Nordic Summerschool of

. 1.40?

other? further analysis needed?

Nordic Summerschool of	Analysis and statistics
Cancer Epidemiology	By analysis we mean statistical analysis. Statistics:
Bendix Carstensen Steno Diabetes Center Gentofte, Denmark http://BendixCarstensen.com Esa Läärä University of Oulu Oulu, Finland Oulu	 (singular) the science that deals with the: collection, classification, analysis, and interpretation of numerical facts or data, and that, by use of mathematical theories of probability, imposes order and regularity on aggregates of more or less disparate elements. (plural) the numerical facts or data themselves
Danish Cancer Society / NCU, August 2019 / January 2020	(Webster's Dictionary)
From /home/bendix/teach/NSCE/2019/slides/slides.tex Saturday 10 th August, 2019, 17:47	6/ 149
ntroduction	Use of statistics in epidemiology
 Starters Analysis and statistics Uses of statistics in epidemiology References 	 assessment of random variation control of confounding and evaluation of effect modification (a.k.a. interaction) guiding study planning: choice of design, group sizes length of follow-up, sampling
2/ 149	7/ 149
Cohort of male asbestos workers, $N = 17800$. Observed $D = 24$ cases of lung cancer deaths. Expected $E = 7$ cases based on age-specific rates in general population. $SMR = \frac{D}{E} = \frac{24}{7} = 3.4$ Observed rate ratio > 1: • true as such? • biased? by which factors? • due to play of chance?	Use of statistics Basic approaches and tools: • descriptive summarization of data • mathematical models for random variation • statistical inference: estimation and testing • crude and stratified analysis • regression methods.
3/ 149	8/149
Nurses Health Study (NHS) on oral contraceptive (OC) use and breast cancer. Null hypothesis H ₀ : OC use does not affect risk of breast cancer; true rate ratio = 1 between ever and never users. Summary of study outcomes: $\overline{\text{Var}} = \frac{No. \text{ of } Person- Rate}{Verson} = \frac{No. \text{ of } Person- Rate}{Verson} = \frac{1}{240}$	 References S: dos Santos Silva, I. (1999). Cancer Epidemiology: Principles and Methods. International Agency for Research on Cancer, Lyon. B&D: Breslow, N.E., Day, N.E. (1987). Statistical Methods in Cancer Research Volume II – The Design and Analysis of Cohort Studies. IARC, Lyon. C&H: Clayton, D., Hills, M. (1993). Statistical Models in Epidemiology. OUP, Oxford.
4/ 149 Results:	
 Observed rate ratio RR = 217/187 = 1.16 <i>P</i>-value 0.12 95% confidence interval [0.96, 1.40] 	Chance
• 95% confidence interval [0.96, 1.40] Interpretation?	Bendix Carstensen & Esa Läärä
 true rate ratio = 1.16? probability that H₀ is true = 12% ? probability = 95%, that true rate ratio is between 0.96 and 1 40? 	Nordic Summerschool of Cancer Epidemiology Danish Cancer Society / NCU,August 2019 / January 2020

Analysis and statistics

http://BendixCarstensen.com/NSCE/2019

chance

Chance variation

- Systematic and random variation
- Probability model:
 - random variable observation data
 - distribution
 - parameters
- Statistic
- Standard error

Chance (chance)

Systematic and random variation

Cancer incidence rates vary by known & measured determinants of disease, such as:

- ► age,
- gender,
- region,
- time.
- specific risk factors.

This is systematic variation.

Chance (chance)

Systematic and random variation

In addition, observed rates are subject to random or chance variation:

variation due to unknown sources like

- latent genetic differences,
- unknown concomitant exposures,
- sampling,
- "pure chance" quantum mechanics

Chance (chance)

Example: Smoking and lung cancer

- Only a minority of smokers get lung cancer
- ... and some non-smokers get the disease, too.
- At the **individual** level the outcome is unpredictable.
- When cancer occurs, it can eventually only be explained just by "bad luck".
- Unpredictability of individual outcomes implies largely unpredictable — random — variation of disease rates at population level.

Example: Breast cancer

Breast cancer incidence rates in Finland, age group 65-69 years in three successive years.

Year	Males (per 10^6 P-years)	Females (per 10^4 P-years)
1989	46	21
1990	11	20
1991	33	19

Big annual changes in risk among males?

Is there steady decline in females?

14/149

13/149

Example: Breast cancer

Look at observed numbers of cases!

	Males		Fe	males
Year	Cases	P-years	Cases	P-years
1989	4	88,000	275	131,000
1990	1	89,000	264	132,000
1991	3	90,000	253	133,000

Reality of changes over the years?

The information is in the number of cases

Chance (cl

10/ 149

11/149

Simple probability model for cancer occurrence

Assume that the population is homogeneous

- ► the theoretical incidence rate
- hazard or intensity λ
- of contracting cancer
- ▶ is **constant** over a short period of time, dt
 - $\lambda = \Pr\{\mathsf{Cancer in}(t, t + \mathrm{d}t)\}/\mathrm{d}t$
- 16/149

15/ 149

Simple probability model for cancer occurrence

- The observations:
 - Number of cases D in
 - Y person-years at risk
 - \Rightarrow empirical incidence rate R = D/Y
- > are all **random variables** with unpredictable values
- The probability distribution of possible values of a random variable has some known mathematical form
- ...some properties of the probability distribution are determined by the assumptions
- ... other properties are determined by quantities called parameters
- — in this case the theoretical rate λ .
- Chance (chance

How a probability model works

If the hazard of lung cancer, λ , is constant over time, we can **simulate** lung cancer occurrence in a population:

- Start with N persons,
- 1st day: $P \{ \text{lung cancer} \} = \lambda \times 1 \text{ day for all } N \text{ persons} \}$
- ▶ 2nd day: P {lung cancer} = $\lambda \times 1$ day for those left w/o LC
- 3rd day: $P \{ \mathsf{lung cancer} \} = \lambda \times 1 \mathsf{ day for those left w/o LC}$
- •

Thus a **probability model** shows how to generate data with known parameters. Model \rightarrow Data

hance (chance)

Component of a probability model

- structure of the model
 - a priori assumptions:
- constant incidence rate
- parameters of the model
 - *size* of the incidence rate:
 - derived from data **conditional** on structure

hance (chance)

Chance (chance)

Statistics

The opposite of a probability models:

- the data is known
- want to find parameters
- this is called estimation
- ... mostly using maximum likelihood

Thus **statistical modelling** is how to estimate parameters from observed data. Data \rightarrow Model

Chance (chance)

Statistics — the workings

- Fix the **model** (structure)
- For any set of parameters we can generate data
- Find parameters that generates data that look most like the observed data
- Recall the notion of **random variables**:
 - Given model and parameter
 - we know the distribution of functions of data
- Essential distributions are Poisson and Normal (Gaussian) distributions

Chance (chance)

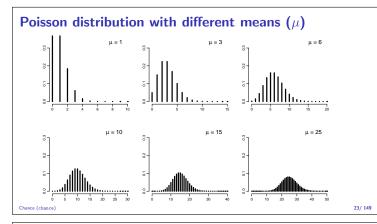
Poisson and Gaussian models

- ▶ **Poisson distribution**: simple probability model for number of cases *D* (in a fixed follow-up time, *Y*) with
- expectation (theoretical mean) $\mu = \lambda Y$,
- standard deviation $\sqrt{\mu}$
- When the expectation µ of D is large enough, the Poisson distribution resembles more and more the Gaussian or Normal distribution.

