Nordic Summerschool of Cancer Epidemiology

Bendix CarstensenSteno Diabetes Center
Gentofte, Denmark
http://BendixCarstensen.comEsa LääräUniversity of Oulu
Oulu, Finland

Danish Cancer Society / NCU, August 2019 / January 2020

From /home/bendix/teach/NSCE/2019/slides/slides.tex

Saturday 10th August, 2019, 17:47

Introduction

- Starters
- Analysis and statistics
- Uses of statistics in epidemiology
- References

Cohort of male asbestos workers, N = 17800.

Observed D = 24 cases of lung cancer deaths. Expected E = 7 cases based on age-specific rates in general population.

$$\mathsf{SMR} = \frac{D}{E} = \frac{24}{7} = 3.4$$

Observed rate ratio > 1:

- true as such?
- biased? by which factors?
- due to play of chance?

Nurses Health Study (NHS) on oral contraceptive (OC) use and breast cancer.

*Null hypothesis H*₀:

OC use does not affect risk of breast cancer; true rate ratio = 1 between ever and never users.

Summary of study outcomes:

OC use	No. of Cases	Person- years	Rate ($/10^5$ y)
Ever	204	94,029	217
Never	240	128,528	187

Results:

- Observed rate ratio RR = 217/187 = 1.16
- ► *P*-value 0.12
- 95% confidence interval [0.96, 1.40]

Interpretation?

- true rate ratio = 1.16?
- probability that H_0 is true = 12% ?
- probability = 95%, that true rate ratio is between 0.96 and 1.40?
- other? further analysis needed?

Analysis and statistics

By **analysis** we mean **statistical** analysis. **Statistics:**

- (singular) the science that deals with the:
 - collection, classification, analysis, and interpretation of numerical facts or data, and that,
 - by use of mathematical theories of probability, imposes order and regularity on aggregates of more or less disparate elements.
- (plural) the numerical facts or data themselves

(Webster's Dictionary)

Use of statistics in epidemiology

- assessment of random variation
- control of confounding and
- evaluation of effect modification (a.k.a. interaction)
- guiding study planning: choice of design, group sizes length of follow-up, sampling

Use of statistics

Basic approaches and tools:

- descriptive summarization of data
- mathematical models for random variation
- statistical inference: estimation and testing
- crude and stratified analysis
- regression methods.

References

IS: dos Santos Silva, I. (1999). Cancer Epidemiology: Principles and Methods. International Agency for Research on Cancer, Lyon. B&D: Breslow, N.E., Day, N.E. (1987). Statistical Methods in Cancer Research Volume II – The Design and Analysis of Cohort Studies. IARC, Lyon. C&H: Clayton, D., Hills, M. (1993). Statistical Models in Epidemiology. OUP, Oxford.

Chance

Bendix Carstensen & Esa Läärä

Nordic Summerschool of Cancer Epidemiology Danish Cancer Society / NCU,August 2019 / January 2020

http://BendixCarstensen.com/NSCE/2019

chance

Chance variation

- Systematic and random variation
- Probability model:
 - random variable observation data
 - distribution
 - parameters
- Statistic
- Standard error

Systematic and random variation

Cancer incidence rates vary by known & measured determinants of disease, such as:

- ► age,
- gender,
- region,
- ► time,
- specific risk factors.

This is systematic variation.

Systematic and random variation

In addition, observed rates are subject to **random** or **chance variation**:

- variation due to unknown sources like
 - latent genetic differences,
 - unknown concomitant exposures,
 - sampling,
 - "pure chance" quantum mechanics

Example: Smoking and lung cancer

- Only a minority of smokers get lung cancer
- ... and some non-smokers get the disease, too.
- At the **individual** level the outcome is unpredictable.
- When cancer occurs, it can eventually only be explained just by "bad luck".
- Unpredictability of individual outcomes implies largely unpredictable — random — variation of disease rates at population level.

Example: Breast cancer

Breast cancer incidence rates in Finland, age group 65-69 years in three successive years.

Year	Males (per 10^6 P-years)	Females (per 10^4 P-years)
1989	46	21
1990	11	20
1991	33	19

- Big annual changes in risk among males?
- Is there steady decline in females?

Example: Breast cancer

Look at observed numbers of cases!

	М	Males		Females	
Year	Cases	P-years	Cases	P-years	
1989	4	88,000	275	131,000	
1990	1	89,000	264	132,000	
1991	3	90,000	253	133,000	

Reality of changes over the years?

The information is in the number of **cases**

Simple probability model for cancer occurrence

Assume that the population is homogeneous

- the theoretical incidence rate
- hazard or intensity λ
- of contracting cancer
- is **constant** over a short period of time, dt

 $\lambda = \Pr{\{\mathsf{Cancer in}(t, t + dt)\}/dt}$

Simple probability model for cancer occurrence

- The observations:
 - Number of cases D in
 - ► Y person-years at risk
 - \Rightarrow empirical incidence rate R = D/Y
- are all random variables with unpredictable values
- The probability distribution of possible values of a random variable has some known mathematical form
- ... some properties of the probability distribution are determined by the assumptions
- ... other properties are determined by quantities called parameters
- — in this case the theoretical rate λ .

How a probability model works

If the hazard of lung cancer, λ , is constant over time, we can **simulate** lung cancer occurrence in a population:

- ► Start with N persons,
- 1st day: $P \{ \text{lung cancer} \} = \lambda \times 1 \text{ day for all } N \text{ persons}$
- ▶ 2nd day: P {lung cancer} = $\lambda \times 1$ day for those left w/o LC
- 3rd day: $P \{ \mathsf{lung cancer} \} = \lambda \times 1 \mathsf{ day for those left w/o LC}$

Thus a **probability model** shows how to generate data with known parameters. Model \rightarrow Data

▶ ...

Component of a probability model

- structure of the model
 - *a priori* assumptions:
 - constant incidence rate
- parameters of the model
 - *size* of the incidence rate:
 - derived from data **conditional** on structure

Statistics

The opposite of a probability models:

- the data is known
- want to find parameters
- this is called estimation
- ... mostly using maximum likelihood

Thus **statistical modelling** is how to estimate parameters from observed data. Data \rightarrow Model

Statistics — the workings

- Fix the **model** (structure)
- ► For any set of parameters we can generate data
- Find parameters that generates data that look most like the observed data
- Recall the notion of **random variables**:
 - Given model and parameter
 - we know the distribution of functions of data
- Essential distributions are Poisson and Normal (Gaussian) distributions

Poisson and Gaussian models

- Poisson distribution: simple probability model for number of cases D (in a fixed follow-up time, Y) with
- expectation (theoretical mean) $\mu = \lambda Y$,
- standard deviation $\sqrt{\mu}$
- When the expectation µ of D is large enough, the Poisson distribution resembles more and more the Gaussian or Normal distribution.

