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1.1 Starters – Example 1

I Cohort of male asbestos workers, N = 17800.

I Observed D = 24 cases of lung cancer deaths.
Expected E = 7 cases based on age-specific rates in general
population.

SMR =
D

E
=

24

7
= 3.4

I Observed rate ratio > 1:

• true as such?
• biased? by which factors?
• due to play of chance?

4/ 158

Example 2: Nurses Health Study (NHS)

I Association of oral contraceptive (OC) use with the risk of
breast cancer.

I Null hypothesis H0:
OC use does not affect the risk of breast cancer;
true rate ratio = 1 between ever and never users.

I Summary of study outcomes:

No. of Person- Rate
OC use Cases years (/105 y)

Ever 204 94029 217
Never 240 128528 187
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Example 2 (cont’d)
Results:

(i) Observed incidence rate ratio IR = 217/187 = 1.16,
(ii) P -value 0.12,
(iii) 95% confidence interval [0.96, 1.40]

Interpretation?

I True rate ratio = 1.16?
I Probability that H0 is true = 12% ?
I Probability = 95%, that true rate ratio is between 0.96 and

1.40?
I Other? Further analysis needed?
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1.2 Analysis and statistics
By analysis we mean statistical analysis.

What is statistics?

1. “(singular) the science that deals with the

I collection, classification, analysis, and inter- pretation of
numerical facts or data, and that,

I by use of mathematical theories of probability, imposes order
and regularity on aggregates of more or less disparate elements.”

2. “(plural) the numerical facts or data themselves.”
(Webster’s Dictionary)
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1.3 Uses of statistics in epidemiology
Major tasks:

I assessment of random variation

I control of confounding and evaluation of modification &
interaction

I guiding study planning:

choice of design, group sizes, length of follow-up, sampling.
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Uses of statistics (cont’d)
Basic approaches and tools:

I descriptive summarization of data,

I mathematical models for random variation,

I statistical inference: estimation and testing,

I crude and stratified analysis,

I regression methods.
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2 CHANCE VARIATION

2.1 Systematic and random variation

2.2 Probability model: random variable, distribution, parameters

2.3 Poisson and Gaussian models

2.4 Statistic, sampling distribution and standard error
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2.1 Systematic and random variation
Cancer incidence rates vary by known & measured determinants of
disease, such as:

I age,

I gender

I region,

I time,

I specific risk factors.

This is systematic variation.
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Systematic & random (cont’d)
In addition, observed rates are subject to
chance or random variation, due to unknown sources like

I latent genetic differences,

I unknown concomitant exposures,

I sampling,

I “pure chance”
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Example 3: Smoking and lung cancer

I Only a minority of smokers get lung cancer.
Yet, some non-smokers get the disease, too.

I At the individual level the outcome is unpredictable.

I When cancer occurs, it can eventually only be explained just by
“bad luck”.

I Unpredictability of individual outcomes cause more or less
unpredictable – random – variation of disease rates at
population level.
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Example 4
Breast cancer incidence rates in Finland, age group 65-69 years in
three successive years.

Males Females
(per 106 (per 104

Year p-years) p-years)
1989 46 21
1990 11 20
1991 33 19

I Big annual changes in risk among males?
I Steady decline in females?

15/ 158

Example 4 (cont’d)
Look at observed numbers of cases!

Males Females
Year Cases P-years Cases P-years
1989 4 88000 275 131000
1990 1 89000 264 132000
1991 3 90000 253 133000

I Reality of changes over the years?

I Statistical information is in the number of cases.
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2.2 Probability models for incidence

I Random variation in incidence rates (or other measures of
occurrence and quantitative variables) is analysed by suitable
probability models.

I A model represents the assumed probability distribution of
the relevant observable random variable(s)

I It contains parameters, constants with unknown value, that
are of interest.

I More detailed specification of the distribution is based on
certain well-defined mathematical functions.
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Constant rate model

I In a sufficiently homogenous population we assume
constant “true” but unknown theoretical incidence rate
– hazard or intensity – of contracting cancer over short
period of time.

I Example 4: Assume that the hazard of breast in Finnish men
aged 65-69 y has a constant value over the whole period
1989-91.

I The unknown rate is denoted by Greek λ.

I NB. More complex models are needed for a realistic description
of, how the hazard depends on time and other factors.
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Probability models (cont’d)

I The observable number of cases D and empirical incidence rate
I = D/Y in Y person-years in a given population at risk are:

random variables with beforehand unpredictable values in
given observation periods.

I The probability distribution of possible values of the pertinent
random variable, D or I, has some known mathematical form.

I In constant rate model, the parameter of interest is the unknown
true hazard λ.
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2.3 Poisson distribution

I Elementary model for the distribution for the number of cases D
assuming a constant hazard rate λ.

I Key characteristics of the Poisson distribution for D

• expected value (theoretical mean) µ = λY , and
• standard deviation σ =

√
µ.

I Example 4: If in 65-69 old males, the hazard or true rate of BC
were 22.5/106 y, the expected number of cases would be

• in 1990: 22.5× 89000/106 = 2,

• 1989-91: 22.5× (88 + 89 + 90)/103 = 6.
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Poisson distributions with varying µ

Point probabilities of different possible values 0, 1, 2, . . . , of D
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2.4 Gaussian distribution
When the expected value µ of D is large enough, the Poisson
distribution resembles more and more the Gaussian or Normal
distribution, which is

I a common model for continuous variables,
I symmetric and bell-shaped,
I has two parameters:
µ = expectation, and σ = standard deviation.

Most important use of Gaussian model:

Easy approximation of sampling distribution of empirical
measures (like observed rates) in certain conditions.
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Gaussian distribution (cont’d)
Probability density funtion – the “Bell Curve”.
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Gaussian distribution (cont’d)
Areas under curve limited by selected quantiles
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2.5 Sampling distribution of incidence rate

I Parameter λ = true unknown incidence rate in population.

I Empirical rate I = D/Y , estimator of λ.
I I is a statistic, function of observable quantities. It is a

random variable whose:

• value would vary from one study population – or “sample” –
to another in hypothetical repetitions,

• sampling distribution is (under the Poisson model &
other conditions) a scaled Poisson distribution.
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Sampling distribution of incidence rate (cont’d)

I The expected value of I is λ, and its standard deviation is√
λ/Y .

I Standard error (SE) of I is the estimated standard deviation
of the sampling distribution of I

SE(I) =

√
I

Y
=

√
D

Y
= I × 1√

D

⇒ The amount of random error depends inversely on the
number of cases.

⇒ SE of I is proportional to I.
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3 STATISTICAL INFERENCE

3.1 Inferential questions

3.2 Point estimation

3.3 Statistical testing

3.4 Interpretation of P -values

3.5 Confidence interval

3.6 Recommendations
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3.1 Inferential questions

I Problem: The parameter’s true value is unknown:

What can we learn about the value?

I Data from empirical study :

→ information on parameter is provided by observed values of
relevant statistics,

→ uncertainty on the true value is reduced.

I Still the true value remains unknown.
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Inferential questions (cont’d)

I What is the best single-number assesment of the parameter
value?

I Is the result compatible or incompatible with a certain value of
the parameter proposed beforehand?

I What is a plausible range of values of the parameter, compatible
with our observed data?
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3.2 Point estimation

I Assessment of the value of the unknown parameter by a single
number obtained from data.

Estimator (point estimator) of parameter

= statistic to be calculated from observable data (sample), whose
sampling distribution is concentrated about the true value of the
parameter.

Estimate (point estimate) of parameter

= realized value of the estimator in the data at hand.
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Point estimation (cont’d)

I Point estimates of parameter are typically obtained by the
method of maximum likelihood, based on the assumed
model and on the observed data,

I Standard error (SE) of estimator

= estimated standard deviation of the sampling distribution of
an estimator.