Chance (chance

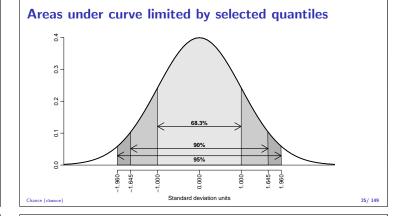
20/ 149

21/149



Normal (Gaussian) distribution

- common model for continuous variables
 symmetric and bell-shaped
 - symmetric and bell-sna
 has two parameters:
 - $-\mu = expectation or mean$
 - $-\sigma = \text{standard deviation}$
- Central limit theorem:
- A sum of many small independent quantities will follow a normal distribution
- Consequence:
- When we compute various functions based on our data we can approximate the distribution with the normal distribution
- ... so we just need to compute mean and standard deviation
 - the shape is fixed by the theory



Example: Observed incidence rate

- Model: incidence rate is constant over time
- Theoretical rate λ ,
- Empirical rate R = D/Y,
- Estimator of λ , $\hat{\lambda} = R$.
 - $\hat{\lambda} = R$ is a statistic, random variable:
 - its value varies from one study population ("sample") to another on hypothetical repetitions
 - ... namely other similar condition under which data could have been generated
 - \blacktriangleright its sampling distribution is (under the constant rate model & other conditions) a transformation of the Poisson distribution

Example: Observed incidence rate

- D approximately Poisson, mean λY , sd $\sqrt{\lambda Y}$
- R = D/Y scaled Poisson: mean: λ , sd: $\sqrt{\lambda Y}/Y = \sqrt{\lambda/Y}$
- Standard error of empirical rate R is estimated by replacing λ with R:

s.e.
$$(R) = \sqrt{\frac{\hat{\lambda}}{Y}} = \sqrt{\frac{R}{Y}} = \frac{\sqrt{D}}{Y} = R \times \frac{1}{\sqrt{D}}$$

- \Rightarrow Random error depends inversely on the number of cases.
- \Rightarrow s.e. of R is proportional to R.

Chance (chance)

Example: Observed incidence rate

- Use the central limit theorem:
- $\hat{\lambda} = R \sim \mathcal{N}(\lambda, \lambda/Y) = \mathcal{N}(\lambda, \lambda^2/D)$
- \Rightarrow Observed R is with 95% proability in the interval

$$(\lambda - 1.96 \times \lambda/\sqrt{D}; \lambda + 1.96 \times \lambda/\sqrt{D})$$

 \Rightarrow with 95% probability λ is in the interval

$$(R-1.96 \times R/\sqrt{D}; R+1.96 \times R/\sqrt{D})$$

▶ ...a 95% confidence interval for the rate.

Chance (chance)

Chance summary

- Observations vary systematically by known factors
- Observations vary randomly by unknown factors
- Probability model describes the random variation
- We observe random variables draws from a probability distribution
- Central limit theorem allows us to quantify the random variation
- ... and construct confidence interval

24/149

28/ 149

Inference

Bendix Carstensen & Esa Läärä

Nordic Summerschool of Cancer Epidemiology Danish Cancer Society / NCU,August 2019 / January 2020

http://BendixCarstensen.com/NSCE/2019

inference

30/ 149

31/ 149

32/149

Models and data

- Probability model can be used to generate data (by simulation) — from model to data
- Inference is the inverse:
- What model generated the data?
- from data to model
- ... if we know that we can say something sensible about disease process in the population

Inference (inference)

Models and data — model components

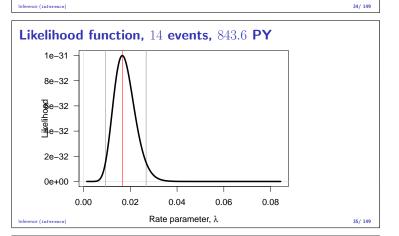
- External, a priori information on observations
 structure of the model
- quantitative parameter(s) within model structure
- only the latter is the target for inference

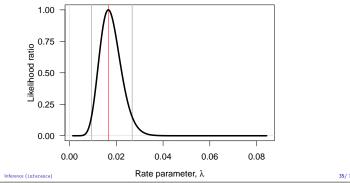
Probability of the data given the parameter:

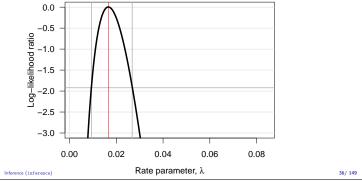
Assuming the rate (intensity) is constant, λ , the probability of observing 14 deaths in the course of 843.6 person-years:

$$\begin{split} \mathbf{P} \left\{ D = 14, \, Y = 843.6 | \lambda \right\} &= \lambda^D \mathbf{e}^{\lambda Y} \times K \\ &= \lambda^{14} \mathbf{e}^{\lambda \times 843.6} \times K \\ &= L(\lambda | \mathsf{data}) \end{split}$$

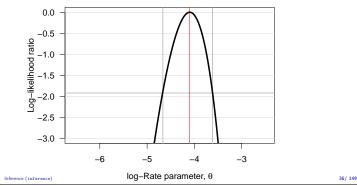
- \blacktriangleright Estimate of λ is where this function is as large as possible.
- Confidence interval is where it is not too far from the maximum







Log-likelihood function 14 events, 843.6 PY



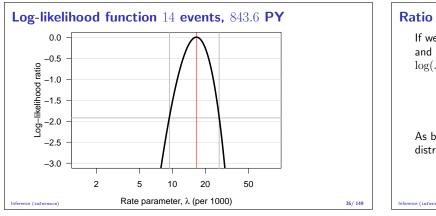
Statistical concepts

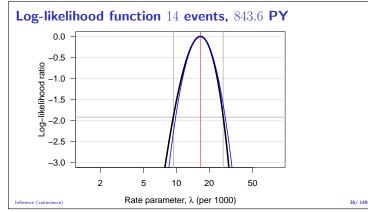
- Probability: parameters \rightarrow data
- Statistics: data \rightarrow parameter(estimate)s
- Notation:
 - Parameter denoted by a Greek letter, β
 - Estimator & estimate by the same Greek letter with "hat", $\hat{\beta}$
- Ex: Incidence rate:
 - Theoretical rate the rate in the model that could have generated data: λ
 - Estimator: $\widehat{\lambda} = R = D/Y$, empirical rate.
- ... but where did the D/Y come from?

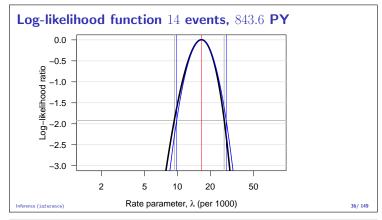
Inference (inference

Maximum likelihood principle

- ▶ Define your model (*e.g.* constant rate)
- Choose a parameter value
- How likely is it that
 - this model with
 - this parameter generated data
 - D (detaluce auto
- P {data|parameter}, P { $(d, y)|\lambda$ }
- Find the parameter value that gives the maximal probability of data
- Find the interval of parameter values that give probabilities not too far from the maximum.







Confidence interval for a rate

Based on the quadratic approximation to the normal density

▶ A 95% confidence interval for the log of a rate is:

$$\hat{\theta} \pm 1.96/\sqrt{D} = \log(\hat{\lambda}) \pm 1.96/\sqrt{D}$$

— the
$$1.96$$
 is from the normal distribution, that is what it is used for.

Take the exponential to get the confidence interval for the rate:

$$\hat{\lambda} \stackrel{\times}{\div} \underbrace{\exp(1.96/\sqrt{D})}_{\text{error factor.erf}}$$

— the probability that the theoretical rate λ is in this interval is 95%.

