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Esa Läärä University of Oulu
Oulu, Finland

Danish Cancer Society / NCU, August 2019 / January 2020

From /home/bendix/teach/NSCE/2019/slides/slides.tex Saturday 10th August, 2019, 17:47

1/ 149

http://BendixCarstensen.com


Introduction

I Starters

I Analysis and statistics

I Uses of statistics in epidemiology

I References
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Cohort of male asbestos workers, N = 17800.

Observed D = 24 cases of lung cancer deaths.
Expected E = 7 cases based on age-specific rates in general
population.

SMR =
D

E
=

24

7
= 3.4

Observed rate ratio > 1:

I true as such?

I biased? by which factors?

I due to play of chance?

3/ 149



Nurses Health Study (NHS) on
oral contraceptive (OC) use and breast cancer.

Null hypothesis H0:
OC use does not affect risk of breast cancer; true rate ratio = 1
between ever and never users.

Summary of study outcomes:

No. of Person- Rate
OC use Cases years (/105 y)

Ever 204 94,029 217
Never 240 128,528 187
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Results:

I Observed rate ratio RR = 217/187 = 1.16

I P -value 0.12

I 95% confidence interval [0.96, 1.40]

Interpretation?

I true rate ratio = 1.16?

I probability that H0 is true = 12% ?

I probability = 95%, that true rate ratio is between 0.96 and
1.40?

I other? further analysis needed?
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Analysis and statistics

By analysis we mean statistical analysis.

Statistics:

I (singular) the science that deals with the:
I collection, classification, analysis, and interpretation of numerical

facts or data, and that,
I by use of mathematical theories of probability, imposes order and

regularity on aggregates of more or less disparate elements.

I (plural) the numerical facts or data themselves

(Webster’s Dictionary)
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Use of statistics in epidemiology

I assessment of random variation

I control of confounding and

I evaluation of effect modification (a.k.a. interaction)

I guiding study planning:
choice of design, group sizes
length of follow-up, sampling
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Use of statistics

Basic approaches and tools:

I descriptive summarization of data

I mathematical models for random variation

I statistical inference: estimation and testing

I crude and stratified analysis

I regression methods.
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Chance variation

I Systematic and random variation
I Probability model:

I random variable — observation — data
I distribution
I parameters

I Statistic

I Standard error
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Systematic and random variation

Cancer incidence rates vary by known & measured determinants of
disease, such as:

I age,

I gender,

I region,

I time,

I specific risk factors.

This is systematic variation.
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Systematic and random variation

In addition, observed rates are subject to
random or chance variation:
— variation due to unknown sources like

I latent genetic differences,

I unknown concomitant exposures,

I sampling,

I ”pure chance” — quantum mechanics

Chance (chance) 12/ 149



Example: Smoking and lung cancer

I Only a minority of smokers get lung cancer

I . . . and some non-smokers get the disease, too.

I At the individual level the outcome is unpredictable.

I When cancer occurs, it can eventually only be explained just
by “bad luck”.

I Unpredictability of individual outcomes implies largely
unpredictable — random — variation of disease rates at
population level.

Chance (chance) 13/ 149



Example: Breast cancer

Breast cancer incidence rates in Finland, age group 65-69 years in
three successive years.

Males Females
Year (per 106 P-years) (per 104 P-years)

1989 46 21
1990 11 20
1991 33 19

I Big annual changes in risk among males?
I Is there steady decline in females?
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Example: Breast cancer

Look at observed numbers of cases!

Males Females

Year Cases P-years Cases P-years

1989 4 88,000 275 131,000
1990 1 89,000 264 132,000
1991 3 90,000 253 133,000

Reality of changes over the years?

The information is in the number of cases
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Simple probability model for cancer occurrence

Assume that the population is homogeneous

I the theoretical incidence rate

I hazard or intensity — λ

I of contracting cancer

I is constant over a short period of time, dt

λ = Pr{Cancer in(t , t + dt)}/dt
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Simple probability model for cancer occurrence

I The observations:
I Number of cases D in
I Y person-years at risk
I ⇒ empirical incidence rate R = D/Y

I are all random variables with unpredictable values
I The probability distribution of possible values of a random

variable has some known mathematical form
I . . . some properties of the probability distribution are

determined by the assumptions
I . . . other properties are determined by quantities called

parameters
I — in this case the theoretical rate λ.
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How a probability model works

If the hazard of lung cancer, λ, is constant over time, we can
simulate lung cancer occurrence in a population:

I Start with N persons,

I 1st day: P {lung cancer} = λ× 1 day for all N persons

I 2nd day: P {lung cancer} = λ× 1 day for those left w/o LC

I 3rd day: P {lung cancer} = λ× 1 day for those left w/o LC

I . . .

Thus a probability model shows how to generate data with known
parameters. Model → Data
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Component of a probability model

I structure of the model
— a priori assumptions:
— constant incidence rate

I parameters of the model
— size of the incidence rate:
— derived from data conditional on structure
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Statistics

The opposite of a probability models:

I the data is known

I want to find parameters

I this is called estimation

I . . . mostly using maximum likelihood

Thus statistical modelling is how to estimate parameters from
observed data. Data → Model
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Statistics — the workings

I Fix the model (structure)

I For any set of parameters we can generate data

I Find parameters that generates data that look most like the
observed data

I Recall the notion of random variables:

I Given model and parameter
I we know the distribution of functions of data

I Essential distributions are Poisson and Normal (Gaussian)
distributions
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Poisson and Gaussian models

I Poisson distribution: simple probability model for number of
cases D (in a fixed follow-up time, Y ) with

I expectation (theoretical mean) µ = λY ,

I standard deviation
√
µ

I When the expectation µ of D is large enough, the Poisson
distribution resembles more and more the Gaussian or
Normal distribution.
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Poisson distribution with different means (µ)
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Normal (Gaussian) distribution
I common model for continuous variables

I symmetric and bell-shaped
I has two parameters:

– µ = expectation or mean
– σ = standard deviation

I Central limit theorem:
A sum of many small independent quantities will follow a
normal distribution

I Conseqence:
When we compute various functions based on our data we can
approximate the distribution with the normal distribution

I . . . so we just need to compute mean and standard deviation
— the shape is fixed by the theory
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Areas under curve limited by selected quantiles
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Example: Observed incidence rate

I Model: incidence rate is constant over time

I Theoretical rate λ,

I Empirical rate R = D/Y ,

I Estimator of λ, λ̂ = R.