I SE measures the (im)precision of the estimator.
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Point estimation and statistical notation:

I Parameter denoted by a Greek letter
I Estimator & estimate by the same Greek letter with “hat”.

Incidence rate:

I true unknown hazard: λ,
I estimator: λ̂ = I = D/Y , empirical rate.

Example 4: Estimated hazard of BC in 65-69 Finnish men 1989-91:
λ̂ = I = (4 + 1 + 3)/(88 + 89 + 90)/1000 = 30 per 106 y,

when a constant hazard is assumed for the whole period.
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Point estimation and statistical notation (cont’d)
Rate ratio:

I true rate ratio ρ = λ1/λ0 between exposed and unexposed,
I estimator: ρ̂ = IR = I1/I0, incidence rate ratio.

Rate difference

I true rate difference δ = λ1 − λ0
I estimator: δ̂ = ID = I1 − I0, incidence rate difference.

Example 2: Nurses Health Study, OC and BC

I estimated rate ratio: ρ̂ = IR = 217/187 = 1.16,
I est’d rate difference (per 105 y): δ̂ = ID = 217− 187 = 30.
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3.2 Statistical testing

I Question: Are the observed data – summarized by an estimate
and its SE – compatible with a given value of the parameter?

I Such a given value is often represented in the form of a
null hypothesis. H0, which is a statement on the value of the
parameter before study.

I In comparative problems H0 is typically a conservative
assumption, e.g.

• “no difference in true rate between exposure groups”,
• “true rate ratio ρ = 1”.
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Purpose of statistical testing

I Evaluation of compatibility or incompatibility of observed data
with the null hypothesis H0

I Checking whether or not the observed difference can reasonably
be explained by chance.

NB. These aims are not so ambitious from a quantitative viewpoint.
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Test statistic

I Function of observed data and null hypothesis value,

I Sampling distribution of it under H0 is known, at least
approximately.

Common form of test statistic:

Z =
O − E
S

in which . . .
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Test statistic (cont’d)

O = some “observed” statistic,
E = “expected value” of O under H0,
S = SE or standard deviation of O under H0.

I Evaluates the size of the “signal” O − E against the
size of the “noise” S.

I Under H0 – and given that relevant model assumptions hold –
the sampling distribution of this statistic is (with sufficient
amount of data) close to the standard Gaussian.
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Example 2: OC & breast ca. (cont’d)
Null hypothesis: OC use has no effect on breast ca. risk
⇔ true rate difference δ = λ1 − λ0 equals 0.

O = Observed rate difference

δ̂ = ID = 217− 187 = 30 per 105 y.

E = Expected rate difference = 0, if H0 true.

S = Standard error of ID:

SE(ID) =

√
2172

204
+

1872

240
= 19.4 per 105 y.
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Example 2: OC & breast ca. (cont’d)

Test statistic Z = (O − E)/S, its observed value:

Zobs =
30− 0

19.4
= 1.55

What does this mean?

How do we proceed?
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Questions about the test statistic

I How does the observed value Zobs locate itself in the sampling
distribution of Z?

I How common or how rare it is to obtain Zobs when H0 holds –
and assuming that the probability model is sufficiently realistic?

I What is the probability of getting Z larger than observed Zobs if
H0 & assumptions were true.

The latter probability is the one-tailed P -value against the
alternative ρ > 1.
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Two-tailed P -value

= probability for test statistic Z being more extreme than the
absolute value of Zobs,
given the truth of H0 & model assumptions.

I Considers deviations from H0 in either direction.

I Is usually preferred to one-tailed P .
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Example 2 (cont’d)
Distribution of test statistic under H0 and graphical derivation of
P -value

 

 

Right tail
P = 0.06

Left tail
P = 0.06

−4 −2 0 2 41.55−1.55

One-tailed P = 0.06, two-tailed P = 0.12
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Ex. 1: Lung ca. & asbestos (cont’d)

H0: Mortality from lung cancer is not elevated in asbestos workers,
i.e. true rate ratio ρ = λ1/λ0 equals 1.

Results:

O = 24 observed cases of lung ca. deaths.
E = 7 expected cases based on age-specific rates in general

population.

SMR =
D

E
=

24

7
= 3.4
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Ex. 1: Lung ca. and asbestos (cont’d)

I Observed value of test statistic Z:

Zobs =
24− 7√

7
= 6.43

I Under H0 the sampling distribution of Z is again approximately
standard Gaussian.

I What is the P -value?
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Ex. 1: Lung ca. and asbestos (cont’d)

I Tables of standard Gaussian distribution give:

Under H0 the probability of getting values of Z larger than
the actually observed value 6.43 is < 0.001.

I Computer programs show:

This upper tail P -value is actually 6.4× 10−11

– extremely small!

I Two-tailed P = 1.28× 10−10 (2 × one-tailed)

I What does this mean?
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Great!?

So what?
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P -value
I Used as a measure of evidence against H0:

• The smaller is P , the stronger is evidence against H0.

• Yet, a large P as such does not provide supporting
evidence for H0.

I Mathematically: Realization of a statistic, random variable,
whose sampling distribution under H0 (and given the other
assumptions) is uniform in the range ]0, 1[ .

I Operationally: the probability of getting a statistic at least as
extreme as the observed, given that H0 is true

I However, it is not “the probability that H0 is true”!
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3.4 Interpretation of P -values

I No mechanical rules of inference

I Very rough guidelines

• “large” value (P > 0.10): compatible with H0 but not
necessarily supporting it,

• “small” value (P < 0.01): indicates evidence against H0

• “intermediate” value (0.01 ≤ P ≤ 0.10): weak evidence
against H0

I Division of p-values into “significant” or “non-significant” by
cut-off 0.05: – To be avoided!
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Interpretation of P -values (cont’d)
In judging the results, take also into account at leas:

I what is a medically relevant deviation of parameter from H0

(e.g. minimally important elevation of true rate ratio from 1),
I study design: random sampling, randomization or neither,
I possible deviations from model assumptions, like plausible biases

due to selection, measurement and/or confounding,
I size of study,
I consistency with independent empirical studies and other

relevant information & knowledge.

Never base conclusions on a P -value only!
49/ 158

3.5 Confidence interval (CI)

I Range of conceivable values of parameter between lower and
upper confidence limits.

I Specified at certain confidence level, commonly 95%
(also 90 % and 99% are sometimes used).

I The limits of CI are statistics, random variables with sampling
distribution, such that

the probability that the random interval covers the true
parameter value equals the confidence level (e.g. 95%).
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Confidence interval (cont’d)

I The latter is the long-term property of the procedure for
calculating CI under hypothetical “repeated sampling”.

I Yet, the obtained CI from data at hand either covers or does not
cover the parameter of interest.

I As with P values, the accuracy of nominal confidence level
depends on lack of bias and on validity of model assumptions.
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Long-term behaviour of CI

Variability of
95% CI under
hypothetical
repetitions of
similar study,
when true rate
ratio is ρ = 0.7.

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

●

●

●

●

●

●

●

In the long run 95% of these intervals would cover the true value but
5% would not.
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Example 2: OC & breast ca (cont’d)

I Observed rate difference RD = 30 per 105 y.

I Standard error SE(RD) = 19.4 per 105 y.

I Limits of the 95% approximate CI (per 105 y):

• lower: 30− 1.96× 19.4 = −8,
• upper: 30 + 1.96× 19.4 = 68

I For 90% level, use 1.645 instead of 1.960.
For 99% level, 2.58 is the multiplier.
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Interpretation of obtained CI

I Frequentist school of statistics: no probability interpretation!
– This is in contrast to Bayesian school).

I Single CI is viewed by frequentists as a range of conceivable
values of the unknown parameter with which the observed
estimate is fairly compatible, taking into account “probable”
random error, and given the model assumptions

• narrow CI → precise estimation → small statistical
uncertainty about parameter.