37/ 149

38/ 149

Example for a single rate

Suppose we have 14 deaths during 843.6 years of follow-up. The rate is computed as:

 $\hat{\lambda} = D/Y = 14/843.6 = 0.0165 = 16.5 \; {\rm per} \; {\rm 1000 \; years}$

The confidence interval is computed as:

$$\hat{\lambda} \stackrel{\times}{\div} \operatorname{erf} = 16.5 \stackrel{\times}{\div} \exp(1.96/\sqrt{14}) = (9.8, 28.0)$$

per 1000 person-years.

ce (inference)

Ratio of two rates

If we have observations of two rates λ_1 and λ_0 , based on (D_1, Y_1) and (D_0, Y_0) , the variance of the difference of the log-rates, $\log(\lambda_1) - \log(\lambda_0) = \log(RR)$, is:

$$\begin{aligned} \operatorname{var}(\log(\operatorname{RR})) &= \operatorname{var}(\log(\lambda_1/\lambda_0)) \\ &= \operatorname{var}(\log(\lambda_1)) + \operatorname{var}(\log(\lambda_0)) \\ &= 1/D_1 + 1/D_0 \end{aligned}$$

As before a 95% c.i. for the RR is then, using the normal distribution:

$$\operatorname{RR} \stackrel{\times}{\div} \underbrace{\exp\left(1.96\sqrt{\frac{1}{D_1} + \frac{1}{D_0}}\right)}_{\text{error factor}}$$

39/149

Difference of two rates

If we have observations of two rates λ_1 and λ_0 , based on (D_1, Y_1) and (D_0, Y_0) , the variance of the difference of the rates, $\lambda_1 - \lambda_0 = RD$, is:

$$\begin{aligned} \operatorname{ar}(\operatorname{RD}) &= \operatorname{var}(\lambda_1 - \lambda_0) \\ &= \operatorname{var}(\lambda_1) + \operatorname{var}(\lambda_0) \\ &= D_1/Y_1^2 + D_0/Y_0^2 \end{aligned}$$

As before a 95% c.i. for the ${\rm RD}$ is then, using the normal distribution:

$$\text{RD} \pm 1.96 \sqrt{\frac{D_1}{Y_1^2} + \frac{D_0}{Y_0^2}}$$

40/ 149

41/ 149

42/149

Example

ce (infer

Suppose we in group 0 have 14 deaths during 843.6 years of follow-up in one group, and in group 1 have 28 deaths during 632.3 years.

The rate-ratio is computed as:

RR =
$$\lambda_1/\lambda_0 = (D_1/Y_1)/(D_0/Y_0)$$

= $(28/632.3)/(14/843.6) = 0.0443/0.0165 = 2.669$

The 95% confidence interval is computed as:

$$\hat{\mathrm{RR}} \stackrel{\times}{\div} \mathrm{erf} = 2.669 \stackrel{\times}{\div} \exp(1.96\sqrt{1/14 + 1/28})$$
$$= 2.669 \stackrel{\times}{\div} 1.899 = (1.40, 5.07)$$

Inference (inference

Estimating a rate using R

Poisson likelihood for one rate, based on $14 \ {\rm events}$ in $843.6 \ {\rm PY}:$

> library(Epi)
> D <- 14 ; Y <- 843.6
> m1 <- glm(D ~ 1, offset=log(Y/1000), family=poisson)
> ci.exp(m1)

exp(Est.) 2.5% 97.5% (Intercept) 16.59554 9.82875 28.02107

Conventional description for mortality rates: "We used Poisson regression with log-person-years as offset..." But really both D and Y are outcomes (random variables)

Inference (inference)

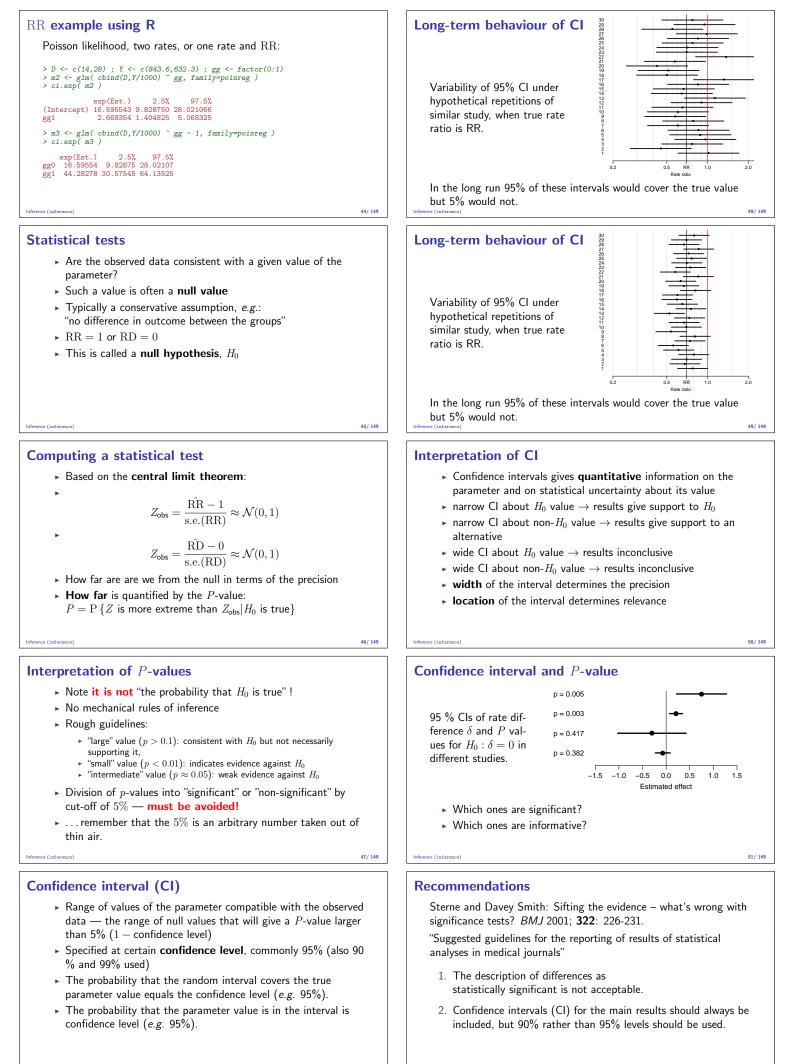
Estimating a rate using R

But really both D and Y are outcomes (random variables)

> mm <- glm(cbind(D,Y/1000) ~ 1, family=poisreg)
> ci.exp(mm)

exp(Est.) 2.5% 97.5% (Intercept) 16.59554 9.82875 28.02107

... then you write: "We used multiplicative Poisson regression for events and person-years..."



Recommendations

- 3. Cls should not be used as a surrogate means of examining significance at the conventional 5% level.
- 4. Interpretation of CIs should focus on the implications (clinical importance) of the range of values in the interval.
- 5. In observational studies it should be remembered that considerations of confounding and bias are at least as important as the issues discussed in this paper.

Inference (inference)

53/ 149

Analysis

Bendix Carstensen & Esa Läärä

Nordic Summerschool of Cancer Epidemiology Danish Cancer Society / NCU,August 2019 / January 2020

http://BendixCarstensen.com/NSCE/2019

analysis

Crude analysis

- Single incidence rate
- Rate ratio in cohort study
- Rate difference in cohort study
- Rate ratio in case-control study
- Analysis of proportions
- Extensions and remarks

Analysis (analysi

54

55/149

56/149

Single incidence rate

- **Model**: Events occur with constant rate λ .
- **Parameter** of interest:

 $\lambda = true rate in target population$

• Estimator: $\hat{\lambda} = R$, the empirical rate in a "representative sample" from the population:

$$R = \frac{D}{Y} = \frac{\text{no. of cases}}{\text{person-time}}$$

• Standard error of rate: $SE(R) = R/\sqrt{D}$.

Analysis (analysis)

Example using R

Poisson likelihood for one rate, based on 14 events in 843.6 PY:

```
> library( Epi )
> D <- 14; Y <- 843.6
> m1 <- g1m( D ~ 1, offset=log(Y/1000), family=poisson)
> ci.exp( m1 )
```

exp(Est.) 2.5% 97.5% (Intercept) 16.59554 9.82875 28.02107

But really both D and Y are outcomes (random variables)

> mm <- glm(cbind(D,Y/1000) ~ 1, family=poisreg)
> ci.exp(mm)

exp(Est.) 2.5% 97.5% (Intercept) 16.59554 9.82875 28.02107

```
Analysis (analysis)
```

Rate ratio in cohort study

Question: What is the rate ratio of cancer in the exposed as compared to the unexposed group?

Model Cancer incidence rates constant in both groups, values $\lambda_1,\,\lambda_0$

Parameter of interest is ratio of theoretical rates:

 $\rho = \frac{\lambda_1}{\lambda_0} = \frac{\text{rate among exposed}}{\text{rate among unexposed}}$

Null hypothesis $H_0: \rho = 1$: exposure has no effect.

Analysis (analysis)

Rate difference in cohort study

Question: What is the rate difference of cancer in the exposed as compared to the unexposed group?

