Nordic Summerschool of Cancer Epidemiology

Bendix Carstensen Steno Diabetes Center Gentofte, Denmark http://BendixCarstensen.com
Esa Läärä University of Oulu Oulu, Finland
Danish Cancer Society / NCU, August 2022 / January 2023
http://BendixCarstensen.com/NSCE/2022

Introduction

Bendix Carstensen \& Esa Läärä

Nordic Summerschool of
Cancer Epidemiology
Danish Cancer Society / NCU,August 2022 / January 2023
http://BendixCarstensen.com/NSCE/2022

Key references

IS: dos Santos Silva, I. (1999).
Cancer Epidemiology: Principles and Methods. IARC, Lyon.
B\&D: Breslow, N.E., Day, N.E. (1987).
Statistical Methods in Cancer Research Volume II - The Design and Analysis of Cohort Studies.
IARC Scientific Publications No. 82, IARC, Lyon.
C\&H: Clayton, D., Hills, M. (1993).
Statistical Models in Epidemiology. OUP, Oxford.
BxC: Carstensen, B (2021).
Epidemiology with R. OUP, Oxford.
http://bendixcarstensen.com/EwR

Internet resources on cancer statistics

NORDCAN : Cancer Incidence and Mortality in the Nordic Countries, Version 4.0. Association of Nordic Cancer Registries, Danish Cancer Society, 2002. http://www-dep.iarc.fr/nordcan.htm

NORDCAN is a graphical package providing data on the incidence of, and mortality from 40 major cancers for 80 regions of the Nordic countries (Denmark, Finland, Iceland, Norway and Sweden). Using NORDCAN, these data can be presented as a variety of tables and graphs that can be easily exported or printed. NORDCAN allows countries and cancer sites to be grouped and compared as desired.
GLOBOCAN 2008: Cancer Incidence and Mortality Worldwide in 2008 http://globocan.iarc.fr/

Basic Concepts

Bendix Carstensen \& Esa Läärä

Nordic Summerschool of
Cancer Epidemiology
Danish Cancer Society / NCU,August 2022 / January 2023
http://BendixCarstensen.com/NSCE/2022

What is Epidemiology?

Some textbook definitions of epidemiology:
Greek: epi $=$ upon, demos $=$ people

- "study of the distribution and determinants of disease frequency in man" (MacMahon and Pugh, 1970)
- "study of the distribution and determinants of health related states and events in specified populations,..." (Last (ed.) Dictionary of Epidemiology, 2000)
- "discipline on principles of occurrence research in medicine" (Miettinen, 1985)

Different epidemiologies

- descriptive epidemiology
- monitoring \& surveillance of diseases for planning of health services
- a major activity of cancer registries, and other health data collectors
- etiologic or "analytic" epidemiology:
- study of cause-effect relationships

Different epidemiologies

- disease epidemiologies - e.g. of cancer, cardiovascular diseases, infectious diseases, musculoskeletal disorders, mental health, ...
- determinant-based epidemiologies
- occupational epidemiology
- nutritional epidemiology
- ...
- clinical epidemiology
- study of diagnosis, prognosis and effectiveness of therapies in patient populations
- basis of evidence-based medicine
- essential in health-services research

Cancer i Norden 1997 (NORDCAN)

Frequency of cancer (all sites excl. non-melanoma skin) in Nordic male populations expressed by different measures:

	New cases	Crude rate	ASR (World)	Cumul. risk	SIR
Denmark	11,787	452	281	27.8	104
Finland	10,058	$\underline{401}$	269	26.5	101
Iceland	$\underline{633}$	464	347	32.6	132
Norway	10,246	469	294	29.4	109
Sweden	$\mathbf{1 9 9 0 8}$	455	$\underline{249}$	$\underline{25.4}$	$\underline{93}$

- Where is the frequency truly highest, where lowest?

Questions on frequency \& occurrence

How many women in Denmark:

- are carriers of breast cancer today? - prevalence
- will contract a new breast ca. during 2007? — incidence
- die from breast ca. in 2007? - mortality
- will be alive after 5 years since diagnosis among those getting breast ca. in 2007? - survival
- are cured from breast cancer during 2007? - cure

What are the proportions / rates of these?
What is the dimension (units) of these measures?

What is risk?

What do we mean by "risk of disease S "?
(a) probability of getting S during a given risk period \rightarrow incidence probability, (cumulative risk over the period)
(b) rate of that probability (relative to risk period)
\rightarrow hazard or intensity,
(c) probability of carrying S at a given time point \rightarrow prevalence probability.

Most common use of "risk" is (a)
NB: "Risk" should not be used in the meaning of risk factor In statistics, "hazard" mostly refers to notion probability per unit time.

Risks are conditional probabilities

- All risks are conditional on a multitude of factors, like:
- length of risk period (e.g. next week or lifetime),
- age and sex,
- genetic constitution,
- health behaviour \& environmental exposures.
- In principle each individual has a "personal" value for the risk of given disease in any defined risk period, depending on his/her own risk factor profile-not estimable from data
- Average risks of disease in large groups sharing common characteristics (like gender, age, smoking status) are estimable through measures of occurrence.

Matematical reminder

Bendix Carstensen \& Esa Läärä

Nordic Summerschool of
Cancer Epidemiology
Danish Cancer Society / NCU,August 2022 / January 2023

Logarithms and exponentials

10^{2}	$=10 \times 10$
10^{3}	$=10 \times 10 \times 10$
$10^{2} \times 10^{3}$	$=10^{5}$
$10^{3} / 10^{2}$	$=10^{1}$
$\left(10^{3}\right)^{2}$	$=10^{6}$
$10^{2} / 10^{2}$	$=10^{0}=1$
$10^{2} / 10^{3}$	$=10^{-1}=1 / 10$
$10^{1 / 2} \times 10^{1 / 2}$	$=10^{1}$
$10^{1 / 3} \times 10^{1 / 3} \times 10^{1 / 3}$	$=10^{1}$
$10^{0.3010}$	$=2$
$\log _{10}(2)$	$=0.3010$

Multiplication and division

$$
\begin{aligned}
2 \times 3 & =6 \\
\hline 10^{0.3010} \times 10^{0.4771} & =10^{0.7781} \\
10^{0.7781} & =6 \\
\log _{10}(2) & =0.3010 \\
\log _{10}(3) & =0.4771 \\
0.3010+0.4771 & =0.7781 \\
10^{0.7781} & =6 \\
\hline \text { In general: } \log (x y) & =\log (x)+\log (y) \\
\log (x / y) & =\log (x)-\log (y) \\
\log \left(x^{a}\right) & =a \log (x)
\end{aligned}
$$

Natural logarithms $\quad \mathrm{e}=2.7183$

$\log _{e}(e)$	$=1$
$e^{0.6931}$	$=2$
$\log _{e}(2)$	$=0.6931$
$e^{1.0986}$	$=3$
$\log _{e}(3)$	$=1.0986$
2×3	$=6$
$e^{0.6931} \times e^{1.0986}$	$=e^{1.7918}$
$e^{1.7918}$	$=6$

In general: $e^{x} \times e^{y}=e^{x+y}$

$$
e^{x} / e^{y}=e^{x-y}
$$

$$
\text { Matematical reminder (math) }\left(e^{x}\right)^{y}=e^{x \times y}
$$

Names for the logartithms

Engineers and calculators:

\log is the logarithm to base 10 .
ln is the logarithm to base e, the natural log
Matematicians:
\log is the logarithm to base e, the natural \log
$\log _{10}$ is the logarithm to base 10 .