I λ̂ = R is a statistic, random variable:

I its value varies from one study population (“sample”) to another on
hypothetical repetitions

I . . . namely other similar condition under which data could have been
generated

I its sampling distribution is (under the constant rate model & other
conditions) a transformation of the Poisson distribution
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Example: Observed incidence rate

I D approximately Poisson, mean λY , sd
√
λY

I R = D/Y scaled Poisson:
mean: λ, sd:

√
λY /Y =

√
λ/Y

I Standard error of empirical rate R is estimated by replacing λ
with R:

s.e.(R) =

√
λ̂

Y
=

√
R

Y
=

√
D

Y
= R × 1√

D

⇒ Random error depends inversely on the number of cases.

⇒ s.e. of R is proportional to R.
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Example: Observed incidence rate

I Use the central limit theorem:

I λ̂ = R ∼ N (λ, λ/Y ) = N (λ, λ2/D)

⇒ Observed R is with 95% proability in the interval

(λ− 1.96× λ/
√
D ;λ+ 1.96× λ/

√
D)

⇒ with 95% probability λ is in the interval

(R − 1.96× R/
√
D ;R + 1.96× R/

√
D)

I . . . a 95% confidence interval for the rate.
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Chance summary

I Observations vary systematically by known factors

I Observations vary randomly by unknown factors

I Probability model describes the random variation

I We observe random variables — draws from a probability
distribution

I Central limit theorem allows us to quantify the random
variation

I . . . and construct confidence interval
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Nordic Summerschool of
Cancer Epidemiology
Danish Cancer Society / NCU,August 2019 / January 2020

http://BendixCarstensen.com/NSCE/2019 inference

http://BendixCarstensen.com/NSCE/2019


Models and data

I Probability model can be used to generate data
(by simulation) — from model to data

I Inference is the inverse:

I What model generated the data?

I — from data to model

I . . . if we know that we can say something sensible about
disease process in the population
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Models and data — model components

I External, a priori information on observations
— structure of the model

I quantitative parameter(s) within model structure

I only the latter is the target for inference
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Statistical concepts

I Probability: parameters → data

I Statistics: data → parameter(estimate)s

I Notation:

I Parameter denoted by a Greek letter, β
I Estimator & estimate by the same Greek letter with ”hat”, β̂

I Ex: Incidence rate:

I Theoretical rate — the rate in the model that could have generated
data: λ

I Estimator: λ̂ = R = D/Y , empirical rate.

I . . . but where did the D/Y come from?
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Maximum likelihood principle

I Define your model (e.g. constant rate)

I Choose a parameter value

I How likely is it that
— this model with
— this parameter
generated data

I P {data|parameter}, P {(d , y)|λ}
I Find the parameter value that gives the maximal probability of

data

I Find the interval of parameter values that give probabilities not
too far from the maximum.
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Likelihood

Probability of the data given the parameter:

Assuming the rate (intensity) is constant, λ, the probability of
observing 14 deaths in the course of 843.6 person-years:

P {D = 14,Y = 843.6|λ} = λDeλY ×K

= λ14eλ×843.6 ×K

= L(λ|data)

I Estimate of λ is where this function is as large as possible.

I Confidence interval is where it is not too far from the maximum
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Likelihood function, 14 events, 843.6 PY
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Likelihood function, 14 events, 843.6 PY
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Log-likelihood function 14 events, 843.6 PY
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Log-likelihood function 14 events, 843.6 PY
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Log-likelihood function 14 events, 843.6 PY
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Log-likelihood function 14 events, 843.6 PY
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Log-likelihood function 14 events, 843.6 PY
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Confidence interval for a rate

I Based on the quadratic approximation to the normal density
I A 95% confidence interval for the log of a rate is:

θ̂ ± 1.96/
√
D = log(λ̂)± 1.96/

√
D

— the 1.96 is from the normal distribution, that is what it is
used for.

I Take the exponential to get the confidence interval for the rate:

λ̂
×
÷ exp(1.96/

√
D)︸ ︷︷ ︸

error factor,erf

— the probability that the theoretical rate λ is in this interval
is 95%.
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Example for a single rate

Suppose we have 14 deaths during 843.6 years of follow-up.

The rate is computed as:

λ̂ = D/Y = 14/843.6 = 0.0165 = 16.5 per 1000 years

The confidence interval is computed as:

λ̂
×
÷ erf = 16.5

×
÷ exp(1.96/

√
14) = (9.8, 28.0)

per 1000 person-years.
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Ratio of two rates

If we have observations of two rates λ1 and λ0, based on (D1,Y1)
and (D0,Y0), the variance of the difference of the log-rates,
log(λ1)− log(λ0) = log(RR), is:

var(log(RR)) = var(log(λ1/λ0))

= var(log(λ1)) + var(log(λ0))

= 1/D1 + 1/D0

As before a 95% c.i. for the RR is then, using the normal
distribution:

RR
×
÷ exp

(
1.96

√
1

D1
+

1

D0

)
︸ ︷︷ ︸

error factor
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Difference of two rates

If we have observations of two rates λ1 and λ0, based on (D1,Y1)
and (D0,Y0), the variance of the difference of the rates,
λ1 − λ0 = RD, is:

var(RD) = var(λ1 − λ0)
= var(λ1) + var(λ0)

= D1/Y
2
1 + D0/Y

2
0

As before a 95% c.i. for the RD is then, using the normal
distribution:

RD± 1.96

√
D1

Y 2
1

+
D0

Y 2
0
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Example

Suppose we in group 0 have 14 deaths during 843.6 years of
follow-up in one group, and in group 1 have 28 deaths during 632.3
years.