Poisson distribution with different means (μ)

Chance (chance)

Normal (Gaussian) distribution

- common model for continuous variables
 - symmetric and bell-shaped
 - has two parameters:
 - $\mu={\rm expectation}$ or mean
 - $\sigma=$ standard deviation
- Central limit theorem:
 - A sum of many small independent quantities will follow a normal distribution
- Conseqence:

When we compute various functions based on our data we can approximate the distribution with the normal distribution

... so we just need to compute mean and standard deviation
— the shape is fixed by the theory

Areas under curve limited by selected quantiles

Standard deviation units

Example: Observed incidence rate

- Model: incidence rate is constant over time
- Theoretical rate λ ,
- Empirical rate R = D/Y,
- Estimator of λ , $\hat{\lambda} = R$.
- $\hat{\lambda} = R$ is a statistic, random variable:
 - its value varies from one study population ("sample") to another on hypothetical repetitions
 - ... namely other similar condition under which data could have been generated
 - its sampling distribution is (under the constant rate model & other conditions) a transformation of the Poisson distribution

Example: Observed incidence rate

- D approximately Poisson, mean λY , sd $\sqrt{\lambda Y}$
- R = D/Y scaled Poisson: mean: λ , sd: $\sqrt{\lambda Y}/Y = \sqrt{\lambda/Y}$
- Standard error of empirical rate R is estimated by replacing λ with R:

s.e.
$$(R) = \sqrt{\frac{\hat{\lambda}}{Y}} = \sqrt{\frac{R}{Y}} = \frac{\sqrt{D}}{Y} = R \times \frac{1}{\sqrt{D}}$$

⇒ Random error depends inversely on the number of cases. ⇒ s.e. of R is proportional to R.

Example: Observed incidence rate

Use the central limit theorem:

$$\hat{\lambda} = R \sim \mathcal{N}(\lambda, \lambda/Y) = \mathcal{N}(\lambda, \lambda^2/D)$$

 \Rightarrow Observed R is with 95% proability in the interval

$$(\lambda - 1.96 \times \lambda/\sqrt{D}; \lambda + 1.96 \times \lambda/\sqrt{D})$$

 $\Rightarrow\,$ with 95% probability λ is in the interval

$$(R - 1.96 \times R/\sqrt{D}; R + 1.96 \times R/\sqrt{D})$$

• ... a 95% confidence interval for the rate.

Chance summary

- Observations vary systematically by known factors
- Observations vary randomly by unknown factors
- Probability model describes the random variation
- We observe random variables draws from a probability distribution
- Central limit theorem allows us to quantify the random variation
- ... and construct confidence interval

Inference

Bendix Carstensen & Esa Läärä

Nordic Summerschool of Cancer Epidemiology Danish Cancer Society / NCU,August 2019 / January 2020

http://BendixCarstensen.com/NSCE/2019

inference

Models and data

- Probability model can be used to generate data (by simulation) — from model to data
- Inference is the inverse:
- What model generated the data?
- from data to model
- ... if we know that we can say something sensible about disease process in the population

Models and data — model components

- External, a priori information on observations
 structure of the model
- quantitative parameter(s) within model structure
- only the latter is the target for inference

Statistical concepts

- Probability: parameters \rightarrow data
- Statistics: data \rightarrow parameter(estimate)s
- Notation:
 - Parameter denoted by a Greek letter, β
 - Estimator & estimate by the same Greek letter with "hat", \hat{eta}
- Ex: Incidence rate:
 - Theoretical rate the rate in the model that could have generated data: \u03b3
 - Estimator: $\widehat{\lambda} = R = D/Y$, empirical rate.
- ... but where did the D/Y come from?

Maximum likelihood principle

- ▶ Define your model (*e.g.* constant rate)
- Choose a parameter value
- How likely is it that
 - this model with
 - this parameter

generated data

- $P \{ \mathsf{data} | \mathsf{parameter} \}, P \{ (d, y) | \lambda \}$
- Find the parameter value that gives the maximal probability of data
- Find the interval of parameter values that give probabilities not too far from the maximum.

Likelihood

Probability of the data given the parameter:

Assuming the rate (intensity) is constant, λ , the probability of observing 14 deaths in the course of 843.6 person-years:

$$P \{ D = 14, Y = 843.6 | \lambda \} = \lambda^{D} e^{\lambda Y} \times K$$
$$= \lambda^{14} e^{\lambda \times 843.6} \times K$$
$$= L(\lambda | data)$$

- Estimate of λ is where this function is as large as possible.
- Confidence interval is where it is not too far from the maximum

log–Rate parameter, θ

36/149

Rate parameter, λ (per 1000)

Rate parameter, λ (per 1000)

36/149

Rate parameter, λ (per 1000)

36/149

Confidence interval for a rate

- Based on the quadratic approximation to the normal density
- ► A 95% confidence interval for the log of a rate is:

$$\hat{\theta} \pm 1.96/\sqrt{D} = \log(\hat{\lambda}) \pm 1.96/\sqrt{D}$$

- the 1.96 is from the normal distribution, that is what it is used for.
- ► Take the exponential to get the confidence interval for the rate:

$$\hat{\lambda} \stackrel{\times}{\div} \underbrace{\exp(1.96/\sqrt{D})}_{\text{error factor,erf}}$$

— the probability that the theoretical rate λ is in this interval is 95%.

Example for a single rate

Suppose we have 14 deaths during 843.6 years of follow-up. The rate is computed as:

$$\hat{\lambda} = D/Y = 14/843.6 = 0.0165 = 16.5$$
 per 1000 years

The confidence interval is computed as:

$$\hat{\lambda} \stackrel{\times}{\div} \operatorname{erf} = 16.5 \stackrel{\times}{\div} \exp(1.96/\sqrt{14}) = (9.8, 28.0)$$

per 1000 person-years.

Ratio of two rates

If we have observations of two rates λ_1 and λ_0 , based on (D_1, Y_1) and (D_0, Y_0) , the variance of the difference of the log-rates, $\log(\lambda_1) - \log(\lambda_0) = \log(RR)$, is:

$$\operatorname{var}(\log(\mathrm{RR})) = \operatorname{var}(\log(\lambda_1/\lambda_0))$$
$$= \operatorname{var}(\log(\lambda_1)) + \operatorname{var}(\log(\lambda_0))$$
$$= 1/D_1 + 1/D_0$$

As before a 95% c.i. for the RR is then, using the normal distribution:

$$\operatorname{RR} \stackrel{\times}{\div} \underbrace{\exp\left(1.96\sqrt{\frac{1}{D_1} + \frac{1}{D_0}}\right)}_{\text{error factor}}$$

Difference of two rates

If we have observations of two rates λ_1 and λ_0 , based on (D_1, Y_1) and (D_0, Y_0) , the variance of the difference of the rates, $\lambda_1 - \lambda_0 = \text{RD}$, is:

$$\operatorname{var}(\mathrm{RD}) = \operatorname{var}(\lambda_1 - \lambda_0)$$
$$= \operatorname{var}(\lambda_1) + \operatorname{var}(\lambda_0)$$
$$= D_1 / Y_1^2 + D_0 / Y_0^2$$

As before a 95% c.i. for the RD is then, using the normal distribution:

$$\text{RD} \pm 1.96 \sqrt{\frac{D_1}{Y_1^2} + \frac{D_0}{Y_0^2}}$$

Example

Suppose we in group 0 have 14 deaths during 843.6 years of follow-up in one group, and in group 1 have 28 deaths during 632.3 years.

The rate-ratio is computed as:

RR =
$$\hat{\lambda}_1/\hat{\lambda}_0 = (D_1/Y_1)/(D_0/Y_0)$$

= $(28/632.3)/(14/843.6) = 0.0443/0.0165 = 2.669$

The 95% confidence interval is computed as:

$$\hat{\text{RR}} \stackrel{\times}{\div} \text{erf} = 2.669 \stackrel{\times}{\div} \exp(1.96\sqrt{1/14 + 1/28}) \\ = 2.669 \stackrel{\times}{\div} 1.899 = (1.40, 5.07)$$

Estimating a rate using R

Poisson likelihood for one rate, based on 14 events in 843.6 PY:

Conventional description for mortality rates: "We used Poisson regression with log-person-years as offset..." But really both D and Y are outcomes (random variables)

Estimating a rate using R

But really both D and Y are outcomes (random variables)

... then you write: "We used multiplicative Poisson regression for events and person-years..."

