rate to 65 0.90 0.96 0.94 0.75 0.49 1.53 3.06 1.60 1.91
Cumulative rate to 70 1.58 1.51 1.04 1.23 0.72 1.59 5.07 2.26 2.24
Cumulative rate to 75 2.52 2.37 1.07 1.89 1.06 1.65 7.59 2.92 2.60
Cumulative rate to 80 3.86 3.49 1.11 2.73 1.50 1.72 10.45 3.57 2.93

Computing details There are facilities in R for doing these analyses in one go: First we
compute the crude rates; to that end we need the person-years in the population as a vector,
and then the total number of cases by sex and site:

> Y <- c( 25.21177, 25.96061 )
> names( Y ) <- c("M","F")
> Y

M F
25.21177 25.96061

> D <- with( std, tapply( D, list(sex,typ), sum ) )
> D

Colon Lung Rectum
F 5746 4986 2493
M 4652 11605 3222

When we compute the rates we need to have the person-years in the right order, then we can
divide the table by the person-years:

> Y <- Y[2:1]
> Y
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F M
25.96061 25.21177

> round( D/Y, 1 )

Colon Lung Rectum
F 221.3 192.1 96.0
M 184.5 460.3 127.8

The cumulative rates are simply the integral of the rates up to a given age; so the size of the
rate times the length of the interval to which it applies, in this case 5 years, and we must recall
that the rates are given in cases per 100,000 PY. Also note that the age-classes are coded by
their left endpoint; therefore when computing the rate until age 70, say, we use �<70�:

> c65 <- with( subset(std,age<65), tapply( rate, list(sex,typ), sum )*5/10^5 )
> c70 <- with( subset(std,age<70), tapply( rate, list(sex,typ), sum )*5/10^5 )
> c75 <- with( subset(std,age<75), tapply( rate, list(sex,typ), sum )*5/10^5 )
> c80 <- with( subset(std,age<80), tapply( rate, list(sex,typ), sum )*5/10^5 )
> rbind( c65, c70, c75, c80 )

Colon Lung Rectum
F 0.0096230 0.0159975 0.0048635
M 0.0090345 0.0306340 0.0074530
F 0.0150750 0.0226105 0.0077580
M 0.0157520 0.0507405 0.0123110
F 0.0236545 0.0292030 0.0114250
M 0.0252325 0.0758915 0.0188605
F 0.0349165 0.0356725 0.0158735
M 0.0385960 0.1044670 0.0273045

Finally, the standardized rates, standardized to the world standard population, is simply the
weighted averages, obtained by multiplying the age-speci�c rates by the weight (previoulsy
calculated):

> wst <- with( std, tapply( rate*wt, list(sex,typ), sum ) )

We can put all these rates together in an array, that is, a multidimensional table. First we
de�ne the dimensions in a list

> dnam <- list( sex=c("F","M","M/F"),
+ typ=c("colon","Lung","rectum"),
+ measure=c("crude","wst","cum65","cum70","cum75","cum80"))
> res <- array( NA, dim=c(3,3,6), dimnames=dnam )

This is now an array with only missing values in it, so we put in the values we just computed
� not that we refor to the dimension by names, whcih reduces the possibility of errors:

> res[1:2,,"crude"] <- D/Y
> res[1:2,,"wst"] <- wst
> res[1:2,,"cum65"] <- c65
> res[1:2,,"cum70"] <- c70
> res[1:2,,"cum75"] <- c75
> res[1:2,,"cum80"] <- c80
> ftable( res )

measure crude wst cum65 cum70 cum75 cum80
sex typ
F colon 221.3353230 20.6155700 0.0096230 0.0150750 0.0236545 0.0349165

Lung 192.0602020 23.1456600 0.0159975 0.0226105 0.0292030 0.0356725
rectum 96.0301010 9.5547800 0.0048635 0.0077580 0.0114250 0.0158735
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M colon 184.5169935 22.0664500 0.0090345 0.0157520 0.0252325 0.0385960
Lung 460.3008833 58.5196700 0.0306340 0.0507405 0.0758915 0.1044670
rectum 127.7974533 15.8836600 0.0074530 0.0123110 0.0188605 0.0273045

M/F colon NA NA NA NA NA NA
Lung NA NA NA NA NA NA
rectum NA NA NA NA NA NA

> ftable( res, row.vars=3 )

sex F M M/F
typ colon Lung rectum colon Lung rectum colon Lung rectum

measure
crude 221.3353230 192.0602020 96.0301010 184.5169935 460.3008833 127.7974533 NA NA NA
wst 20.6155700 23.1456600 9.5547800 22.0664500 58.5196700 15.8836600 NA NA NA
cum65 0.0096230 0.0159975 0.0048635 0.0090345 0.0306340 0.0074530 NA NA NA
cum70 0.0150750 0.0226105 0.0077580 0.0157520 0.0507405 0.0123110 NA NA NA
cum75 0.0236545 0.0292030 0.0114250 0.0252325 0.0758915 0.0188605 NA NA NA
cum80 0.0349165 0.0356725 0.0158735 0.0385960 0.1044670 0.0273045 NA NA NA

Note that the male-female ratio is empty. One advantage of putting it all in an array is that
summary measures are easily computed for the entire array:

> res["M/F",,] <- res["M",,]/res["F",,]
> round( ftable( res, row.vars=3 ), 3 )

sex F M M/F
typ colon Lung rectum colon Lung rectum colon Lung rectum

measure
crude 221.335 192.060 96.030 184.517 460.301 127.797 0.834 2.397 1.331
wst 20.616 23.146 9.555 22.066 58.520 15.884 1.070 2.528 1.662
cum65 0.010 0.016 0.005 0.009 0.031 0.007 0.939 1.915 1.532
cum70 0.015 0.023 0.008 0.016 0.051 0.012 1.045 2.244 1.587
cum75 0.024 0.029 0.011 0.025 0.076 0.019 1.067 2.599 1.651
cum80 0.035 0.036 0.016 0.039 0.104 0.027 1.105 2.929 1.720

5. The rate-ratios between men and women vary by the measure they are based on. The
ratios based on standardized rates or cumulative rates all assume that the incidence
rate-ratio is the same throughout the age-span, which it obviously is not. The more this
assumption is violated the larger the di�erences between the ratios based on the various
measures.

For example, the male-female rate-ratio based on cumulative rate to 65 for lung cancer
is 1.91, and based on cumulative rates to 80 it is 2.93, 50% larger.

6. In order to get a bit more insight as to how the M/F rate-ratio varies by age we can
simply compute these for each site and divide them:

> round( with( subset(std,sex=="M"), tapply( rate, list(age,typ), sum ) ) /
+ with( subset(std,sex=="F"), tapply( rate, list(age,typ), sum ) ), 2 )

Colon Lung Rectum
0 NaN NaN NaN
5 Inf NaN NaN
10 0.00 NaN NaN
15 0.41 Inf Inf
20 0.48 1.90 1.00
25 2.47 3.82 0.64
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30 0.64 0.48 2.61
35 1.26 1.26 0.70
40 0.65 1.02 1.42
45 0.75 1.24 1.07
50 0.76 1.43 1.54
55 0.98 1.76 1.49
60 1.06 2.61 1.76
65 1.23 3.04 1.68
70 1.11 3.82 1.79
75 1.19 4.42 1.90
80 1.22 4.84 1.79
85 1.14 4.80 2.08
90 1.32 3.75 2.05

It is seen that for all three sites there is an incresing tendency in the male-female
rate-ratio, hence the increasing values of the ratios based on the cumulative rates.

5.9 Survival: cancer of the tongue

1. We begin by entering the data in three vectors:

> N <- c(130,78,45,33,25,19,12)
> D <- c(45,24,5,2,1,0,0)
> L <- c(7,9,7,6,5,7,6)

With these we can now do all the calculations and put it all in a dataframe. Note the
use of the function cumprod which simply takes the cumulative product of a vector:

> res <- data.frame( N=N, D=D, L=L,
+ eff.den = N-L/2,
+ pr.death = D/(N-L/2),
+ pr.surv = 1-D/(N-L/2),
+ cum.surv = cumprod( 1-D/(N-L/2) ) )
> round( res, 3 )

N D L eff.den pr.death pr.surv cum.surv
1 130 45 7 126.5 0.356 0.644 0.644
2 78 24 9 73.5 0.327 0.673 0.434
3 45 5 7 41.5 0.120 0.880 0.382
4 33 2 6 30.0 0.067 0.933 0.356
5 25 1 5 22.5 0.044 0.956 0.340
6 19 0 7 15.5 0.000 1.000 0.340
7 12 0 6 9.0 0.000 1.000 0.340

2. In the survival curve, the y-values are the cumulative survival proportions given at the
last column of the data frame. The corresponding x-values being the end points of the
intervals, in this case 1,. . . ,7 (years after diagnosis). However, we need to add the point
(0,1) as the start of the curve. Moreover, we also add horizontal lines to be able to read
o� the quartiles of the survival:

> plot( 0:7, c(1,res$cum.surv), pch=16, type="b", ylim=0:1,
+ ylab="Survival", xlab="Time since diagnosis" )
> abline( h=c(1:3/4) )

From �gure 5.2 we see that the lower quartile is 0.7 years, median 1.69 years but that
the upper quartile is unestimable from these data.
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Figure 5.2: The survival curve � lifetable estimator.

5.10 Conditional survival

1. For men with colon cancer we �nd that the cumulative probability of surviving:

1 year is 1− 0.4343 = 0.5657

3 years is 0.5657× (1− 0.2280)× (1− 0.1674) = 0.3636

5 years is 0.3636× (1− 0.1384)× (1− 0.1100) = 0.2788

This can be automated by putting data into R. The actual numbers can be copy-pasted
from the .pdf-�le of the exercises, equipped with commas, and wrapped into a matrix()

statement. This will give you the dataset inside the program for later further
manipulation.