• wide CI → imprecise estimation → great uncertainty.
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Interpretation of CI (cont’d)

I CI gives more quantitative information on the parameter and on
statistical uncertainty about its value than P value.

I In particular, interpretation of “non-significant” results, i.e.
large P values:

I narrow CI about H0 value: → results provide support to
H0.

I wide CI about H0 value: → results are inconclusive:
compatible with H0, yes, but also with essential deviations
from H0.

The latter instance is more commonly encountered!
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CI and P -value

95 % CIs of rate
difference δ and
P values for
H0 : δ = 0 in
different studies.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

●

●

●

●

p = 0.001

p = 0.002

p = 0.453

p = 0.468

Similar P -values but different interpretation!
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3.6 Recommendations – part 1
ICMJE. Uniform Requirements for Manuscripts submitted to
Biomedical Journals. http://www.icmje.org/

Extracts from section Statistics:

I When possible, quantify findings and present them with
appropriate indicators of measurement error or uncertainty (such
as confidence intervals).

I Avoid relying solely on statistical hypothesis testing, such as the
use of p values, which fails to convey important quantitative
information.
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Recommendations (cont’d)
Sterne and Davey Smith: Sifting the evidence – what’s wrong with
significance tests? BMJ 2001; 322: 226-231.

Suggested guidelines for the reporting of results of statistical analyses
in medical journals

I The description of differences as
statistically significant is not acceptable.

I Confidence intervals (CI) for the main results should always be
included, but 90% rather than 95% levels should be used.
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Recommendations in BMJ (cont’d)

I CIs should not be used as a surrogate means of examining
significance at the conventional 5% level.

I Interpretation of CIs should focus on the implications (clinical
importance) of the range of values in the interval.

I In observational studies it should be remembered that
considerations of confounding and bias are
at least as important as the issues discussed in this paper.
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4 CRUDE ANALYSIS

4.1 Single incidence rate
4.2 Rate ratio in cohort study
4.3 Rate difference in cohort study
4.4 Rate ratio in case-control study
4.5 Matched case-control study
4.6 Analysis of proportions
4.7 Extensions and remarks
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4.1 Single incidence rate

I Parameter of interest: λ = true rate in target population

I Estimator: λ̂ = I = D/Y = cases/person-time,
= empirical incidence rate in a “representative sample”

I Model: D is Poisson-distributed with expectation λY .

I Standard error of empirical rate: SE(I) = I/
√
D

I Simple approximate 95% CI: I ± 1.96× SE(I)

I Problem: When D ≤ 4, lower limit ≤ 0!
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Single rate (cont’d)

I More accurate approximate CI is based on the log-rate, log(I),
its standard error being SE[log(I)] = 1/

√
D.

I From this we get the 95% error factor (EF)

EF = exp{1.96× SE[log(I)]}
where exp means exponential function or antilog.

I . . . and another approximate 95% CI for λ is: [I/EF, I × EF].
I These limits are always > 0 whenever D ≥ 1.
I However, when D = 0, use the “exact” Poisson limits

(or those based on profile log-likelihood).
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Example 4: BC in Finnish men 65-69 y (cont’d)

I In 1991, the observed rate was 3/90000 y = 33 per 106 y.
I Standard error of the rate and the log-rate are

SE(I) = 33×
√
1/3 = 19 per 106 y

SE[log(I)] =
√
1/3 = 0.577

I Approximate 95 % CIs for λ in two ways

33± 1.96× 19 = 33± 37 = [−4, 71] per 106 y

33× exp(±1.96× 0.577) = 33
×
÷ 3.1 = [11, 103] per 106 y

I Negative lower limit from using SE(I) is illogical but is
avoidable using log-transformation. 63/ 158

Example 4 (cont’d): Using R as pocket calculator
CI computed from I and SE(I) directly
> d <- 3
> y <- 90000
> I <- 10^6*d/y
> SE <- I/sqrt(d)
> CI <- I + c(-1,1)*1.96*SE
> round(c(I, SE, CI), 1)

[1] 33.3 19.2 -4.4 71.1

CI computation based on SE[log(I)] and error factor EF:
> SElog <- 1/sqrt(d)
> EF <- exp(1.96*SElog)
> CIlog <- c(I/EF, I*EF)
> round( c(I, SElog, EF, CIlog), 2)

[1] 33.33 0.58 3.10 10.75 103.35

64/ 158

Example 4 (cont’d): Modelling single rate with R
Fit a Poisson model for one rate using logarithmic link function
> library( Epi )
> m1 <- glm( cbind(d, y/10^6) ~ 1, family=poisreg(link="log") )
> round(ci.exp(m1, Exp=TRUE), 1) # exp-transformation needed

exp(Est.) 2.5% 97.5%
(Intercept) 33.3 10.8 103.4

We thus got the CI, which was based on SE[log(I)].
The other approximate CI is obtained by using the identity link
> a1 <- glm( cbind(d, y/10^6) ~ 1, family=poisreg(link="identity") )
> round(ci.exp(a1, Exp=FALSE), 1) # exp- transformation not needed

Estimate 2.5% 97.5%
(Intercept) 33.3 -4.4 71.1

NB. Command ci.exp() returns the results concisely.

Argument Exp=TRUE (default) makes the exponential transformation,
which is necessary when log-link was used, but Exp=FALSE is used
when no exponential transformation is needed.
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4.2 Rate ratio in cohort study

I Question: What is the relative hazard of cancer in the exposed
as compared to the unexposed?

I Parameter of interest: true rate ratio

ρ =
λ1
λ0

=
rate among exposed

rate among unexposed

I Null hypothesis H0 : ρ = 1 ⇔ exposure has no effect.
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Rate ratio (cont’d)

I Summary of results from cohort study with person-time

Exposure to risk factor Cases Person-time

yes D1 Y1
no D0 Y0

total D+ Y+

I Empirical incidence rates by exposure group

λ̂1 = I1 = D1/Y1, λ̂0 = I0 = D0/Y0
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Rate ratio (cont’d)

I Estimator of true rate ratio ρ: incidence rate ratio (IR):

ρ̂ = IR =
λ̂1

λ̂0
=
I1
I0

=
D1/Y1
D0/Y0

=
D1/D0

Y1/Y0

I Standard error, 95% error factor, and 95% CI for ρ:

SE[log(IR)] =
√
1/D1 + 1/D0,

EF = exp{1.96× SE[ln(IR)]},
CI = [IR/EF, IR× EF].

I NB. Random error depends inversely on numbers of cases!
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Example 5: Helsinki Heart Study (HHS)

I In the HHS study (Frick et al. NEJM 1987) over 4000 men were
randomized to daily intake of either

• gemfibrozil (“exposed”, N1 ≈ 2000 ), or

• placebo (“unexposed”, N0 ≈ 2000).

I After mean follow-up of 5 y, the numbers of cases of any cancer
in the two groups were

D1 = 31 and D0 = 26.

I Rounded person-years were
Y1 ≈ Y0 ≈ 2000× 5 y = 10000 y.
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Example 5: HHS (cont’d)

I Incidence rates 3.1 and 2.6 per 1000.
Point estimate of the true rate ratio ρ, its SE, and EF:

ρ̂ = IR = 3.1/2.6 = 1.19

SE[log(IR)] =
√
1/31 + 1/26 = 0.2659

EF = exp(1.96× 0.2659) = 1.68

I 95 % CI for ρ : [1.19/1.68, 1.19× 1.68] = [0.7, 2.0]

I H0 : ρ = 1; test statistic Z = log(1.19)/0.2659 = 0.654,
two-tailed P = 0.51.