RR example using R

Poisson likelihood, two rates, or one rate and RR:

```
> D <- c(14,28) ; Y <- c(843.6,632.3) ; gg <- factor(0:1)
> m2 <- glm( cbind(D,Y/1000) ~ gg, family=poisreg )</pre>
> ci.exp(m2)
           exp(Est.) 2.5% 97.5%
(Intercept) 16.595543 9.828750 28.021066
gg1 2.668354 1.404825 5.068325
> m3 <- glm( cbind(D,Y/1000) ~ gg - 1, family=poisreg )</pre>
> ci.exp(m3)
   exp(Est.) 2.5% 97.5%
gg0 16.59554 9.82875 28.02107
gg1 44.28278 30.57545 64.13525
```

Statistical tests

- Are the observed data consistent with a given value of the parameter?
- Such a value is often a null value
- Typically a conservative assumption, *e.g.*:
 "no difference in outcome between the groups"
- RR = 1 or RD = 0
- This is called a **null hypothesis**, H_0

Computing a statistical test

Based on the central limit theorem:

$$Z_{\text{obs}} = \frac{\hat{\mathrm{RR}} - 1}{\mathrm{s.e.(RR)}} \approx \mathcal{N}(0, 1)$$

$$Z_{\text{obs}} = \frac{\hat{\text{RD}} - 0}{\text{s.e.(RD)}} \approx \mathcal{N}(0, 1)$$

- How far are are we from the null in terms of the precision
- How far is quantified by the *P*-value:
 P = P {Z is more extreme than Z_{obs} | H₀ is true}

Interpretation of *P*-values

- Note it is not "the probability that H_0 is true" !
- No mechanical rules of inference
- Rough guidelines:
 - "large" value (p > 0.1): consistent with H_0 but not necessarily supporting it,
 - "small" value (p < 0.01): indicates evidence against H_0
 - "intermediate" value ($p \approx 0.05$): weak evidence against H_0
- Division of *p*-values into "significant" or "non-significant" by cut-off of 5% — must be avoided!
- . . . remember that the 5% is an arbitrary number taken out of thin air.

Confidence interval (CI)

- Range of values of the parameter compatible with the observed data — the range of null values that will give a *P*-value larger than 5% (1 – confidence level)
- Specified at certain confidence level, commonly 95% (also 90 % and 99% used)
- ► The probability that the random interval covers the true parameter value equals the confidence level (*e.g.* 95%).
- The probability that the parameter value is in the interval is confidence level (*e.g.* 95%).

Long-term behaviour of CI

Variability of 95% CI under hypothetical repetitions of similar study, when true rate ratio is RR.

In the long run 95% of these intervals would cover the true value but 5% would not.

Inference (inference)

Long-term behaviour of CI

Variability of 95% CI under hypothetical repetitions of similar study, when true rate ratio is RR.

In the long run 95% of these intervals would cover the true value but 5% would not.

Inference (inference)

Interpretation of CI

- Confidence intervals gives quantitative information on the parameter and on statistical uncertainty about its value
- narrow CI about H_0 value \rightarrow results give support to H_0
- ▶ narrow CI about non- H_0 value → results give support to an alternative
- wide CI about H_0 value \rightarrow results inconclusive
- wide CI about non- H_0 value \rightarrow results inconclusive
- width of the interval determines the precision
- Iocation of the interval determines relevance

Confidence interval and *P*-value

- Which ones are significant?
- Which ones are informative?

Recommendations

Sterne and Davey Smith: Sifting the evidence – what's wrong with significance tests? *BMJ* 2001; **322**: 226-231.

"Suggested guidelines for the reporting of results of statistical analyses in medical journals"

- 1. The description of differences as statistically significant is not acceptable.
- 2. Confidence intervals (CI) for the main results should always be included, but 90% rather than 95% levels should be used.

Recommendations

- 3. Cls should not be used as a surrogate means of examining significance at the conventional 5% level.
- 4. Interpretation of CIs should focus on the implications (clinical importance) of the range of values in the interval.
- 5. In observational studies it should be remembered that considerations of confounding and bias are at least as important as the issues discussed in this paper.

Bendix Carstensen & Esa Läärä

Nordic Summerschool of Cancer Epidemiology Danish Cancer Society / NCU,August 2019 / January 2020

http://BendixCarstensen.com/NSCE/2019

analysis

Crude analysis

- Single incidence rate
- Rate ratio in cohort study
- Rate difference in cohort study
- Rate ratio in case-control study
- Analysis of proportions
- Extensions and remarks

Single incidence rate

- **Model**: Events occur with constant rate λ .
- Parameter of interest:

 $\lambda =$ true rate in target population

• Estimator: $\hat{\lambda} = R$, the empirical rate in a "representative sample" from the population:

$$R = \frac{D}{Y} = \frac{\text{no. of cases}}{\text{person-time}}$$

• Standard error of rate: $SE(R) = R/\sqrt{D}$.

Example using R

Poisson likelihood for one rate, based on 14 events in 843.6 PY:

But really both D and Y are outcomes (random variables)

```
> mm <- glm( cbind(D,Y/1000) ~ 1, family=poisreg )
> ci.exp( mm )
```

exp(Est.) 2.5% 97.5% (Intercept) 16.59554 9.82875 28.02107

Rate ratio in cohort study

Question: What is the rate ratio of cancer in the exposed as compared to the unexposed group?

Model Cancer incidence rates constant in both groups, values $\lambda_1 \text{, } \lambda_0$

Parameter of interest is ratio of theoretical rates:

$$\rho = \frac{\lambda_1}{\lambda_0} = \frac{\text{rate among exposed}}{\text{rate among unexposed}}$$

Null hypothesis $H_0: \rho = 1$: exposure has no effect.

Rate difference in cohort study

- Question: What is the rate difference of cancer in the exposed as compared to the unexposed group?
 - Model Cancer incidence rates constant in both groups, values $\lambda_1 \text{, } \lambda_0$

Parameter of interest is difference between theoretical rates:

 $\delta = \lambda_1 - \lambda_0$ = rate among exposed-rate among unexposed

Null hypothesis $H_0: \delta = 0$: exposure has no effect.

RR example using R

Poisson likelihood, two rates, or one rate and RR:

```
> D <- c(14,28) ; Y <- c(843.6,632.3) ; gg <- factor(0:1)
> m2 <- glm( cbind(D,Y/1000) ~ gg, family=poisreg )</pre>
> ci.exp(m2)
           exp(Est.) 2.5% 97.5%
(Intercept) 16.595543 9.828750 28.021066
gg1 2.668354 1.404825 5.068325
> m3 <- glm( cbind(D,Y/1000) ~ gg - 1, family=poisreg )</pre>
> ci.exp(m3)
   exp(Est.) 2.5% 97.5%
gg0 16.59554 9.82875 28.02107
gg1 44.28278 30.57545 64.13525
```

RD example using R

Poisson likelihood, two rates, or one rate and RD:

```
> a2 <- glm( cbind(D,Y/1000) ~ gg, family=poisreg(link='identity') )
> ci.exp( m2, Exp=FALSE )
```

Estimate 2.5% 97.5% (Intercept) 2.8091342 2.2853118 3.332957 gg1 0.9814617 0.3399129 1.623010

```
> a3 <- glm( cbind(D,Y/1000) ~ gg - 1, family=poisreg(link='identity') )
> ci.exp( m3, Exp=FALSE )
```

Estimate 2.5% 97.5% gg0 2.809134 2.285312 3.332957 gg1 3.790596 3.420197 4.160994

```
You do it (both RR and RD):
What is the interpretation of the parameters?
```

Analysis of proportions

- Suppose we have cohort data with a fixed risk period, i.e. all subjects are followed over the same period and therefore has the same length, as well as no losses to follow-up (no censoring).
- In this setting the **risk**, π , of the disease over the risk period is estimated by simple
- incidence proportion (often called "cumulative incidence" or even "cumulative risk")

Analysis of proportions

Theoretical proportion: probability, π , that a random persons becomes a case in the period.

$$\widehat{\pi} = p = \frac{x}{n}$$

$$= \frac{\text{number of new cases during period}}{\text{size of population at start}}$$

Analysis of proportions

Theoretical prevalence: probability, p, that a randomly chosen person in the population is a case.