Note that we give the data as one long vector (using c()) and then just specify the
number of columns, and leave to R to �nd out how many rows. The default is to �ll
matrices column-wise, so we also need the byrow=TRUE:

> prob <- matrix( c(
+ 1,43.44,42.13,36.60,34.29,
+ 2,22.80,19.11,24.00,21.86,
+ 3,16.74,14.60,21.02,15.67,
+ 4,13.84,10.62,15.59,13.54,
+ 5,11.00,8.69,14.55,11.40,
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+ 6,10.13,7.36,9.95,11.17,
+ 7,8.67,5.65,11.37,8.99,
+ 8,7.97,5.51,8.69,8.55,
+ 9,7.42,5.37,10.07,8.14,
+ 10,7.75,5.94,5.16,7.26,
+ 11,4.91,5.66,7.14,2.57,
+ 12,6.72,5.42,6.06,5.63,
+ 13,6.20,6.25,5.00,2.13), ncol=5, byrow=T )
> prob

[,1] [,2] [,3] [,4] [,5]
[1,] 1 43.44 42.13 36.60 34.29
[2,] 2 22.80 19.11 24.00 21.86
[3,] 3 16.74 14.60 21.02 15.67
[4,] 4 13.84 10.62 15.59 13.54
[5,] 5 11.00 8.69 14.55 11.40
[6,] 6 10.13 7.36 9.95 11.17
[7,] 7 8.67 5.65 11.37 8.99
[8,] 8 7.97 5.51 8.69 8.55
[9,] 9 7.42 5.37 10.07 8.14

[10,] 10 7.75 5.94 5.16 7.26
[11,] 11 4.91 5.66 7.14 2.57
[12,] 12 6.72 5.42 6.06 5.63
[13,] 13 6.20 6.25 5.00 2.13

We do not need the �rst column, so it is dropped by using indexing of columns
(negative numbers mean �omit�):

> prob <- prob[,-1]
> colnames(prob) <- c("Col.M","Col.F","Rect.M","Rect.F")
> prob

Col.M Col.F Rect.M Rect.F
[1,] 43.44 42.13 36.60 34.29
[2,] 22.80 19.11 24.00 21.86
[3,] 16.74 14.60 21.02 15.67
[4,] 13.84 10.62 15.59 13.54
[5,] 11.00 8.69 14.55 11.40
[6,] 10.13 7.36 9.95 11.17
[7,] 8.67 5.65 11.37 8.99
[8,] 7.97 5.51 8.69 8.55
[9,] 7.42 5.37 10.07 8.14

[10,] 7.75 5.94 5.16 7.26
[11,] 4.91 5.66 7.14 2.57
[12,] 6.72 5.42 6.06 5.63
[13,] 6.20 6.25 5.00 2.13

Having the numbers in a matrix we can just multiply the rows together to get the 1, 3
and 5-year survival. First we must however divide all columns by 100 to get
probabilities, and the compute the cumulative survival probabilities � note that we do
calculations for both sites and both sexes simultaneously:

> prob <- prob/100
> surv1 <- 1-prob[1,]
> surv3 <- surv1 * (1-prob[2,]) * (1-prob[3,])
> surv5 <- surv3 * (1-prob[4,]) * (1-prob[5,])
> ( DK.surv <- rbind( surv1, surv3, surv5 ) )
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Col.M Col.F Rect.M Rect.F
surv1 0.5656000 0.5787000 0.6340000 0.6571000
surv3 0.3635491 0.3997663 0.3805572 0.4329991
surv5 0.2787782 0.3262608 0.2744896 0.3316927

We can get the �gures printed in percent, rounded to one decimal:

> round( DK.surv*100, 1 )

Col.M Col.F Rect.M Rect.F
surv1 56.6 57.9 63.4 65.7
surv3 36.4 40.0 38.1 43.3
surv5 27.9 32.6 27.4 33.2

Note that these are considerably lower than the corresponding American �gures.

2. The conditional probability of surviving 3 years given that a man with colon cancer
already has survived one year is:

Pr(survive 2nd | alive after 1st ) × Pr(survive 3rd | alive after 2nd )

= (1− 0.2280)× (1− 0.1674)

= 0.6427

This �gure can also be computed as:

P{Survive 3 years}
P{Survive 1 year}

=
0.3636

0.5657
= 0.6427

Thus, the conditional survival probabilities can be obtained from the table by dividing
the last two rows with the �rst, which goes like this in R:

> cond3 <- surv3/surv1
> cond5 <- surv5/surv1
> DK.cond <- rbind( cond3, cond5 )
> round( DK.cond*100, 1 )

Col.M Col.F Rect.M Rect.F
cond3 64.3 69.1 60.0 65.9
cond5 49.3 56.4 43.3 50.5

There is of course a function in R that will do these calculations in one go and return
the survival function for all times:

> round( (S.DK <- apply( 1-prob, 2, cumprod ) )*100, 1 )

Col.M Col.F Rect.M Rect.F
[1,] 56.6 57.9 63.4 65.7
[2,] 43.7 46.8 48.2 51.3
[3,] 36.4 40.0 38.1 43.3
[4,] 31.3 35.7 32.1 37.4
[5,] 27.9 32.6 27.4 33.2
[6,] 25.1 30.2 24.7 29.5
[7,] 22.9 28.5 21.9 26.8
[8,] 21.1 26.9 20.0 24.5
[9,] 19.5 25.5 18.0 22.5

[10,] 18.0 24.0 17.1 20.9
[11,] 17.1 22.6 15.8 20.4
[12,] 16.0 21.4 14.9 19.2
[13,] 15.0 20.1 14.1 18.8
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Likewise, there is a function that will divide the entire array by the �rst line, so as to
produce the condtional survival given one-year survival:

> sweep( as.array(S.DK), 2, S.DK[1,], "/" )

Col.M Col.F Rect.M Rect.F
[1,] 1.0000000 1.0000000 1.0000000 1.0000000
[2,] 0.7720000 0.8089000 0.7600000 0.7814000
[3,] 0.6427672 0.6908006 0.6002480 0.6589546
[4,] 0.5538082 0.6174376 0.5066693 0.5697322
[5,] 0.4928893 0.5637823 0.4329489 0.5047827
[6,] 0.4429596 0.5222879 0.3898705 0.4483985
[7,] 0.4045550 0.4927786 0.3455422 0.4080874
[8,] 0.3723120 0.4656265 0.3155146 0.3731960
[9,] 0.3446864 0.4406224 0.2837423 0.3428178

[10,] 0.3179732 0.4144494 0.2691012 0.3179292
[11,] 0.3023608 0.3909916 0.2498874 0.3097585
[12,] 0.2820421 0.3697998 0.2347442 0.2923191
[13,] 0.2645555 0.3466873 0.2230070 0.2860927

3. From the American material we get the conditional survival probabilities in the same
way. We just have to enter the data �rst:

> US.surv <- matrix( c(
+ 1, 68, 69, 74, 74,
+ 3, 46, 48, 48, 50,
+ 5, 36, 39, 35, 39), ncol=5, byrow=TRUE )
> US.surv <- US.surv[,-1]/100
> colnames( US.surv ) <- colnames( DK.surv )
> US.surv

Col.M Col.F Rect.M Rect.F
[1,] 0.68 0.69 0.74 0.74
[2,] 0.46 0.48 0.48 0.50
[3,] 0.36 0.39 0.35 0.39

Then we can perform the same operation as before now on the American data:

> acond3 <- US.surv[2,]/US.surv[1,]
> acond5 <- US.surv[3,]/US.surv[1,]
> US.cond <- rbind(acond3,acond5)
> round( US.cond*100, 1 )

Col.M Col.F Rect.M Rect.F
acond3 67.6 69.6 64.9 67.6
acond5 52.9 56.5 47.3 52.7

4. We see that there is a considerable di�erence in the cumulative survival probabilities
between Denmark and USA, but conditioning on surviving one year almost removes the
di�erences.

A quick way of comparing the probabilities between USA and Denmark is to form the
ratio of them:

> round( US.surv/DK.surv, 2 )



58 5.11 Lexis diagram Practicals for NSCE, Copenhagen 2022

Col.M Col.F Rect.M Rect.F
[1,] 1.20 1.19 1.17 1.13
[2,] 1.27 1.20 1.26 1.15
[3,] 1.29 1.20 1.28 1.18

> round( US.cond/DK.cond, 2 )

Col.M Col.F Rect.M Rect.F
acond3 1.05 1.01 1.08 1.03
acond5 1.07 1.00 1.09 1.04

Thus most the di�erences in survival between Denmark and USA is during the �rst
year, where Danish patients apparently have a higher mortality.

This is probably due to di�erences in registration procedures between Denmark and
USA. Danish �gures include persons that are initially reported to the registry via death
certi�cates and subsequently traced and equipped with a proper date of diagnosis.
These so-called DCI � Death Certi�cate Initiated � cases obviously have a rather short
survival. Such persons are more likely not to be traced in the USA, and are therefore
not included in the American �gures, that in this way are somewhat optimistic.

5.11 Lexis diagram

Cases and person-years split by age in three periods, and by age in one birth cohort.

period 1990-94 period 1995-99 period 2000-04 1952-61 cohort

Age (y) Cases P-years Cases P-years Cases P-years Cases P-years

40-44 - 11 1 9.5 - 6 1 16.5
45-49 - 6 - 12.2 2 10.5 1 15.7
50-54 1 6 1 8.6 1 4.2 1 7.1

1. You can load the dataset from the course website by:

> library( Epi )
> occup <- read.table("http://BendixCarstensen.com/NSCE/R/occup.txt", header=TRUE)
> occup

AoE DoE DoX Xst
1 51.0 1991.0 1994.0 D
2 48.0 1990.0 1997.0 X
3 47.0 1992.0 1998.0 D
4 51.0 1998.0 2001.4 D
5 48.5 1996.9 2001.8 W
6 41.0 1990.0 1997.2 W
7 44.0 1994.0 1999.5 W
8 40.0 1991.0 2000.5 D
9 40.0 1993.0 1997.5 D
10 47.0 2001.0 2008.1 D
11 42.0 1997.0 2004.0 D
12 40.0 1997.0 2010.0 X
13 41.0 2001.0 2008.7 W
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In order to compute the cases and person-years we set up a Lexis object:

> oL <- Lexis( entry = list( age=AoE, per=DoE ),
+ exit = list( per=DoX ),
+ entry.status = factor( rep("W",nrow(occup)) ),
+ exit.status = factor( Xst ),
+ data = occup )

Incompatible factor levels in entry.status and exit.status:
both lex.Cst and lex.Xst now have levels:
W D X

> summary( oL )

Transitions:
To

From W D X Records: Events: Risk time: Persons:
W 4 7 2 13 9 85.8 13

Exit status X and W are synonymous. If we want to classify the follow-up (person-years
and events) by age and calendar time we must �rst subdivide by the two timescales, this
is done by splitLexis:

> oL <- splitLexis( oL, time="age", breaks=seq(0,100,5) )
> oL <- splitLexis( oL, time="per", breaks=seq(0,110,5)+1900 )
> oL[order(oL$lex.id,oL$age),]

lex.id age per lex.dur lex.Cst lex.Xst AoE DoE DoX Xst
1 51.0 1991.0 3.0 W D 51.0 1991.0 1994.0 D
2 48.0 1990.0 2.0 W W 48.0 1990.0 1997.0 X
2 50.0 1992.0 3.0 W W 48.0 1990.0 1997.0 X
2 53.0 1995.0 2.0 W X 48.0 1990.0 1997.0 X
3 47.0 1992.0 3.0 W W 47.0 1992.0 1998.0 D
3 50.0 1995.0 3.0 W D 47.0 1992.0 1998.0 D
4 51.0 1998.0 2.0 W W 51.0 1998.0 2001.4 D
4 53.0 2000.0 1.4 W D 51.0 1998.0 2001.4 D
5 48.5 1996.9 1.5 W W 48.5 1996.9 2001.8 W
5 50.0 1998.4 1.6 W W 48.5 1996.9 2001.8 W
5 51.6 2000.0 1.8 W W 48.5 1996.9 2001.8 W
6 41.0 1990.0 4.0 W W 41.0 1990.0 1997.2 W
6 45.0 1994.0 1.0 W W 41.0 1990.0 1997.2 W
6 46.0 1995.0 2.2 W W 41.0 1990.0 1997.2 W
7 44.0 1994.0 1.0 W W 44.0 1994.0 1999.5 W
7 45.0 1995.0 4.5 W W 44.0 1994.0 1999.5 W
8 40.0 1991.0 4.0 W W 40.0 1991.0 2000.5 D
8 44.0 1995.0 1.0 W W 40.0 1991.0 2000.5 D
8 45.0 1996.0 4.0 W W 40.0 1991.0 2000.5 D
8 49.0 2000.0 0.5 W D 40.0 1991.0 2000.5 D
9 40.0 1993.0 2.0 W W 40.0 1993.0 1997.5 D
9 42.0 1995.0 2.5 W D 40.0 1993.0 1997.5 D