Model Cancer incidence rates constant in both groups, values $\lambda_1, \; \lambda_0$

Parameter of interest is difference between theoretical rates:

 $\delta = \lambda_1 - \lambda_0 = rate among exposed-rate among unexposed$

Null hypothesis $H_0: \delta = 0$: exposure has no effect.

RR example using R

Poisson likelihood, two rates, or one rate and RR:

```
> D <- c(14,28) ; Y <- c(843.6,632.3) ; gg <- factor(0:1)
> m2 <- glm( cbind(D,Y/1000) ~ gg, family=poisreg )
> ci.exp( m2 )
```

```
exp(Est.) 2.5% 97.5%
(Intercept) 16.595543 9.828750 28.021066
gg1 2.668354 1.404825 5.068325
```

```
> m3 <- glm( cbind(D,Y/1000) ~ gg - 1, family=poisreg )
> ci.exp( m3 )
exp(Fst.) 2.5% 97.5%
```

```
exp(Est.)2.5%97.5%gg016.595549.8287528.02107gg144.2827830.5754564.13525
```

nalysis (analysis)

RD example using R

Poisson likelihood, two rates, or one rate and $\operatorname{RD}:$

```
> a2 <- glm( cbind(D,Y/1000) ~ gg, family=poisreg(link='identity') )
> ci.exp( m2, Exp=FALSE )
```

```
Estimate 2.5% 97.5%
(Intercept) 2.8091342 2.2853118 3.332957
gg1 0.9814617 0.3399129 1.623010
```

```
g1 0.9814617 0.3399129 1.623010
```

```
> a3 <- glm( cbind(D,Y/1000) ~ gg - 1, family=poisreg(link='identity') )
> ci.exp( m3, Exp=FALSE )
```

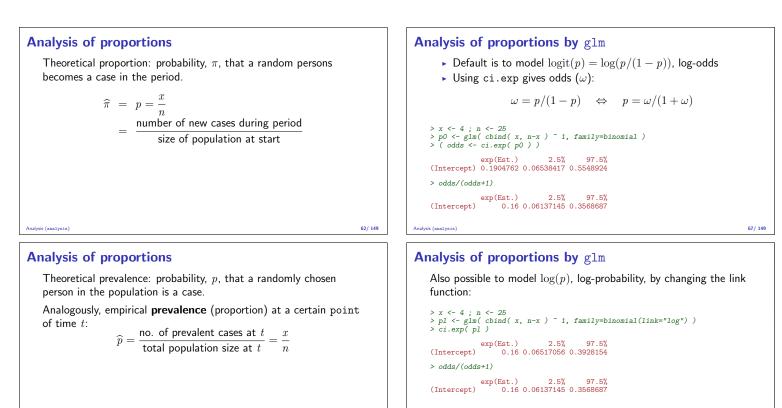
```
Estimate 2.5% 97.5%
gg0 2.809134 2.285312 3.332957
gg1 3.790596 3.420197 4.160994
```

You do it (both RR and RD): What is the interpretation of the parameters?

60/ 149

Analysis of proportions

- Suppose we have cohort data with a fixed risk period, i.e. all subjects are followed over the same period and therefore has the same length, as well as no losses to follow-up (no censoring).
- In this setting the **risk**, π, of the disease over the risk period is estimated by simple
- incidence proportion (often called "cumulative incidence" or even "cumulative risk")



63/149

We see that the estimated probability is the same but the confidence limits are slightly different.

Rate ratio in case-control study

Parameter of interest: $\rho = \lambda_1 / \lambda_0$ - same as in cohort study.

Case-control design:

- incident cases occurring during a given period in the source population are collected
- controls are obtained by incidence density sampling from those at risk in the study base
- exposure is ascertained in cases and chosen controls.

Rate ratio in case-control study

Summarized data on outcome:

Exposure	Cases	Controls
yes	D_1	C_1
no	D_0	C_0

- Can we directly estimate the rates λ_0 and λ_1 from this?
- and the ratio of these?
- NO and YES (respectively)
- Rates are not estimable from a case-control design

Rate ratio in case-control study

▶ If controls are representative of the person- years in the population, their division into exposure groups estimates the exposure distribution of the person-years:

$$C_1/C_0 \approx Y_1/Y_0$$

Hence, we can estimate the RR by the OR:

$$\widehat{\mathrm{RR}} = \mathrm{OR} = \frac{D_1/Y_1}{D_0/Y_0} = \frac{D_1/D_0}{Y_1/Y_0} \approx \frac{D_1/D_0}{C_1/C_0} = \frac{D_1/C_1}{D_0/C_0}$$

 \Rightarrow RR estimated by the ratio of the case-control ratios (D/C)

... but of course there is a penalty to pay...

```
66/149
```

▶ Use confidence limits based on symmetric (normal) log(OR):

- Compute error factor: $EF = \exp(1.96/\sqrt{np(1-p)})$
- then use to compute confidence interval:

 $p/(p+(1-p) \stackrel{\times}{\div} \text{EF})$

- Observed x = 4 out of n = 25: $\hat{p} = 4/25 = 0.16$
- ▶ Naive CI: $0.16 \pm 1.96 \times \sqrt{0.16 \times 0.84/25} = [0.016; 0.304]$
- Better: $EF = \exp(1.96/\sqrt{25 \times 0.16 \times 0.84}) = 2.913$

```
CI: 0.16/(0.16 + (0.84 \div 2.913)) = [0.061; 0.357]
```

- CI : $p \pm 2 \times SE(p)$ are within [0; 1] if x > 4/(1 + 4/n)• This is always true if x > 3 (if x > 2 for n < 12)
- — but the approximation is not good for x < 10

> rbind(ci(3,11:13),ci(2,3:5),ci(1,1:2))

Proportions (unlike rates) are dimensionless quantities ranging

 $SE(p) = \sqrt{\frac{p(1-p)}{n}} = p \times \sqrt{\frac{(1-p)}{x}}$

Analysis of proportions based on binomial distribution

Standard error for an estimated proportion:

Depends also inversely on x!

but not a good approximation...

x n p lo hi 3 11 0.2727 0.0042 0.5413 3 12 0.250 0.0000 0.5000 3 13 0.2308 -0.0029 0.4645 2 3 0.6667 0.1223 1.2110 2 4 0.5000 0.0000 1.0000 2 5 0.4000 -0.0382 0.8382 [2,] [3,] [4,] [5,] [6,] .0000 1.0000 2 0 5000 -0 2071 1 207

Analysis of proportions

Analysis of proportions

from 0 to 1

Analysis of proportions

65/149

71/ 149

70/ 149

Rate ratio from case-control study

Standard error for $\log({\rm OR}),$ 95% error factor and approximate CI for ${\rm OR}:$

$$SE(log(OR)) = \sqrt{\frac{1}{D_1} + \frac{1}{D_0} + \frac{1}{C_1} + \frac{1}{C_0}}$$
$$EF = exp(1.96 \times SE(log(OR)))$$
$$CI = [OR/EF, OR \times EF]$$

NB. Random error again depends inversely on numbers of cases **and** controls — the penalty, in the two exposure groups.

Analysis (analysis

Example: mobile phone use and brain cancer

(Inskip et al. NEJM 2001; 344: 79-86).