Analogously, empirical **prevalence** (proportion) at a certain point of time *t*:

$$\widehat{p} = \frac{\text{no. of prevalent cases at } t}{1} = \frac{x}{1}$$

total population size at
$$t = \frac{1}{n}$$
Analysis of proportions

- Proportions (unlike rates) are dimensionless quantities ranging from 0 to 1
- Analysis of proportions based on binomial distribution
- Standard error for an estimated proportion:

$$\operatorname{SE}(p) = \sqrt{\frac{p(1-p)}{n}} = p \times \sqrt{\frac{(1-p)}{x}}$$

- Depends also inversely on x!
- but not a good approximation...

Analysis of proportions

- CI : $p \pm 2 \times SE(p)$ are within [0;1] if x > 4/(1+4/n)
- This is always true if x > 3 (if x > 2 for n < 12)
- \blacktriangleright but the approximation is not good for x < 10

```
> rbind(ci(3,11:13),ci(2,3:5),ci(1,1:2))
```

 x
 n
 p
 lo
 hi

 [1,]
 3
 11
 0.2727
 0.0042
 0.5413

 [2,]
 3
 12
 0.2500
 0.0000
 0.5000

 [3,]
 3
 13
 0.2308
 -0.0029
 0.4645

 [4,]
 2
 3
 0.6667
 0.1223
 1.2110

 [5,]
 2
 4
 0.5000
 0.0000
 1.0000

 [6,]
 2
 5
 0.4000
 -0.0382
 0.8382

 [7,]
 1
 1
 1.0000
 1.0000
 1.0000

 [8,]
 1
 2
 0.5000
 -0.2071
 1.2071

Analysis of proportions

- ▶ Use confidence limits based on symmetric (normal) log(OR):
- Compute error factor: $EF = \exp(1.96/\sqrt{np(1-p)})$
- then use to compute confidence interval:

$$p/(p + (1-p) \stackrel{\times}{\div} \mathrm{EF})$$

- Observed x = 4 out of n = 25: $\hat{p} = 4/25 = 0.16$
- Naive CI: $0.16 \pm 1.96 \times \sqrt{0.16 \times 0.84/25} = [0.016; 0.304]$
- Better: $EF = exp(1.96/\sqrt{25 \times 0.16 \times 0.84}) = 2.913$

$$\text{CI}: 0.16 / (0.16 + (0.84 \div 2.913)) = [0.061; 0.357]$$

Analysis of proportions by glm

- Default is to model logit(p) = log(p/(1-p)), log-odds
- Using ci.exp gives odds (ω):

$$\omega = p/(1-p) \quad \Leftrightarrow \quad p = \omega/(1+\omega)$$

)

Analysis of proportions by glm

Also possible to model $\log(p),$ log-probability, by changing the link function:

We see that the estimated probability is the same but the confidence limits are slightly different.

Rate ratio in case-control study

Parameter of interest: $\rho = \lambda_1/\lambda_0$

— same as in cohort study.

Case-control design:

- incident cases occurring during a given period in the source population are collected
- controls are obtained by *incidence density sampling* from those at risk in the study base
- **exposure** is ascertained in cases and chosen controls.

Rate ratio in case-control study

Summarized data on outcome:

Exposure	Cases	Controls
yes	D_1	C_1
no	D_0	C_0

- Can we directly estimate the rates λ_0 and λ_1 from this?
- and the ratio of these?
- NO and YES (respectively)
- Rates are **not** estimable from a case-control design

Rate ratio in case-control study

If controls are representative of the person- years in the population, their division into exposure groups estimates the exposure distribution of the person-years:

 $C_1/C_0 \approx Y_1/Y_0$

▶ Hence, we can estimate the RR by the OR:

$$\widehat{\mathrm{RR}} = \mathrm{OR} = \frac{D_1/Y_1}{D_0/Y_0} = \frac{D_1/D_0}{Y_1/Y_0} \approx \frac{D_1/D_0}{C_1/C_0} = \frac{D_1/C_1}{D_0/C_0}$$

⇒ RR estimated by the ratio of the case-control ratios (D/C)
▶ ... but of course there is a penalty to pay...

Rate ratio from case-control study

Standard error for $\log(\mathrm{OR}),$ 95% error factor and approximate CI for $\mathrm{OR}:$

$$SE(log(OR)) = \sqrt{\frac{1}{D_1} + \frac{1}{D_0} + \frac{1}{C_1} + \frac{1}{C_0}}$$
$$EF = exp(1.96 \times SE(log(OR)))$$
$$CI = [OR/EF, OR \times EF]$$

NB. Random error again depends inversely on numbers of cases **and** controls — the penalty, in the two exposure groups.

Example: mobile phone use and brain cancer

(Inskip et al. NEJM 2001; 344: 79-86).

Daily use	Cases	Controls
$\geq 15 \text{ min}$	35	51
no use	637	625

The RR associated with use of mobile phone longer than 15 min (vs. none) is estimated by the OR:

$$OR = \frac{35/51}{637/625} = 0.67$$

Example: mobile phone use and brain cancer

SE for $\log(OR)$, 95% error factor and approximate CI for OR:

$$SE(log(OR)) = \sqrt{\frac{1}{35} + \frac{1}{637} + \frac{1}{51} + \frac{1}{625}} = 0.2266$$
$$EF = exp()1.96 \times 0.2266) = 1.45$$
$$CI = [0.67/1.45, 0.67 \times 1.45] = [0.43, 1.05]$$

N.B. model-adjusted estimate (with 95% CI):

OR = 0.6[0.3, 1.0]

OR from binomial model

```
> Ca <- c(638,35); Co <- c(625,51); Ex <- factor(c("None",">15"),levels=c("None",
> data.frame( Ca, Co, Ex )
```

- Intercept is meaningless; only exposure estimate is relevant
- ► The parameter in the model is log(OR), so using ci.exp gives us the estimated OR — same as in the hand-calculation above.
- This is called logistic regression

Extensions and remarks

- This extends to crude analyses of exposure variables with several categories when each exposure category is separately compared to a reference group
- Evaluation of possible monotone trend in the parameter over increasing levels of exposure: estimation of regression slope
- Crude analysis is insufficient in observational studies:
- control of confounding needed

Short recap

Bendix Carstensen & Esa Läärä

Nordic Summerschool of Cancer Epidemiology Danish Cancer Society / NCU,August 2019 / January 2020

http://BendixCarstensen.com/NSCE/2019

Rates

- \blacktriangleright dimension time^-1
- estimated as $\hat{\lambda} = D/\,Y$
- confidence interval for λ :
 - multiplicative $\lambda \stackrel{\times}{\div} \operatorname{erf}$
 - additive $\lambda \pm \mathrm{EM}$

Practical model for rates

```
> library( Epi )
> D <- 14 ; Y <- 843.6/1000 ; D/Y
[1] 16.59554
> m0 <- glm( D ~ 1, offset=log(Y), family=poisson )</pre>
> ci.exp(mO)
           exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107
Better wav:
> mm <- glm( cbind(D,Y) ~ 1, family=poisreg )</pre>
> ci.exp( mm )
           exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107
```