10 47.0 2001.0 3.0 W W 47.0 2001.0 2008.1 D
10 50.0 2004.0 1.0 W W 47.0 2001.0 2008.1 D
10 51.0 2005.0 3.1 W D 47.0 2001.0 2008.1 D
11 42.0 1997.0 3.0 W W 42.0 1997.0 2004.0 D
11 45.0 2000.0 4.0 W D 42.0 1997.0 2004.0 D
12 40.0 1997.0 3.0 W W 40.0 1997.0 2010.0 X
12 43.0 2000.0 2.0 W W 40.0 1997.0 2010.0 X
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12 45.0 2002.0 3.0 W W 40.0 1997.0 2010.0 X
12 48.0 2005.0 2.0 W W 40.0 1997.0 2010.0 X
12 50.0 2007.0 3.0 W X 40.0 1997.0 2010.0 X
13 41.0 2001.0 4.0 W W 41.0 2001.0 2008.7 W
13 45.0 2005.0 3.7 W W 41.0 2001.0 2008.7 W

Having split the follow-up we can make a tabulation of the follow-up using the utility
function timeBand:

> table( timeBand(oL,"age","left"), timeBand(oL,"per","left"))

1990 1995 2000 2005
40 4 4 2 0
45 3 4 4 2
50 2 4 3 2

However we do not want the number of observations (lines) in the dataset, we want the
number of person-yeras (lex.dur) and the number of deaths (lex.Xst=="D"), so we set
up a matrix with these as columns, and de�ne the two clssi�cation variables:

> FU <- with( oL, cbind(lex.Xst=="D",lex.dur) )
> colnames(FU) <- c("D","Y")
> Age <- timeBand(oL,"age","left")
> Period <- timeBand(oL,"per","left")

This enables us to use xtabs to simultaneously tabulate person-years and deaths

> FUtab <- xtabs( FU ~ Age + Period )
> ftable(FUtab,col.vars=2:3)

Period 1990 1995 2000 2005
D Y D Y D Y D Y

Age
40 0.0 11.0 1.0 9.5 0.0 6.0 0.0 0.0
45 0.0 6.0 0.0 12.2 2.0 10.5 0.0 5.7
50 1.0 6.0 1.0 8.6 1.0 4.2 1.0 6.1

2. If we want the tabulation by age for the birth cohort 1952�61, we simply restrict the
dataset to his group, i.e. the persons where per− age is between 1952 and 1962:

> BC <- subset(oL,per-age>1952 & per-age<1962)
> FU <- with( BC, cbind(lex.Xst=="D",lex.dur) )
> colnames(FU) <- c("D","Y")
> Age <- timeBand(BC,"age","left")
> FUctab <- xtabs( FU ~ Age )
> FUctab

Age D Y
40 1.0 16.5
45 1.0 15.7
50 1.0 7.1
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3. The cumulative rate and the cumulative risk for the birth cohort born 1952-1961 from
40 till 55 years of age are computed

5×
(

1

16.5
+

1

15.7
+

1

7.1

)
= 1.32, 1− exp(−1.32) = 0.73

or in terms of the just computed:

> CumRate <- sum(FUctab[,1]/FUctab[,2]*5)
> CumRisk <- 1 - exp( - CumRate )
> round( c(CumRate, CumRisk), 3)

[1] 1.326 0.734

4. The total expected number of cases E in the whole study cohort, based on the age and
period-speci�c rates in the national male population and the person-years in the study
cohort split by age and period, is obtained as

E =
100

105y
× (11 + 9.5 + 6 + 0) y+

200

105y
× (6 + 12.2 + 10.5 + 5.7) y

+
400

105y
× (6 + 8.6 + 4.2 + 6.1) y = 0.1949

The total observed number is O = 7. Accordingly, the standardised incidence ratio SIR
= O/E is SIR = 7/0.1949 = 35.9. � Quite a risky occupation!

Note that the point of subdividing the follow-up by age and calendar time is to make it
possible to apply population rates to the follow-up � the population rates vary by age
and calendar time. So what is done is to match the population rates to the dataset
covering the follow-up of the cohort.

> p.rates <- data.frame( rate=c(100,200,400), Age=c(40,45,50) )
> oL$Age <- timeBand(oL,"age","left")
> oL <- merge(oL,p.rates)
> oL

lex.id age per lex.dur lex.Cst lex.Xst Age AoE DoE DoX Xst rate
8 40.0 1991.0 4.0 W W 40 40.0 1991.0 2000.5 D 100
9 40.0 1993.0 2.0 W W 40 40.0 1993.0 1997.5 D 100
8 44.0 1995.0 1.0 W W 40 40.0 1991.0 2000.5 D 100
6 41.0 1990.0 4.0 W W 40 41.0 1990.0 1997.2 W 100

12 43.0 2000.0 2.0 W W 40 40.0 1997.0 2010.0 X 100
9 42.0 1995.0 2.5 W D 40 40.0 1993.0 1997.5 D 100
7 44.0 1994.0 1.0 W W 40 44.0 1994.0 1999.5 W 100

12 40.0 1997.0 3.0 W W 40 40.0 1997.0 2010.0 X 100
13 41.0 2001.0 4.0 W W 40 41.0 2001.0 2008.7 W 100
11 42.0 1997.0 3.0 W W 40 42.0 1997.0 2004.0 D 100
3 47.0 1992.0 3.0 W W 45 47.0 1992.0 1998.0 D 200
2 48.0 1990.0 2.0 W W 45 48.0 1990.0 1997.0 X 200
5 48.5 1996.9 1.5 W W 45 48.5 1996.9 2001.8 W 200
6 46.0 1995.0 2.2 W W 45 41.0 1990.0 1997.2 W 200
8 45.0 1996.0 4.0 W W 45 40.0 1991.0 2000.5 D 200
6 45.0 1994.0 1.0 W W 45 41.0 1990.0 1997.2 W 200

12 45.0 2002.0 3.0 W W 45 40.0 1997.0 2010.0 X 200
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10 47.0 2001.0 3.0 W W 45 47.0 2001.0 2008.1 D 200
7 45.0 1995.0 4.5 W W 45 44.0 1994.0 1999.5 W 200
13 45.0 2005.0 3.7 W W 45 41.0 2001.0 2008.7 W 200
11 45.0 2000.0 4.0 W D 45 42.0 1997.0 2004.0 D 200
8 49.0 2000.0 0.5 W D 45 40.0 1991.0 2000.5 D 200
12 48.0 2005.0 2.0 W W 45 40.0 1997.0 2010.0 X 200
1 51.0 1991.0 3.0 W D 50 51.0 1991.0 1994.0 D 400
3 50.0 1995.0 3.0 W D 50 47.0 1992.0 1998.0 D 400
2 50.0 1992.0 3.0 W W 50 48.0 1990.0 1997.0 X 400
2 53.0 1995.0 2.0 W X 50 48.0 1990.0 1997.0 X 400
10 51.0 2005.0 3.1 W D 50 47.0 2001.0 2008.1 D 400
5 50.0 1998.4 1.6 W W 50 48.5 1996.9 2001.8 W 400
4 51.0 1998.0 2.0 W W 50 51.0 1998.0 2001.4 D 400
4 53.0 2000.0 1.4 W D 50 51.0 1998.0 2001.4 D 400
5 51.6 2000.0 1.8 W W 50 48.5 1996.9 2001.8 W 400
10 50.0 2004.0 1.0 W W 50 47.0 2001.0 2008.1 D 400
12 50.0 2007.0 3.0 W X 50 40.0 1997.0 2010.0 X 400

With this we can now compute the observed and expected cases:

> Obs <- with( oL, sum( lex.Xst=="D" ) )
> Exp <- with( oL, sum( lex.dur*rate/10^5 ) )
> round(c( Observed=Obs, Expected=Exp, SIR=Obs/Exp ), 3)

Observed Expected SIR
7.000 0.195 35.916

Often, we will use smaller intervals, as well as population rates that actually do vary by
calendar time, but that would require more complicated computing.

5.12 Cumulative rates

1. The estimate of the rates in the two groups are:

Thorotrast: 751/19365.4 years = 0.03878 years−1 = 38.8/1000 years

Controls: 797/30517.6 years = 0.02612 years−1 = 26.1/1000 years

and hence the estimate of the rate ratio is:

R̂R =
751/19365.4 years

797/30517.6 years
= 1.485

2. The standard deviation of log(RR) is
√

1/D1 + 1/D0, which in this case is:

S =

√
1

751
+

1

797
= 0.0509

leading to a 95% con�dence interval of:

1.485
×
÷ exp(1.96× 0.0509) = (1.344; 1.641)

In R we would do this calculation as follows:
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> RR <- (751/19365.4)/(797/30517.6)
> SE <- sqrt( 1/751 + 1/797 )
> erf <- exp( 1.96*SE )
> round( c( RR, RR/erf, RR*erf ), 4 )

[1] 1.4849 1.3441 1.6406

3. Calculation of the cumulative rates requires that we compute the age-speci�c rates and
then make a weighted sum of them, so we start out by entering the data from a
copy-paste from the .pdf-�le:

> th <- matrix( c(
+ 0, 5, 572.1, 11, 1536.1,
+ 20, 17, 1974.2, 16, 2449.1,
+ 30, 58, 3489.0, 35, 4228.8,
+ 40, 100, 4502.2, 67, 5822.3,
+ 50, 184, 4433.5, 137, 6647.0,
+ 60, 205, 2998.1, 211, 5780.3,
+ 70, 137, 1134.4, 206, 3113.6,
+ 80, 45, 261.5, 114, 939.8), ncol=5, byrow=TRUE )
> colnames(th) <- c("age","D.th","Y.th","D.ct","Y.ct")
> th

age D.th Y.th D.ct Y.ct
[1,] 0 5 572.1 11 1536.1
[2,] 20 17 1974.2 16 2449.1
[3,] 30 58 3489.0 35 4228.8
[4,] 40 100 4502.2 67 5822.3
[5,] 50 184 4433.5 137 6647.0
[6,] 60 205 2998.1 211 5780.3
[7,] 70 137 1134.4 206 3113.6
[8,] 80 45 261.5 114 939.8