I Interpretation?
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Example 5: Rates and their ratio with R
Poisson & log-link: Estimating the two rates & CIs separately
– NB. CIs of individual rates are seldom of interest as such
> D <- c(26, 31) ; Y <- c(10, 10) ; gemf <- factor(0:1)
> m2 <- glm( cbind(D,Y) ~ gemf - 1, family=poisreg )
> round(ci.exp( m2 ), 2)

exp(Est.) 2.5% 97.5%
gemf0 2.6 1.77 3.82
gemf1 3.1 2.18 4.41

Estimating the rate in unexposed, and the rate ratio & its CI
> m2b <- glm( cbind(D, Y) ~ gemf, family=poisreg )
> round(ci.exp(m2b, pval=TRUE), 2)

exp(Est.) 2.5% 97.5% P
(Intercept) 2.60 1.77 3.82 0.00
gemf1 1.19 0.71 2.01 0.51
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4.3 Rate difference in a cohort

I Parameter of interest: true rate difference or ”excess rate”
δ = λ1 − λ0

I Same layout for summary data as above for cohort study.

I Point estimator of δ, the empirical rate difference: δ̂ = ID

ID = I1 − I0 =
D1

Y1
− D0

Y0
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Rate difference (cont’d)

I Standard error of incidence rate difference, 95% error margin
(EM) & approximate 95% confidence interval (CI) for δ:

SE(ID) =

√
I21
D1

+
I20
D0

EM = 1.96× SE(ID)
CI = [ID− EM, ID+ EM]

I Log-transformation is not meaningful here; original scale is used.

I Random error again depends inversely on number of cases.
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Example 5: HHS (cont’d)

I Observed rate difference btw exposed and unexposed was
RD = 3.1− 2.6 = +0.5 per 103 y,

I Its standard error
SE(RD) =

√
3.12/31 + 2.62/26 = 0.755 per 103 y

and 95% approximate CI:
0.5± 1.96× 0.755 = 0.5± 1.5 = [−1.0, 2.0] per 103 y.

I Ranges from negative to positive values, which is logical,
because the rate difference can have either minus or plus sign.

I Interpretation?
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Example 5 (cont’d): Rate difference using R
Poisson model with identity link: estimating first the two rates
separately, and then the rate in unexposed plus the rate difference:

> a2 <- glm( cbind(D, Y) ~ gemf - 1, family=poisreg(link='identity') )
> round( ci.exp( a2, Exp=FALSE ), 1)

Estimate 2.5% 97.5%
gemf0 2.6 1.6 3.6
gemf1 3.1 2.0 4.2

> a2b <- glm( cbind(D,Y) ~ gemf, family=poisreg(link='identity') )
> round( ci.exp( a2b, Exp=FALSE ), 1)

Estimate 2.5% 97.5%
(Intercept) 2.6 1.6 3.6
gemf1 0.5 -1.0 2.0
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4.4 Rate ratio in case-control study

I Parameter of interest: ρ = λ1/λ0 – same as in cohort study.

I Required case-control design:

1. incident cases occurring during a given period in the
source population are collected,

2. controls are obtained by density sampling from those
at risk in the source.

3. exposure is ascertained in cases and chosen controls.
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Rate ratio in case-control study
Summary data on outcome:

Exposure Cases Controls
yes D1 C1

no D0 C0

I Can we directly estimate the rates λ0 and λ1 from these?

I What about their ratio?

NO and YES, respectively!

I Rates as such are not directly estimable from these data.
77/ 158

Rate ratio in case-control study

I If controls are representative of the person-years in the
population, their division into exposure groups estimates the
exposure distribution of the person-years: C1/C0 ≈ Y1/Y0

I Hence, the exposure odds ratio

EOR =
D1/D0

C1/C0

estimates the same quantity than the incidence rate ratio IR
from a full cohort study

IR =
D1/Y1
D0/Y0

=
D1/D0

Y1/Y0
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Rate ratio in case-control study

I Standard error for log(EOR), 95% error factor, and approximate
CI for ρ:

SE[ln(EOR)] =
√

1

D1
+

1

D0
+

1

C1
+

1

C0

EF = exp{1.96× SE[ln(EOR)]}
CI = [EOR/EF,EOR× EF]

I NB. Random error again depends inversely on numbers of cases
and controls in the two exposure groups.
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Example 6: Use of mobile phone and brain cancer

Daily use Cases Controls
≥ 15 min 35 51
no use 637 625

EOR =
35/637
51/625

= 0.67.

Standard error of log(EOR), and approximate CI for ρ:

SE[ln(EOR)] =
√
1/35 + 1/637 + 1/51 + 1/625 = 0.2266

CI = 0.67
×
÷ exp{1.96× 0.2266} = [0.43, 1.05].

NB. Model-adjusted estimate: EOR = 0.6 (95% CI 0.3 to 1.0).
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Example 6 (cont’d): Crude estimation with R
> Ca <- c(638,35); Co <- c(625,51);
> Ex <- factor(c("None",">15"), levels=c("None",">15"))
> data.frame( Ca, Co, Ex )

Ca Co Ex
1 638 625 None
2 35 51 >15

> ccmod <- glm( cbind(Ca,Co) ~ Ex, family=binomial ) # Note: a new family
> round( ci.exp( ccmod ), 2)

exp(Est.) 2.5% 97.5%
(Intercept) 1.02 0.91 1.14
Ex>15 0.67 0.43 1.05

I Intercept is meaningless; only estimate for exposure is relevant.
I BTW. The model fitted here is logistic regression model.
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4.5 Matched case-control study – 1:1 matching

I Suppose each case was matched with 1 individual control
subject. Pairwise data w.r.t a binary exposure is tabulated

Controls
Cases Exposed Unexposed Total

Exposed s t D1

Unexposed u v D0

Total C1 C0 D = C

I Analysis ignoring matching would be based on crude
EOR = (D1/D0)/(C1/C0). – Yet, this may be biased.
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Matched case-control study (cont’d)

I Proper analysis is based on those case-control pairs which are
discordant w.r.t exposure, because exposure-concordant
pairs are non-informative about the exposure effect.

I Valid estimator of rate ratio ρ is EORM = t/u.
I Standard error (SE) of log(EORM) and approximate 95 %

confidence interval (CI) for ρ:

SE =
√

1/t+ 1/u, CI = EORM
×
÷ exp(1.96× SE).

I NB. This simple analysis is actually not “crude”, as it provides
an estimate of ρ that is adjusted for the matching factors.
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Example 7: 1:1 matched study

I Cross-tabulation of exposure status in 200 case-control pairs:
Controls

Cases Exposed Unexposed Total

Exposed 20 60 80
Unexposed 20 100 120

Total 40 160 200

I Crude EOR = (80/120)/(40/160) = 2.67. – Matched analysis:
> t <- 60; u <- 20; EOR_M <- t/u;
> SE <- sqrt(1/t+1/u); EF <- exp(1.96*SE)
> CI <- c( EOR_M/EF, EOR_M*EF ); round( c(EOR_M, SE, CI), 2)
[1] 3.00 0.26 1.81 4.98
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4.6 Analysis of proportions

I Suppose we have cohort data with a fixed risk period with
complete follow-up for all n subjects (no censoring).

I In this setting the risk π of the disease over the risk period is
easily estimated by simple incidence proportion also known
as cumulative incidence – or even “risk”:

π̂ = Q =
D

n
=

number of new cases during period
size of population-at-risk at start

I Analogously, prevalence (proportion) Pr at a certain time
point t

Pr =
no. of prevalent cases at t
total population size at t

.

85/ 158

Analysis of proportions (cont’d)

I Proportions are dimensionless quantities ranging from 0 to 1.

I Statistical analysis of proportions based on
Binomial distribution.

I Standard error for single incidence proportion (similarly for
prevalence):

SE(Q) =

√
Q(1−Q)

n
= Q×

√
(1−Q)
D

Depends also inversely on D!
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Analysis of proportions (cont’d)
The formulae to analyse and compare incidence proportions or
prevalences broadly analogous to those for rates.