We use log for the natural logarithm, and explicitly $\log _{10}$ when this is needed.

Why natural logarithms?

For small values of $x: e^{x} \approx 1+x$

$$
\begin{aligned}
e^{-x} & \approx 1-x \\
\ln (1+x) & \approx x \\
\ln (1-x) & \approx-x
\end{aligned}
$$

$$
\text { For example: } \begin{aligned}
\ln (1.01) & =0.01 \\
\qquad \ln (0.99) & =-0.01
\end{aligned}
$$

$$
\begin{aligned}
\text { But: } \log _{10}(1.01) & =0.4343 \times 0.01 \\
\log _{10}(0.99) & =0.4343 \times-0.01 \\
\hline \text { In general: } \log _{10}(x) & =0.4343 \times \ln (x)
\end{aligned}
$$

Frequency measures

Bendix Carstensen \& Esa Läärä

Nordic Summerschool of
Cancer Epidemiology
Danish Cancer Society / NCU,August 2022 / January 2023
http://BendixCarstensen.com/NSCE/2022

Basic measures of frequency or occurrence

Quantification of the occurence of disease (or any other health-related state or event) requires specification of:

1. what is meant by a case, i.e., an individual in a population who has or gets the disease

- more generally: possesses the state or undergoes the event of interest.
\Rightarrow challenge to accurate diagnosis and classification!

2. the population from which the cases originate.
3. the time point or period of observation.

Types of occurrence measures

- Longitudinal - incidence measures: incidence rate \& incidence proportion
- Cross-sectional - prevalence measures.

General form of frequency or occurrence measures

$$
\frac{\text { numerator }}{\text { denominator }}
$$

Numerator: number of cases observed in the population.
Denominator: generally proportional to the size of the population from which the cases emerge.
Numerator and denominator must cover the same population, and the same period or same time point.

Incidence measures

- Incidence proportion (cumulative risk) (Q) over a fixed risk period:

$$
Q=\frac{\text { number of incident (new) cases during period }}{\text { size of pop'n at risk at start of the period }}
$$

Also called cumulative incidence (even "risk"; e.g. in IS).
NB. "Cumulative incidence" has other meanings, too.

- Indidence rate (I) over a defined observation period:

$$
I=\frac{\text { number of incident (new) cases during period }}{\text { sum of follow-up times of pop'n at risk }}
$$

Also called incidence density or hazard.

Example: Follow-up of a small cohort

$\mid=$ entry, $\circ=$ exit with censoring; outcome not observed,

- = exit with outcome event (disease onset) observed

Complete follow-up in the 5 -year risk period \Rightarrow can calculate both:

$$
\begin{aligned}
\text { Inc. rate } & =\frac{2 \text { cases }}{5+3.5+5+1.5+5 \text { years }}=10 \text { per } 100 \text { years } \\
\text { Inc. prop. } & =2 / 5=0.4 \text { or } 40 \text { per cent. }
\end{aligned}
$$

Properties of incidence proportion (cumulative risk)

- Dimensionless quantity ranging from 0 to 1 (0% to 100%) = relative frequency,
- Estimates the average theoretical risk, i.e. the probability of the outcome occurring during the risk period, in the population at risk - i.e. among those who are still free from the outcome at the start of the period.
- Simple formula valid when the follow-up time is fixed \& equals the risk period, and when there are no competing events or censoring.
- Competing events \& censoring \Rightarrow

Calculations need to be corrected using special methods of survival analysis.

Properties of incidence rate

- Like a frequency quantity in physics; measurement scale is time ${ }^{-1}$: e.g. $\mathrm{Hz}=1$ second, $1 /$ year, or $1 / 1000 \mathrm{y}$.
- Estimates the average underlying intensity or hazard rate of the outcome in a population,
- Estimation accurate in the constant hazard model,
- Calculation straightforward also with competing events and censored observations.
- Hazard usually depends on age \Rightarrow age-specific rates needed.
- Incidence proportions can be estimated from rates.

In the constant hazard model with no competing risks:

$$
Q=1-\exp (-I \times \Delta) \approx I \times \Delta
$$

Competing events and censoring

The outcome event of interest (e.g. onset of disease) is not always observed for all subjects during the chosen risk period.

- Some subjects die (from other causes) before the event.
- Competing event, after which the outcome can no more occur.
- Others emigrate and escape national disease registration, or the whole study is closed "now", prematurely interrupting the follow-up of them.
- Censoring, withdrawal, or loss to follow-up

In both cases persons are removed from the risk population

Person-years in dynamic populations

With a dynamic study population, individual follow-up times are always variable and impossible to measure accurately.
Common approximation - mid-population principle:

1. Let the population size be N_{b} at beginning $\left(t_{b}\right)$ and N_{e} at the end $\left(t_{e}\right)$ of the observation period of length $t_{e}-t_{b}=u_{t}$
2. Mid-population for the period around $t=\left(t_{b}+t_{e}\right) / 2: \bar{N}_{t}=\frac{1}{2} \times\left(N_{b}+N_{e}\right)$.
3. Approximate person-years: $\widetilde{Y}_{t}=\bar{N}_{t} \times u_{t}$.

NB: The actual study population often contains some already affected, thus not belonging to the population at risk. With rare outcomes their influence is small.

Male person-years in Finland 1991-95

Total male population (1000s) on 31 December by year:

1990	1991	1992	1993	1994	1995
2,431	2,443	2,457	2,470	2,482	2,492

Approximate person-years (1000s) in various periods:

1992:	$\frac{1}{2} \times(2,443+2,457) \times 1=$	2450
1993-94:	$\frac{1}{2} \times(2,457+2,482) \times 2=$	4937
1991-95:	$\frac{1}{2} \times(2,431+2,492) \times 5=$	12307.5
$1991-95:$	$(2,431 / 2+2,443+2,457+2,470+2,482+2,492 / 2)=$	12313.5

Mortality

Cause-specific mortality from cause C is described by mortality rates defined like incidence rates, but

- cases are deaths from cause C, and
- follow-up is extended until death or censoring.

Cause-specific mortality proportion (cumulative risk) from cause depends on all cause-specific rates, not only on the C-specific mortality rate.

Total mortality:

- cases are deaths from any cause.

Mortality depends on the incidence and the prognosis or case fatality of the disease, i.e. the survival of those affected by it.