Then we compute the age-speci�c rates in the two groups � note that we can refer to
the columns in the matrix th by column names:

> R.th <- th[,"D.th"]/th[,"Y.th"]
> R.ct <- th[,"D.ct"]/th[,"Y.ct"]

If we want to compute the cumulative rates, we must also have the interval lengths, 20
years, for the �rst, 10 for the next 6 and unde�ned for the last:

> ell <- c(20,rep(10,6),NA)
> cbind( th[,"age"], ell, R.th, R.ct )

ell R.th R.ct
[1,] 0 20 0.008739731 0.007160992
[2,] 20 10 0.008611083 0.006533012
[3,] 30 10 0.016623674 0.008276580
[4,] 40 10 0.022211363 0.011507480
[5,] 50 10 0.041502199 0.020610802
[6,] 60 10 0.068376639 0.036503296
[7,] 70 10 0.120768688 0.066161357
[8,] 80 NA 0.172084130 0.121302405
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The cumulative rates are now computed by multiplying the age-speci�c rates by the
interval length and then adding up; the cumulative rate to age 70 is up to and including
the age class 60�69, i.e. the �rst 6 classes; the cumulative rates to age 80 includes one
more class:

> C70.th <- sum( (R.th*ell)[1:6] )
> C70.ct <- sum( (R.ct*ell)[1:6] )
> C80.th <- sum( (R.th*ell)[1:7] )
> C80.ct <- sum( (R.ct*ell)[1:7] )

we can then summarize the cumulative rates and the ratio of them between the two
groups:

> round( rbind( c( C70.th, C70.ct, C70.th/C70.ct ),
+ c( C80.th, C80.ct, C80.th/C80.ct ) ), 3 )

[,1] [,2] [,3]
[1,] 1.748 0.978 1.788
[2,] 2.956 1.639 1.803

We can produce a readable out put by putting the results in a matrix and giving it row-
and column-names:

> Cmat <- rbind( c( C70.th, C70.ct, C70.th/C70.ct ),
+ c( C80.th, C80.ct, C80.th/C80.ct ) )
> rownames( Cmat ) <- c("cr.70","cr.80")
> colnames( Cmat ) <- c("Thorotrast","Controls","Ratio")
> round( Cmat, 2 )

Thorotrast Controls Ratio
cr.70 1.75 0.98 1.79
cr.80 2.96 1.64 1.80

We see that the cumulative rates have approximately the same ratio whether we
cumulate rates to age 70 or age 80.

4. The reason that these ratios are larger than the ratio of the crude rates is the
assumptions behind the calculation based on the crude rates does not hold.

Using the crude rates assumes that the rates are constant throughout the lifespan which
is clearly not the case. When we use the cumulative rates for comparison, we only make
the assumption that the ratio of the rates (RR) is the same in all age classes. This is also
the minimal required assumption needed to make the calculation of the RR meaningful.

This assumption is easily checked when we have the data available in R:

> cbind( th[,"age"], R.th/R.ct )

[,1] [,2]
[1,] 0 1.220464
[2,] 20 1.318088
[3,] 30 2.008520
[4,] 40 1.930167
[5,] 50 2.013614
[6,] 60 1.873163
[7,] 70 1.825366
[8,] 80 1.418637
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We see that with the exception of the two �rst age-classes with very few cases, the
age-speci�c rate-ratios are consistently larger than the crude rate-ratio.

5.13 Attributable risk

1. From the solution to exercise 2.12 we have that the relative risk based on the crude
rates is 1.485, and hence the attributable risk is

AR =
1.485− 1

1.485
= 0.327

For the relative risks based on the cumulative rates to 70 and 80, respectively, we get:

AR70 =
1.82− 1

1.82
= 0.441 AR80 =

1.80− 1

1.80
= 0.446

2. The di�erences are merely re�ections of the di�erences in the estimates of the relative
risk, where the estimate based on the crude rates is clearly invalid because it rests on
the rather strong (and obviously wrong!) assumption that the rates are constant over
the total age-span.

The attributable number of cases (AC) are in the three instances 0.327× 751 = 245.6,
0.441× 751 = 331.2 and 0.446× 751 = 334.9.

3. The age-speci�c relative risk (rate-ratio) and the nuber of cases in the throtrast grousp
can be used to compute the attributable risk and attributable number of cases in each
age-group.

In order to �nd RRs and the numbers in the Thorotrast group we enter the same data
again as in exercise 2.12:

> th <- matrix( c(
+ 0, 5, 572.1, 11, 1536.1,
+ 20, 17, 1974.2, 16, 2449.1,
+ 30, 58, 3489.0, 35, 4228.8,
+ 40, 100, 4502.2, 67, 5822.3,
+ 50, 184, 4433.5, 137, 6647.0,
+ 60, 205, 2998.1, 211, 5780.3,
+ 70, 137, 1134.4, 206, 3113.6,
+ 80, 45, 261.5, 114, 939.8), ncol=5, byrow=TRUE )
> colnames(th) <- c("age","D.th","Y.th","D.ct","Y.ct")
> th

age D.th Y.th D.ct Y.ct
[1,] 0 5 572.1 11 1536.1
[2,] 20 17 1974.2 16 2449.1
[3,] 30 58 3489.0 35 4228.8
[4,] 40 100 4502.2 67 5822.3
[5,] 50 184 4433.5 137 6647.0
[6,] 60 205 2998.1 211 5780.3
[7,] 70 137 1134.4 206 3113.6
[8,] 80 45 261.5 114 939.8

Now we can compute the relevant �gures; �rst the RR which is merely the ratio of the
rates, so what we have here is just the age-speci�c RRs:
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> RR <- (th[,"D.th"]/th[,"Y.th"]) / (th[,"D.ct"]/th[,"Y.ct"])

The attributable risk is a simple functions of the RR:

> AR <- (RR-1)/RR

which when multiplied by the total number of cases gives the attributable number of
cases in the study population:

> D.tot <- th[,"D.th"] + th[,"D.ct"]
> AC <- AR * D.tot
> round( cbind( RR, AR, AC ), 3 )

RR AR AC
[1,] 1.220 0.181 2.890
[2,] 1.318 0.241 7.964
[3,] 2.009 0.502 46.697
[4,] 1.930 0.482 80.479
[5,] 2.014 0.503 161.585
[6,] 1.873 0.466 193.916
[7,] 1.825 0.452 155.092
[8,] 1.419 0.295 46.921

> round( sum(AC), 1 )

[1] 695.5

These numbers are given in the nice table below:

Age RR AR AC

0-19 1.220 0.181 0.9
20-29 1.318 0.241 4.1
30-39 2.009 0.502 29.1
40-49 1.930 0.482 48.2
50-59 2.014 0.503 92.6
60-69 1.873 0.466 95.6
70-79 1.825 0.452 61.9
80+ 1.419 0.295 13.3∑

345.7

We see that the attributable number of cases in total is not exactly the same as the
number obtained by using the common estimate of the relative risk to calculate an
overall attributable risk. This is because the assumption about proportionality of rates,
i.e. of constant relative risk over age-classes is not exactly ful�lled.

If the relative risks were exactly the same in all age classes then so would the
attributable risks be, and hence the calculation based on the common relative risk
estimate and the calculation based on age-speci�c relative risks would give the same
result.



Chapter 6

Analysis of Epidemiological Data �

Solutions

6.1 Single incidence rates

1. First we enter the numbers of stomach cancer deaths and the number of person-years in
two vectors, each of length two representing Kuwait and Egypt respectively

> cases <- c(6, 53)
> pyears <- c(0.89, 18.19)

We can the divide the two vectors to form the vector of rates. For readability we give
names to the vector components using names() <-. Finally we print it by just giving
the name of the vector:

> rates <- cases/pyears
> names(rates) <- c("Kuwait", "Egypt")
> rates

Kuwait Egypt
6.741573 2.913689

In order to compute the uncertainty in the empirical mortality rate we use the formula
for the standard error of a rate; SE(I) = I/

√
D, where I = D/Y is the empirical rate

and D is the number of deaths:

> SE.r <- rates / sqrt(cases)
> CL.low <- rates - 1.96*SE.r
> CL.up <- rates + 1.96*SE.r
> cbind(rates, SE.r, CL.low, CL.up)

rates SE.r CL.low CL.up
Kuwait 6.741573 2.7522357 1.347191 12.135955
Egypt 2.913689 0.4002259 2.129246 3.698132

Note that we used cbind() to collect the results in a matrix

2. It is useful to see if the con�dence intervals were substantially di�erent if we used the
standard approximation the standard deviation of the log-rate: SE(log I) = 1/

√
D:

67
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> SE.logr <- sqrt(1/cases)
> CL.low <- rates/exp(1.96*SE.logr)
> CL.up <- rates*exp(1.96*SE.logr)
> cbind(rates, SE.logr, CL.low, CL.up)

rates SE.logr CL.low CL.up
Kuwait 6.741573 0.4082483 3.028679 15.006147
Egypt 2.913689 0.1373606 2.225971 3.813878

The con�dence intervals computed by these two approximate methods are relatively
wide and somewhat di�erent, too, for Kuwait with a fairly small number of cases, but
they are narrow and quite close to each other for Egypt with a large number of cases.

6.2 Non-signi�cant di�erence

The possible choices based on a signi�cant �nding for the di�erence in rates based on 1 in 200
man and 1 in 10 women were:

1. The results provide supporting evidence for the hypothesis of no real di�erence between
males and females in the breast cancer risk among electric engineers.

2. The results are consistent with the universal observation that the risk of breast cancer
among females is clearly higher than that in males.

3. No conclusion can be made from this result concerning the male/female contrast in
breast cancer incidence among graduates of electric engineering.

4. Other conclusion, what?

Out of these alternatives no. 2 appears as the most appropriate interpretation. It takes into
account the available external knowledge that is relevant for the question of interest.
Alternative 3. is not totally unreasonable, because these data alone do not provide any
adequate statistical information as such about the female/male contrast in breast cancer
incidence.
A rough comparison in relative terms suggests that females had a 20-fold higher rate of

breast cancer in this small population. However, with only one male case and one female case
it is waste of time to try computing any more re�ned quantitative estimate (and con�dence
interval) for the relative rate of breast cancer between the two genders.

6.3 Preventive trial

1. The study hypothesis is that beta carotene intake reduces lung cancer incidence among
smokers. The corresponding null hypothesis is that the lung cancer incidence is the
same in the two treatment arms.