Allows error factor and margin too:

```
> mm <- glm( cbind(D,Y) ~ 1, family=poisreg )
> ci.exp( mm )
```

exp(Est.) 2.5% 97.5% (Intercept) 16.59554 9.82875 28.02107

With error margin (conf.int. on rate-scale)

```
> ma <- glm( cbind(D,Y) ~ 1, family=poisreg(link="identity") )
> ci.exp( ma, Exp=FALSE )
```

Estimate 2.5% 97.5% (Intercept) 16.59554 7.902426 25.28866

Rate ratio and rate difference

```
> D <- c(14,28) ; Y <- c(843.6,632.3)/1000 ; gg <- factor(0:1)
> mr <- glm( cbind(D,Y) ~ gg, family=poisreg )
> ci.exp( mr )
```

Rate ratio and rate difference

```
> ma <- glm( cbind(D,Y) ~ gg, family=poisreg(link="identity") )
> ci.exp( ma, Exp=FALSE )
```

Estimate 2.5% 97.5% (Intercept) 16.59554 7.902426 25.28866 gg1 27.68723 9.123703 46.25077

```
> mA <- glm( cbind(D,Y) ~ gg-1, family=poisreg(link="identity") )
> ci.exp( mA, Exp=FALSE )
```

Estimate 2.5% 97.5% gg0 16.59554 7.902426 25.28866 gg1 44.28278 27.880508 60.68505

Models

- Probability model: Data generator, model to data
- Statistical analysis: From data to model (parameters)
- Maximum likelihood is the basis for parameter estimation
- But only for given model
- Normal approximation provides confidence intervals
- \blacktriangleright either for log-rates, rates, RR, RD, OR
- Beware of *P*-values

Stratified analysis

Bendix Carstensen & Esa Läärä

Nordic Summerschool of Cancer Epidemiology Danish Cancer Society / NCU,August 2019 / January 2020

http://BendixCarstensen.com/NSCE/2019

Stratified analysis

- Shortcomings of crude analysis
- Effect modification
- Confounding
- Steps of stratified analysis
- Estimation of rate ratio
- Matched case-control study

Shortcomings of crude analysis

- the rate ratio for the risk factor of interest is not constant, but varies by other determinants of the disease
- heterogeneity of the comparative parameter or effect modification
 - the exposure groups are not comparable w.r.t. other determinants of disease
- \Rightarrow bias in comparison or **confounding**
- exposure varies across other determinants

Models for outcome with effects of

- primary variable ("exposure")
- secondary variable ("stratum")
- effect modification is the interaction model exposure×stratum exposure with different effects across strata
- confounding is the main-effects model exposure+stratum exposure with same effect across strata

Handling for effect modification and confounding

- Stratification of data
 - by potentially modifying and/or confounding factor(s) & use of **adjusted** estimators
- Conceptually simpler, and technically less demanding approach is regression modeling
- Regression modeling is feasible because we have computers
- ... adjustment estimators are left-overs from teachers taught before the advent of computers (*e.g.* BxC & EL...)

Effect modification

Incidence rates (per 10^5 PY) of lung cancer by occupational asbestos exposure and smoking:

Asbestos	Smokers	Non-smokers
exposed	600	60
unexposed	120	12
Rate ratio	5	5
Rate difference	480	48

Is the effect of asbestos exposure the same or different in smokers than in non-smokers?

Effect modification (cont'd)

Depends how the effect is measured:

- Rate ratio: constant or homogeneous
- Rate difference: heterogeneous: The value of rate difference is modified by smoking.

Smoking is thus an **effect modifier** of asbestos exposure on the absolute scale (rates) but **not** on the relative scale (log-rates)

Incidence of CHD (per 10^3 PY) by risk factor E and age:

Factor E	Young	Old
exposed	4	9
unexposed	1	6
rate ratio	4	1.5
rate difference	3	3

- Rate ratio modified by age
- Rate difference not modified.
- There is no such thing as interaction (effect modification) without reference to the scale of the effect (e.g. additive or multiplicative)

Handling effect modification

- In real examples, comparative parameters are more or less heterogeneous across categories of other determinants of disease
- This is termed interaction or effect modification
- \blacktriangleright The effect of X depend on the level of Z
- ▶ The effect of X cannot be described by a single number,
- ... it is a function of Z

Actual example

Age-specific CHD mortality rates (per 10^4 PY) and numbers of cases (D) among British male doctors by cigarette smoking, rate differences (RD) and rate ratios (RR) (Doll and Hill, 1966).

	Smokers		Non-smokers			
Age (y)	rate	D	rate	D	RD	RR
35-44	6.1	32	1.1	2	5	5.7
45-54	24	104	11	12	13	2.1
55-64	72	206	49	28	23	1.5
65-74	147	186	108	28	39	1.4
75-84	192	102	212	31	-20	0.9
Total	44	630	26	101	18	1.7

CHD and smoking

Both comparative parameters appear heterogeneous:

- RD increases by age (at least up to 75 y)
- $\blacktriangleright~\mathrm{RR}$ decreases by age

No single-parameter (common rate ratio or rate difference) comparison captures adequately the joint pattern of rates.

Evaluation of modification

- Modification or its absence is an inherent property of the phenomenon:
- cannot be removed or "adjusted" for
- it depends on the **scale** on which it is measured
- Before looking for effect-modification:
 - what scale are we using for description of effects
 - how will we report the modified effects (the interaction)

Evaluation of modification (cont'd)

- statistical tests for heterogeneity insensitive and rarely helpful
- $ightarrow \Rightarrow$ tempting to assume "no essential modification":
- + simpler analysis and result presentation,
- misleading if essential modification present.

CHD and smoking example with R I

```
> library( Epi )
> R <- c(6.1, 24, 72,147,192, 1.1,11,49,108,212)
> D <- c( 32,104,206,186,102, 2 ,12,28, 28, 31)
> Y <- D/R # risk time in units of 10<sup>4</sup> PY
> smk <- factor( rep(1:2,each=5), labels=c("Smoke","non-Sm") )
> age <- factor( rep(seq(35,75,10),2) )
> data.frame(D,Y,age,smk)
```

CHD and smoking example with R II

	D	Y	age	\mathtt{smk}
1	32	5.2459016	35	Smoke
2	104	4.3333333	45	Smoke
3	206	2.8611111	55	Smoke
4	186	1.2653061	65	Smoke
5	102	0.5312500	75	Smoke
6	2	1.8181818	35	non-Sm
7	12	1.0909091	45	non-Sm
8	28	0.5714286	55	non-Sm
9	28	0.2592593	65	non-Sm
10	31	0.1462264	75	non-Sm

```
> ma <- glm( cbind(D,Y) ~ age + smk, family=poisreg )
> mi <- update( ma, . ~ . + age:smk ) # add the interaction
> anova( ma, mi, test="Chisq" )
```

CHD and smoking example with R III

Analysis of Deviance Table

```
Model 1: cbind(D, Y) ~ age + smk

Model 2: cbind(D, Y) ~ age + smk + age:smk

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 4 11.993

2 0 0.000 4 11.993 0.0174
```

```
> aa <- glm( cbind(D,Y) ~ age + smk, family=poisreg(link='identity') )
> ai <- update( ma, . ~ . + age:smk ) # add the interaction
> anova( aa, ai, test="Chisq" )
```

Analysis of Deviance Table

```
Model 1: cbind(D, Y) ~ age + smk
Model 2: cbind(D, Y) ~ age + smk + age:smk
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 4 7.7434
2 0 0.0000 4 7.7434 0.1014
```
Confounding - operation example

Observational clinical study with comparison of success of treatment between two types of operation for treating renal calculi:

- OS: open surgery (invasive)
- PN: percutaneous nephrolithotomy (non-invasive)

Treatment	Pts	Op. OK	% OK	%-diff.
OS	350	273	78	
PN	350	290	83	+5

PN appears more successful than OS?