Daily use	Cases	Controls
$\geq 15 \text{ min}$	35	51
no use	637	625

The $\rm RR$ associated with use of mobile phone longer than 15 min (vs. none) is estimated by the $\rm OR$:

$$OR = \frac{35/51}{637/625} = 0.67$$

Analysis (analysis)

Example: mobile phone use and brain cancer

 $\rm SE$ for $\log(\rm OR),$ 95% error factor and approximate CI for $\rm OR:$

$$SE(log(OR)) = \sqrt{\frac{1}{35} + \frac{1}{637} + \frac{1}{51} + \frac{1}{625}} = 0.2266$$

$$EF = exp()1.96 \times 0.2266) = 1.45$$

$$CI = [0.67/1.45, 0.67 \times 1.45] = [0.43, 1.05]$$

N.B. model-adjusted estimate (with 95% CI):

$$OR = 0.6[0.3, 1.0]$$

74/149

75/149

OR from binomial model

us the estimated OR — same as in the hand-calculation above.

```
This is called logistic regression
```

Analysis (analysi:

Extensions and remarks

- This extends to crude analyses of exposure variables with several categories when each exposure category is separately compared to a reference group
- Evaluation of possible monotone trend in the parameter over increasing levels of exposure: estimation of regression slope
- Crude analysis is insufficient in observational studies:
- control of confounding needed

Short recap

Bendix Carstensen & Esa Läärä

Nordic Summerschool of Cancer Epidemiology Danish Cancer Society / NCU,August 2019 / January 2020

http://BendixCarstensen.com/NSCE/2019

Rates

72/149

73/ 149

- dimension time⁻¹
- estimated as λ̂ = D/Y
 confidence interval for λ:
 multiplicative λ[×]/_÷ erf
 - additive $\lambda \pm EM$

hort recap (recap)

Practical model for rates

```
> library( Epi )
> D <- 14 ; Y <- 843.6/1000 ; D/Y
[1] 16.59554
> m0 <- glm( D ~ 1, offset=log(Y), family=poisson )
> ci.exp( m0 )
```

```
exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107
```

Better way:

> mm <- glm(cbind(D,Y) ~ 1, family=poisreg)
> ci.exp(mm)

```
exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107
```

Short recap (re

Allows error factor and margin too:

```
> mm <- glm( cbind(D,Y) ~ 1, family=poisreg )
> ci.exp( mm )
```

exp(Est.) 2.5% 97.5% (Intercept) 16.59554 9.82875 28.02107

With error margin (conf.int. on rate-scale)

> ma <- glm(cbind(D,Y) ~ 1, family=poisreg(link="identity"))
> ci.exp(ma, Exp=FALSE)

Estimate 2.5% 97.5% (Intercept) 16.59554 7.902426 25.28866

Short recap (recap)

Short recap (recap)

Rate ratio and rate difference

```
> mR <- glm( cbind(D,Y) ~ gg-1, family=poisreg )
> ci.exp( mR )
```

```
exp(Est.) 2.5% 97.5%
gg0 16.59554 9.82875 28.02107
gg1 44.28278 30.57545 64.13525
```

recap

77/ 149

78/ 149

Rate ratio and rate difference

```
> ma <- glm( cbind(D,Y) ~ gg, family=poisreg(link="identity") )
> ci.exp( ma, Exp=FALSE )
Estimate 2.5% 97.5%
(Intercept) 16.59554 7.902426 25.28866
gg1
27.68723 9.123703 46.25077
> mA <- glm( cbind(D,Y) ~ gg-1, family=poisreg(link="identity") )
> ci.exp( mA, Exp=FALSE )
```

Estimate 2.5% 97.5% gg0 16.59554 7.902426 25.28866 gg1 44.28278 27.880508 60.68505

Short recap (recap)

81/149

Models

- Probability model: Data generator, model to data
- Statistical analysis: From data to model (parameters)
- Maximum likelihood is the basis for parameter estimation
- But only for given model
- Normal approximation provides confidence intervals
- either for log-rates, rates, RR, RD, OR
- ▶ Beware of *P*-values

Short recap (recap)

82/149

strat

Stratified analysis

Bendix Carstensen & Esa Läärä

Nordic Summerschool of Cancer Epidemiology Danish Cancer Society / NCU,August 2019 / January 2020

http://BendixCarstensen.com/NSCE/2019

Stratified analysis

- Shortcomings of crude analysis
- Effect modification
- Confounding
- Steps of stratified analysis
- Estimation of rate ratio
- Matched case-control study

Stratified analysis (strat)

83/149

Shortcomings of crude analysis

- the rate ratio for the risk factor of interest is not constant, but varies by other determinants of the disease
- heterogeneity of the comparative parameter or effect modification
- the exposure groups are not comparable w.r.t. other determinants of disease
- \Rightarrow bias in comparison or **confounding**
- ⇐ exposure varies across other determinants

Models for outcome with effects of primary variable ("exposure")

- secondary variable ("stratum")
- effect modification is the interaction model exposure×stratum exposure with different effects across strata
- confounding is the main-effects model exposure+stratum exposure with same effect across strata

Stratified analysis (strat)

85/149

86/149

Handling for effect modification and confounding

- Stratification of data by potentially modifying and/or confounding factor(s) & use of adjusted estimators
- Conceptually simpler, and technically less demanding approach is regression modeling
- ► Regression modeling is feasible because we have computers
- ... adjustment estimators are left-overs from teachers taught before the advent of computers (*e.g.* BxC & EL...)

Stratified analysis (strat)

Effect modification

Incidence rates (per $10^5\ {\rm PY})$ of lung cancer by occupational asbestos exposure and smoking:

Asbestos	Smokers	Non-smokers
exposed	600	60
unexposed	120	12
Rate ratio	5	5
Rate difference	480	48

Is the effect of asbestos exposure the same or different in smokers than in non-smokers?

Stratified analysis (strat)

Effect modification (cont'd)

Depends how the effect is measured:

- Rate ratio: constant or **homogeneous**
- Rate difference: heterogeneous:
 - The value of rate difference is modified by smoking.

Smoking is thus an **effect modifier** of asbestos exposure on the absolute scale (rates) but **not** on the relative scale (log-rates)

Stratified analysis (str

Incidence of CHD (per 10^3 PY) by risk factor E and age:

Factor E	Young	Old
exposed unexposed	4 1	9 6
rate ratio	4	1.5
rate difference	3	3

Rate ratio modified by age

- Rate difference not modified.
- There is no such thing as interaction (effect modification) without reference to the scale of the effect (e.g. additive or multiplicative)

84/149

88/149

nalysis (strat)

sis (strat

Handling effect modification

- In real examples, comparative parameters are more or less heterogeneous across categories of other determinants of disease
- This is termed interaction or effect modification
- The effect of X depend on the level of Z
- The effect of X cannot be described by a single number,
- ... it is a function of Z

atified analysis (strat)

90/ 149

Actual example

Age-specific CHD mortality rates (per 10^4 PY) and numbers of cases (D) among British male doctors by cigarette smoking, rate differences (RD) and rate ratios (RR) (Doll and Hill, 1966).

	Smo	kers	Non-si	Non-smokers		
Age (y)	rate	D	rate	D	RD	$\mathbf{R}\mathbf{R}$
35-44	6.1	32	1.1	2	5	5.7
45-54	24	104	11	12	13	2.1
55-64	72	206	49	28	23	1.5
65-74	147	186	108	28	39	1.4
75-84	192	102	212	31	-20	0.9
Total	44	630	26	101	18	1.7

analysis (strat)

91/149

CHD and smoking

Both comparative parameters appear heterogeneous:

- RD increases by age (at least up to 75 y)
- ▶ RR decreases by age

No single-parameter (common rate ratio or rate difference) comparison captures adequately the joint pattern of rates.

Stratified	analysis	(strat

Evaluation of modification

- Modification or its absence is an inherent property of the phenomenon:
- cannot be removed or "adjusted" for
- it depends on the scale on which it is measured
- Before looking for effect-modification:
 - what scale are we using for description of effects
 - how will we report the modified effects (the interaction)

d analysis (strat

93/149

Evaluation of modification (cont'd)

- statistical tests for heterogeneity insensitive and rarely helpful
- \blacktriangleright \Rightarrow tempting to assume "no essential modification":
- + simpler analysis and result presentation,
- misleading if essential modification present.