2. First we set up vectors of cases and rates:

> cases <- c(474, 402)
> rates <- c(56.3, 47.5) # per 10000 years
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For readability, we provide the vector of cases with names:

> names( rates ) <- c("BetaCarotene","Placebo")

Since the rates are expressed per 10000 person-years, they are computed as

rate = (cases/Y )× 10000

which is solved for Y to give:

Y = (cases/rate)× 10000

So the calculation in R is straightforward:

> pyears <- (cases/rates)*10000
> pyears

BetaCarotene Placebo
84191.83 84631.58

3. The estimate of the theoretical rate ratio ρ = λ1/λ0, is simply the ratio of the two
empirical rates: ρ̂ = IR = I1/I0. The absolute numbers of cases are in turn needed to
compute the con�dence interval for ρ. The standard error of the log(RR) is√

1/D1 + 1/D0, which is what we compute in the second line:

> ratio <- rates[1]/rates[2]
> SE.logr <- sqrt(sum(1/cases))
> ratio.95low <- ratio/exp(1.96*SE.logr)
> ratio.95up <- ratio*exp(1.96*SE.logr)
> cbind(ratio, SE.logr, ratio.95low, ratio.95up)

ratio SE.logr ratio.95low ratio.95up
BetaCarotene 1.185263 0.06780315 1.037766 1.353724

The estimated rate ratio thus suggests an increase by about 18-19 percent of lung
cancer incidence in beta carotene group as compared with the placebo group. The
empirical result is consistent even with the possibility that the rate in the
supplementation group would be 35% higher that in the placebo group, but also that it
would be only 5% higher. A relative rate of this size does not seem impressive as such.
Yet, the result is alarming, considering that it was initially hypothesized that beta
carotene supplementation would hopefully reduce the already high lung cancer incidence
among smokers.

4. The estimate of the rate di�erence δ = λ1 − λ0; i.e. the excess (or de�cit) rate is just

the di�erence between the two empirical rates: δ̂ = ID = I1 − I0. The standard error of
this is computed according to the formula from the lecture notes:

SE(I1 − I0) =
√

I21/D1 + I20/D0

which is what we do in the second line. Note that the con�dence limits are computed on
the rate scale:
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> diff <- rates[1] - rates[2]
> SE.diff <- sqrt(sum(rates^2/cases))
> diff.95low <- diff - 1.96*SE.diff
> diff.95up <- diff + 1.96*SE.diff
> cbind(diff, SE.diff, diff.95low, diff.95up)

diff SE.diff diff.95low diff.95up
BetaCarotene 8.8 3.507089 1.926106 15.67389

This result suggests that there would be about 9 excess cases of lung cancer per year in
10,000 men on beta carotene as compared with 10,000 men without this
supplementation.

5. A formal test can be based on the di�erence between the rates; we take the di�erence in
rates, divide by its standard error, square it and look it up in a χ2-distribution with 1
d.f.:

> Z <- diff/SE.diff
> P <- 1 - pchisq( Z^2, 1 )
> test.diff <- cbind(Z, P)
> test.diff

Z P
BetaCarotene 2.509204 0.01210037

Alternatively we can base the test on the di�erence in the log-rates. The di�erence in
log-rates is the same as the log of the rate.ratio, so the calculation becomes:

> Z <- log(ratio)/SE.logr
> P <- 1 - pchisq( Z^2, 1 )
> ( test.ratio <- cbind(Z, P) )

Z P
BetaCarotene 2.506739 0.01218505

We can for for easier comparison show the two results underneath each other:

> tt <- rbind( test.diff, test.ratio )
> rownames( tt ) <- c("diff","ratio")
> tt

Z P
diff 2.509204 0.01210037
ratio 2.506739 0.01218505

We see that (with a study of this size) the values of the two test statistics are practically
the same regardless of the scale we use for testing (rate or log-rate).

6. The data comes from a randomized trial, so any di�erence in age-distribution should be
purely incidental. By the size of the study the chance of confounding by an accidental
imbalance is therefore remote.

Neither is there any possibility for confounding by smoking status. All enrolled persons
were regular smokers, and the daily amount of cigarettes smoked should have similar
distributions in the randomized groups.
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The result provides some evidence against the null hypothesis H0 : ρ = 1. However, the
direction of the observed rate ratio from the null hypothesis was very surprising given
the anticipation that beta carotene would actually reduce the rate of lung cancer among
smokers. Thus, one would perhaps not yet �reject� the null hypothesis of no e�ect in
spite of the �signi�cant� P -value obtained in a two-tailed test. However, the result can
be viewed to provide more evidence against the initial research hypothesis of clinically
relevant bene�cial e�ect. � Interpretation of these results combined with those from
similar trials will be continued in the next exercise.

6.3.1 Modeling

We may do the calculations simpler and more elegantly by using a modeling approach; �rst
we rename the variables for easier programming, and scale the PY to 10,000 years, and
re-order the levels of the exposure factor:

> library( Epi )
> D <- cases
> Y <- pyears/10000
> G <- factor(c("Beta","Plc"))
> G <- Relevel( G, 2:1 )
> data.frame( D, Y, G )

D Y G
BetaCarotene 474 8.419183 Beta
Placebo 402 8.463158 Plc

either using a multiplicative model providing rate-ratio:

> mm <- glm( cbind(D,Y) ~ G, family=poisreg )
> round( ci.exp( mm, pval=TRUE ), 3 )

exp(Est.) 2.5% 97.5% P
(Intercept) 47.500 43.076 52.378 0.000
GBeta 1.185 1.038 1.354 0.012

. . . or an additive model, providing rate-di�erence:

> ma <- glm( cbind(D,Y) ~ G, family=poisreg(link=identity) )
> round( ci.exp( ma, Exp=FALSE, pval=TRUE ), 3 )

Estimate 2.5% 97.5% P
(Intercept) 47.5 42.857 52.143 0.000
GBeta 8.8 1.926 15.674 0.012

Again we see that the rate di�erence is 9 cases per 10,000 PY in favor of the placebo group �
and the numerical results are the same as by �hand-calculation�.

6.4 Preventive trial � interpretation

1. Given that the direction of the observed rate ratio was � quite surprisingly � against the
research hypothesis and observational evidence, one would perhaps not yet conclude on
the basis of this single study that beta carotene supplementation would actually be
harmful. Yet, as the result was strongly against the hypothesis of a bene�cial e�ect, a
reasonable practical conclusion would be withhold from recommending this target group
to take beta carotene supplementation.
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2. These two studies together, in which very similar results were obtained, do now provide
more convincing evidence for a harmful e�ect of beta carotene supplementation in a
target population like this.

3. The result from the American Physicians' Study is in no con�ict with the two other
studies but is actually quite consistent with them. The con�dence interval here is wider
due to smaller numbers of outcome cases, but is clearly overlapping with those of the
other studies.

4. We cannot conclude anything about the e�ect of beta caroten supplementation in
non-smoking men on the basis of the results of this single study with such a wide
con�dence interval. In particular, there is inadequate evidence concerning the issue
whether the e�ect among non-smokers would be essentially di�erent from that among
smokers.

6.5 Geographical variation

There is no paradox. Subdivision by counties implies that the county on the left side probably
has a larger population base than any of the smaller counties. Therefore, the chance variation
in the incidence rate in that county is smaller, and as a consequence there is a larger
propensity to have a �signi�cantly� elevated rate. However, subdivision by hospital districts
creates relatively smaller areas within that county, and the individual rates in these districts
are a�ected by larger random variability than those in the remaining big district � or the
county containing these small districts.

6.6 E�ciency of study design

In a comparison of two groups, the limiting factor is the number of cases in the group with
the smallest number of cases (which is not necessarily the smallest group).
However, if we assume that the anticipated RR associated with the exposure is not

extremely large, we can assume that the smaller number of case will occur in the smaller
group.
Hence we have two options:

1. Extend the follow-up time to accrue more cases.

2. Change the exposure allocation, such that we get two groups that have similar number
of cases. If we anticipate a RR of 2 associated with exposure we should have 1/3 in the
exposed group and 2/3 in the unexposed group. Speci�cally, allocate exposed and
unexposed in the inverse proportion to the anticipated RR to get the maximal precision.

6.6.1 An illustration by simulation

We start by taking the initial proposal and take 2000 exposed and 8000 unexposed, and
assume that the cancer incidence rate is 150 per 100,000 person-years and the RR associated
with X is 1.85, and �nally that the follow-up period is going to be 1 year.
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We put the follow-up time in t and then set up vectors of length 2: G � exposure group, N
� number of persons, Y � person-years, E � expected number of cases, D � a simulated
number of cases

> t <- 1
> r <- 150/100000
> rr <- 2
> G <- factor( c("ctr","X") )
> N <- c(8000,2000)
> Y <- N * t
> E <- Y * c(1,rr) * r
> D <- rpois( 2, E )
> # and print the results nicely
> data.frame( G, N, Y, E, D )

G N Y E D
1 ctr 8000 8000 12 18
2 X 2000 2000 6 6

With the number of person-years and cases we can now compute the observed rates and the
rate-ratio with con�dence interval:

> rates <- D/Y
> RR <- rates[2]/rates[1]
> erf <- exp(1.96 * sqrt(sum(1/D)) )
> round( c( RR, RR/erf, RR*erf, erf ), 3 )

[1] 1.333 0.529 3.359 2.519

So in this scenario it is clear that we cannot expect to get a precise picture of the RR � the
error factor (the last of the 4 numbers) is quite large.
Note we could also get the same result by Poisson regression

> library(Epi)
> round( ci.exp( glm( cbind(D,Y) ~ G, family=poisreg ) ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.002 0.001 0.004
GX 1.333 0.529 3.359

But we could try to do the same again, extending the follow-up to 3 years, say:

> t <- 3
> r <- 150/100000
> rr <- 2
> G <- factor( c("ctr","X") )
> N <- c(8000,2000)
> Y <- N * t
> E <- Y * c(1,rr) * r
> D <- rpois( 2, E )
> # and print the results nicely
> data.frame( G, N, Y, E, D )

G N Y E D
1 ctr 8000 24000 36 35
2 X 2000 6000 18 18

> rates <- D/Y
> RR <- rates[2]/rates[1]
> erf <- exp(1.96 * sqrt(sum(1/D)) )
> round( c( RR, RR/erf, RR*erf, erf ), 3 )
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[1] 2.057 1.165 3.632 1.766

> round( ci.exp( glm( cbind(D,Y) ~ G, family=poisreg ) ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.001 0.001 0.002
GX 2.057 1.165 3.632

We see that we have a somewhat better precision, but the relative uncertainty in the RR is
still quite large (the last number, erf).
The other possibility would be to balance exposed and unexposed more evenly. Or

speci�cally so that the ratio of unexposed to exposed equals the rate-ratio, thereby creating
an approximate equal number of cases in the two groups:

> t <- 1
> r <- 150/100000
> rr <- 2
> G <- factor( c("ctr","X") )
> N <- c(6000,4000)
> Y <- N * t
> E <- Y * c(1,rr) * r
> D <- rpois( 2, E )
> # and print the results nicely
> data.frame( G, N, Y, E, D )

G N Y E D
1 ctr 6000 6000 9 5
2 X 4000 4000 12 7

> rates <- D/Y
> RR <- rates[2]/rates[1]
> erf <- exp(1.96 * sqrt(sum(1/D)) )
> round( c( RR, RR/erf, RR*erf, erf ), 3 )

[1] 2.100 0.666 6.617 3.151

> round( ci.exp( glm( cbind(D,Y) ~ G, family=poisreg ), subset="G" ), 3 )

exp(Est.) 2.5% 97.5%
GX 2.1 0.667 6.617

We see that the error-factor is smaller than in the �rst instance, but what really matters is to
increase the follow-up time.