Operation example

-

Results stratified by initial diameter size of the stone:

Size	Treatment	Pts	Op. OK	% OK	%-diff.
< 2 cm:	OS PN	87 270	81 235	93 87	-6
$\geq 2 \mathrm{cm}:$	OS PN	263 80	192 55	73 69	-4

OS seems more succesful in both subgroups.

Is there a paradox here?

Operation example

- ► Treatment groups are not comparable w.r.t. initial size.
- Size of the stone (SS) is a confounder of the association between operation type and success:
- 1 a determinant of outcome (success), based on external knowledge,
- 2 statistically associated with operation type in the study population,
- 3 not causally affected by operation type.

Operation example

- Instance of "confounding by indication":
 - patient status affects choice of treatment,
 - \Rightarrow bias in comparing treatments.
- This bias is best avoided in planning:
 - randomized allocation of treatment.

Grey hair and cancer incidence

Age	Gray hair	Cases	$\begin{array}{c} \text{P-years} \\ \times 1000 \end{array}$	Rate /1000 y	RR
Total	yes no	66 30	25 25	2.64 1.20	2.2
Young	yes no	6 11	10 20	0.60 0.55	1.09
Old	yes no	60 19	15 5	4.0 3.8	1.05

Observed crude association nearly vanishes after controlling for age.

Means for control of confounding

Design:

- Randomization
- Restriction
- Matching

Means for control of confounding (cont'd)

Analysis:

- Stratification
- Regression modeling

Only randomization can remove confounding due to **unmeasured** factors.

Other methods provide partial removal, but **residual** confounding may remain.

Steps of stratified analysis

- Stratify by levels of the potential confounding/modifying factor(s)
- Compute stratum-specific estimates of the effect parameter (e.g. RR or RD)
- Evaluate similarity of the stratum-specific estimates by "eye-balling" or test of heterogeneity.

Steps of stratified analysis (cont.)

- If the parameter is judged to be homogeneous enough, calculate an adjusted summary estimate.
- If effect modification is judged to be present:
 - report stratum-specific estimates with Cls,
 - if desired, calculate an adjusted summary estimate by appropriate standardization — (formally meaningless).

Estimation of rate ratio

- Suppose that the rate ratio RR is sufficiently homogeneous across strata (no modification), but confounding is present.
- Crude RR estimator is biased.
- Adjusted summary estimator, controlling for confounding, must be used.
- These estimators are weighted averages of stratum-specific estimators.

Adjusted summary estimators

Different weighting methods:

- maximum likelihood (ML)
- weighted least squares (WLS)
- Mantel-Haenszel (MH) weights
- (direct) standardization by external standard population (CMF)
- standardized morbidity ratio (SMR)

Preferred method in analysis: ML Useful method in simple descriptive: CMF / SMR

Gray hair & cancer

```
> D <- c(6,11,60,19)
> Y <- c(10,20,15,5)
> age <- factor( c("Young","Young","Old","Old") )
> hair <- factor( c("Gray","Col","Gray","Col") )
> data.frame( D, Y, age, hair )
```

D Y age hair 1 6 10 Young Gray 2 11 20 Young Col 3 60 15 Old Gray 4 19 5 Old Col

Gray hair & cancer

Crude and adjusted risk estimate by Poisson model:

```
> library( Epi )
> ci.exp( glm( cbind(D,Y) ~ hair , family=poisreg ) )
          exp(Est.) 2.5% 97.5%
(Intercept) 1.2 0.8390232 1.716281
hairGrav 2.2 1.4288756 3.387279
> ci.exp( glm( cbind(D,Y) ~ hair + age, family=poisreg ) )
          exp(Est.) 2.5% 97.5%
(Intercept) 3.7782269 2.49962653 5.7108526
hairGray 1.0606186 0.67013527 1.6786339
ageYoung 0.1470116 0.08418635 0.2567211
```

Case-control study of

Alcohol and oesophageal cancer

- ▶ Tuyns et al. 1977, see Breslow & Day 1980,
- 205 incident cases,
- ▶ 770 unmatched population controls,
- ▶ Risk factor: daily consumption of alcohol.
- Crude summary:

$\frac{\rm Exposure}{\geq 80~\rm g/d}$	Cases	Controls	OR
yes	96	109	5.64
no	104	666	

Crude analysis of CC-data

```
> Ca <- c(96.104)
> Co <- c(109.666)
> Ex <- factor(c(">80","<80"))
> data.frame( Ca. Co. Ex )
  Ca Co Ex
1 96 109 >80
2 104 666 <80
> m0 <- glm( cbind(Ca,Co) ~ Ex, family=binomial )</pre>
> round( ci.exp( m0 ), 2 )
           exp(Est.) 2.5% 97.5%
(Intercept) 0.16 0.13 0.19
Ex>80
               5.64 4.00 7.95
```

The odds-ratio of oesophageal cancer, comparing high vs. low alcohol consumption is 5.64(4.00; 7.95)

Stratified analysis (strat)

Stratification by age

Age	Exposure $\geq 80~{ m g/d}$	Cases	Controls	EOR
25-34	yes	1	9	∞
	no	0	106	
35-44	yes	4	26	5.05
	no	5	164	
45-54	yes	25	29	5.67
	no	21	138	
55-64	yes	42	27	6.36
	no	34	139	
65-74	yes	19	18	2.58
	no	36	88	
75-84	yes	5	0	∞
	no	8	31	

NB! Selection of controls: inefficient study Should have employed stratified sampling by age. Stratified analysis (strat)

Stratified analysis

```
> ca <- c( 1, 0, 4, 5, 25, 21, 42, 34, 19, 36, 5, 8 )
> co <- c(9, 106, 26, 164, 29, 138, 27, 139, 18, 88, 0, 31)
> alc <- rep( c(">80", "<80"), 6 )
> age <- factor( rep( seq(25,75,10), each=2 ) )
> data.frame( ca, co, alc, age )
```

Stratified analysis

The "age:" operator produces a separate alc-OR for each age class (in the absence of a main effect of alc):

```
> mi <- glm( cbind(ca,co) ~ age + age:alc, family=binomial )
> round( ci.exp( mi ), 3 )
```

exp(Est.) 2.5% 97.5% (Intercept) 0.000000e+00 0.000 Inf age35 2.345328e+10 0.000 Inf age45 1.170624e+11 0.000 Inf age55 1.881661e+11 0.000 Inf age65 3.147003e+11 0.000 Inf age75 1.985206e+11 0.000 Inf age25:alc>80 8.547416e+10 0.000 Inf age35:alc>80 5.046000e+00 1.272 20.025 age45:alc>80 5.665000e+00 2.799 11.464 age55:alc>80 6.359000e+00 3.449 11.726 age65:alc>80 2.580000e+00 1.216 5.475 age75:alc>80 1.755246e+11 0.000 Inf

Stratified analysis

... only the relevant parameters:

```
> round( ci.exp( mi, subset="alc" ), 3 )
```

```
exp(Est.) 2.5% 97.5%
age25:alc>80 8.547416e+10 0.000 Inf
age35:alc>80 5.046000e+00 1.272 20.025
age45:alc>80 5.665000e+00 2.799 11.464
age55:alc>80 6.359000e+00 3.449 11.726
age65:alc>80 2.580000e+00 1.216 5.475
age75:alc>80 1.755246e+11 0.000 Inf
```