I Differences of proportions QD = Q1 −Q0 are treated on the
original scale by using the error margin principle:
CI = QD± 1.96× SE(QD).

I Analysis of ratios QR = Q1/Q0 leans on SEs of log-proportions
& error factor, etc.

I Details of standard error formulas are somewhat different from
those of rates.
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4.7 Extensions and remarks

1. All these methods are directly extended to crude analyses of
polychotomous exposure variables when each exposure category
is separately compared to unexposed.

2. Evaluation of possible monotonic trend in the parameter over
increasing levels of exposure: estimation of regression slope.

3. Theoretical rates and risks estimated by standardized or
cumulative rates or by life-table methods (e.g. Kaplan-Meier):
→ use appropriate standard errors of these estimators
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Extensions (cont’d)

4. CI calculations here are based on simple approximate formulas
(Wald statistics):

I accurate when numbers of cases are large
I for small numbers, other methods may be preferred (e.g.

”exact” or likelihood ratio-based)
5. Crude analysis insufficient in observational studies: control of

confounding needed. – More of this in next chapter

89/ 158

5 STRATIFIED ANALYSIS

5.1 Shortcomings of crude analysis
5.2 Effect modification
5.3 Confounding
5.4 Steps of stratified analysis
5.5 Estimation of rate ratio
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5.1 Shortcomings of crude analysis

I The comparative measure (like rate ratio) for the risk factor of
interest is not constant, but varies by other determinants of the
disease

⇐ heterogeneity of the comparative parameter:
effect modification or interaction

I The exposure groups are not comparable w.r.t. other
determinants of disease

⇒ bias in comparison or confounding

⇐ exposure varies across other determinants
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Need models for outcome including items for

I primary variable (“exposure”)

I secondary variable (“stratum”)

I effect modification represented by a product term
in an interaction model “exposure×stratum”, in which
exposure effect is assumed heterogenous across strata

I confounding, which is adjusted for by a main-effects model
“exposure+stratum”, where exposure is assumed to have same
effect across strata
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Handling for effect modification and confounding
I Stratification of data

by suspected modifying and/or confounding factor(s) and use of
classical summary estimators

I Conceptually simpler,
and technically less demanding approach is
regression modeling

I Regression modeling is feasible because we have computers and
software

I Classical summary estimators were important to learn for the
teachers, who got their initial training before the computer age
(BxC & EL . . . )
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5.2 Effect modification – Example 8
Incidence rates (per 105 y) of lung cancer by occupational asbestos
exposure and smoking:

Asbestos Smokers Non-smokers

exposed 600 60
unexposed 120 12

Rate ratio 5 5
Rate difference 480 48

I Is the effect of asbestos exposure the same or different in
smokers than in non-smokers?
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Effect modification (cont’d)
Depends how the effect is measured:

I Rate ratio: constant or homogeneous

I Rate difference: heterogeneous:
The value of rate difference is modified by smoking.

Smoking is thus an effect modifier of asbestos exposure

I on the absolute scale (rates) but

I not on the relative scale (log-rates)

Therefore, it is more accurate to talk about
effect-measure modification.
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Example 9: CHD rate/103 y by factor E & age

Factor E Young Old

exposed 4 9
unexposed 1 6

rate ratio 4 1.5
rate difference 3 3

I Rate ratio is modified by age, but rate difference is not.
I Repating the message: There is no such thing as effect

modification as such without reference to the scale of the effect
– additive or multiplicative.
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Example 10: Famous real study
Age-specific CHD mortality rates (per 104 y) and numbers of cases
(D) among British male doctors by cigarette smoking, rate
differences (ID) and rate ratios (IR) (Doll and Hill, 1966).

Smokers Non-smokers

Age (y) rate D rate D ID IR

35-44 6.1 32 1.1 2 5 5.7
45-54 24 104 11 12 13 2.1
55-64 72 206 49 28 23 1.5
65-74 147 186 108 28 39 1.4
75-84 192 102 212 31 -20 0.9

Total 44 630 26 101 18 1.7
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Example 10: CHD death by smoking (cont’d)

I Both comparative measures appear heterogeneous:
– ID increases by age (at least up to 75 y)

– IR decreases by age
I No single-parameter comparison – common rate ratio or rate

difference – captures adequately the joint pattern of rates.

NB. In many other real life instances, all comparative measures are
more or less heterogeneous across categories of other determinants of
disease, i.e. some modification is always to be expected.
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Evaluation of modification

I Modification or its absence is an inherent property of the
phenomenon.

I It depends on the scale on which it is measured

I Cannot be removed or “adjusted” for

When assessing effect-modification, ask yourself

I what is the scale that we wish to use for description of effects –
multiplicative for ratios or additive for differences?

I how will we report the results in the presence of modification?
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Evaluation of modification (cont’d)

I Statistical tests for heterogeneity exist. However, with small
amounts of data they tend to be insensitive to deviations from
homogeneity and thus rarely helpful

⇒ Especially when a “non-significant” P -value for interaction is
obtained, it is tempting to assume “no modification”:

+ simpler analysis and presentation of results,

− misleading if essential modification is present.
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Example 10 (cont’d): Analysis with R
Entering the data
> I <- c(6.1, 24, 72,147,192, 1.1,11,49,108,212)
> D <- c( 32,104,206,186,102, 2 ,12,28, 28, 31)
> Y <- D/I # person-times in units of 10^4 years
> smk <- factor( rep(1:2,each=5), labels=c("Smoke","non-Sm") )
> age <- factor( rep(seq(35,75,10),2) )
> data.frame(D,Y=round(Y, 2),age,smk)

D Y age smk
1 32 5.25 35 Smoke
2 104 4.33 45 Smoke
3 206 2.86 55 Smoke
4 186 1.27 65 Smoke
5 102 0.53 75 Smoke
6 2 1.82 35 non-Sm
7 12 1.09 45 non-Sm
8 28 0.57 55 non-Sm
9 28 0.26 65 non-Sm
10 31 0.15 75 non-Sm
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Example 10 (cont’d): Modification by age?
Analysing rate ratios both without and with modification, and testing
the interaction by deviance statistic

> options(show.signif.stars=FALSE)
> ma <- glm( cbind(D,Y) ~ age + smk, family=poisreg )
> mi <- update( ma, . ~ . + age:smk ) # add the interaction
> anova( ma, mi, test="Chisq" )

Analysis of Deviance Table

Model 1: cbind(D, Y) ~ age + smk
Model 2: cbind(D, Y) ~ age + smk + age:smk

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 4 11.993
2 0 0.000 4 11.993 0.0174

Test result indicates evidence for modification of rate ratio by age.
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Example 10 (cont’d): Modification by age?
Analysing rate differences both without and with modification, and
testing the interaction.
> aa <- glm( cbind(D,Y) ~ age + smk, family=poisreg(link='identity') )
> ai <- update( ma, . ~ . + age:smk ) # add the interaction
> anova( aa, ai, test="Chisq" )

Analysis of Deviance Table

Model 1: cbind(D, Y) ~ age + smk
Model 2: cbind(D, Y) ~ age + smk + age:smk

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 4 7.7434
2 0 0.0000 4 7.7434 0.1014

Weak evidence for modification of rate difference by age.
However, this does not mean that we have sufficient support for the
assumption of homogenous rate difference. 103/ 158

5.3 Confounding - Example 11
Observational clinical study with comparison of success of treatment
between two types of operation for treating renal calculi:

I OS: open surgery (invasive)
I PN: percutaneous nephrolithotomy (non-invasive)

Treatment Pts Success % Success %-diff.

OS 350 273 78
PN 350 290 83 +5

PN appears more successful than OS?
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Example 11 (cont’d): Stratification
Results stratified by initial diameter size of the stone:

Size Treatment Pts Success % Success %-diff.