Prevalence measures

- Point prevalence or simply prevalence P of a health state C in a population at a given time point t is defined as:

$$
P=\frac{\text { number of existing or prevalent cases of } C}{\text { size of the whole population }}
$$

- Can be computed from a cross-sectional study base.
- Empirical counterpart of P \{random person has disease $C\}$
- Period prevalence for period from t_{1} to t_{2} is like P but
- numerator refers to all cases prevalent already at t_{1} plus new cases occurring during the period, and
- denominator is the population size at t_{2}
- Has no simple probability counterpart

Example 4.1 (IS: p. 59)

Prevalence at time $t_{1}: \quad 2 / 10=0.2=20 \%$
Prevalence at time $t_{2}: \quad 3 / 8=0.38=38 \%$
Period prevalence: $\quad 6 / 8=0.75=75 \%$

Prevalence and incidence are related

Point prevalence of C at given time point t depends on the

- incidence of new cases of C before t, and the
- duration of C, depending in turn on the probability of
- cure or recovery from C, or
- survival of those affected

Simple case: In a stationary ("stable") population, the

$$
\text { prevalence }(P) \text {, incidence }(I) \text {, and average duration }(\bar{d}) \text { of } S
$$

are related as

$$
P=I \times \bar{d}
$$

prevalence $=$ incidence \times duration
The approximation works well, when $P<0.1$ (10\%).

Prevalence of cancer?

- How do we know, whether and when cancer is cured?
$-\Rightarrow$ Existing or prevalent case problematic to define.
- NORDCAN: Prevalence of cancer C at time point t in the target population refers to the - number \& proportion of population members who
- are alive and resident in the population at t, and
- have a record of an incident cancer C diagnosed before t.
- Partial prevalence: Cases limited to those diagnosed during a fixed time in the past; e.g. within last
- 1 y (initial treatment period),
- 3 y (clinical follow-up),
- 5 y (cure?)

Ex: Cancer with poor and with good prognosis

Age-standardized ${ }^{a}$ incidence, mortality, prevalence, and survival for cancers of kidney and thyroid in women of Finland:

	Kidney	Thyroid
Incidence rate in $2011\left(\right.$ per 10^{5} y)	12	11
Mortality rate in $2011\left(\right.$ per 10^{5} y)	5	1
Prevalence on $31.12 .2011\left(\right.$ per $\left.10^{5}\right)$	92	198
- diagnosed <1 y ago	9	10
- diagnosed <3 y ago	24	29
- diagnosed <5 y ago	35	47
- diagnosed >5 y ago	57	151
5-y relative survival; cases $2004-8(\%)$	64	90

${ }^{a}$ Standard: Nordic population in 2000

Comparative measures

Bendix Carstensen \& Esa Läärä

Nordic Summerschool of
Cancer Epidemiology
Danish Cancer Society / NCU,August 2022 / January 2023
http://BendixCarstensen.com/NSCE/2022

Measures of effect - comparative measures

- Quantification of the association between a determinant (risk factor) and an outcome (disease) is based on
- comparison of occurrence between the index ("exposed") and the reference ("unexposed") groups by
- relative comparative measures (ratio)
- absolute comparative measures (difference)
- Interpreted as the effect of exposure -using the assumption that the direction of causality is from exposure to outcome.
- Causality is assumed; effect is measured (estimated from data)
- Yet, caution is needed in inferences on causal effects, as often the groups to be compared suffer from poor comparability \Leftrightarrow Confounding.

Relative comparative measures

Generic name "relative risk" (RR) comparing occurrences between exposed (1) and unexposed (0) groups can refer to:

- incidence rate ratio $\mathrm{IR}=I_{1} / I_{0}$,
- incidence proportion ratio $\operatorname{IPR}=Q_{1} / Q_{0}$,
- incidence odds ratio IOR $=\left[Q_{1} /\left(1-Q_{1}\right)\right] /\left[Q_{0} /\left(1-Q_{0}\right)\right]$,
- prevalence ratio $\mathrm{PR}=P_{1} / P_{0}$, or
- prevalence odds ratio POR $=\left[P_{1} /\left(1-P_{1}\right)\right] /\left[P_{0} /\left(1-P_{0}\right)\right]$,
depending on study base and details of its design.
Incidence rate ratio $\mathrm{IR}=I_{1} / I_{0}$ is the most commonly used comparative measure in cancer epidemiology.

Absolute comparative measures

Generic term "excess risk" or "risk difference" (RD) btw exposed and unexposed can refer to

- incidence rate difference $\mathrm{ID}=I_{1}-I_{0}$,
- incidence proportion difference IPD $=Q_{1}-Q_{0}$, or
- prevalence difference $\mathrm{PD}=P_{1}-P_{0}$.

Use of relative and absolute comparisons

- Ratios - describe the beginitemizeological strength of the exposure
- Differences - inform about its public health importance.

Example (IS, Table 5.2, p.97)

Relative and absolute comparisons between the exposed and the unexposed to risk factor X in two diseases.

	Disease A	Disease B
Incidence rate among exposed a	20	80
Incidence rate among unexposed		
Rate ratio $^{\text {Rate difference }}{ }^{a}$	5	40

${ }^{a}$ Rates per 100000 pyrs.
Factor X has a stronger biological potency for disease A , but it has a greater public health importance for disease B.

Attributable fraction (excess fraction)

- Measures of potential impact:

Combination of absolute and relative comparisons.

- This measure estimates the fraction out of all new cases of disease among those exposed, which are attributable to (or "caused" by) the exposure itself, and which thus could be avoided if the exposure were absent.
- When the incidence is higher in the exposed, the attributable fraction (AF) for the exposure or risk factor is defined as:

$$
\mathrm{AF}=\frac{I_{1}-I_{0}}{I_{1}}=\frac{\mathrm{RR}-1}{\mathrm{RR}}
$$

Also called excess fraction (or even "attributable risk" in old texts).

Population attributable fraction

- Suppose we ask instead:
- "How large a fraction of all cases in the population would be prevented, if the exposure were eliminated?"
- The answer to this question depends in addition on

$$
p_{\mathrm{E}}=\text { proportion of exposed in the population. }
$$

- Population attributable (excess) fraction (PAF) is defined:

$$
\mathrm{PAF}=\frac{I-I_{0}}{I}=\frac{p_{\mathrm{E}}(\mathrm{RR}-1)}{1+p_{\mathrm{E}}(\mathrm{RR}-1)}
$$

- AF: biological impact of exposure,
- PAF: impact of exposure on the population level.

Attributable fraction illustrated

- The population is divided into exposed and unexposed.
- The rate I_{1} among the exposed would be I_{0}, i.e. the same as in the unexposed, if the exposure had no effect.
- The excess incidence $I_{1}-I_{0}$ is caused by the exposure.

PAF illustrated

- Total incidence I in the population - a wenditemizeghted average:

$$
I=p_{\mathrm{E}} \times I_{1}+\left(1-p_{\mathrm{E}}\right) \times I_{0} \quad(\text { total area })
$$

would equal I_{0}, if exposure had no effect

- Excess incidence caused by exposure: $I-I_{0}=p_{\mathrm{E}} \times\left(I_{1}-I_{0}\right)$ (black area).
$-\mathrm{PAF}=\frac{I-I_{0}}{I}$,
$=$ fraction of black area out of total black + gray area.