The rate-ratio is computed as:

RR = λ̂1/λ̂0 = (D1/Y1)/(D0/Y0)

= (28/632.3)/(14/843.6) = 0.0443/0.0165 = 2.669

The 95% confidence interval is computed as:

R̂R
×
÷ erf = 2.669

×
÷ exp

(
1.96

√
1/14 + 1/28

)
= 2.669

×
÷ 1.899 = (1.40, 5.07)
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Estimating a rate using R

Poisson likelihood for one rate, based on 14 events in 843.6 PY:

> library( Epi )
> D <- 14 ; Y <- 843.6
> m1 <- glm( D ~ 1, offset=log(Y/1000), family=poisson)
> ci.exp( m1 )

exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107

Conventional description for mortality rates:
“We used Poisson regression with log-person-years as offset. . . ”

But really both D and Y are outcomes (random variables)
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Estimating a rate using R

But really both D and Y are outcomes (random variables)

> mm <- glm( cbind(D,Y/1000) ~ 1, family=poisreg )
> ci.exp( mm )

exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107

. . . then you write:
“We used multiplicative Poisson regression for events and
person-years. . . ”
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RR example using R

Poisson likelihood, two rates, or one rate and RR:

> D <- c(14,28) ; Y <- c(843.6,632.3) ; gg <- factor(0:1)
> m2 <- glm( cbind(D,Y/1000) ~ gg, family=poisreg )
> ci.exp( m2 )

exp(Est.) 2.5% 97.5%
(Intercept) 16.595543 9.828750 28.021066
gg1 2.668354 1.404825 5.068325

> m3 <- glm( cbind(D,Y/1000) ~ gg - 1, family=poisreg )
> ci.exp( m3 )

exp(Est.) 2.5% 97.5%
gg0 16.59554 9.82875 28.02107
gg1 44.28278 30.57545 64.13525
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Statistical tests

I Are the observed data consistent with a given value of the
parameter?

I Such a value is often a null value

I Typically a conservative assumption, e.g.:
“no difference in outcome between the groups”

I RR = 1 or RD = 0

I This is called a null hypothesis, H0
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Computing a statistical test

I Based on the central limit theorem:

I

Zobs =
R̂R− 1

s.e.(RR)
≈ N (0, 1)

I

Zobs =
R̂D− 0

s.e.(RD)
≈ N (0, 1)

I How far are are we from the null in terms of the precision

I How far is quantified by the P -value:
P = P {Z is more extreme than Zobs|H0 is true}
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Interpretation of P-values

I Note it is not “the probability that H0 is true” !

I No mechanical rules of inference

I Rough guidelines:

I “large” value (p > 0.1): consistent with H0 but not necessarily
supporting it,

I “small” value (p < 0.01): indicates evidence against H0

I “intermediate” value (p ≈ 0.05): weak evidence against H0

I Division of p-values into ”significant” or ”non-significant” by
cut-off of 5% — must be avoided!

I . . . remember that the 5% is an arbitrary number taken out of
thin air.
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Confidence interval (CI)

I Range of values of the parameter compatible with the observed
data — the range of null values that will give a P -value larger
than 5% (1− confidence level)

I Specified at certain confidence level, commonly 95% (also 90
% and 99% used)

I The probability that the random interval covers the true
parameter value equals the confidence level (e.g. 95%).

I The probability that the parameter value is in the interval is
confidence level (e.g. 95%).
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Long-term behaviour of CI

Variability of 95% CI under
hypothetical repetitions of
similar study, when true rate
ratio is RR.
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In the long run 95% of these intervals would cover the true value
but 5% would not.
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Interpretation of CI

I Confidence intervals gives quantitative information on the
parameter and on statistical uncertainty about its value

I narrow CI about H0 value → results give support to H0

I narrow CI about non-H0 value → results give support to an
alternative

I wide CI about H0 value → results inconclusive

I wide CI about non-H0 value → results inconclusive

I width of the interval determines the precision

I location of the interval determines relevance
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Confidence interval and P-value

95 % CIs of rate dif-
ference δ and P val-
ues for H0 : δ = 0 in
different studies.
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Estimated effect

p = 0.382

p = 0.417

p = 0.003

p = 0.005

I Which ones are significant?

I Which ones are informative?
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Recommendations

Sterne and Davey Smith: Sifting the evidence – what’s wrong with
significance tests? BMJ 2001; 322: 226-231.

“Suggested guidelines for the reporting of results of statistical
analyses in medical journals”

1. The description of differences as
statistically significant is not acceptable.

2. Confidence intervals (CI) for the main results should always be
included, but 90% rather than 95% levels should be used.

Inference (inference) 52/ 149



Recommendations

3. CIs should not be used as a surrogate means of examining
significance at the conventional 5% level.

4. Interpretation of CIs should focus on the implications (clinical
importance) of the range of values in the interval.

5. In observational studies it should be remembered that
considerations of confounding and bias are at least as
important as the issues discussed in this paper.
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Crude analysis

I Single incidence rate

I Rate ratio in cohort study

I Rate difference in cohort study

I Rate ratio in case-control study

I Analysis of proportions

I Extensions and remarks
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Single incidence rate

I Model: Events occur with constant rate λ.