< 2 cm: OS 87 81 93
PN 270 235 87 −6

≥ 2 cm: OS 263 192 73
PN 80 55 69 −4

I OS seems more succesful in both subgroups.

I Is there a paradox here?
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Example 11 (cont’d): Confounding

I Treatment groups are not comparable w.r.t. initial size.

I Size of the stone (SS) is a confounder of the association
between operation type and success, because it is

(1) a determinant of outcome (success), based on external
knowledge,

(2) statistically associated with operation type in the study
population,

(3) not causally affected by operation type.

NB. There is no statistical test for confounding!
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Example 10 (cont’d): Confounding by indication

I This is an instance of confounding by indication,
an important issue in clinical epidemiology:
– patient status affects choice of treatment,

⇒ bias in comparing treatments.

I This bias is best avoided in planning:
– randomized allocation of treatment.
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Example 12: Gray hair and cancer incidence

Gray P-years Rate
Age hair Cases ×1000 /1000 y IR

Total yes 66 25 2.64 2.2
no 30 25 1.20

Young yes 6 10 0.60 1.09
no 11 20 0.55

Old yes 60 15 4.0 1.05
no 19 5 3.8

Observed crude association seems to vanish when controlling for age.
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Means for control of confounding
Design:
I Randomization
I Restriction
I Matching

Analysis:
I Stratification
I Regression modeling

Only randomization can remove confounding due to
unmeasured factors.

Other methods provide partial removal, but
residual confounding may remain.
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5.4 Steps of stratified analysis
I Stratify by levels of the potential confounding/modifying

factor(s)
I Compute stratum-specific estimates
I Evaluate similarity of the stratum-specific estimates by

“eye-balling”, or test of heterogeneity.
I If the comparative measure is judged to be homogeneous

enough, calculate an adjusted estimate.
I If effect modification is judged to be present:

– report stratum-specific estimates with CIs,
– if desired, calculate an adjusted summary estimate by

appropriate standardization.
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5.5 Adjusted estimation of rate ratio

I Suppose that the true rate ratio ρ is sufficiently homogeneous
across strata (no modification), but confounding is present.

⇒ Crude estimator IR of ρ is biased.

I Adjusted estimator, controlling for confounding, must be
used.

I These estimators are weighted averages of stratum-specific
estimators.
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Adjusted summary estimators
Different weighting methods:

I maximum likelihood (ML)
I weighted least squares (WLS)
I Mantel-Haenszel (MH) weights
I (direct) standardization by external standard population (CMF)
I standardized morbidity ratio (SMR)

Preferred: Maximum likelihood based on an appropriate model.
– NB. These models are actually regression models (see ch 6).

Useful methods in some descriptive analyses: CMF & SMR.
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Example 12: Gray hair & cancer with R
Data entry

> D <- c(6,11,60,19)
> Y <- c(10,20,15,5)
> age <- factor( c("Not old","Not old","Old","Old") )
> hair <- factor( c("Gray","Col","Gray","Col") )
> data.frame( D, Y, age, hair )

D Y age hair
1 6 10 Not old Gray
2 11 20 Not old Col
3 60 15 Old Gray
4 19 5 Old Col
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Example 12: Gray hair & cancer with R (cont’d)
Crude and adjusted estimate of ρ by Poisson model:

> library( Epi )
> round(ci.exp( glm( cbind(D,Y) ~ hair , family=poisreg ) ), 2)

exp(Est.) 2.5% 97.5%
(Intercept) 1.2 0.84 1.72
hairGray 2.2 1.43 3.39

> round(ci.exp( glm( cbind(D,Y) ~ hair + age, family=poisreg ) ), 2)

exp(Est.) 2.5% 97.5%
(Intercept) 0.56 0.34 0.92
hairGray 1.06 0.67 1.68
ageOld 6.80 3.90 11.88

The adjusted estimate of common rate ratio for the effect of gray
hair is in between the two stratum-specific estimates.
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Example 13: Case-control study
Alcohol and oesophageal cancer (Tuyns 1977, see B&D)
I 205 incident cases,
I 770 randomly sampled population controls,
I Risk factor: daily consumption of alcohol.
I Crude summary:

Exposure
≥ 80 g/d Cases Controls EOR

yes 96 109 5.64
no 104 666

Recall: EOR estimates the rate ratio ρ!
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Example 13 (cont’d): Crude analysis

> Ca <- c( 96,104)
> Co <- c(109,666)
> Ex <- factor(c(">80","<80"))
> data.frame( Ca, Co, Ex )

Ca Co Ex
1 96 109 >80
2 104 666 <80

> m0 <- glm( cbind(Ca,Co) ~ Ex, family=binomial )
> round( ci.exp( m0 ), 2 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.16 0.13 0.19
Ex>80 5.64 4.00 7.95

The crude exposure odds-ratio of oesophageal cancer, comparing
high vs. low alcohol consumption is 5.64 (95 % CI 4.00 to 7.95).
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Example 13 (cont’d): Stratification by age
Exposure

Age ≥ 80 g/d Cases Controls EOR

25-34 yes 1 9 ∞
no 0 106

35-44 yes 4 26 5.05
no 5 164

45-54 yes 25 29 5.67
no 21 138

55-64 yes 42 27 6.36
no 34 139

65-74 yes 19 18 2.58
no 36 88

75-84 yes 5 0 ∞
no 8 31

NB! Random sampling of controls: inefficient design
Should have employed stratified sampling by age.
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Example 13: Stratification with R
> ca <- c( 1, 0, 4, 5, 25, 21, 42, 34, 19, 36, 5, 8 )
> co <- c(9, 106, 26, 164, 29, 138, 27, 139, 18, 88, 0, 31)
> alc <- rep( c(">80","<80"), 6 )
> age <- factor( rep( seq(25,75,10), each=2 ) )
> data.frame( ca, co, alc, age )

ca co alc age
1 1 9 >80 25
2 0 106 <80 25
3 4 26 >80 35
4 5 164 <80 35
5 25 29 >80 45
6 21 138 <80 45
7 42 27 >80 55
8 34 139 <80 55
9 19 18 >80 65
10 36 88 <80 65
11 5 0 >80 75
12 8 31 <80 75
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Example 13: Stratum-specific estimates with R
The “age/alc” term in the model formula produces an EOR for alc
in each age class separately
> mi <- glm( cbind(ca,co) ~ age/alc, family=binomial )
> round( ci.exp( mi ), 2 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.000000e+00 0.00 Inf
age35 2.345328e+10 0.00 Inf
age45 1.170624e+11 0.00 Inf
age55 1.881661e+11 0.00 Inf
age65 3.147003e+11 0.00 Inf
age75 1.985206e+11 0.00 Inf
age25:alc>80 8.547416e+10 0.00 Inf
age35:alc>80 5.050000e+00 1.27 20.02
age45:alc>80 5.670000e+00 2.80 11.46
age55:alc>80 6.360000e+00 3.45 11.73
age65:alc>80 2.580000e+00 1.22 5.47
age75:alc>80 1.755246e+11 0.00 Inf
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Example 13: Stratum-specifc estimates (cont’d)
. . . extracting only the relevant estimates:

> round( ci.exp( mi, subset="alc" ), 2 )

exp(Est.) 2.5% 97.5%
age25:alc>80 8.547416e+10 0.00 Inf
age35:alc>80 5.050000e+00 1.27 20.02
age45:alc>80 5.670000e+00 2.80 11.46
age55:alc>80 6.360000e+00 3.45 11.73
age65:alc>80 2.580000e+00 1.22 5.47
age75:alc>80 1.755246e+11 0.00 Inf

I The age-specific EORs are quite variable.
I Random error in some of them apparently quite large.
I No clear pattern in the possible modification of rate ratio.
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Example 13 (cont’d): Modification of rate ratio?
Test of modification using deviance statistic

> ma <- glm( cbind(ca,co) ~ age + alc, family=binomial )
> anova( mi, ma, test="Chisq" )

Analysis of Deviance Table

Model 1: cbind(ca, co) ~ age/alc
Model 2: cbind(ca, co) ~ age + alc

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 0 0.000
2 5 11.041 -5 -11.041 0.05057

I Some evidence against homogeneity of rate ratio, but no clear
pattern of modification.