Prevented fractions

- When the incidence in exposed is lower, we define the prevented fraction:

$$
\mathrm{PF}=\frac{I_{0}-I_{1}}{I_{0}}=1-\mathrm{RR}
$$

also called relative risk reduction
$=$ percentage of cases prevented among the exposed due to the exposure.

- Used to evaluate the relative effect of a preventive intervention ("exposure") vs. no intervention.
- Population prevented fraction (PPF) combines this with the prevalence of exposure in the population:

$$
\mathrm{PPF}=\frac{I_{0}-I}{I_{0}}=p_{\mathrm{E}} \times(1-\mathrm{RR}),
$$

measuring the relative reduction in caseload attributable to the presence of preventive factor in the population.

Smoking on mortality by cause (IS: Ex 5.14, p. 98)

Underlying cause of death	Never smoked regularly Rate ${ }^{b}$ (1)	Current cigarette smoker Rate ${ }^{b}$	Rate ratio $(2) /(1)$	Rate differ- ence ${ }^{b}$	Attributable fraction (\%) $\frac{(2)-(1)}{(2)} \times 100$
Cancer type					
All sites	305	656	2.2	351	54
Lung	14	209	14.9	195	93
Oesophagus	4	30	7.5	26	87
Bladder	13	30	2.3	17	57
Respiratory diseases	107	313	2.9	206	66
Vascular diseases	1037	1643	1.6	606	37
All causes	1706	3038	1.8	1332	44

[^0]
Time scales

Bendix Carstensen \& Esa Läärä

Nordic Summerschool of
Cancer Epidemiology
Danish Cancer Society / NCU,August 2022 / January 2023
http://BendixCarstensen.com/NSCE/2022

Rates on several time scales

can be studied on various distinct time scales, e.g.

Time scale	Origin: date of \ldots
age	birth
calendar time	$1900-1-1$
exposure time	first exposure
follow-up time	entry to study
duration of disease	diagnosis

- Age is usully the strongest time-dependent determinant of health outcomes.
- Age is also often correlated with cumulative exposure (e.g. years of smoking).

Follow-up of a small geriatric cohort

Overall rate: 4 cases $/ 53.5$ person-years $=7.5$ per 100 y . But the "true" rate varies by age, it is higher among the old.

Splitting follow-up into agebands

- To describe, how incidence varies by age, individual person-years from age of entry to age of exit must first be split or divided into narrower agebands.
- Usually these are based on common 5-year age grouping.
- Numbers of cases are equally divided into same agebands.
- Age-specific incidence rate for age group k is

$$
I_{k}=\frac{\text { number of cases observed in ageband }}{\text { person-years contained in ageband }}
$$

- Underlying assumption: piecewise constant rates (in each age band)

P-years and cases in agebands: age-specific rates

	Ageband			
Subject	$70-74$	$75-79$	$80-84$	Total
1	5.0	5.0	3.5	13.5
2	4.5	-	-	4.5
3	4.5	1.0	-	5.5
4	4.0	2.0	-	6.0
5	3.0	5.0	5.0	13.0
6	-	3.0	2.0	5.0
7	-	-	3.0	3.0
8	-	-	3.0	3.0
Sum of person-years	21.0	16.0	16.5	53.5
Cases	1	1	2	4
Rate $(/ 100$ y $)$	4.8	6.2	12.1	7.5
	Age-specific rates		overall	

Ex. Lung cancer incidence in Finland by age and period (compare IS, Table 4.1)

Calendar	Age group (y)																
period	$40-44$	$45-49$	$50-54$	$55-59$	$60-64$	$65-69$	$70-74$	$75-79$	$80-84$	$85+$							
$1953-57$	21	61	119	209	276	340	295	279	193	93							
$1958-62$	22	65	135	243	360	405	429	368	265	224							
$1963-67$	24	61	143	258	395	487	509	479	430	280							
$1968-72$	21	61	134	278	424	529	614	563	471	358							
$1973-77$	16	50	134	251	413	541	629	580	490	392							
$1978-82$	13	36	115	234	369	514	621	653	593	442							
$1983-87$	11	31	74	186	347	450	566	635	592	447							
$1988-92$	9	25	57	128	262	411	506	507	471	441							
$1993-97$	7	22	48	106	188	329	467	533	487	367							
$1998-02$	5	14	46	77	150	239	358	445	396	346							

- Rows: age-incidence pattern in different calendar periods.
- Columns: Trends of age-specific rates over calendar time.

Lung cancer rates by age and period

- Age-incidence curves: overall level and peak age variable across periods.
- Time trends inconsistent across age groups: decline onset at different dates.

Incidence by age, period \& cohort

- Secular trends of specific and adjusted rates show, how the "cancer burden" has developed over periods of calendar time.

Birth cohort $=$ people born during the same limited time interval, e.g. single calendar year, or 5 years period.

- Analysis of rates by birth cohort reveals, how the level of incidence (or mortality) differs between successive generations.
- May reflect differences in risk factor levels across birth cohorts.
- Often more informative about "true" age-incidence pattern than age-specific incidences of single calendar period.

Age-specific rates by birth cohort

Calendar	Age group (y)								
period	$40-44$	$45-49$	$50-54$	$55-59$	$60-64$	$65-69$	$70-74$	$75-79$	
$1953-57$	21	61	$\boxed{119}$	209	276	340	295	279	
$1958-62$	22	65	135	243	360	405	429	368	
$1963-67$	24	61	143	258	$\boxed{395}$	487	509	479	A
$1968-72$	21	61	134	278	424	529	614	563	
$1973-77$	16	50	134	251	413	541	629	580	
$1978-82$	13	36	115	234	369	514	621	653	B
$1983-87$	11	31	74	186	347	450	566	635	
$1988-92$	9	25	57	128	262	411	506	507	
$1993-97$	7	22	48	106	188	329	467	533	C
$1998-02$	5	14	46	77	150	239	358	445	
			E: $1947 / 48$		D: $1932 / 33$				

$\mathrm{A}=$ synthetic cohort born around $1887 / 88$,
B: 1902/03,
C: 1917/18

Diagonals reflect age-incidence patterns in various birth cohorts.

Age-incidence curves in 5 birth cohorts

Age-incidence curves by cohort

Variable overall rates but fairly consistent form and similar peak age across Time sdifferents) birth cohorts.

Split of follow-up by age and period

- Incidence of (or mortality from) disease C in special cohort of exposed (e.g. occupational group, patients on certain treatment)
\rightarrow often compared to incidence in an external reference or "general" population.
- Adjustment for age and calendar time needed, e.g. by comparing observed to expected cases with SIR (see p. 70-74).
\Rightarrow Cases and person-years in the study cohort must be split by more than one time scale (age).