I Parameter of interest:

λ = true rate in target population

I Estimator: λ̂ = R, the empirical rate in a “representative
sample” from the population:

R =
D

Y
=

no. of cases

person-time

I Standard error of rate: SE(R) = R/
√
D .
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Example using R

Poisson likelihood for one rate, based on 14 events in 843.6 PY:

> library( Epi )
> D <- 14 ; Y <- 843.6
> m1 <- glm( D ~ 1, offset=log(Y/1000), family=poisson)
> ci.exp( m1 )

exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107

But really both D and Y are outcomes (random variables)

> mm <- glm( cbind(D,Y/1000) ~ 1, family=poisreg )
> ci.exp( mm )

exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107

Analysis (analysis) 56/ 149



Rate ratio in cohort study

Question: What is the rate ratio of cancer in the exposed as
compared to the unexposed group?

Model Cancer incidence rates constant in both groups, values
λ1, λ0

Parameter of interest is ratio of theoretical rates:

ρ =
λ1
λ0

=
rate among exposed

rate among unexposed

Null hypothesis H0 : ρ = 1: exposure has no effect.
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Rate difference in cohort study

Question: What is the rate difference of cancer in the exposed as
compared to the unexposed group?

Model Cancer incidence rates constant in both groups, values
λ1, λ0

Parameter of interest is difference between theoretical rates:

δ = λ1−λ0 = rate among exposed−rate among unexposed

Null hypothesis H0 : δ = 0: exposure has no effect.
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RR example using R

Poisson likelihood, two rates, or one rate and RR:

> D <- c(14,28) ; Y <- c(843.6,632.3) ; gg <- factor(0:1)
> m2 <- glm( cbind(D,Y/1000) ~ gg, family=poisreg )
> ci.exp( m2 )

exp(Est.) 2.5% 97.5%
(Intercept) 16.595543 9.828750 28.021066
gg1 2.668354 1.404825 5.068325

> m3 <- glm( cbind(D,Y/1000) ~ gg - 1, family=poisreg )
> ci.exp( m3 )

exp(Est.) 2.5% 97.5%
gg0 16.59554 9.82875 28.02107
gg1 44.28278 30.57545 64.13525
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RD example using R

Poisson likelihood, two rates, or one rate and RD:

> a2 <- glm( cbind(D,Y/1000) ~ gg, family=poisreg(link='identity') )
> ci.exp( m2, Exp=FALSE )

Estimate 2.5% 97.5%
(Intercept) 2.8091342 2.2853118 3.332957
gg1 0.9814617 0.3399129 1.623010

> a3 <- glm( cbind(D,Y/1000) ~ gg - 1, family=poisreg(link='identity') )
> ci.exp( m3, Exp=FALSE )

Estimate 2.5% 97.5%
gg0 2.809134 2.285312 3.332957
gg1 3.790596 3.420197 4.160994

You do it (both RR and RD):
What is the interpretation of the parameters?
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Analysis of proportions

I Suppose we have cohort data with a fixed risk period, i.e. all
subjects are followed over the same period and therefore has
the same length, as well as no losses to follow-up (no
censoring).

I In this setting the risk, π, of the disease over the risk period is
estimated by simple

I incidence proportion (often called ”cumulative incidence”
or even ”cumulative risk”)
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Analysis of proportions

Theoretical proportion: probability, π, that a random persons
becomes a case in the period.

π̂ = p =
x

n

=
number of new cases during period

size of population at start
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Analysis of proportions

Theoretical prevalence: probability, p, that a randomly chosen
person in the population is a case.

Analogously, empirical prevalence (proportion) at a certain point

of time t :

p̂ =
no. of prevalent cases at t

total population size at t
=

x

n
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Analysis of proportions

I Proportions (unlike rates) are dimensionless quantities ranging
from 0 to 1

I Analysis of proportions based on binomial distribution

I Standard error for an estimated proportion:

SE(p) =

√
p(1− p)

n
= p ×

√
(1− p)

x

I Depends also inversely on x !

I . . . but not a good approximation...
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Analysis of proportions

I CI : p ± 2× SE(p) are within [0; 1] if x > 4/(1 + 4/n)
I This is always true if x > 3 (if x > 2 for n < 12)
I — but the approximation is not good for x < 10

> ci <- function(x,n) round(cbind( x, n, p=p<-x/n, lo=p-2*sqrt(p*(1-p)/n),
+ hi=p+2*sqrt(p*(1-p)/n) ),4)
> rbind(ci(3,11:13),ci(2,3:5),ci(1,1:2))

x n p lo hi
[1,] 3 11 0.2727 0.0042 0.5413
[2,] 3 12 0.2500 0.0000 0.5000
[3,] 3 13 0.2308 -0.0029 0.4645
[4,] 2 3 0.6667 0.1223 1.2110
[5,] 2 4 0.5000 0.0000 1.0000
[6,] 2 5 0.4000 -0.0382 0.8382
[7,] 1 1 1.0000 1.0000 1.0000
[8,] 1 2 0.5000 -0.2071 1.2071
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Analysis of proportions

I Use confidence limits based on symmetric (normal) log(OR):

I Compute error factor: EF = exp
(
1.96/

√
np(1− p)

)
I then use to compute confidence interval:

p/
(
p + (1− p)

×
÷ EF

)
I Observed x = 4 out of n = 25: p̂ = 4/25 = 0.16

I Naive CI: 0.16± 1.96×
√

0.16× 0.84/25 = [0.016; 0.304]

I Better: EF = exp(1.96/
√
25× 0.16× 0.84) = 2.913

CI : 0.16/
(
0.16 + (0.84

×
÷ 2.913)