121/ 158

Example 13 (cont’d): Common rate ratio ρ?

> mn <- glm( cbind(ca,co) ~ alc , family=binomial )
> round( ci.exp( mn, subset="alc" ), 2 ) # crude estimate

exp(Est.) 2.5% 97.5%
alc>80 5.64 4 7.95

> ma <- glm( cbind(ca,co) ~ age + alc, family=binomial )
> round( ci.exp( ma, subset="alc" ), 2 ) # age-adjusted estimate

exp(Est.) 2.5% 97.5%
alc>80 5.31 3.66 7.7

I No clear modification of rate ratio was detected.
I Crude estimate of ρ: 5.64 (95 % CI 4.00 to 7.95)
I Age-adjusted estimate: 5.31 (95 % CI 3.66 to 7.70)
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6 REGRESSION MODELLING

6.1 Limitations of stratified analysis
6.2 Log-linear model for rates
6.3 Additive model for rates
6.4 Model fitting
6.5 Problems in modeling
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6.1 Limitations of stratified analysis

I Multiple stratification:

– many strata with sparse data
– loss of precision

I Continuous risk factors must be categorized

– loss of precision
– arbitrary (unreasonable) assumptions about effect shape

I More than 2 exposure categories:

– Pairwise comparisons give inconsistent results
– Effects of quantitative exposures not easily estimated

124/ 158

Limitations (cont’d)

I Joint effects of several risk factors difficult to quantify

I Matched case-control studies:
difficult to allow for confounders & modifiers not matched on.

Many of these limitations may be overcome – at least to some extent
– by regression modelling.

Key concept – again: statistical model
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Log-linear model for rates
Assume that the theoretical rate λ depends on
explanatory variables or regressors X, Z (& U , V , . . . )
according to a log-linear model

log{λ(X,Z, . . . )} = α + βX + γZ + . . .

Equivalent expression, multiplicative model:

λ(X,Z, . . . ) = exp(α + βX + γZ + . . . )

= λ0 ρ
XτZ · · ·
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Log-linear model: Meaning of parameters
Model parameters

α = log(λ0) = intercept, log-baseline rate λ0
(i.e. rate when X = Z = · · · = 0)

β = log(ρ) = slope,
change in log(λ) for unit change in X,
adjusting for the effect of Z (& U, V, . . . )

eβ = ρ = true rate ratio for unit change in X.

The rate ratio for the effect of X is assumed constant in this model,
i.e. not modified by Z or any other variable.
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Example 8 (cont’d): Lung cancer
Dichotomous explanatory variables coded:

I X = asbestos: 1: exposed, 0: unexposed,
I Z = smoking: 1: smoker, 0: non-smoker

Log-linear model for the rates

log{λ(X,Z)} = 2.485 + 1.609X + 2.303Z
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Example 8 (cont’d): Values of variables

Rates Variables

X Z
Asbestos Smoke Non-sm Smoke Non-sm Smoke Non-sm

exposed 600 60 1 1 1 0
unexposed 120 12 0 0 1 0

Note: There will be 4 lines in the dataset, one for each combination
of exposure and smoking
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Example 8 (cont’d): Analysis with R
Entering the data.

NB. The data here are artificial assuming the amount of
person-years among asbestos exposed is 1/4 of that among
non-exposed, and there is no mutual confounding.

> D <- c( 150, 15, 120, 12 ) # cases
> Y <- c( 25, 25, 100, 100 ) / 100 # PY (100,000s)
> asb <- c( 1, 1, 0, 0 ) # Asbestos exposure
> smk <- c( 1, 0, 1, 0 ) # Smoking
> cbind( D, Y, asb, smk )

D Y asb smk
[1,] 150 0.25 1 1
[2,] 15 0.25 1 0
[3,] 120 1.00 0 1
[4,] 12 1.00 0 0
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Example 8 (cont’d): Analysis with R

I Regression modelling: Multiplicative Poisson model, requiring
logarithmic link function (default for Poisson in R).

I Two equivalent approaches
– response: D, offset: log(Y) – mostly used in literature,
– response: cbind(D,Y), and family=poisreg

this latter approach is also useful for fitting additive
models, like model ma below, requiring identity link.

> library( Epi )
> mo <- glm( D ~ asb + smk, family=poisson, offset=log(Y) )
> mm <- glm( cbind(D,Y) ~ asb + smk, family=poisreg )
> ma <- glm( cbind(D,Y) ~ asb + smk, family=poisreg(link=identity) )
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Example 8 (cont’d): Log-linear model summary
> summary( mo )

Call:
glm(formula = D ~ asb + smk, family = poisson, offset = log(Y))

Deviance Residuals:
1 2 3 4

0.000e+00 0.000e+00 -1.032e-07 0.000e+00

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.4849 0.2031 12.23 <2e-16
asb 1.6094 0.1168 13.78 <2e-16
smk 2.3026 0.2018 11.41 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 4.1274e+02 on 3 degrees of freedom
Residual deviance: -1.5987e-14 on 1 degrees of freedom
AIC: 28.37

Number of Fisher Scoring iterations: 3
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Example 8 (cont’d): Extracting estimates

> round( ci.exp( mo, Exp=FALSE ), 3)

Estimate 2.5% 97.5%
(Intercept) 2.485 2.087 2.883
asb 1.609 1.381 1.838
smk 2.303 1.907 2.698

> round( ci.exp( mm, Exp=FALSE ), 3)

Estimate 2.5% 97.5%
(Intercept) 2.485 2.087 2.883
asb 1.609 1.381 1.838
smk 2.303 1.907 2.698

Estimates of model parameters are the same for the two modelling
approaches.
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Example 8 (cont’d): Estimating rate ratios
Estimates of rate ratios are obtained by exponential transformation of
the estimates of model parameters
> cbind( round(ci.exp(mm,Exp=FALSE),3), round(ci.exp(mm),2) )

Estimate 2.5% 97.5% exp(Est.) 2.5% 97.5%
(Intercept) 2.485 2.087 2.883 12 8.06 17.87
asb 1.609 1.381 1.838 5 3.98 6.29
smk 2.303 1.907 2.698 10 6.73 14.85

α = 2.485 = log(12), log of baseline rate,
β = 1.609 = log(5), log of rate ratio ρ = 5

between exposed and unexposed for asbestos
γ = 2.303 = log(10), log of rate ratio τ = 10

between smokers and non-smokers.
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Example 8 (cont’d): Rates from parameters
Fitted rates for all 4 asbestos/smoking combinations can be
recovered from the model formula.