Example (adapted from C\&H, Tables 6.2 \& 6.3, p. 54)

Entry and exit dates for a small cohort of four subjects

Subject	Born	Entry	Exit	Age at entry	Outcome
1	1954	1993	2002	39	Migrated
2	1974	1998	2005	24	Disease C
3	1964	1995	2011	31	Study ends
4	1970	1998	2006	28	Unrelated death

Subject 1: Follow-up time spent in each ageband

Age band	Date in	Date out	Time (years)
$35-39$	1993	1994	1
$40-44$	1994	1999	5
$45-49$	1999	2002	3

Example: (cf. C\&H, Figures 6.1 \& 6.2, p. 55)

Follow-up of cohort members by calendar time and age:
| entry

- exit because of disease onset (outcome of interest)
- exit due to other reason (censoring)

Person-years by age and period (cf. C\&H, Figure 6.4)

Subject 1: Follow-up jointly split by age and calendar time:

Follow-up time
Age
Year

This person contributes person-time into 5 different cells defined by ageband \& calendar period

Follow-up in Lexis-diagrams (cf. C\&H, pp. 58-59)

Follow-up lines run diagonally through different ages and calendar periods.
Incidence rates can depend both on age and calendar time:
See the Lexis functions in the Epi package.

Standardization

Bendix Carstensen \& Esa Läärä

Nordic Summerschool of
Cancer Epidemiology
Danish Cancer Society / NCU,August 2022 / January 2023

Standardization of rates

- Incidence of most cancers (and many other diseases) increases strongly by age in all populations.
\Rightarrow Most of the caseload comes from older age groups.
- Crude incidence rate $=\frac{\text { total no. of new cases }}{\text { total person-years }}$,
- numerator $=$ sum of age-specific numbers of cases,
- denominator $=$ sum of age-specific person-years.
- This is generally a poor summary measure.
- Comparisons of crude incidences between populations can be very misleading, when the age structures differ.
- Adjustment or standardization for age needed!

Ex. Male stomach cancer in Cali and Birmingham (IS, Table 4.2, p. 71)

Age (y)	Cali			Birmingham			Rate ratio
	Male cases 1982	Male Population		Male cases 1983	Male Population		
	-86	$\left(\times 10^{3}\right)$	-86	-86	$\left(\times 10^{3}\right)$	-86	
0-44	39	524.2	1.5	79	1683.6	1.2	1.25
45-64	266	76.3	69.7	1037	581.5	44.6	1.56
65+	315	22.4	281.3	2352	291.1	202.0	1.39
Total	620	622.9	19.9	3468	2556.2	33.9	0.59

- In each age group Cali has a higher incidence
- but the crude incidence is higher in Birmingham.
- Is there a paradox?

Comparison of age structures (IS, Tables 4.3, 4.4)

	$\%$ of male population			
Age	Cali	B'ham	Finland	World
(years)	1984	1985	2011	Stand.
$0-44$	84	66	56	74
$45-64$	12	23	29	19
65+	4	11	15	7
All ages	100	100	100	100

The fraction of old men greater in Birmingham than in Cali.
\Rightarrow Crude rates are confounded by age.
\Rightarrow Any summary rate must be adjusted for age.

Adjustment by direct standardisation

Age-standardised incidence rate (ASR):
ASR $=\sum_{k=1}^{K}$ weight $_{k} \times$ rate $_{k} /$ sum of weights $=$
$\sum_{k=1}^{K} w_{k} \times \operatorname{rate}_{k}, \operatorname{quad}\left(\sum_{k=1}^{K} w_{k}=1\right)$

- A weighted average of age-specific rates over the age-groups $k=1, \ldots, K$.
- Weights describe the age distribution of some standard population.
- Standard population can be
- real (e.g. one of the populations compared, or their total), or
- fictitious (e.g. World Standard Population, WSP)
- Choice of standard population always more or less arbitrary.

Some standard populations:

Age group (years)	African	World	European	NORDCAN (2000)
$0-4$	10000	12000	8000	5900
$5-9$	10000	10000	7000	6600
$10-14$	10000	9000	7000	6200
$15-19$	10000	9000	7000	5800
$20-24$	10000	8000	7000	6100
$25-29$	10000	8000	7000	6800
$30-34$	10000	6000	7000	7300
$35-39$	10000	6000	7000	7300
$40-44$	5000	6000	7000	7000
$45-49$	5000	6000	7000	6900
$50-54$	3000	5000	7000	7400
$55-59$	2000	4000	6000	6100
$60-64$	2000	4000	5000	4800
$65-69$	1000	3000	4000	4100
$70-74$	1000	2000	3000	3900
$75-79$	500	1000	2000	3500
$80-84$	300	500	1000	2400
$85+$	200	500	1000	1900
Total	100000	100000	100000	100000

Stomach cancer in Cali \& Birmingham

Age-standardized rates by the World Standard Population:

	Cali			Birmingham	
Age	Rate a	Weight		Rate a	Weight
$0-44$	$1.5 \times$	$0.74=1.11$		$1.2 \times$	$0.74=0.89$
$45-64$	$69.7 \times$	$0.19=13.24$		$44.6 \times$	$0.19=8.47$
$65+$	$281.3 \times$	$0.07=19.69$		$202.0 \times$	$0.07=14.14$
Age-standardised rate $\quad \mathbf{3 4 . 0 4}$				$\mathbf{2 3 . 5 0}$	

- ASR in Cali higher - coherent with the age-specific rates.
- Summary rate ratio estimate: standardized rate ratio

$$
S R R=34.0 / 23.5=1.44
$$

- This is also called as comparative mortality figure (CMF), when the outcome is death (from cause C or from all causes).

Cumulative rate and "cumulative risk"

- A neutral alternative to arbitrary standard population for age-adjustment is provided by cumulative rate:

$$
\text { CumRate }=\sum_{k=1}^{K} \text { width }_{k} \times \text { rate }_{k},
$$

- Weights are now widths of the agebands to be included, usually up to 75 y .
- NORDCAN \& GLOBOCAN use the transformation:

$$
\text { CumRisk }=1-\exp (- \text { CumRate }),
$$

calling it as the cumulative risk of getting the disease by given age, in the absence of competing causes.

- Since competing events are present, the probability interpretation of CumRisk is somewhat problematic.

Stomach cancer in Cali \& Birmingham

From age-specific rates of Table 4.2, the cumulative rates up to 65 years and their ratio are

$$
\begin{array}{rc}
\text { Cali: } & 45 y \times \frac{1.5}{10^{5} y}+20 y \times \frac{69.7}{10^{5} y}=0.0146=\mathbf{1} .46 \text { per } 100 \\
\text { B'ham: } & 45 y \times \frac{1.2}{10^{5} y}+20 y \times \frac{44.6}{10^{5} y}=0.0095=\mathbf{0 . 9 5} \text { per } 100 \\
\text { ratio: } & \mathbf{1 . 4 6} / \mathbf{0 . 9 5}=\mathbf{1 . 5 4}
\end{array}
$$

"Cumulative risks" \& their ratio up to 65 y :

$$
\begin{array}{rc}
\text { Cali: } & 1-\exp (-0.0146)=0.0145=\mathbf{1 . 4 5 \%} \\
\text { B'ham: } & 1-\exp (-0.0095)=0.0094=\mathbf{0 . 9 4 \%} \\
\text { ratio: } & \mathbf{1 . 4 5} / \mathbf{0 . 9 4}=\mathbf{1 . 5 4}
\end{array}
$$

Cumulative rate and cumulative risk are roughly the same of <0.05.
NB: For more appropriate estimates of cumulative risks, correction for total mortality (competing event) needed.