Writing a small R-function

We can of course not really conclude much from a single simulation, so it would be useful to
be able to do these calculations with a single command. This is dome by wrapping it all in a
function. What we want to be able to hand over as arguments to the function is the follow-up
time and the exposure allocation.
So we basically take the code from before

> sim <- function( t, N )
+ {
+ r <- 150/100000
+ rr <- 2
+ G <- factor( c("ctr","X") )
+ Y <- N * t
+ E <- Y * c(1,rr) * r
+ D <- rpois( 2, E )
+ erf <- exp(1.96 * sqrt(sum(1/D)) )
+ c( ci.exp( glm( cbind(D,Y) ~ G, family=poisreg ), subset="G" ), erf )
+ }
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What this function returns is the value of the last expression evaluated, in this case a vector
of length 4:

> sim( t=1, N=c(8000,2000) )

[1] 0.5714286 0.1298716 2.5142573 4.4000713

> rbind(
+ t1=sim( t=1, N=c(8000,2000) ),
+ t2=sim( t=2, N=c(8000,2000) ),
+ t3=sim( t=3, N=c(8000,2000) ),
+ t4=sim( t=4, N=c(8000,2000) ) )

[,1] [,2] [,3] [,4]
t1 2.545455 0.9867672 6.566229 2.579635
t2 2.285714 1.1245913 4.645679 2.032511
t3 2.100000 1.2383351 3.561233 1.695842
t4 2.666667 1.6801134 4.232518 1.587208

Clearly there is a decrease in the uncertainty, with increasing follow-up time.
We can also see how the proportion of cases in�uence the results:

> rbind(
+ N8.2=sim( t=2, N=c(8000,2000) ),
+ N7.3=sim( t=2, N=c(7000,3000) ),
+ N6.4=sim( t=2, N=c(6000,4000) ),
+ N5.5=sim( t=2, N=c(5000,5000) ) )

[,1] [,2] [,3] [,4]
N8.2 2.947368 1.477824 5.878224 1.994423
N7.3 2.138889 1.199347 3.814446 1.783396
N6.4 2.700000 1.436319 5.075475 1.879827
N5.5 1.307692 0.784777 2.179038 1.666339

Here the e�ects on the precision are much smaller.
So if we want a clear picture of what goes on we must make a lot of simulations to see how

the error-factor varies. Note that the true value of the rate-ratio is 2, try to run the previous
set of simulations a couple of times and see how the estimates vary.

6.7 Case-control study: MI

1. First we input the data in 4 vectors, each of length 2, where the �rst element represents
males and the second females:

> D1 <- c(141, 49)
> D0 <- c(144, 32)
> C1 <- c(208, 58)
> C0 <- c(112, 45)

In order to get nice results we annotate the vectors by a name-vector:

> names(D1) <-
+ names(D0) <-
+ names(C1) <-
+ names(C0) <- c("M","F")
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This way we can do all the calculations simultaneously for males and females just using
the usual formulae � the ratio of the exposure odds between cases and controls:

> EOR <- (D1/D0)/(C1/C0)
> SE.leor <- sqrt(1/D1 + 1/D0 + 1/C1 + 1/C0)
> EOR.95low <- EOR / exp(1.96*SE.leor)
> EOR.95up <- EOR * exp(1.96*SE.leor)

Finally we place the resulting exposure odds ratios together with the con�dence
intervals for the corresponding hazard ratios below each other:

> strata <- cbind(EOR, SE.leor, EOR.95low, EOR.95up)
> round( strata, 3 )

EOR SE.leor EOR.95low EOR.95up
M 0.527 0.167 0.380 0.731
F 1.188 0.302 0.657 2.147

We see that the exposure odds-ratio for men is much smaller than for women �
actually even �signi�cantly� smaller than 1 � suggesting that high physical activity
seems to be protective against MI in men.

Whether it is so in women too is di�cult to say. Note that the con�dence intervals for
the hazard ratios overlap, so we cannot base too much on that observation. If the
con�dence intervals had been clearly non-overlapping we could have inferred that maybe
the hazard ratios were di�erent, but we cannot make the opposite conclusion here.

2. One way to test for homogeneity of the true hazard ratios across the genders is to
compute the log of the ratio of the two exposure odds-ratios � the di�erence of the
log-odds-ratios � and then compare this with its standard error. The latter is computed
using the fact that the two log-odds-ratios are independent.

> EOR.ratio <- EOR[1] / EOR[2]
> V.logEOR.ratio <- SE.leor[1]^2 + SE.leor[2]^2
> Wald <- log(EOR.ratio)^2 / V.logEOR.ratio
> P.Wald <- 1 - pchisq(Wald, df=1)
> round( cbind(Wald,P.Wald), 4 )

Wald P.Wald
M 5.551 0.0185

The Wald statistic is 5.551, which evaluated in a χ2-distribution with 1 d.f. gives a
p-value of 0.018. Hence, these data provide some evidence that physical exercise would
have greater e�ect in men than in women.

3. If it really were so that we had an interaction � the hazard ratio of MI associated with
physical activity is not the same between males and females � it would really not be
meaningful to adjust for confounding by a single summary EOR that assumes
homogeneity of hazard ratios.

4. However, for the sake of the exercise, we �rst compute the crude odds-ratio based on
simple sums of each of the two-component vectors.
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> EOR.crude <- (sum(D1)/sum(D0)) / (sum(C1)/sum(C0))
> SE.lc <- sqrt( 1/sum(D1) + 1/sum(D0) + 1/sum(C1) + 1/sum(C0) )
> EOR.c95low <- EOR.crude / exp(1.96*SE.lc )
> EOR.c95up <- EOR.crude * exp(1.96*SE.lc )
> cbind(EOR.crude, EOR.c95low, EOR.c95up)

EOR.crude EOR.c95low EOR.c95up
[1,] 0.6371753 0.4793904 0.8468931

6.7.1 Statistical modeling

The questions in this exercise can also be answered quite easily using a statistical model
called logistic regression and �tting it using appropriate statistical functions in R. Analysis of
case-control data is done by taking the case-control status as the outcome variable in logistic
regression, and other variables are used as explanatory variables or covariates.
Logistic regression in R takes as the response variable a two-column matrix, where the �rst

column contains the �failures� (here: cases) and the second the �non-failures� (here: controls):

> library(Epi)
> y <- cbind( D=c(D0,D1), C=c(C0,C1) )
> sex <- factor( rep(c("M","F"),2) )
> phys <- factor( rep(c("N","Y"),each=2) )
> data.frame( y, sex, phys )

D C sex phys
M 144 112 M N
F 32 45 F N
M.1 141 208 M Y
F.1 49 58 F Y

> cbind( y, sex, phys )

D C sex phys
M 144 112 2 1
F 32 45 1 1
M 141 208 2 2
F 49 58 1 2

5. With all these items in place, we can now �t a logistic regression model, adjusting for
sex (note that y is now a 2-column matrix):

> y

D C
M 144 112
F 32 45
M 141 208
F 49 58

> mamod <- glm( y ~ sex + phys, family=binomial )
> summary( mamod )
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Call:
glm(formula = y ~ sex + phys, family = binomial)

Deviance Residuals:
M F M F

0.8619 -1.5686 -0.7455 1.3480

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.01908 0.17083 0.112 0.91109
sexM 0.12387 0.17042 0.727 0.46733
physY -0.45059 0.14522 -3.103 0.00192 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 15.7949 on 3 degrees of freedom
Residual deviance: 5.5762 on 1 degrees of freedom
AIC: 33.725

Number of Fisher Scoring iterations: 3

6. It is easy to compare the estimate with the crude, not adjusting for sex:

> mcmod <- glm( y ~ phys, family=binomial )
> round( rbind( ci.exp(mamod,subset="phys"),
+ ci.exp(mcmod,subset="phys") ), 3 )

exp(Est.) 2.5% 97.5%
physY 0.637 0.479 0.847
physY 0.637 0.479 0.847

So we see there is apparently minimal confounding.

7. In order to see if there is e�ect-modi�cation we include separate e�ects of phys for each
sex, corresponding to the �rst question:

> mimod <- glm( y ~ sex + sex:phys, family=binomial )
> summary( mimod )

Call:
glm(formula = y ~ sex + sex:phys, family = binomial)

Deviance Residuals:
[1] 0 0 0 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3409 0.2312 -1.474 0.140391
sexM 0.5922 0.2633 2.249 0.024512 *
sexF:physY 0.1723 0.3019 0.571 0.568135
sexM:physY -0.6401 0.1667 -3.841 0.000123 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1.5795e+01 on 3 degrees of freedom
Residual deviance: 1.7319e-14 on 0 degrees of freedom
AIC: 30.149

Number of Fisher Scoring iterations: 2

The coe�cients reported in the output refer to logarithms of hazard ratios for the two
sexes. If we want the estimated hazard ratios themselves, we use the function ci.exp in
Epi package to extract the coe�cients and exponentiate them. By using the subset
argument too, only the relevant components are extracted from the output.

> ci.exp( mimod )

exp(Est.) 2.5% 97.5%
(Intercept) 0.7111111 0.4519653 1.1188447
sexM 1.8080357 1.0790859 3.0294096
sexF:physY 1.1880388 0.6574817 2.1467306
sexM:physY 0.5272436 0.3803267 0.7309132

> round( ci.exp( mimod, subset="phys" ), 3 )

exp(Est.) 2.5% 97.5%
sexF:physY 1.188 0.657 2.147
sexM:physY 0.527 0.380 0.731

To compute the crude odds-ratio, ignoring sex, we just �t the model including only
phys as an explanatory variable:

> mcmod <- glm( y ~ phys, family=binomial )
> summary( mcmod )

Call:
glm(formula = y ~ phys, family = binomial)

Deviance Residuals:
M F M F

1.0907 -1.9853 -0.4803 0.8625

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.1142 0.1098 1.041 0.2980
physY -0.4507 0.1452 -3.105 0.0019 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 15.7949 on 3 degrees of freedom
Residual deviance: 6.1058 on 2 degrees of freedom
AIC: 32.255

Number of Fisher Scoring iterations: 3

> round( ci.exp( mcmod, subset="phys" ), 3 )
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exp(Est.) 2.5% 97.5%
physY 0.637 0.479 0.847

8. The modeling approach has the advantage that we get the possibility to estimate the
quantities we want, with easily computed con�dence intervals. Moreover we have the
possibility of comparing the models with likelihood ratio tests:

> anova( mimod, mamod, mcmod, test="Chisq" )

Analysis of Deviance Table

Model 1: y ~ sex + sex:phys
Model 2: y ~ sex + phys
Model 3: y ~ phys

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 0 0.0000
2 1 5.5762 -1 -5.5762 0.01821 *
3 2 6.1058 -1 -0.5296 0.46678
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Again we see that there is clear evidence of interaction but a very small sex-e�ect.
However the sex-e�ect is irrelevant, it makes no sense to evaluate a sex e�ect assuming
that the exposure e�ect is the same for men and women, when we just established that
it is not.