)
= [0.061; 0.357]
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Analysis of proportions by glm

I Default is to model logit(p) = log(p/(1− p)), log-odds
I Using ci.exp gives odds (ω):

ω = p/(1− p) ⇔ p = ω/(1 + ω)

> x <- 4 ; n <- 25
> p0 <- glm( cbind( x, n-x ) ~ 1, family=binomial )
> ( odds <- ci.exp( p0 ) )

exp(Est.) 2.5% 97.5%
(Intercept) 0.1904762 0.06538417 0.5548924

> odds/(odds+1)

exp(Est.) 2.5% 97.5%
(Intercept) 0.16 0.06137145 0.3568687
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Analysis of proportions by glm

Also possible to model log(p), log-probability, by changing the link
function:

> x <- 4 ; n <- 25
> pl <- glm( cbind( x, n-x ) ~ 1, family=binomial(link="log") )
> ci.exp( pl )

exp(Est.) 2.5% 97.5%
(Intercept) 0.16 0.06517056 0.3928154

> odds/(odds+1)

exp(Est.) 2.5% 97.5%
(Intercept) 0.16 0.06137145 0.3568687

We see that the estimated probability is the same but the
confidence limits are slightly different.
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Rate ratio in case-control study

Parameter of interest: ρ = λ1/λ0
— same as in cohort study.

Case-control design:

I incident cases occurring during a given period in the source
population are collected

I controls are obtained by incidence density sampling from
those at risk in the study base

I exposure is ascertained in cases and chosen controls.
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Rate ratio in case-control study

Summarized data on outcome:

Exposure Cases Controls

yes D1 C1

no D0 C0

I Can we directly estimate the rates λ0 and λ1 from this?

I — and the ratio of these?

I NO and YES (respectively)

I Rates are not estimable from a case-control design
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Rate ratio in case-control study

I If controls are representative of the person- years in the
population, their division into exposure groups estimates the
exposure distribution of the person-years:

C1/C0 ≈ Y1/Y0

I Hence, we can estimate the RR by the OR:

R̂R = OR =
D1/Y1

D0/Y0
=

D1/D0

Y1/Y0
≈ D1/D0

C1/C0
=

D1/C1

D0/C0

⇒ RR estimated by the ratio of the case-control ratios (D/C )
I . . . but of course there is a penalty to pay. . .
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Rate ratio from case-control study

Standard error for log(OR), 95% error factor
and approximate CI for OR:

SE
(
log(OR)

)
=

√
1

D1
+

1

D0
+

1

C1
+

1

C0

EF = exp
(
1.96× SE

(
log(OR)

))
CI = [OR/EF,OR× EF]

NB. Random error again depends inversely on numbers of cases
and controls — the penalty, in the two exposure groups.
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Example: mobile phone use and brain cancer

(Inskip et al. NEJM 2001; 344: 79-86).

Daily use Cases Controls

≥ 15 min 35 51
no use 637 625

The RR associated with use of mobile phone longer than 15 min
(vs. none) is estimated by the OR:

OR =
35/51

637/625
= 0.67
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Example: mobile phone use and brain cancer

SE for log(OR), 95% error factor and approximate CI for OR:

SE
(
log(OR)

)
=

√
1

35
+

1

637
+

1

51
+

1

625
= 0.2266

EF = exp()1.96× 0.2266) = 1.45

CI = [0.67/1.45, 0.67× 1.45] = [0.43, 1.05]

N.B. model-adjusted estimate (with 95% CI):

OR = 0.6[0.3, 1.0]
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OR from binomial model
> Ca <- c(638,35); Co <- c(625,51); Ex <- factor(c("None",">15"),levels=c("None",">15"))
> data.frame( Ca, Co, Ex )

Ca Co Ex
1 638 625 None
2 35 51 >15

> mf <- glm( cbind(Ca,Co) ~ Ex, family=binomial )
> ci.exp( mf )

exp(Est.) 2.5% 97.5%
(Intercept) 1.0208000 0.9141876 1.139845
Ex>15 0.6722909 0.4311979 1.048185

I Intercept is meaningless; only exposure estimate is relevant
I The parameter in the model is log(OR), so using ci.exp gives

us the estimated OR — same as in the hand-calculation above.
I This is called logistic regression
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Extensions and remarks

I This extends to crude analyses of exposure variables with
several categories when each exposure category is separately
compared to a reference group

I Evaluation of possible monotone trend in the parameter over
increasing levels of exposure: estimation of regression slope

I Crude analysis is insufficient in observational studies:

I control of confounding needed
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Rates

I dimension time−1

I estimated as λ̂ = D/Y
I confidence interval for λ:

I multiplicative λ
×
÷ erf

I additive λ± EM
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Practical model for rates

> library( Epi )
> D <- 14 ; Y <- 843.6/1000 ; D/Y

[1] 16.59554

> m0 <- glm( D ~ 1, offset=log(Y), family=poisson )
> ci.exp( m0 )

exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107

Better way:

> mm <- glm( cbind(D,Y) ~ 1, family=poisreg )
> ci.exp( mm )

exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107
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Allows error factor and margin too:

> mm <- glm( cbind(D,Y) ~ 1, family=poisreg )
> ci.exp( mm )

exp(Est.) 2.5% 97.5%
(Intercept) 16.59554 9.82875 28.02107

With error margin (conf.int. on rate-scale)

> ma <- glm( cbind(D,Y) ~ 1, family=poisreg(link="identity") )
> ci.exp( ma, Exp=FALSE )

Estimate 2.5% 97.5%
(Intercept) 16.59554 7.902426 25.28866
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Rate ratio and rate difference