Cum. measures in B'ham with 5 -y groups (IS, Fig 4.11)

Age-group (years)	Incidence rate (per 100000 pyrs)
$0-4, \ldots, 15-19$	0.0
$20-24,25-29$	0.1
$30-34$	0.9
$35-39$	3.5
$40-44$	6.7
$45-49$	14.5
$50-54$	26.8
$55-59$	52.6
$60-64$	87.2
$65-69$	141.7
$70-74$	190.8
Sum	524.9

Cumulative rate $0-75 \mathrm{y}=5 \mathrm{y} \times \frac{524.9}{10^{5} \mathrm{y}}=0.0262=\mathbf{2 . 6}$ per 100
"Cumulative risk" $0-75$ y $=1-\exp (-0.0262)=0.0259=\mathbf{2 . 6 \%}$.

Cumulative and life-time risks

It is, of course, an interesting and relevant question to ask:
"What are my chances of getting cancer C, say, in the next 10 years, between ages 50 to 75 years, or during the whole lifetime?"'
This is not easy to answer.

- Fully individualized risks are unidentifiable.
- Age-specific and standardized rates are not very informative as such.
- Average cumulative risks are often estimated from cumulative rates using the simple formula above.
- Yet, these naive estimates fictitiously presume that a person would not die from any cause before cancer hits him/her, but could even survive forever!

Total mortality and incidence of two cancers, Finland 2005

Estimation of cumulative risks

- The probability of contracting cancer during realistic lifespan or in any age range depends not only on age-specific hazard rates of cancer itself but also of probabilities of overall survival up to relevant ages,
- Hence, the dependence of total mortality by age in the population at risk must be incorporated in the estimation of cumulative risks of cancer.
- When this is properly done, the corrected estimates of cumulative risk will always be lower than the uncorrected "risks".
- The magnitude of bias in the latter grows by age, but is reduced with increased life expectancy.

Cumulative measures, Finland 2005

Greater differences in males reflect shorter life expectancy and relatively high rates of prostate ca. in old ages.

Special cohorts of exposed subjects

- Occupational cohorts, exposed to potentially hazardous agents, e.g. asbestos workers, uranium miners (see Johanna's lecture on cohort studies)
- Cohorts of patients on intensive treatment, which may have harmful long-term side-effects, e.g. people with a history of childhood cancer.
- Often no internal comparison group of unexposed subjects available.

Question: Do incidence or mortality rates in the exposed target cohort differ from those of a roughly comparable reference population?
Reference rates obtained from:

- population statistics (mortality rates)
- disease \& hospital discharge registers (incidence)

Observed and expected cases-SIR (indirect standardization)

- Compare rates in a study cohort with a standard set of age-specific rates from the reference population.
- Reference rates normally based on large numbers of cases, so they are assumed to be "known" without error.
- Calculate expected number of cases, E, if the standard age-specific rates had applied in our study cohort.
- Compare this with the observed number of cases, D, by the standardized incidence ratio (SIR)

$$
\mathrm{SIR}=D / E, \quad \mathrm{SE}(\log [\mathrm{SIR}])=1 / \sqrt{D}
$$

- Analogously, standardized mortality ratio (SMR) with death as outcome.

Example: Hormone therapy and breast cancer

- A cohort of 974 women treated with hormone (replacement) therapy (HT) were followed up.
- $D=15$ incident cases of breast cancer were observed.
- Person-years (Y) and reference rates $\left(\lambda_{a}^{*}\right.$, per 100000 y) by age group:

Age	Y	λ_{a}^{*}	E
$40-44$	975	113	1.10
$45-49$	1079	162	1.75
$50-54$	2161	151	3.26
$55-59$	2793	183	5.11
$60-64$	3096	179	5.54
\sum			16.77

Ex: HT and breast ca. (cont'd)

- "Expected" cases at ages 40-44:

$$
975 \times \frac{113}{100000}=1.10
$$

- Total "expected" cases is $E=16.77$
- $\operatorname{SIR}=15 / 16.77=\mathbf{0 . 8 9}$.
- Error-factor: $\exp (1.96 \times \sqrt{1 / 15})=1.66$
- 95% confidence interval is:

$$
0.89 \stackrel{\times}{\div} 1.66=(0.54,1.48)
$$

SIR for Cali with Birmingham as reference (IS: Fig. 4.9)

Total person-years at risk and expected number of cases in Cali 1982-86 based on age-specific rates in Birmingham

Age	Person-years	Expected cases in Cali	
$0-44$	$524220 \times 5=$	2621100	$0.000012 \times 2621100=31.45$
$45-64$	$76304 \times 5=$	381520	$0.000446 \times 381520=170.15$
$65+$	$22398 \times 5=$	111990	$0.002020 \times 111990=226.00$
All ages	$=\mathbf{3 1 1 4 6 1 0}$	Total expected (E)	

Total observed number $O=\mathbf{6 2 0}$.
Standardised incidence ratio:

$$
\mathrm{SIR}=\frac{O}{E}=\frac{620}{427.8}=1.45 \quad(\text { or } 145 \text { per } 100)
$$

Crude and adjusted rates compared (IS: Table 4.6)

	$\begin{gathered} \text { Cali, } \\ 1982-86 \end{gathered}$	$\begin{aligned} & \text { B'ham, } \\ & \text { 1983-86 } \end{aligned}$	Rate ratio
Crude rates ($/ 10^{5} \mathrm{y}$)	19.9	33.9	0.59
ASR (/ $\left.10^{5} \mathrm{y}\right)^{B}$ with 3 broad age groups	48.0	33.9	1.42
ASR $\left(/ 10^{5} \mathrm{y}\right)^{C}$ - -"-	19.9	14.4	1.38
	34.0	23.5	1.44
Cum. rate < 65 y (per 1000) -"-	14.6	9.5	1.54
ASR (/ $\left.10^{5} \mathrm{y}\right)^{W}$ with 185 -year age groups	36.3	21.2	1.71
Cum. rate <75 y (per 1000) -"-	46.0	26.0	1.77

Standard population: ${ }^{B}$ Birmingham 1985, ${ }^{C}$ Cali 1985, ${ }^{W}$ World SP

NB: The ratios of age-adjusted rates appear less dependent on the choice of standard weights than on the coarseness of age grouping.
Narrow age groups are preferred, we do have computers. . .