So from a proper statistical point of view, the relevant model for this dataset seems to
be the model with interaction, i.e. with separate hazard ratios of MI associated with
physical activity for males and females.

6.8 Case-control study: Neonates

1. During the 17 years (1973-1989) there must have been hundreds of new cases of
leukaemia among children < 15 y in Sweden, as even in Finland the 5-year number of
cases among boys only was 113 in 1993-97 (see practical ??). Let us say that there were
1000 cases and hence 5 x 1000 = 5000 controls. A crude analysis would then be based
on these �gures.

(a) We can actually simplify the computations a bit:

> EOR.crude <- (8/(1000-8)) / (2/(5000-2))
> EOR.c <- (8/1)/(2/5)
> cbind( EOR.crude, EOR.c )

EOR.crude EOR.c
[1,] 20.15323 20

You can see that there is not much in�uence by the actual number of cases and
controls � all the information we need is that there were 5 times as many controls
as cases.

(b) The same goes for the calculation of the standard deviation of the log odds-ratio:
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> SE.crude <- sqrt( 1/8 + 1/(1000-8) + 1/2 + 1/(5000-2) )
> SE.c <- sqrt( 1/8 + 1/2 )
> cbind( SE.crude, SE.c )

SE.crude SE.c
[1,] 0.7913331 0.7905694

So by this token we can compute the con�dence intervals based on the approximate
�gures:

> EOR.c95low <- EOR.c / exp(1.96*SE.c)
> EOR.c95up <- EOR.c * exp(1.96*SE.c)
> round( cbind( EOR.c, SE.c, EOR.c95low, EOR.c95up ), 3 )

EOR.c SE.c EOR.c95low EOR.c95up
[1,] 20 0.791 4.247 94.184

So based on this computation there is some evidence that Down's syndrome
predisposes to leukaemia.

2. In order to be able to produce a more reliable estimate of the e�ect of Down's
syndrome, we would have to have at least data on age and sex (the matching variables).
As a minimum this would require a table classi�ed by case/control status, exposure
status (Down's syndrome �yes/no�), age and sex.

We would then �t a logistic regression with case-control status as outcome, and Down's
syndrome and age×sex as explanatory variables. The last term, the interaction between
age and sex will not be signi�cant (because it is balanced between cases and controls by
the very design of the study), but is must be included in the model because the study
was designed as strati�ed on these.

6.9 Matched case-control study: Chemicals

1. We �rst input the data; this is simply done by entering the exposure status for the
case-series and the control-series separately:

> library( Epi )
> casexp <- c(1,1,0,1,0,1,1,1,1,0, 0,1,1,0,1,1,1,1,0,1)
> conexp <- c(0,0,0,1,1,0,0,0,1,0, 1,1,0,0,0,0,0,1,0,0)
> cbind(casexp,conexp)

casexp conexp
[1,] 1 0
[2,] 1 0
[3,] 0 0
[4,] 1 1
[5,] 0 1
[6,] 1 0
[7,] 1 0
[8,] 1 0
[9,] 1 1

[10,] 0 0
[11,] 0 1
[12,] 1 1
[13,] 1 0
[14,] 0 0
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[15,] 1 0
[16,] 1 0
[17,] 1 0
[18,] 1 1
[19,] 0 0
[20,] 1 0

(a) Ignoring the matching, simply mean that we only use the number of exposed and
non-exposed cases and controls respectively, so this is a simple tabulation:

> D1 <- sum(casexp)
> D0 <- length(casexp) - sum(casexp)
> C1 <- sum(conexp)
> C0 <- length(conexp) - sum(conexp)
> table.u <- rbind(c(D1, D0), c(C1, C0))
> rownames(table.u) <- c("Cases", "Controls")
> colnames(table.u) <- c("Exposed", "Unexposed")
> table.u

Exposed Unexposed
Cases 14 6
Controls 6 14

Based on this table we can compute the odds-ratio and associated con�dence
interval:

> EOR.un <- (D1/D0)/(C1/C0)
> SE.lun <- sqrt( 1/D1 + 1/D0 + 1/C1 + 1/C0 )
> EOR.un95low <- EOR.un / exp(1.96*SE.lun)
> EOR.un95up <- EOR.un * exp(1.96*SE.lun)
> round( cbind(EOR.un, SE.lun, EOR.un95low, EOR.un95up), 3 )

EOR.un SE.lun EOR.un95low EOR.un95up
[1,] 5.444 0.69 1.408 21.055

(b) When we do the analysis based on the assumption of matched data collection, we
need to tabulate the matched pairs by exposure status of the cases and the controls
respectively:

> ( table.m <- table( casexp, conexp ) )

conexp
casexp 0 1

0 4 2
1 10 4

> EOR.mh <- table.m[2,1] / table.m[1,2]
> SE.lmh <- sqrt( 1/table.m[2,1] + 1/table.m[1,2] )
> EOR.mh95lo <- EOR.mh / exp(1.96*SE.lmh)
> EOR.mh95up <- EOR.mh * exp(1.96*SE.lmh)
> round( cbind(EOR.mh, SE.lmh, EOR.mh95lo, EOR.mh95up), 3 )

EOR.mh SE.lmh EOR.mh95lo EOR.mh95up
[1,] 5 0.775 1.096 22.82

2. We see that unstrati�ed analysis gives a slightly higher estimate and a lower standard
error of the estimate. So the consequence is the that exposure e�ect is exaggerated if
the matching in the study design is ignored in the analysis.
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6.9.1 Statistical modelling

1. If we want to do the unmatched analysis of the data by logistic regression, we need to
put the exposures into one long vector and create a vector of case-control status:

> exp <- c(casexp,conexp)
> cc <- rep(1:0,each=length(casexp))
> mc <- glm( cc ~ factor(exp), family=binomial )
> summary( mc )

Call:
glm(formula = cc ~ factor(exp), family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5518 -0.8446 0.0000 0.8446 1.5518

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.8473 0.4879 -1.736 0.0825 .
factor(exp)1 1.6946 0.6901 2.456 0.0141 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 55.452 on 39 degrees of freedom
Residual deviance: 48.869 on 38 degrees of freedom
AIC: 52.869

Number of Fisher Scoring iterations: 4

> library(Epi)
> ci.lin( mc, subset="exp", Exp=TRUE )[,5:7,drop=FALSE]

exp(Est.) 2.5% 97.5%
factor(exp)1 5.444444 1.407891 21.05417

This analysis may seem a bit of an overkill, since we are just analyzing a two by two
table, but the modelling approach is generalizable to instances where more covariates
are recorded.

Alternatively, since it is just a two by two table, we could use the twoby2 command in
the Epi package:

> twoby2(table.u)

2 by 2 table analysis:
------------------------------------------------------
Outcome : Exposed
Comparing : Cases vs. Controls

Exposed Unexposed P(Exposed) 95% conf. interval
Cases 14 6 0.7 0.4728 0.8586
Controls 6 14 0.3 0.1414 0.5272

95% conf. interval
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Relative Risk: 2.3333 1.1263 4.8339
Sample Odds Ratio: 5.4444 1.4079 21.0542

Conditional MLE Odds Ratio: 5.1912 1.1834 26.2754
Probability difference: 0.4000 0.0903 0.6185

Exact P-value: 0.0256
Asymptotic P-value: 0.0141

------------------------------------------------------

We see that all approaches gives the same results.

2. If we want the matched analysis we must use the clogit function from the survival
package, which is one of the built-in packages in R. What is needed is the same data as
before but also a vector indication which observations that come from the same matched
pair:

> mp <- rep(1:length(casexp),2)
> cbind( cc, exp, mp )

cc exp mp
[1,] 1 1 1
[2,] 1 1 2
[3,] 1 0 3
[4,] 1 1 4
[5,] 1 0 5
[6,] 1 1 6
[7,] 1 1 7
[8,] 1 1 8
[9,] 1 1 9

[10,] 1 0 10
[11,] 1 0 11
[12,] 1 1 12
[13,] 1 1 13
[14,] 1 0 14
[15,] 1 1 15
[16,] 1 1 16
[17,] 1 1 17
[18,] 1 1 18
[19,] 1 0 19
[20,] 1 1 20
[21,] 0 0 1
[22,] 0 0 2
[23,] 0 0 3
[24,] 0 1 4
[25,] 0 1 5
[26,] 0 0 6
[27,] 0 0 7
[28,] 0 0 8
[29,] 0 1 9
[30,] 0 0 10
[31,] 0 1 11
[32,] 0 1 12
[33,] 0 0 13
[34,] 0 0 14
[35,] 0 0 15
[36,] 0 0 16



Analysis of Epidemiological Data: SolutionsAnalysis of Epidemiological Data � Solutions 85

[37,] 0 0 17
[38,] 0 1 18
[39,] 0 0 19
[40,] 0 0 20

With this data layout we can do the matched analysis, and use the ci.lin function to
extract the parameters as before:

> library( survival )
> mm <- clogit( cc ~ exp + strata(mp) )
> ci.lin( mm, subset="exp", Exp=TRUE )[,5:7,drop=FALSE]

exp(Est.) 2.5% 97.5%
exp 5 1.09555 22.81959

As before we get exactly the same results as when we used the �hand calculations�, but
the point here is that the modelling approach allows you to include further covariates in
the analysis.

6.10 Cohort study and SMR

First we enter the number of cases and person-years (in 1000s) in vectors, one for each group,
and also put names on the three age-groups

> library( Epi )
> D1 <- c(11, 15, 10)
> Y1 <- c(10, 6, 2)
> D0 <- c(15, 60, 150)
> Y0 <- c(30, 50, 70)
> names(D1) <-
+ names(Y1) <-
+ names(D0) <-
+ names(Y0) <-
+ c("30-39", "40-49", "50-59")
> cbind( D1, Y1, D0, Y0 )

D1 Y1 D0 Y0
30-39 11 10 15 30
40-49 15 6 60 50
50-59 10 2 150 70

1. First we compute the age-speci�c rates (per 1000 PY) in the workers group and in the
population, and then divide them to form the rate-ratio:

> I1 <- D1/Y1
> I0 <- D0/Y0
> IR <- I1/I0
> round(cbind(I1, I0, IR),2 )

I1 I0 IR
30-39 1.1 0.50 2.20
40-49 2.5 1.20 2.08
50-59 5.0 2.14 2.33
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The rate ratio does look reasonably stable across the age range. We could expand with
the 95% error factors for the rate ratio, to get a feel for how precisely the rate ratios are
estimated:

> EF <- exp( 1.96 * sqrt(1/D1+1/D0) )
> round( cbind(I1, I0, IR, EF), 2 )

I1 I0 IR EF
30-39 1.1 0.50 2.20 2.18
40-49 2.5 1.20 2.08 1.76
50-59 5.0 2.14 2.33 1.90

We see that the variation between the rates is very small compared to the statistical
uncertainty in the rates themselves.