> D <- c(14,28) ; Y <- c(843.6,632.3)/1000 ; gg <- factor(0:1)
> mr <- glm( cbind(D,Y) ~ gg, family=poisreg )
> ci.exp( mr )

exp(Est.) 2.5% 97.5%
(Intercept) 16.595543 9.828750 28.021066
gg1 2.668354 1.404825 5.068325

> mR <- glm( cbind(D,Y) ~ gg-1, family=poisreg )
> ci.exp( mR )

exp(Est.) 2.5% 97.5%
gg0 16.59554 9.82875 28.02107
gg1 44.28278 30.57545 64.13525
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Rate ratio and rate difference

> ma <- glm( cbind(D,Y) ~ gg, family=poisreg(link="identity") )
> ci.exp( ma, Exp=FALSE )

Estimate 2.5% 97.5%
(Intercept) 16.59554 7.902426 25.28866
gg1 27.68723 9.123703 46.25077

> mA <- glm( cbind(D,Y) ~ gg-1, family=poisreg(link="identity") )
> ci.exp( mA, Exp=FALSE )

Estimate 2.5% 97.5%
gg0 16.59554 7.902426 25.28866
gg1 44.28278 27.880508 60.68505
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Models

I Probability model: Data generator, model to data

I Statistical analysis: From data to model (parameters)

I Maximum likelihood is the basis for parameter estimation

I But only for given model

I Normal approximation provides confidence intervals

I — either for log-rates, rates, RR, RD, OR

I Beware of P -values
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Stratified analysis

I Shortcomings of crude analysis

I Effect modification

I Confounding

I Steps of stratified analysis

I Estimation of rate ratio

I Matched case-control study
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Shortcomings of crude analysis

I the rate ratio for the risk factor of interest is not constant,
but varies by other determinants of the disease

⇐ heterogeneity of the comparative parameter or effect
modification

I the exposure groups are not comparable w.r.t. other
determinants of disease

⇒ bias in comparison or confounding

⇐ exposure varies across other determinants
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Models for outcome with effects of

I primary variable (“exposure”)

I secondary variable (“stratum”)

I effect modification is the interaction model
exposure×stratum
exposure with different effects across strata

I confounding is the main-effects model
exposure+stratum exposure with same effect across strata
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Handling for effect modification and confounding

I Stratification of data
by potentially modifying and/or confounding factor(s)
& use of adjusted estimators

I Conceptually simpler,
and technically less demanding approach is
regression modeling

I Regression modeling is feasible because we have computers

I . . . adjustment estimators are left-overs from teachers taught
before the advent of computers (e.g. BxC & EL. . . )
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Effect modification

Incidence rates (per 105 PY) of lung cancer by occupational
asbestos exposure and smoking:

Asbestos Smokers Non-smokers

exposed 600 60
unexposed 120 12

Rate ratio 5 5
Rate difference 480 48

Is the effect of asbestos exposure the same or different in smokers
than in non-smokers?
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Effect modification (cont’d)

Depends how the effect is measured:

I Rate ratio: constant or homogeneous

I Rate difference: heterogeneous:
The value of rate difference is modified by smoking.

Smoking is thus an effect modifier of asbestos exposure
on the absolute scale (rates) but
not on the relative scale (log-rates)
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Incidence of CHD (per 103 PY) by risk factor E and age:

Factor E Young Old

exposed 4 9
unexposed 1 6

rate ratio 4 1.5
rate difference 3 3

I Rate ratio modified by age
I Rate difference not modified.
I There is no such thing as interaction (effect modification)

without reference to the scale of the effect
(e.g. additive or multiplicative)
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Handling effect modification

I In real examples, comparative parameters are more or less
heterogeneous across categories of other determinants of
disease

I This is termed interaction or effect modification

I The effect of X depend on the level of Z

I The effect of X cannot be described by a single number,

I . . . it is a function of Z
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Actual example
Age-specific CHD mortality rates (per 104 PY) and numbers of
cases (D) among British male doctors by cigarette smoking, rate
differences (RD) and rate ratios (RR) (Doll and Hill, 1966).

Smokers Non-smokers

Age (y) rate D rate D RD RR

35-44 6.1 32 1.1 2 5 5.7
45-54 24 104 11 12 13 2.1
55-64 72 206 49 28 23 1.5
65-74 147 186 108 28 39 1.4
75-84 192 102 212 31 -20 0.9

Total 44 630 26 101 18 1.7
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CHD and smoking

Both comparative parameters appear heterogeneous:

I RD increases by age (at least up to 75 y)

I RR decreases by age

No single-parameter (common rate ratio or rate difference)
comparison captures adequately the joint pattern of rates.
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Evaluation of modification

I Modification or its absence is an inherent property of the
phenomenon:

I cannot be removed or “adjusted” for

I — it depends on the scale on which it is measured

I Before looking for effect-modification:

I what scale are we using for description of effects
I how will we report the modified effects (the interaction)
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Evaluation of modification (cont’d)

I statistical tests for heterogeneity insensitive and rarely helpful

I ⇒ tempting to assume “no essential modification”:

+ simpler analysis and result presentation,

− misleading if essential modification present.
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CHD and smoking example with R I

> library( Epi )
> R <- c(6.1, 24, 72,147,192, 1.1,11,49,108,212)
> D <- c( 32,104,206,186,102, 2 ,12,28, 28, 31)
> Y <- D/R # risk time in units of 10^4 PY
> smk <- factor( rep(1:2,each=5), labels=c("Smoke","non-Sm") )
> age <- factor( rep(seq(35,75,10),2) )
> data.frame(D,Y,age,smk)
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CHD and smoking example with R II
D Y age smk