Survival

Bendix Carstensen \& Esa Läärä

Nordic Summerschool of
Cancer Epidemiology
Danish Cancer Society / NCU,August 2022 / January 2023
http://BendixCarstensen.com/NSCE/2022

SURVIVAL ANALYSIS

Questions of interest on the prognosis of cancer:

- what are the patients' chances to survive at least 1 year, or 5 years etc., since diagnosis?

Survival analysis: In principle like incidence analysis but

- population at risk $=$ patients with cancer,
- basic time variable $=$ time since the date of diagnosis, on which the follow-up starts,
- outcome event of interest $=$ death,
- measures and methods used somewhat different from those used in incidence analysis.

Follow-up of 8 out of 40 breast cancer patients

(from IS, table 12.1., p. 264)

No.	Age (y)	$\begin{aligned} & \text { Sta- } \\ & \text { ge }^{a} \end{aligned}$	Date of diagnosis	Date at end of follow-up	Vital status at end of follow-up	Cause of death ${ }^{c}$	Full years from diagn's up to end of follow-up	Days from diagn's up to end of follow-up
1	39	1	01/02/89	23/10/92	A	-	3	1360
3	56	2	16/04/89	05/09/89	D	BC	0	142
5	62	2	12/06/89	28/12/95	A	-	6	2390
15	60	2	03/08/90	27/11/94	A	-	4	1577
22	64	2	17/02/91	06/09/94	D	0	3	1297
25	42	2	20/06/91	15/03/92	D	BC	0	269
30	77	1	05/05/92	10/05/95	A	-	3	1100
37	45	1	11/05/93	07/02/94	D	BC	0	272

Follow-up of breast ca. patients (cont'd)
\mid entry $=$ diagnosis; \bullet exit $=$ death; \circ exit $=$ censoring

(IS: Figure 12.1, p. 265)

Life table or actuarial method

Commonly used in population-based survival analysis by cancer registries. (In clinical applications the Kaplan-Meier method is more popular.)
(1) Divide the follow-up time into subintervals $k=1, \ldots K$; most of these having width of 1 year.
Often the first year is divided into monthly intervals, or at two intervals with widths of 3 mo and 9 mo , respectively.
(2) Tabulate from original data for each interval
$N_{k}=$ size of the risk set, i.e. the no. of subjects still alive and under follow-up at the start of interval,
$D_{k}=$ no. of cases, i.e. deaths observed in the interval,
$L_{k}=$ no. of losses, i.e individuals censored during the interval before being observed to die.

Life table items in a tree diagram

$N_{k}=$ population at risk at the start of the k th subinterval
$D_{k}=$ no. of deaths, $L_{k}=$ no. of losses or censorings in interval k

Life table items for breast ca. patients

(IS: Table 12.2., p. 273, first 4 columns)

Inter- val	Years since diagnosis	No. at start of interval $\left(N_{k}\right)$	No. of deaths	No. of losses
(k)		$\left.D_{k}\right)$	$\left(L_{k}\right)$	
1	$0-<1$	40	7	0
2	$1-<2$	33	3	6
3	$2-<3$	24	4	3
4	$3-<4$	17	4	4
5	$4-<5$	9	2	3
6	$5-<6$	4	1	2
7	$6-<7$	1	0	1
Total			21	19

Life table calculations (cont'd)

(3) Calculate and tabulate for each interval
$N_{k}^{\prime}=N_{k}-L_{k} / 2=$ corrected size of the risk set, or "effective denominator" at start of the interval,
$q_{k}=D_{k} / N_{k}^{\prime}=$ estimated conditional probability of dying during the interval given survival up to its start,
$p_{k}=1-q_{k}=$ conditional survival proportion over the int'l,
$S_{k}=p_{1} \times \cdots \times p_{k}=$ cumulative survival proportion from date of diagnosis until the end of the k th interval
$=$ estimate of survival probability up to this time point.

Follow-up of breast ca. patients (cont'd)

Actuarial life table completed (IS, table 12.2, p. 273)

Inter- val	Years since diagnosis	No. at start of interval $\left(N_{k}\right)$	No. of deaths $\left(D_{k}\right)$	No. of losses $\left(L_{k}\right)$	Effective denominator $\left(N_{k}^{\prime}\right)$	Cond'I prop'n of deaths during int'l $\left(q_{k}\right)$	Survival prop'n over int'\| $\left(p_{k}\right)$	Cumul. survival; est'd survival prob'ty $\left(S_{k}\right)$
1	$0-<1$	40	7	0	40.0	0.175	0.825	0.825
2	$1-<2$	33	3	6	30.0	0.100	0.900	0.743
3	$2-<3$	24	4	3	22.5	0.178	0.822	0.610
4	$3-<4$	17	4	4	15.0	0.267	0.733	0.447
5	$4-<5$	9	2	3	7.5	0.267	0.733	0.328
6	$5-<6$	4	1	2	3.0	0.333	0.667	0.219
7	$6-<7$	1	0	1	0.5	0.0	1.0	0.219

1 -year survival probability is thus estimated 82.5% and 5 -year probability 32.8%.

Comparison to previous methods

- Complement of survival proportion $Q_{k}=1-S_{k}$
$=$ incidence proportion of deaths.
Estimates the cumulative risk of death from the start of follow-up till the end of k th interval.
- Indidence rate in the k th interval is computed as:

$$
I_{k}=\frac{\text { number of cases }\left(D_{k}\right)}{\text { approximate person-time }\left(\widetilde{Y}_{k}\right)}
$$

where the approximate person-time is given by

$$
\widetilde{Y}_{k}=\left[N_{k}-\frac{1}{2}\left(D_{k}+L_{k}\right)\right] \times \text { width of interval }
$$

The dead and censored thus contribute half of the interval width.

Survival curve and other measures

Line diagram of survival proportions through interval endpoints provides graphical estimates of interesting parameters of the survival time distribution, e.g.:

- median and quartiles: time points at which the curve crosses the $50 \%, 75 \%$, and 25% levels
- mean residual lifetime: area under the curve, given that it decreases all the way down to the 0% level.

NB. Often the curve ends at higher level than 0%, in which case some measures cannot be calculated.

Survical curve of breast ca. patients (IS: Fig 12.8)

Numbers above x-axis show the size of population at risk.

Relative survival analysis

- Another interesting and relevant question:
"How much worse are the chances of a cancer patient to survive, say, 5 years, as compared with a comparable person without the disease?'
- An answer is provided by relative survival proportions:

$$
R_{k}=S_{k}^{\mathrm{obs}} / S_{k}^{\exp }, \quad \text { where }
$$

- $S_{k}^{\text {obs }}=$ observed survival proportion in cancer patient group k by age, gender and year of diagnosis,
- $S_{k}^{\exp }=$ expected survival proportion based on the age-specific mortality rates of the same gender and calendar time in a reference population (compare with calculations of SIR!)
+ No information on causes of death needed.