2. The crude rates and their ratio can be computed:

> I1.c <- sum(D1) / sum(Y1)
> I0.c <- sum(D0) / sum(Y0)
> IR.c <- I1.c / I0.c
> round( cbind(I1.c, I0.c, IR.c), 2)

I1.c I0.c IR.c
[1,] 2 1.5 1.33

We see that this is substantially di�erent from the rate-ratios we saw across the
age-groups

3. We can compute the adjusted RR using glm. To that end we �rst stack the deaths and
the person-years, and de�ne age-classes and groups. The levels= argument in the
de�nition of G makes sure that Pop is the �rst level (and hence the reference level when
modeling):

> D <- c(D1,D0)
> Y <- c(Y1,Y0)
> A <- factor( rep(c('30-39','40-49','50-59'),2) )
> G <- factor( rep(c("Wrk","Pop"),each=3), levels=c("Pop","Wrk") )
> data.frame( D, Y, A, G )

D Y A G
1 11 10 30-39 Wrk
2 15 6 40-49 Wrk
3 10 2 50-59 Wrk
4 15 30 30-39 Pop
5 60 50 40-49 Pop
6 150 70 50-59 Pop

Then we can compute both the crude and the adjusted RR:

> mc <- glm( cbind(D,Y) ~ G, family=poisreg )
> ma <- glm( cbind(D,Y) ~ A + G, family=poisreg )
> round( rbind( ci.exp( mc, subset="G" ),
+ ci.exp( ma, subset="G" ) ), 3 )
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exp(Est.) 2.5% 97.5%
GWrk 1.333 0.938 1.896
GWrk 2.190 1.508 3.181

� as expected the adjusted is not far from the age-speci�c RRs, but the crude is, so we
have a massive age-confounding of the crude estimate.

4. The SMR is computed as O/E where O is the observed numbers in the workers' group,
and E is the expected numbers assuming that the age-speci�c incidence rates in the
reference population would also apply in the workers' group:

> Obs <- sum( D1 )
> Exp <- sum( I0 * Y1)
> SMR <- Obs / Exp
> round( cbind(Obs, Exp, SMR), 2)

Obs Exp SMR
[1,] 36 16.49 2.18

5. The directly standardized rates are computed by taking the age-speci�c rates (I1 and
I0) and taking a weighted average. The weights in this case are the distribution of
person-years in the population (Y0):

> I1.s <- sum( Y0*I1 ) / sum( Y0 )
> I0.s <- sum( Y0*I0 ) / sum( Y0 )
> IR.s <- I1.s / I0.s
> round( cbind(I1.s, I0.s, IR.s), 2 )

I1.s I0.s IR.s
[1,] 3.39 1.5 2.26

6. To see if the standardized rates are sensitive to the choice of standard population, we
repeat the calculation using instead the distribution of person-years in the workers'
population:

> I1.x <- sum( Y1*I1 ) / sum( Y1 )
> I0.x <- sum( Y1*I0 ) / sum( Y1 )
> IR.x <- I1.x / I0.x
> round( cbind(I1.x, I0.x, IR.x), 2)

I1.x I0.x IR.x
[1,] 2 0.92 2.18

The standardized rates are heavily in�uenced by the standard chosen, but since the
ratio of the rates does not vary appreciably, the rate ratio estimate we get is reasonably
stable across the various methods for computing it; that be the SMR or direct
standardization. The ratio of the crude rates is however very misleading as an estimate
of the true rate ratio.
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6.10.1 Statistical modeling

We cannot reproduce any of these approaches easily with a statistical model, but we can
compute the proper maximum likelihood estimate of the rate-ratio, using a Poisson
model, and also the SMR. We stack the two vectors of events and the two vectors of
person-years, and generate two new vectors, one with the age, and one with and
indicator of workers or population:

> D <- c(D1,D0)
> Y <- c(Y1,Y0)
> A <- factor( rep(c('30-39','40-49','50-59'),2) )
> G <- factor( rep(c("Wrk","Pop"),each=3), levels=c("Pop","Wrk") )
> data.frame( D, Y, A, G )

D Y A G
1 11 10 30-39 Wrk
2 15 6 40-49 Wrk
3 10 2 50-59 Wrk
4 15 30 30-39 Pop
5 60 50 40-49 Pop
6 150 70 50-59 Pop

Once we have this dataset we can estimate the crude rates as well as their ratio by just
ignoring age in a model. We parametrize in two di�erent ways, but the �t is the same:

> mc <- glm( cbind(D,Y) ~ G - 1, family=poisreg )
> round( ci.exp( mc ), 2)

exp(Est.) 2.5% 97.5%
GPop 1.5 1.32 1.71
GWrk 2.0 1.44 2.77

Here we recognize the crude rates (& con�dence intervals). With a reparametrization we
can get the baseline rate in the reference group and the rate ratio:

> mc <- glm( cbind(D,Y) ~ G, family=poisreg )
> round( ci.exp( mc ), 2)

exp(Est.) 2.5% 97.5%
(Intercept) 1.50 1.32 1.71
GWrk 1.33 0.94 1.90

Likewise we can estimate the age-speci�c rates and rate-ratios by taking an interaction
term into the model; in the �rst formulation we get the age-speci�c rates, in the latter
we the age-speci�c rates in one group and the rate-ratios (& con�dence intervals):

> mi <- glm( cbind(D,Y) ~ A:G -1, family=poisreg )
> round( ci.exp( mi ), 2)

exp(Est.) 2.5% 97.5%
A30-39:GPop 0.50 0.30 0.83
A40-49:GPop 1.20 0.93 1.55
A50-59:GPop 2.14 1.83 2.51
A30-39:GWrk 1.10 0.61 1.99
A40-49:GWrk 2.50 1.51 4.15
A50-59:GWrk 5.00 2.69 9.29
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> mi <- glm( cbind(D,Y) ~ A-1 + A:G, family=poisreg )
> round( ci.exp( mi ), 2)

exp(Est.) 2.5% 97.5%
A30-39 0.50 0.30 0.83
A40-49 1.20 0.93 1.55
A50-59 2.14 1.83 2.51
A30-39:GWrk 2.20 1.01 4.79
A40-49:GWrk 2.08 1.18 3.67
A50-59:GWrk 2.33 1.23 4.43

The proper overall rate ratio estimate is from the model where we assume that the rates
are proportional between the two populations:

> ms <- glm( cbind(D,Y) ~ A + G, family=poisreg )
> ms

Call: glm(formula = cbind(D, Y) ~ A + G, family = poisreg)

Coefficients:
(Intercept) A40-49 A50-59 GWrk

-0.6912 0.8633 1.4572 0.7839

Degrees of Freedom: 5 Total (i.e. Null); 2 Residual
Null Deviance: 61.53
Residual Deviance: 0.06734 AIC: 38.37

> round( ci.exp( ms ), 2 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.50 0.33 0.76
A40-49 2.37 1.51 3.73
A50-59 4.29 2.78 6.64
GWrk 2.19 1.51 3.18

We can also formally assess whether the model with the proportionality assumption is
plausible; i.e. test it against the interaction model. We can of course also test the rather
uninteresting hypotheses of no age e�ect or no group e�ect, but we will leave this out
here.

> anova( ms, mi, test="Chisq" )

Analysis of Deviance Table

Model 1: cbind(D, Y) ~ A + G
Model 2: cbind(D, Y) ~ A - 1 + A:G

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 2 0.06734
2 0 0.00000 2 0.06734 0.9669

We see, as we would suspect from the computed age-speci�c rate ratios that there is no
evidence for heterogeneity of the rate ratios. Since we have tabulated data we could
have dispensed with this and just taken the test statistic for interaction from output
from the model summary Residual Deviance: 0.06734 � it is the same as the
χ2-statistic from the anova function.

Thus we again see that the most versatile tool in analysis of rates is a proper statistical
model �tted in a program that allows to extract the relevant parts of the �t (and leave
out the irrelevant ones).
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6.11 Trial of tolbutamide

1. First we enter the data and give names to the vectors

> library( Epi )
> options(digits=3)
> D <- c( 30, 21)
> n <- c(204, 215)
> names( D ) <-
+ names( n ) <- c("Tolbutamide", "Placebo")
> cbind( D, n )

D n
Tolbutamide 30 204
Placebo 21 215

(a) The cumulative risk of death in the groups is just the ratio:

> Q <- D/n
> Q

Tolbutamide Placebo
0.1471 0.0977

(b) The estimated relative risk is just the ratio of these two numbers, and we use the
well-known formula (from the lectures) for the standard error of the log-QR:

> QR <- Q[1]/Q[2]
> SE.lqr <- sqrt( 1/D[1]-1/n[1] + 1/D[2]-1/n[2] )
> QR.95lo <- QR / exp(1.96*SE.lqr)
> QR.95up <- QR * exp(1.96*SE.lqr)
> cbind( QR, SE.lqr, QR.95lo, QR.95up)

QR SE.lqr QR.95lo QR.95up
Tolbutamide 1.51 0.267 0.892 2.54

(c) The di�erence in cumulative death probabilities is also estimated using the
traditional formulae:

> QD <- Q[1] - Q[2]
> SE.qd <- sqrt( sum( Q*(1-Q)/n ) )
> QD.95low <- QD - 1.96*SE.qd
> QD.95up <- QD + 1.96*SE.qd
> cbind( QD, SE.qd, QD.95low, QD.95up)

QD SE.qd QD.95low QD.95up
Tolbutamide 0.0494 0.032 -0.0134 0.112

All these computations (and a few more) are easily done using the twoby2 function from
the Epi package. Note that we need to input the number of survivors in the second
column, not the total number:

> twoby2( cbind( D, n-D ) )

2 by 2 table analysis:
------------------------------------------------------
Outcome : D
Comparing : Tolbutamide vs. Placebo
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D P(D) 95% conf. interval
Tolbutamide 30 174 0.1471 0.1048 0.203
Placebo 21 194 0.0977 0.0645 0.145

95% conf. interval
Relative Risk: 1.5056 0.8918 2.542

Sample Odds Ratio: 1.5928 0.8794 2.885
Conditional MLE Odds Ratio: 1.5910 0.8457 3.041

Probability difference: 0.0494 -0.0137 0.114

Exact P-value: 0.1363
Asymptotic P-value: 0.1246

------------------------------------------------------

The estimated relative risk and its con�dence interval is exactly reproduced by twoby2,
but the traditional formula for the con�dence interval for a di�erence of two proportions
is not very accurate, so a better one is implemented in twoby2, hence the di�erent result.

2. Even though the observed mortality in the Tolbutamide arm was 50% larger than in the
placebo arm, there is no su�cient evidence yet for a higher mortality � the lower end of
the con�dence interval is about 0.9. Likewise is the lower bound for the con�dence
interval of the risk di�erence below 0. However, the result is alarming.
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