1 32 5.2459016 35 Smoke
2 104 4.3333333 45 Smoke
3 206 2.8611111 55 Smoke
4 186 1.2653061 65 Smoke
5 102 0.5312500 75 Smoke
6 2 1.8181818 35 non-Sm
7 12 1.0909091 45 non-Sm
8 28 0.5714286 55 non-Sm
9 28 0.2592593 65 non-Sm
10 31 0.1462264 75 non-Sm

> ma <- glm( cbind(D,Y) ~ age + smk, family=poisreg )
> mi <- update( ma, . ~ . + age:smk ) # add the interaction
> anova( ma, mi, test="Chisq" )
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CHD and smoking example with R III
Analysis of Deviance Table

Model 1: cbind(D, Y) ~ age + smk
Model 2: cbind(D, Y) ~ age + smk + age:smk
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 4 11.993
2 0 0.000 4 11.993 0.0174

> aa <- glm( cbind(D,Y) ~ age + smk, family=poisreg(link='identity') )
> ai <- update( ma, . ~ . + age:smk ) # add the interaction
> anova( aa, ai, test="Chisq" )

Analysis of Deviance Table

Model 1: cbind(D, Y) ~ age + smk
Model 2: cbind(D, Y) ~ age + smk + age:smk
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 4 7.7434
2 0 0.0000 4 7.7434 0.1014
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Confounding - operation example

Observational clinical study with comparison of success of
treatment between two types of operation for treating renal calculi:

I OS: open surgery (invasive)

I PN: percutaneous nephrolithotomy (non-invasive)

Treatment Pts Op. OK % OK %-diff.

OS 350 273 78
PN 350 290 83 +5

PN appears more successful than OS?
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Operation example
Results stratified by initial diameter size of the stone:

Size Treatment Pts Op. OK % OK %-diff.

< 2 cm: OS 87 81 93
PN 270 235 87 −6

≥ 2 cm: OS 263 192 73
PN 80 55 69 −4

OS seems more succesful in both subgroups.

Is there a paradox here?
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Operation example

I Treatment groups are not comparable w.r.t. initial size.

I Size of the stone (SS) is a confounder of the association
between operation type and success:

1 a determinant of outcome (success), based on external
knowledge,

2 statistically associated with operation type in the study
population,

3 not causally affected by operation type.
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Operation example

I Instance of “confounding by indication”:
— patient status affects choice of treatment,
⇒ bias in comparing treatments.

I This bias is best avoided in planning:
— randomized allocation of treatment.

Stratified analysis (strat) 101/ 149



Grey hair and cancer incidence

Gray P-years Rate
Age hair Cases ×1000 /1000 y RR

Total yes 66 25 2.64 2.2
no 30 25 1.20

Young yes 6 10 0.60 1.09
no 11 20 0.55

Old yes 60 15 4.0 1.05
no 19 5 3.8

Observed crude association nearly vanishes after controlling for age.
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Means for control of confounding

Design:

I Randomization

I Restriction

I Matching
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Means for control of confounding (cont’d)

Analysis:

I Stratification

I Regression modeling

Only randomization can remove confounding due to
unmeasured factors.

Other methods provide partial removal, but
residual confounding may remain.
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Steps of stratified analysis

I Stratify by levels of the potential confounding/modifying
factor(s)

I Compute stratum-specific estimates of the effect parameter
(e.g. RR or RD)

I Evaluate similarity of the stratum-specific estimates by
“eye-balling” or test of heterogeneity.
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Steps of stratified analysis (cont.)

I If the parameter is judged to be homogeneous enough,
calculate an adjusted summary estimate.

I If effect modification is judged to be present:

I report stratum-specific estimates with CIs,
I if desired, calculate an adjusted summary estimate by appropriate

standardization — (formally meaningless).
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Estimation of rate ratio

I Suppose that the rate ratio RR is sufficiently homogeneous
across strata (no modification), but confounding is present.

I Crude RR estimator is biased.

I Adjusted summary estimator, controlling for confounding,
must be used.

I These estimators are weighted averages of stratum-specific
estimators.
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Adjusted summary estimators

Different weighting methods:

I maximum likelihood (ML)

I weighted least squares (WLS)

I Mantel-Haenszel (MH) weights

I (direct) standardization by external standard population (CMF)

I standardized morbidity ratio (SMR)

Preferred method in analysis: ML Useful method in simple
descriptive: CMF / SMR
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Gray hair & cancer

> D <- c(6,11,60,19)
> Y <- c(10,20,15,5)
> age <- factor( c("Young","Young","Old","Old") )
> hair <- factor( c("Gray","Col","Gray","Col") )
> data.frame( D, Y, age, hair )

D Y age hair
1 6 10 Young Gray
2 11 20 Young Col
3 60 15 Old Gray
4 19 5 Old Col
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Gray hair & cancer

Crude and adjusted risk estimate by Poisson model:

> library( Epi )
> ci.exp( glm( cbind(D,Y) ~ hair , family=poisreg ) )

exp(Est.) 2.5% 97.5%
(Intercept) 1.2 0.8390232 1.716281
hairGray 2.2 1.4288756 3.387279

> ci.exp( glm( cbind(D,Y) ~ hair + age, family=poisreg ) )

exp(Est.) 2.5% 97.5%
(Intercept) 3.7782269 2.49962653 5.7108526
hairGray 1.0606186 0.67013527 1.6786339
ageYoung 0.1470116 0.08418635 0.2567211
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Case-control study of
Alcohol and oesophageal cancer

I Tuyns et al. 1977, see Breslow & Day 1980,
I 205 incident cases,
I 770 unmatched population controls,
I Risk factor: daily consumption of alcohol.
I Crude summary:

Exposure
≥ 80 g/d Cases Controls OR

yes 96 109 5.64
no 104 666
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Crude analysis of CC-data