CHD and smoking example with R I > library(Epi) > R <- c(6.1, 24, 72,147,192, 1.1,11,49,108,212) > D <- c(32,104,206,186,102, 2 ,12,28, 28, 31) > Y <- D/R # risk time in units of 10⁴ PY > smk <- factor(rep(1:2,each=5), labels=c("Smoke", "non-Sm")) > age <- factor(rep(seg(35,75,10),2))</pre> > data.frame(D,Y,age,smk)

Stratified analysis (strat)

95/ 149

96/149

CHD and smoking example with R II

<pre>1 32 5.2459016 35 Smoke 2 104 4.333333 45 Smoke 3 206 2.8611111 55 Smoke 4 186 1.2653061 65 Smoke 5 102 0.5312500 75 Smoke 6 2 1.8181818 35 non-Sm 7 12 1.0909091 45 non-Sm 8 28 0.5714286 55 non-Sm 9 28 0.2592593 65 non-Sm 10 31 0.1462264 75 non-Sm > ma <- glm(cbind(D,Y) ~ age + smk, family=poisreg) > mi <- update(ma, .~. + age:smk) # add the interaction > anova(ma, mi, test="Chisq")</pre>		D	Y	age	smk		
<pre>3 206 2.861111 55 Smoke 4 186 1.2653061 65 Smoke 5 102 0.5312500 75 Smoke 6 2 1.8181818 35 non-Sm 7 12 1.0909091 45 non-Sm 8 28 0.5714286 55 non-Sm 9 28 0.2592593 65 non-Sm 10 31 0.1462264 75 non-Sm > ma <- glm(cbind(D,Y) ~ age + smk, family=poisreg) > mi <- update(ma, . ~ . + age:smk) # add the interaction</pre>	1	32	5.2459016	35	Smoke		
<pre>4 186 1.2653061 65 Smoke 5 102 0.5312500 75 Smoke 6 2 1.8181818 35 non-Sm 7 12 1.0909091 45 non-Sm 8 28 0.5714286 55 non-Sm 9 28 0.2592593 65 non-Sm 10 31 0.1462264 75 non-Sm > ma <- glm(cbind(D,Y) ~ age + smk, family=poisreg) > ma <- glm(cbind(D,Y) ~ age + smk, family=poisreg) > ma <- yupdate(ma, . ~ . + age:smk) # add the interaction</pre>	2	104	4.3333333	45	Smoke		
<pre>5 102 0.5312500 75 Smoke 6 2 1.818181 35 non-Sm 7 12 1.0909091 45 non-Sm 8 28 0.5714286 55 non-Sm 9 28 0.2592593 65 non-Sm 10 31 0.1462264 75 non-Sm > ma <- glm(cbind(D,Y) ~ age + smk, family=poisreg) > mi <- update(ma, . ~ . + age:smk) # add the interaction</pre>	3	206	2.8611111	55	Smoke		
<pre>6 2 1.8181818 35 non-Sm 7 12 1.0909091 45 non-Sm 8 28 0.5714286 55 non-Sm 9 28 0.2592593 65 non-Sm 10 31 0.1462264 75 non-Sm > ma <- glm(cbind(D,Y) ~ age + smk, family=poisreg) > mi <- update(ma, . ~ . + age:smk) # add the interaction</pre>	4	186	1.2653061	65	Smoke		
<pre>7 12 1.0909091 45 non-Sm 8 28 0.5714286 55 non-Sm 9 28 0.2592593 65 non-Sm 10 31 0.1462264 75 non-Sm > ma <- glm(cbind(D,Y) ~ age + smk, family=poisreg) > mi <- update(ma, . ~ . + age:smk) # add the interaction</pre>	5	102	0.5312500	75	Smoke		
<pre>8 28 0.5714286 55 non-Sm 9 28 0.2592593 65 non-Sm 10 31 0.1462264 75 non-Sm > ma <- glm(cbind(D,Y) ~ age + smk, family=poisreg) > mi <- update(ma, . ~ . + age:smk) # add the interaction</pre>	6	2	1.8181818	35	non-Sm		
<pre>9 28 0.2592593 65 non-Sm 10 31 0.1462264 75 non-Sm > ma <- glm(cbind(D,Y) ~ age + smk, family=poisreg) > mi <- update(ma, . ~ . + age:smk) # add the interaction</pre>	7	12	1.0909091	45	non-Sm		
<pre>10 31 0.1462264 75 non-Sm > ma <- glm(cbind(D,Y) ~ age + smk, family=poisreg) > mi <- update(ma, . ~ . + age:smk) # add the interaction</pre>							
> ma <- glm(cbind(D,Y) ~ age + smk, family=poisreg) > mi <- update(ma, . ~ . + age:smk) # add the interaction	9	28	0.2592593	65	non-Sm		
> mi <- update(ma, . ~ . + age:smk) # add the interaction	10	31	0.1462264	75	non-Sm		
	> п	ni <-	- update(i	ma,	. ~ . + ag		lon

CHD and smoking example with R III Analysis of Deviance Table

Model 1: cbind(D, Y) ~ age + smk Model 2: cbind(D, Y) ~ age + smk + age:smk Resid. Df Resid. Dev Df Deviance Pr(>Chi) 11.993 0.000 4 11.993 0.0174 0 > aa <- glm(cbind(D,Y) ~ age + smk, family=poisreg(link='identity'))
> ai <- update(ma, . ~ . + age:smk) # add the interaction
> anova(aa, ai, test="Chisq") Analysis of Deviance Table Model 1: cbind(D, Y) ~ age + smk Model 2: cbind(D, Y) ~ age + smk + age:smk Resid. Df Resid. Dev Df Deviance Pr(>Chi) 1 4 7.7434 2 6000 4 7.7434 0 1014

0 0.0000 4 7.7434 0.1014

Confounding - operation example

Observational clinical study with comparison of success of treatment between two types of operation for treating renal calculi:

- OS: open surgery (invasive)
- PN: percutaneous nephrolithotomy (non-invasive)

Treatment	Pts	Op. OK	% OK	%-diff.
OS	350	273	78	
PN	350	290	83	+5

PN appears more successful than OS?

lysis (strat)

Operation example

Results stratified by initial diameter size of the stone:

Size	Treatment	Pts	Op. OK	% OK	%-diff.
< 2 cm:	OS PN	87 270	81 235	93 87	-6
≥ 2 cm:	OS PN	263 80	192 55	73 69	-4

OS seems more succesful in both subgroups. Is there a paradox here?

94/ 149

Operation example

- ► Treatment groups are not comparable w.r.t. initial size.
- Size of the stone (SS) is a confounder of the association between operation type and success:
- $1\,$ a determinant of outcome (success), based on external knowledge,
- $2\,$ statistically associated with operation type in the study population,
- 3 not causally affected by operation type.

Stratified analysis (strat)

Operation example

- ► Instance of "confounding by indication":
 patient status affects choice of treatment,
 ⇒ bias in comparing treatments.
- This bias is best avoided in planning:
- randomized allocation of treatment.

Stratified analysis (strat)

Grey hair and cancer incidence

	6		D	D :	
Age	Gray hair	Cases	$\substack{P-years\\\times1000}$	Rate /1000 y	RR
Total	yes	66	25	2.64	2.2
	no	30	25	1.20	
Young	yes no	6 11	10 20	0.60 0.55	1.09
Old	yes no	60 19	15 5	4.0 3.8	1.05

Observed crude association nearly vanishes after controlling for age.

Stratified analysis (strat)

Means for control of confounding

Design:

- Randomization
- Restriction
- Matching

Stratified analysis (strat)

Means for control of confounding (cont'd)

Analysis:

- Stratification
- Regression modeling

Only randomization can remove confounding due to **unmeasured** factors.

Other methods provide partial removal, but **residual** confounding may remain.

Steps of stratified analysis

- Stratify by levels of the potential confounding/modifying factor(s)
- Compute stratum-specific estimates of the effect parameter (e.g. RR or RD)
- Evaluate similarity of the stratum-specific estimates by "eye-balling" or test of heterogeneity.

Stratified analysis (strat)

100/ 149

101/149

106/149

Steps of stratified analysis (cont.)

- If the parameter is judged to be homogeneous enough, calculate an adjusted summary estimate.
- If effect modification is judged to be present:
 - report stratum-specific estimates with Cls,
 - if desired, calculate an adjusted summary estimate by appropriate standardization — (formally meaningless).

Stratified analysis (strat)

Estimation of rate ratio

- Suppose that the rate ratio RR is sufficiently homogeneous across strata (no modification), but confounding is present.
- Crude RR estimator is biased.
- Adjusted summary estimator, controlling for confounding, must be used.
- These estimators are weighted averages of stratum-specific estimators.