Rates Obtained from parameters

Asbestos Smok Non-sm Smok Non-sm

exposed 600 60 exp(α + γ + β) exp(α + β)
unexposed 120 12 exp(α + γ) exp(α)

Rate ratio 5 5 exp(β) exp(β)
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Log-linear model with interaction
Model for describing effect modification (two regressors only)

log{λ(X,Z)} = α + βX + γZ + δXZ,

equivalently

λ(X,Z) = exp
(
α + βX + γZ + δXZ

)
= λ0ρ

XτZθXZ

where α is as before, but

β = log-rate ratio ρ for a unit change in X when Z = 0,
γ = log-rate ratio τ for a unit change in Z when X = 0
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Interaction parameter

δ = log(θ), interaction parameter, describing
effect modification

For binary X and Z we have

θ = eδ =
λ(1, 1)/λ(0, 1)

λ(1, 0)/λ(0, 0)
,

i.e. the ratio of relative hazards associated with X between the two
categories of Z.
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Interaction model: Rates from parameters

Rates Obtained from parameters

Asbestos Smok Non-sm Smok Non-sm

exposed 600 60 exp(α + γ + β + δ) exp(α + β)
unexposed 120 12 exp(α + γ) exp(α)

Rate ratio 5 5 exp(β + δ) exp(β)
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Example 8 (cont’d): Lung cancer
Fitting a log-linear interaction model mi and comparing it with
previously fitted main-effects model mm
> mi <- glm( cbind(D,Y) ~ asb + smk + I(asb*smk), family=poisreg )
> round( cbind(ci.exp( mi ), rbind(ci.exp( mm ),NA) ), 3 )

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
(Intercept) 12 6.815 21.130 12 8.060 17.867
asb 5 2.340 10.682 5 3.977 6.286
smk 10 5.524 18.101 10 6.733 14.853
I(asb * smk) 1 0.451 2.217 NA NA NA

I No interaction on the multiplicative scale:
Interaction parameter estimated as 1,

I Asbestos and smoking effects remain unchanged,
I Yet, SEs are larger, as they refer to estimated rate ratios for

levels X = 0 and Z = 0, resp.; not both levels jointly
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Additive model with interaction for rates
General form with two regressors

λ(X,Z) = α + βX + γZ + δXZ

α = λ(0, 0) is the baseline rate,
β = λ(x+ 1, 0)− λ(x, 0), rate difference for

unit change in X when Z = 0

γ = λ(0, z + 1)− λ(0, z), rate difference for
unit change in Z when X = 0.
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Additive model (cont’d)

δ = interaction parameter.

I For binary X and Z:

δ = [λ(1, 1)− λ(1, 0)]− [λ(0, 1)− λ(0, 0)]

I If no effect modification present, δ = 0, and
β = rate difference for unit change in X

for all values of Z
γ = rate difference for unit change in Z

for all values of X,
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Ex. 8: Additive model with & w/o interaction
> mai <- glm( cbind(D,Y) ~ asb + smk + asb*smk, family=poisreg(link=identity) )
> ma <- glm( cbind(D,Y) ~ asb + smk, family=poisreg(link=identity) )
> round( cbind( ci.exp( mai, Exp=FALSE), rbind(ci.exp(ma, Exp=FALSE),NA )), 1 )

Estimate 2.5% 97.5% Estimate 2.5% 97.5%
(Intercept) 12 5.2 18.8 10.2 3.9 16.4
asb 48 16.9 79.1 202.9 156.8 249.0
smk 108 85.5 130.5 136.1 112.4 159.8
asb:smk 432 328.8 535.2 NA NA NA

> anova(ma, mai)

Analysis of Deviance Table

Model 1: cbind(D, Y) ~ asb + smk
Model 2: cbind(D, Y) ~ asb + smk + asb * smk

Resid. Df Resid. Dev Df Deviance
1 1 80.853
2 0 0.000 1 80.853
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Example 8 (cont’d): Additive model with interaction

λ(X,Z) = α + βX + γZ + δXZ = 12 + 48X + 108Z + 432XZ

α = 12, baseline rate, i.e. that among non-smokers
unexposed to asbestos (reference group),

β = 48 (60− 12), rate difference between
asbestos exposed and unexposed among non-smokers only,

γ = 108 (= 120− 12), rate difference between smokers and
non-smokers among only those unexposed to asbestos

δ = excess of rate difference between smokers and non-smokers
among those exposed to asbestos:
δ = (600− 120)− (60− 12) = 432
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Model fitting
Output from computer packages (like R, Stata, etc.) will give:

I parameter estimates and SEs,
I goodness-of-fit statistics,
I fitted values,
I residuals and other diagnostic statistics, . . .

May be difficult to interpret!

Model checking & diagnostics:

I assessment whether model assumptions seem reasonable and
sufficiently compatible with observed data

I involves fitting and comparing different models
144/ 158

Problems in modelling

I Simple model chosen may be far from the “truth”.
⇒ possible bias in effect estimation & underestimation of SEs.

I Multitude of models fit well to the same data
which model to choose?

I Software easy to use:

. . . too easy to fit models blindly

. . . possibility of unreasonable results
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Modelling

I Modeling should not substitute, but complement crude and
stratified descriptive analyses:

I Crude analyses should be seen as initial modeling steps:
one or two effects in the model

I Final model for used for reporting developed mainly from subject
matter knowledge

I Adequate training and experience required.

I Ask help from a professional statistician!

I Collaboration is the keyword.
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7 CONCLUDING REMARKS
Epidemiologic study is a

Measurement excercise

Target of measurement: some parameter of interest, like

I incidence rate
I rate ratio
I difference in prevalences

Result: Estimate of the parameter.
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Estimation and its errors
Like errors in measurement, estimation of parameter is prone to error:

estimate = true parameter value
+ systematic error (bias)
+ random error
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Sources of bias

I confounding, non-comparability,

I measurement error, misclassification,

I non-response, loss to follow-up,

I sampling, selection

I other
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Sources of random error

I biological variation between and within individuals in population

I measurement variation

I sampling (random or not)

I allocation of exposure (randomized or not)
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Random sampling

I relevant in descriptive studies

I estimation of parameters of occurrence of given health outcomes
in a target population

I target population well-defined, finite, restricted by time and
space

I representativeness of study population (sample) important
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Randomization

I relevant in causal studies

I estimation of comparative parameters of causal effect of an
exposure factor on given health outcomes

I abstract (infinite) target population

I comparability of exposure groups important

I study population usually a convenience sample from available
source population
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Controlled randomness

I If controlled randomness (random sampling or randomization) is
employed as appropriate

⇒ parameter estimate has a well defined
sampling distribution

I This forms the basic tool used in statistical inference concerning
the value of the parameter

I point estimation
I statistical testing, P -value
I confidence interval
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Controlled randomness (cont’d)

I Question: How often controlled randomness actually employed
in epidemiology?

I Answer: Rarely!

I “In most epidemiologic studies, randomization and random
sampling play little or no role in the assembly of study cohorts.”
(Greenland S. Epidemiology 1990; 1: 421-9)
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Implications

I “. . . probabilistic interpretations of conventional statistics are
rarely justified . . . such interpretations may encourage
misinterpretation of nonrandomized studies.”

I “. . . the continuing application of tests of significance to such
non-randomized investigations is inappropriate” (Greenland
1990)

I “Confidence intervals should be relegated to a small part of both
the results and discussion section as an indication, but no more,
of the possible influence of chance imbalance on the result.”
(Brennan & Croft. BMJ 1994; 309: 727-30)
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Recommendations, part 2
Possible remedies for these problems

I de-emphasize inferential statistics in favor of pure data
decriptors: graphs and tables,

I adopt statistical techniques based on more realistic probability
models than those in common use,

I subject the results of these to influence and sensitivity analysis.

(Greenland 1990)

Interpretation of obtained values of inferential statistics – not
mechanical!
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Recommendations (cont’d)

I “The ability to judge the potential role of chance without the aid
of complicated statistics is valuable.

I . . . when confronted with the results from small numbers, and
experienced researcher should be able quickly to judge whether
statistics are worth calculating at all.

I . . . judgment, that the sample size is sufficient and the observed
result so great that chance may be dismissed, can and should be
made when one is ”confident” that the decision is obvious.”
(Jolley, Lancet 1993; 342: 27-29)
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Conclusion
“In presenting and discussing the results of an observational study the
greatest emphasis should be placed on bias and confounding.”
(Brennan and Croft 1994)

Motto (Campbell & Machin 1983):

STATISTICS is about
COMMON SENSE and

GOOD DESIGN!
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