- ► The age-specific ORs are quite variable
- Random error in some of them apparently large
- No clear pattern in the interaction

Oesophageal cancer CC — effect modification?

```
> ma <- glm( cbind(ca,co) ~ age + alc, family=binomial )
> anova( mi, ma, test="Chisq" )
Analysis of Deviance Table
Model 1: cbind(ca, co) ~ age + age:alc
Model 2: cbind(ca, co) ~ age + alc
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 0 0.000
2 5 11.041 -5 -11.041 0.05057
```

- Some evidence against homogeneity, but no clear pattern in the interaction (effect modification)
- Extract a common effect from the reduced model

Oesophageal cancer CC — linear effect modification

> ml <- glm(cbind(ca,co) ~ age + alc*as.integer(age), family=binomial)
> round(ci.exp(ml, subset="alc"), 3)

```
exp(Est.) 2.5% 97.5%

alc>80 8.584 1.961 37.579

alc>80:as.integer(age) 0.883 0.609 1.279

> ma <- glm( cbind(ca,co) ~ age + alc, family=binomial )

> anova( mi, ml, ma, test="Chisq" )[1:3,1:5]

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 0 0.000

2 4 10.609 -4 -10.6093 0.03132

3 5 11.041 -1 -0.4319 0.51107
```

Evidence against linear interaction (OR decreasing by age)

Oesophageal cancer CC — effect modification?

- No clear interaction (effect modification) detected
- ► Crude OR: 5.64(4.00; 7.95)
- ► Adjusted OR: 5.31(3.66; 7.70)
- Note: No test for confounding exists.

Regression models

Bendix Carstensen & Esa Läärä

Nordic Summerschool of Cancer Epidemiology Danish Cancer Society / NCU,August 2019 / January 2020

http://BendixCarstensen.com/NSCE/2019

regress

Regression modeling

- Limitations of stratified analysis
- Log-linear model for rates
- Additive model for rates
- Model fitting
- Problems in modeling

Limitations of stratified analysis

- Multiple stratification:
 - many strata with sparse data
 - loss of precision
- Continuous risk factors must be categorized
 - loss of precision
 - arbitrary (unreasonable) assumptions about effect shape
- More than 2 exposure categories:
 - Pairwise comparisons give inconsistent results
 - (non)Linear trends not easily estimated

Limitations

- Joint effects of several risk factors difficult to quantify
- Matched case-control studies: difficult to allow for confounders & modifiers not matched on.

These limitations may be overcome to some extent by regression modeling.

Key concept: statistical model

Log-linear model for rates

Assume that the theoretical rate λ depends on **explanatory variables** or **regressors** X, Z (& U, V, ...) according to a **log-linear** model

$$\log(\lambda(X, Z, \dots)) = \alpha + \beta X + \gamma Z + \dots$$

Equivalent expression, multiplicative model:

$$\lambda(X, Z, \dots) = \exp(\alpha + \beta X + \gamma Z + \dots)$$
$$= \lambda_0 \rho^X \tau^Z \cdots$$

Log-linear model

Model parameters

$$\begin{split} \alpha &= \log(\lambda_0) = \text{intercept, log-baseline rate } \lambda_0 \\ \text{(i.e. rate when } X = Z = \dots = 0 \text{)} \\ \beta &= \log(\rho) = \text{slope,} \\ \text{change in } \log(\lambda) \text{ for unit change in } X, \\ \text{adjusting for the effect of } Z \text{ (\& } U, V, \dots \text{)} \\ e^{\beta} &= \rho = \text{rate ratio for unit change in } X. \end{split}$$

No effect modification w.r.t. rate ratios assumed in this model.

Lung cancer incidence, asbestos exposure and smoking

Dichotomous explanatory variables coded:

- X =asbestos: 1: exposed, 0: unexposed,
- Z =smoking: 1: smoker, 0: non-smoker

Log-linear model for theoretical rates

$$\log(\lambda(X,Z)) = 2.485 + 1.609X + 2.303Z$$

Log-linear model: Variables

	Ra	ates	Variables			
			X			Ζ
Asbestos	Smoke	Non-sm	Smoke	Non-sm	Smoke	Non-sm
exposed	600	60	1	1	1	0
unexposed	120	12	0	0	1	0

Note: There will be **4** lines in the dataset, one for each combination of exposure and smoking

Lung cancer, asbestos and smoking

Entering the data:

— note that the data are artificial assuming the no. of PY among asbestos exposed is 1/4 of that among non-exposed

```
> D <- c( 150, 15, 120, 12 ) # cases
> Y <- c( 25, 25, 100, 100 ) / 100 # PY (100,000s)
> asb <- c( 1, 1, 0, 0 ) # Asbestos exposure
> smk <- c( 1, 0, 1, 0 ) # Smoking
> cbind( D, Y, asb, smk )
```

D Y asb smk [1,] 150 0.25 1 1 [2,] 15 0.25 1 0 [3,] 120 1.00 0 1 [4,] 12 1.00 0 0

Lung cancer, asbestos and smoking

- Regression modeling
- Multiplicative (default) Poisson model
- 2 equivalent approaches
 - D response, log(Y) offset (mostly used in the literature)
 - cbind(D,Y) response, family=poisreg
 - ... the latter approach also useful for additive models

```
> library( Epi )
> mo <- glm( D ~ asb + smk, family=poisson, offset=log(Y) )
> mm <- glm( cbind(D,Y) ~ asb + smk, family=poisreg )
> ma <- glm( cbind(D,Y) ~ asb + smk, family=poisreg(link=identity) )</pre>
```

Lung cancer, asbestos and smoking

Summary and extraction of parameters:

```
> summary( mo )
   Call:
   glm(formula = D ~ asb + smk, family = poisson, offset = log(Y))
   Deviance Residuals:
                               3
                    2
          1
   1.154e-07 0.000e+00 1.032e-07 0.000e+00
   Coefficients:
              Estimate Std. Error z value Pr(>|z|)
   (Intercept) 2.4849 0.2031 12.23 <2e-16
           1.6094 0.1168 13.78 <2e-16
   asb
   smk 2.3026 0.2018 11.41 <2e-16
   (Dispersion parameter for poisson family taken to be 1)
       Null deviance: 4.1274e+02 on 3 degrees of freedom
Regress Residual deviance: 2.3093e-14 on 1 degrees of freedom
   ATC. 00 07
```

Summary and extraction of parameters I

```
> ci.exp( mo )
```

	exp(Est.)	2.5%	97.5%
(Intercept)	12	8.059539	17.867026
asb	5	3.977142	6.285921
smk	10	6.732721	14.852836

```
> ci.exp( mo, Exp=F )
```

	Estimate	2.5%	97.5%
(Intercept)	2.484907	2.086856	2.882957
asb	1.609438	1.380563	1.838312
smk	2.302585	1.906979	2.698191

> ci.exp(mm, Exp=F)

Summary and extraction of parameters II

	Estimate	2.5%	97.5%
(Intercept)	2.484907	2.086856	2.882957
asb	1.609438	1.380563	1.838312
smk	2.302585	1.906979	2.698191

Parameters are the same for the two modeling approaches.