Stratified analysis (strat)

Adjusted summary estimators

Different weighting methods:

- maximum likelihood (ML)
- weighted least squares (WLS)
- Mantel-Haenszel (MH) weights
- (direct) standardization by external standard population (CMF)
- standardized morbidity ratio (SMR)

Preferred method in analysis: ML Useful method in simple descriptive: CMF / SMR $\,$

itratified analysis (strat)

Gray hair & cancer

> D <- c(6,11,60,19)
> Y <- c(10,20,15,5)
> age <- factor(c("Young", "Young", "Old", "Old"))
> hair <- factor(c("Gray", "Col", "Gray", "Col"))
> data.frame(D, Y, age, hair)
D Y age hair
1 6 10 Young Gray
2 11 20 Young Col
3 60 15 Old Gray
4 19 5 Old Col

103/ 149

110/ 149

Case-control study of Alcohol and oesophageal cancer

- ► Tuyns et al. 1977, see Breslow & Day 1980,
- ▶ 205 incident cases,
- 770 unmatched population controls,
- Risk factor: daily consumption of alcohol.
- Crude summary:

$\begin{array}{l} {\rm Exposure} \\ \geq 80 ~{\rm g/d} \end{array}$	Cases	Controls	OR
yes	96	109	5.64
no	104	666	

Stratified analysis (strat)

Stratified analysis (strat)

111/ 149

112/ 149

113/ 149

114/ 149

Crude analysis of CC-data

<pre>> Ca <- c(96,104) > Co <- c(109,666) > Ex <- factor(c(">80","<80")) > data.frame(Ca, Co, Ex)</pre>	
Ca Co Ex 1 96 109 >80 2 104 666 <80	
<pre>> m0 <- glm(cbind(Ca,Co) ~ Ex, family=binomial) > round(ci.exp(m0), 2)</pre>)
exp(Est.) 2.5% 97.5% (Intercept) 0.16 0.13 0.19 Ex>80 5.64 4.00 7.95	

The odds-ratio of oesophageal cancer, comparing high vs. low alcohol consumption is 5.64(4.00; 7.95)

Stratification by age

-) -8-					
	Exposure				
Age	$\ge 80 \text{ g/d}$	Cases	Controls	EOR	
25-34	yes	1	9	∞	
	no	0	106		
35-44	yes	4	26	5.05	
	no	5	164		
45-54	yes	25	29	5.67	
	no	21	138		
55-64	yes	42	27	6.36	
	no	34	139		
65-74	yes	19	18	2.58	
	no	36	88		
75-84	yes	5	0	∞	
	no	8	31		

NB! Selection of controls: inefficient study Should have employed stratified sampling by age.

Stratified analysis

```
> ca <- c(1, 0, 4, 5, 25, 21, 42, 34, 19, 36, 5, 8 )
> co <- c(9, 106, 26, 164, 29, 138, 27, 139, 18, 88, 0, 31)
> alc <- rep( c(">>80", "K80", 6)
> age <- factor( rep( seq(25, 75, 10), each=2 ) )
> data.frame( ca, co, alc, age )
ca co alc age
1 1 9 > 80 25
2 0 106 <80 25
3 4 26 > 80 35
4 5 164 <80 35
5 22 29 > 80 45
5 24 45 164 <80 35
5 25 29 > 80 45
5 24 27 > 80 55
9 19 18 > 80 65
10 36 88 <80 65
11 5 0 > 80 75
12 8 31 <80 75
truthed makysi (trrt)</pre>
```


115/ 149

116/ 149

118/ 149

119/ 149

Stratified analysis

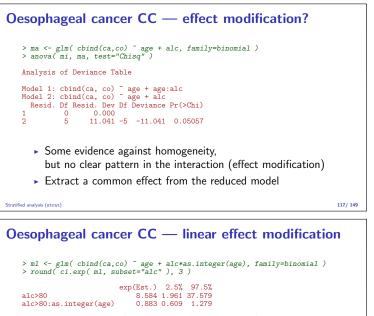
... only the relevant parameters:

> round(ci.exp(mi, subset="alc"), 3)

	exp(Est.)	2.5%	97.5%
age25:alc>80	8.547416e+10	0.000	Inf
age35:alc>80	5.046000e+00	1.272	20.025
	5.665000e+00		
age55:alc>80	6.359000e+00	3.449	11.726
	2.580000e+00		5.475
age75:alc>80	1.755246e+11	0.000	Inf

- ► The age-specific ORs are quite variable
- Random error in some of them apparently large
- No clear pattern in the interaction

Stratified analysis (stra



> ma <- glm(cbind(ca,co) ~ age + alc, family=binomial)
> anova(mi, ml, ma, test="Chisq")[1:3,1:5]

```
        Resid. Df Resid. Dev Df Deviance Pr(>Chi)

        1
        0
        0.000

        2
        4
        10.609 -4
        -10.6093
        0.03132

        3
        5
        11.041 -1
        -0.4319
        0.51107
```

Evidence against linear interaction (OR decreasing by age)

```
Stratified analysis (strat)
```

Oesophageal cancer CC — effect modification?

```
> mn <- glm( cbind(ca,co) ~ alc , family=binomial )
> round( ci.exp( mn, subset="alc" ), 2 )

exp(Est.) 2.5% 97.5%
alc>80 5.64 4 7.95
> ma <- glm( cbind(ca,co) ~ age + alc, family=binomial )
> round( ci.exp( ma, subset="alc" ), 2 )

exp(Est.) 2.5% 97.5%
alc>80 5.31 3.66 7.7

    No clear interaction (effect modification) detected
    Crude OR: 5.64(4.00; 7.95)
    Adjusted OR: 5.31(3.66; 7.70)
    Note: No test for confounding exists.
```

Stratified analysis

Regression models

Bendix Carstensen & Esa Läärä

Nordic Summerschool of Cancer Epidemiology Danish Cancer Society / NCU,August 2019 / January 2020

http://BendixCarstensen.com/NSCE/2019

regress

Regression modeling

- Limitations of stratified analysis
- Log-linear model for rates
- Additive model for rates
- Model fitting
- Problems in modeling

Log-linear model

Model parameters

 $\begin{array}{l} \alpha \ = \log(\lambda_0) = \text{intercept, log-baseline rate } \lambda_0 \\ (\text{i.e. rate when } X = Z = \cdots = 0) \\ \beta \ = \log(\rho) = \text{slope,} \\ \text{change in } \log(\lambda) \text{ for unit change in } X, \\ \textbf{adjusting for the effect of } Z \ (\& \ U, V, \dots) \\ e^\beta \ = \rho = \text{rate ratio for unit change in } X. \end{array}$

No effect modification w.r.t. rate ratios assumed in this model.

```
on models (regress)
```

Lung cancer incidence, asbestos exposure and smoking

Dichotomous explanatory variables coded:

- X =asbestos: 1: exposed, 0: unexposed,
- Z =smoking: 1: smoker, 0: non-smoker

Log-linear model for theoretical rates

Log-linear model: Variables

Smoke

600

120

combination of exposure and smoking

Ashestos

exposed

unexposed

Rates

Non-sm

60

12

Note: There will be 4 lines in the dataset, one for each

 $\log(\lambda(X,Z)) = 2.485 + 1.609X + 2.303Z$

120/ 149

Limitations of stratified analysis

- Multiple stratification:
 - many strata with sparse data
 - loss of precision
- Continuous risk factors must be categorized
 - loss of precision
 - arbitrary (unreasonable) assumptions about effect shape
- ► More than 2 exposure categories:
 - ► Pairwise comparisons give inconsistent results
 - (non)Linear trends not easily estimated

121/ 149

Limitations

- Joint effects of several risk factors difficult to quantify
- Matched case-control studies: difficult to allow for confounders & modifiers not matched on.

These limitations may be overcome to some extent by regression modeling.