Conclusion

Bendix Carstensen \& Esa Läärä

Nordic Summerschool of
Cancer Epidemiology
Danish Cancer Society / NCU,August 2022 / January 2023
http://BendixCarstensen.com/NSCE/2022

CONCLUSION

Measuring and comparing disease frequencies

- not a trivial task but
- demands expert skills in epidemiologic methods.

Major challenges:

- obtain the right denominator for each numerator,
- valid calculation of person-years,
- appropriate treatment of time and its various aspects,
- removal of confounding from comparisons.

R and how we use it

Bendix Carstensen \& Esa Läärä

Nordic Summerschool of
Cancer Epidemiology
Danish Cancer Society / NCU,August 2022 / January 2023
http://BendixCarstensen.com/NSCE/2022

Introduction to R

What is \mathbf{R} ?

- A practical calculator:
- You can see what you compute
- ... and change easily to do similar calculations.
- A statistical program.
- An environment for data analysis and graphics.
- A programming language
- Developed by international community of volunteers.
- Free.
- Runs on any computer.
- Updated every 6 months.

What does R offer for epidemiologists?

- Descriptive tools
- Versatile tabulation
- High-quality graphics
- Analytic methods
- Basic epidemiologic statistics
- Survival analysis methods
- Common regression models and their extensions
- Other...

But these are provided by e.g. SPSS, SAS and Stata too, so ... ?
Many features of \mathbf{R} are more appealing in the long run.

Graphics in R

- Versatile, flexible, high quality,
- Various high-level graphic functions available.
- Easy to add items (points, lines, text, legends) to an existing graph.
- Fine tuning of symbols, lines, axes, colours, etc. by graphical parameters (>67 of them!)

Total mortality and lung ca incidence in DK

Survival of cervix ca patients (C\&H, 34)

Lexis diagram of Welsh nickel cohort

Rate ratios with confidence intervals

Getting your graphs out

- Graphs can be saved to disk in almost any format
- .eps, .pdf, .bmp, .jpg, .png, ...
- Save graphs from the screen or write directly to a file.
- You can also directly transport an R graph as a metafile into a Word document

Tools for nearly anything!

- Thousands of add-on packages.
- Several packages for epidemiological analyses:
- Epi: focus on chronic disease epidemiology:
- Cohort studies, splitting follow-up time
- Lexis diagram, several timescales
- Multistate model support
- Advanced tabulation
- Informative reporting of estimation results
- "Epidemiology with R"
- epicalc:
- epitools: Mostly infectious diseases.
- epiR: Leaning towards veterinary epidemiology.
- Packages can be installed and updated from within R.

Running R

- Interactive but not mouse-driven!
- Commands typed from keyboard.
- More practical: commands written and saved in a script file from which they are run.
- Execution of tasks:
- evaluation of expressions contained in commands,
- based on calls of functions.

Difficult to learn \& slow to use?

- Maybe in the beginning.
- Versatility and flexibility rewarding in the long run.

R as a simple calculator

Write the arithmetic expression on the empty line after the prompt and press Enter. The result is displayed immediately:
$>2+2$
[1] 4
> $3 * 5-6 / 2$
[1] 12
$>(2+3) \sim 2$
[1] 25
$>\operatorname{sqrt}(1 / 12+1 / 17)$
[1] 0.377037
$>\exp (1.96 * \operatorname{sqrt}(1 / 12+1 / 17)$)
[1] 2.093825

R as a smart calculator

Simple summary of results from a cohort study:

	Exposed	Unexposed
No. of cases/Person-years	$20 / 2000$	$25 / 5000$

R as a smart calculator

- Numbers of cases and person-years are first assigned \& saved into vectors D and Y;
- Incidence rates in the two groups as well as their ratio and difference are then calculated and printed:

```
> D <- c(20, 25) ; Y <- c(2000, 5000)
> rate <- 1000*D/Y ; rate
[1] }10
> ratio <- rate[1]/rate[2] ; diff <- rate[1]-rate[2]
> c(ratio, diff)
[1] 2 5
```


A couple of important things

- Names of variables (or any other objects)
- Start with a letter from A , . . , Z or a, . . . , z; lower case separated from upper case, e.g. ' x ' \neq ' X '
- Letters, integers 0, ... 9, dots '.', and underlines '_ allowed after 1st letter.
- Assignment operator '<-' (consists of '<' and '-')
- assigns a value to an object, for example $>A<-5+2$; A [1] 7
means that a numeric variable A is given $5+2=7$ as its value, and is then printed
- the equal sign = is also allowed as assignment operator.

Vectors and their arithmetics

A vector is ordered set of numbers (or other elements of the same type)

- Can be assigned values elementwise by function c()
- Vector x with 4 elements $1,2,4,7$ assigned and printed: $>x<-c(1,2,4,7)$
> x
[1] 1247
- Arithmetic operations +, - *, /, ^ (power) for vectors of same length i.e. same number of
- Outcome: a new vector whose elements are results of the operation on the corresponding elements in original vectors.
- Function seq() generates regular sequences.
- Function rep() replicates same element(s).
- Common mathematical functions, like sqrt(), $\log (), \exp ()$ work in the same way for numeric vectors.

R script - commands in a file

\mathbf{R} script file is an ASCII file containing a sequence of \mathbf{R} commands to be executed.
The script editor of R works as follows:

1. In RGui open the script editor window: File - New script, or when editing an existing script file: File - Open script,
2. Write the command lines without prompt $>$ or + .
3. Save the script file: File - Save e.g. as $\mathrm{c}: \ \ldots$. \backslash mycmds.R or with some other file name having extension .R

R script (cont'd)

4. Paint the lines to be excecuted and paste them on the console window using the third icon on the toolbar.
5. Edit the file using Edit menu, save \& continue.

- To run an entire script file, write in console window: source("c:/.../mycmds.R", echo=TRUE)
- The script can also be written and edited by any external editor programs (like Notepad).
- R Studio - very versatile interface; see https://www.rstudio.com/. This may be what most of you have been introduced to.

R in this course

- The main purpose is to inform you about the existence and potential of R, which you might find useful in any future work involving serious epidemiologic data analysis.
- Here, \mathbf{R} will be used only as a simple calculator.
- No need for a lot of the more fancy stuff.
- The script editor will help you keep your solutions for future reference.
- After the course, solutions to all exercises will be provided.
- A good workbook introduction to R:
http://bendixcarstensen.com/Epi/R-intro.pdf

Practicals

Bendix Carstensen \& Esa Läärä

Nordic Summerschool of
Cancer Epidemiology
Danish Cancer Society / NCU,August 2022 / January 2023
http://BendixCarstensen.com/NSCE/2022

How to do with practicals

- Read the text
- Find out what you want to do
- Then start using \mathbf{R}
- Sequence of practicals:

1. Tuesday: $0,1,3,4,5,7,11,12,13$
2. Monday: $7,8,2,9,10$

[^0]: ${ }^{a}$ Data from Doll et al., 1994a. ${ }^{b}$ Age-adjusted rates per 100000 pyrs.