Interpretation of parameters I

<pre>> round(cbind(ci.exp(mm, Exp=F), +</pre>							
	Estimate	2.5%	97.5%	exp(Est.)	2.5%	97.5%	
(Intercept)	2.485	2.087	2.883	12	8.060	17.867	
asb	1.609	1.381	1.838	5	3.977	6.286	
smk	2.303	1.907	2.698	10	6.733	14.853	

$$lpha~=2.485=\log(12)$$
, log of baseline rate,

- $\beta~=1.609=\log(5),$ log of rate ratio $\rho=5$ between exposed and unexposed for asbestos
- $\gamma = 2.303 = \log(10),$ log of rate ratio $\tau = 10$ between smokers and non-smokers.
Interpretation of parameters II

Rates for all 4 asbestos/smoking combinations can be recovered from the above formula.

Log-linear model: Estimated rates

	Rates		Parameters	
Asbestos	Smokers	Non-smokers	Smokers	Non-smokers
exposed unexposed	600 120	60 12	$\begin{array}{c} \alpha+\gamma+\beta\\ \alpha+\gamma \end{array}$	$\begin{array}{c} \alpha+\beta\\ \alpha\end{array}$
Rate ratio Rate difference	5 480	5 48	$\exp(eta) \ eta$	$\frac{\exp(\beta)}{\beta}$

Log-linear model

Model with effect modification (two regressors only)

$$\log(\lambda(X,Z)) = \alpha + \beta X + \gamma Z + \delta XZ,$$

equivalently

$$\lambda(X,Z) = \exp(\alpha + \beta X + \gamma Z + \delta XZ) = \lambda_0 \rho^X \tau^Z \theta^{XZ}$$

where α is as before, but

$$\beta$$
 = log-rate ratio ρ for a unit change in X when Z = 0,
 γ = log-rate ratio τ for a unit change in Z when X = 0

Interaction parameter

 $\delta = \log(\theta)$, interaction parameter, describing effect modification

For binary X and Z we have

$$\theta = e^{\delta} = \frac{\lambda(1,1)/\lambda(0,1)}{\lambda(1,0)/\lambda(0,0)},$$

i.e. the ratio of relative risks associated with X between the two categories of Z.

Log-linear model: Estimated rates

	Rates		Param	Parameters	
Asbestos	Smokers	Non-smokers	Smokers	Non-smoker	
exposed unexposed	600 120	60 12	$\begin{array}{c} \alpha+\gamma+\beta+\delta\\ \alpha+\gamma \end{array}$	$\begin{array}{c} \alpha+\beta\\ \alpha\end{array}$	
Rate ratio Rate difference	5 480	5 48	$\frac{\log(\beta + \delta)}{\beta + \delta}$	$\log(eta) \ eta$	

Lung cancer, asbestos and smoking

```
> mi <- glm( cbind(D,Y) ~ asb + smk + I(asb*smk), family=poisreg )
> round( cbind( ci.exp( mi ),
+ rbind(ci.exp( mm ),NA) ), 3 )
```

	exp(Est.)	2.5%	97.5%	exp(Est.)	2.5%	97.5%
(Intercept)	12	6.815	21.130	12	8.060	17.867
asb	5	2.340	10.682	5	3.977	6.286
smk	10	5.524	18.101	10	6.733	14.853
I(asb * smk)	1	0.451	2.217	NA	NA	NA

- ▶ No interaction on the multiplicative scale:
- interaction parameter is 1,
- asbestos and smoking effects are the unchanged,
- but SEs are larger because they refer to RRs for levels X = 0 and Z = 0 respectively and not both levels jointly

Additive model for rates

General form with two regressors

$$\lambda(X,Z) = \alpha + \beta X + \gamma Z + \delta XZ$$

$$\begin{split} \alpha &= \lambda(0,0) \text{ is the baseline rate,} \\ \beta &= \lambda(x+1,0) - \lambda(x,0) \text{, rate difference for} \\ \text{unit change in } X \text{ when } Z = 0 \\ \gamma &= \lambda(0,z+1) - \lambda(0,z) \text{, rate difference for} \\ \text{unit change in } Z \text{ when } X = 0 \text{,} \end{split}$$

Additive model

- δ = interaction parameter.
- For binary X, Z:

$$\delta = [\lambda(1,1) - \lambda(1,0)] - [\lambda(0,1) - \lambda(0,0)]$$

- If no effect modification present, $\delta=0,$ and
- $\beta \, = \, {\rm rate} \, {\rm difference} \, {\rm for} \, {\rm unit} \, {\rm change} \, {\rm in} \, X$ for all values of Z
- $\gamma \, = \, {\rm rate} \, {\rm difference} \, {\rm for} \, {\rm unit} \, {\rm change} \, {\rm in} \, Z$ for all values of X,

Example: Additive model

> mai <- glm(cbind(D,Y) ~ asb + smk + asb*smk, family=poisreg(link=identity))
> round(ci.exp(mai, Exp=FALSE, pval=TRUE), 4)

	Estimate	2.5%	97.5%	Р
(Intercept)	12	5.2105	18.7895	0.0005
asb	48	16.8865	79.1135	0.0025
smk	108	85.4817	130.5183	0.0000
asb:smk	432	328.8083	535.1917	0.0000

A very clear interaction (effect modification)

$$\lambda(X, Z) = \alpha + \beta X + \gamma Z + \delta XZ = 12 + 48X + 108Z + 432XZ$$

- $\alpha = 12$, baseline rate, i.e. that among non-smokers unexposed to asbestos (reference group),
- $\beta =$ 48 (60-12), rate difference between asbestos exposed and unexposed among non-smokers only,
- $\gamma = 108 \; (= 120 12),$ rate difference between smokers and non-smokers among only those unexposed to asbestos
- δ = excess of rate difference between smokers and non-smokers among those exposed to asbestos: $\delta = (600 - 120) - (60 - 12) = 432$

Model fitting

Output from computer packages will give:

- parameter estimates and SEs,
- goodness-of-fit statistics,
- fitted values,
- residuals,...

May be difficult to interpret!

Model checking & diagnostics:

- assessment whether model assumptions seem reasonable and consistent with data
- involves fitting and comparing different models

Problems in modeling

- Simple model chosen may be far from the "truth".
- ▶ possible bias in effect estimation, underestimation of SEs.
- Multitude of models fit well to the same data which model to choose?
- Software easy to use:
- ... easy to fit models blindly
- ... possibility of unreasonable results

Modeling

- Modeling should not substitute, but complement crude analyses:
- Crude analyses should be seen as initial modeling steps: one or two effects in the model
- Final model for used for reporting developed mainly from subject matter knowledge
- Adequate training and experience required.
- Ask help from a professional statistician!
- **Collaboration** is the keyword.

Conclusion

Bendix Carstensen & Esa Läärä

Nordic Summerschool of Cancer Epidemiology Danish Cancer Society / NCU,August 2019 / January 2020

http://BendixCarstensen.com/NSCE/2019

concl-analysis

Concluding remarks

Epidemiologic study is a

Measurement excercise

Target is a **parameter** of interest, like

- incidence rate
- rate ratio
- rate difference
- relative risk
- difference in prevalences

Result: Estimate of the parameter.

Estimation and its errors

Like errors in measurement, estimation of parameter is prone to error:

estimate = true parameter value + systematic error (bias) + random error

- confounding, non-comparability,
- measurement error, misclassification,
- non-response, loss to follow-up,

Recommendations

- de-emphasize inferential statistics in favor of pure data decriptors: graphs and tables
- adopt statistical techniques based on realistic probability models
- subject the results of these to influence and sensitivity analysis.

Conclusion

"In presenting and discussing the results of an observational study the greatest emphasis should be placed on bias and confounding." (Brennan and Croft 1994)

Motto (Campbell & Machin 1983):

STATISTICS is about COMMON SENSE and GOOD DESIGN!