Key concept: statistical model

Regression models (regress)

Log-linear model for rates

Assume that the theoretical rate λ depends on **explanatory variables** or **regressors** X, Z (& U, V, ...) according to a **log-linear** model

$$\log(\lambda(X, Z, \dots)) = \alpha + \beta X + \gamma Z + \dots$$

Equivalent expression, multiplicative model:

$$\lambda(X, Z, \dots) = \exp(\alpha + \beta X + \gamma Z + \dots)$$
$$= \lambda_0 \rho^X \tau^Z \cdots$$

Regression models (regress)

123/ 149

122/ 149

Entering the data:

Lung cancer, asbestos and smoking

— note that the data are artificial assuming the no. of PY among asbestos exposed is $1/4~{\rm of}$ that among non-exposed

```
> D <- c( 150, 15, 120, 12 ) # cases
> Y <- c( 25, 25, 100, 100 ) / 100 # PY (100,000s)
> asb <- c( 1, 1, 0, 0 ) # Asbestos exposure
> smk <- c( 1, 0, 1, 0 ) # Smoking
> cbind( D, Y, asb, smk )
D Y asb smk
[1,] 150 0.25 1 1
[2,] 15 0.25 1 0
[3,] 120 1.00 0 1
[4,] 12 1.00 0 0
```

Lung cancer, asbestos and smoking

- Regression modeling
- Multiplicative (default) Poisson model
- ► 2 equivalent approaches
 - D response, log(Y) offset (mostly used in the literature)
 - cbind(D,Y) response, family=poisreg
 - ... the latter approach also useful for **additive** models

127/149

124/ 149

125/149

Variables

Z

Smoke

1

1

Non-sm

0

0

126/ 149

Х

Smoke

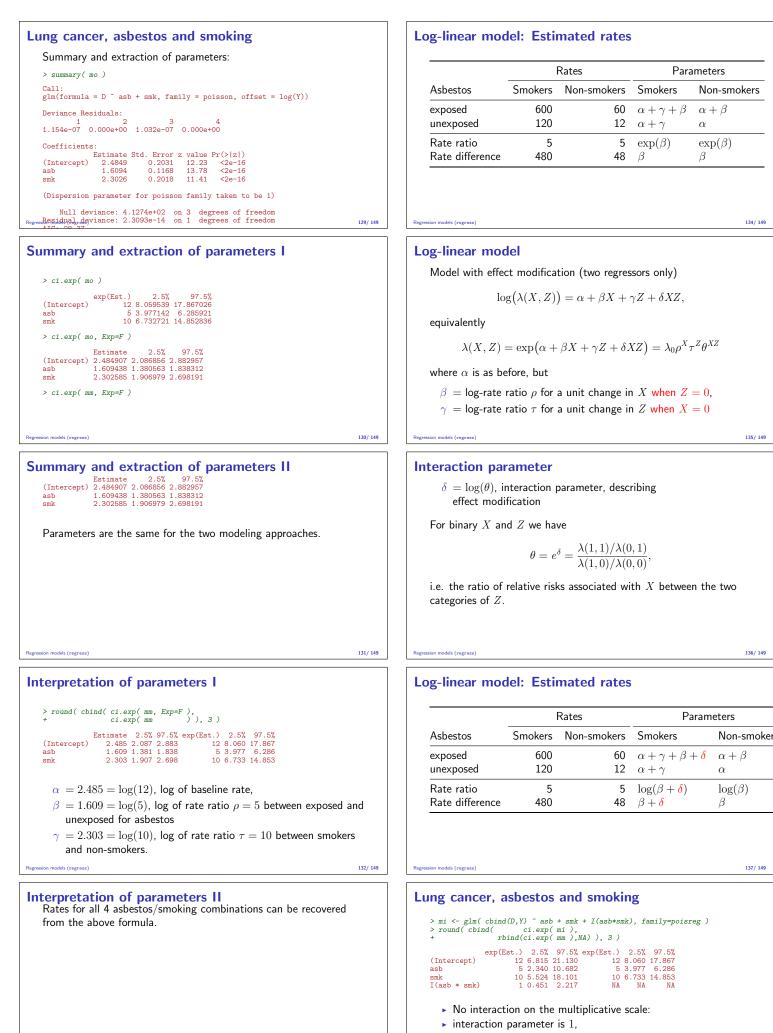
1

0

Non-sm

1

0



- asbestos and smoking effects are the unchanged,
- but SEs are larger because they refer to RRs for levels X = 0
- and Z = 0 respectively and not both levels jointly

133/ 149

137/149

134/ 149

Additive model for rates

General form with two regressors

$$\lambda(X,Z) = \alpha + \beta X + \gamma Z + \delta XZ$$

 $\alpha = \lambda(0,0)$ is the baseline rate,

$$B = \lambda(x + 1, 0) - \lambda(x, 0)$$
, rate difference for
unit change in X when $Z = 0$
 $\gamma = \lambda(0, z + 1) - \lambda(0, z)$, rate difference for
unit change in Z when $X = 0$,

Additive model

- δ = interaction parameter.
- ► For binary *X*, *Z*:

 $\delta = [\lambda(1,1) - \lambda(1,0)] - [\lambda(0,1) - \lambda(0,0)]$

- \blacktriangleright If no effect modification present, $\delta=0,$ and
- β = rate difference for unit change in X
- for all values of Z
- γ = rate difference for unit change in Z for all values of X,

Example: Additive model

> mai <- glm(cbind(D,Y) ~ asb + smk + asb*smk, family=poisreg(link=identity))
> round(ci.exp(mai, Exp=FALSE, pval=TRUE), 4)

	Estimate	2.5%	97.5%	P
(Intercept)	12	5.2105	18.7895	0.0005
asb	48	16.8865	79.1135	0.0025
smk	108	85.4817	130.5183	0.0000
asb:smk	432	328.8083	535.1917	0.0000

A very clear interaction (effect modification)

141/149

142/149

143/ 149

 $\lambda(X,Z) = \alpha + \beta X + \gamma Z + \delta XZ = 12 + 48X + 108Z + 432XZ$

- lpha = 12, baseline rate, i.e. that among non-smokers unexposed to asbestos (reference group),
- $\beta\,$ = 48 (60-12), rate difference between asbestos exposed and
- $\gamma = 108 \ (= 120 12)$, rate difference between smokers and non-smokers among only those unexposed to asbestos
- $\delta\,=\,{\rm excess}$ of rate difference between smokers and non-smokers among those exposed to asbestos: $\delta = (600 - 120) - (60 - 12) = 432$

Model fitting

Output from computer packages will give:

- parameter estimates and SEs,
- goodness-of-fit statistics,
- fitted values.
- residuals....

May be difficult to interpret!

Model checking & diagnostics:

- assessment whether model assumptions seem reasonable and consistent with data
- involves fitting and comparing different models

- Simple model chosen may be far from the "truth".
- possible bias in effect estimation, underestimation of SEs.
- Multitude of models fit well to the same data which model to choose?
- Software easy to use:
- ... easy to fit models blindly
- ... possibility of unreasonable results

139/ 149

140/ 149

Modeling

- Modeling should not substitute, but complement crude analyses:
- Crude analyses should be seen as initial modeling steps: one or two effects in the model
- Final model for used for reporting developed mainly from subject matter knowledge
- Adequate training and experience required.
- Ask help from a professional statistician!
- Collaboration is the keyword.

Conclusion

Bendix Carstensen & Esa Läärä

Nordic Summerschool of Cancer Epidemiology Danish Cancer Society / NCU, August 2019 / January 2020

http://BendixCarstensen.com/NSCE/2019

concl-analysis

144/ 149

145/ 149

Concluding remarks

Epidemiologic study is a

Measurement excercise

Target is a parameter of interest, like

- incidence rate
- rate ratio
- rate difference
- relative risk
- difference in prevalences

Result: Estimate of the parameter.

Estimation and its errors

Like errors in measurement, estimation of parameter is prone to error:

> estimate = true parameter value + systematic error (bias)

- + random error
- confounding, non-comparability,
- measurement error, misclassification,
- non-response, loss to follow-up,

147/ 149

146/ 149

unexposed among non-smokers only,

Recommendations

Conclusion (concl-analysis)

- de-emphasize inferential statistics in favor of pure data decriptors: graphs and tables
- adopt statistical techniques based on realistic probability models
- subject the results of these to influence and sensitivity analysis.

Conclusion

Conclusion (concl-analysis)

"In presenting and discussing the results of an observational study the greatest emphasis should be placed on bias and confounding." (Brennan and Croft 1994)

Motto (Campbell & Machin 1983):

STATISTICS is about COMMON SENSE and GOOD DESIGN!

149/ 149