> Ca <- c( 96,104)
> Co <- c(109,666)
> Ex <- factor(c(">80","<80"))
> data.frame( Ca, Co, Ex )

Ca Co Ex
1 96 109 >80
2 104 666 <80

> m0 <- glm( cbind(Ca,Co) ~ Ex, family=binomial )
> round( ci.exp( m0 ), 2 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.16 0.13 0.19
Ex>80 5.64 4.00 7.95

The odds-ratio of oesophageal cancer, comparing high vs. low
alcohol consumption is 5.64(4.00; 7.95)
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Stratification by age
Exposure

Age ≥ 80 g/d Cases Controls EOR

25-34 yes 1 9 ∞
no 0 106

35-44 yes 4 26 5.05
no 5 164

45-54 yes 25 29 5.67
no 21 138

55-64 yes 42 27 6.36
no 34 139

65-74 yes 19 18 2.58
no 36 88

75-84 yes 5 0 ∞
no 8 31

NB! Selection of controls: inefficient study
Should have employed stratified sampling by age.
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Stratified analysis

> ca <- c( 1, 0, 4, 5, 25, 21, 42, 34, 19, 36, 5, 8 )
> co <- c(9, 106, 26, 164, 29, 138, 27, 139, 18, 88, 0, 31)
> alc <- rep( c(">80","<80"), 6 )
> age <- factor( rep( seq(25,75,10), each=2 ) )
> data.frame( ca, co, alc, age )

ca co alc age
1 1 9 >80 25
2 0 106 <80 25
3 4 26 >80 35
4 5 164 <80 35
5 25 29 >80 45
6 21 138 <80 45
7 42 27 >80 55
8 34 139 <80 55
9 19 18 >80 65
10 36 88 <80 65
11 5 0 >80 75
12 8 31 <80 75

Stratified analysis (strat) 114/ 149



Stratified analysis

The “age:” operator produces a separate alc-OR for each age
class (in the absence of a main effect of alc):

> mi <- glm( cbind(ca,co) ~ age + age:alc, family=binomial )
> round( ci.exp( mi ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.000000e+00 0.000 Inf
age35 2.345328e+10 0.000 Inf
age45 1.170624e+11 0.000 Inf
age55 1.881661e+11 0.000 Inf
age65 3.147003e+11 0.000 Inf
age75 1.985206e+11 0.000 Inf
age25:alc>80 8.547416e+10 0.000 Inf
age35:alc>80 5.046000e+00 1.272 20.025
age45:alc>80 5.665000e+00 2.799 11.464
age55:alc>80 6.359000e+00 3.449 11.726
age65:alc>80 2.580000e+00 1.216 5.475
age75:alc>80 1.755246e+11 0.000 Inf
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Stratified analysis

. . . only the relevant parameters:

> round( ci.exp( mi, subset="alc" ), 3 )

exp(Est.) 2.5% 97.5%
age25:alc>80 8.547416e+10 0.000 Inf
age35:alc>80 5.046000e+00 1.272 20.025
age45:alc>80 5.665000e+00 2.799 11.464
age55:alc>80 6.359000e+00 3.449 11.726
age65:alc>80 2.580000e+00 1.216 5.475
age75:alc>80 1.755246e+11 0.000 Inf

I The age-specific ORs are quite variable
I Random error in some of them apparently large
I No clear pattern in the interaction
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Oesophageal cancer CC — effect modification?

> ma <- glm( cbind(ca,co) ~ age + alc, family=binomial )
> anova( mi, ma, test="Chisq" )

Analysis of Deviance Table

Model 1: cbind(ca, co) ~ age + age:alc
Model 2: cbind(ca, co) ~ age + alc
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 0 0.000
2 5 11.041 -5 -11.041 0.05057

I Some evidence against homogeneity,
but no clear pattern in the interaction (effect modification)

I Extract a common effect from the reduced model
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Oesophageal cancer CC — linear effect modification

> ml <- glm( cbind(ca,co) ~ age + alc*as.integer(age), family=binomial )
> round( ci.exp( ml, subset="alc" ), 3 )

exp(Est.) 2.5% 97.5%
alc>80 8.584 1.961 37.579
alc>80:as.integer(age) 0.883 0.609 1.279

> ma <- glm( cbind(ca,co) ~ age + alc, family=binomial )
> anova( mi, ml, ma, test="Chisq" )[1:3,1:5]

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 0 0.000
2 4 10.609 -4 -10.6093 0.03132
3 5 11.041 -1 -0.4319 0.51107

Evidence against linear interaction (OR decreasing by age)
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Oesophageal cancer CC — effect modification?

> mn <- glm( cbind(ca,co) ~ alc , family=binomial )
> round( ci.exp( mn, subset="alc" ), 2 )

exp(Est.) 2.5% 97.5%
alc>80 5.64 4 7.95

> ma <- glm( cbind(ca,co) ~ age + alc, family=binomial )
> round( ci.exp( ma, subset="alc" ), 2 )

exp(Est.) 2.5% 97.5%
alc>80 5.31 3.66 7.7

I No clear interaction (effect modification) detected
I Crude OR: 5.64(4.00; 7.95)
I Adjusted OR: 5.31(3.66; 7.70)
I Note: No test for confounding exists.
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Nordic Summerschool of
Cancer Epidemiology
Danish Cancer Society / NCU,August 2019 / January 2020

http://BendixCarstensen.com/NSCE/2019 regress

http://BendixCarstensen.com/NSCE/2019


Regression modeling

I Limitations of stratified analysis

I Log-linear model for rates

I Additive model for rates

I Model fitting

I Problems in modeling
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Limitations of stratified analysis

I Multiple stratification:

I many strata with sparse data
I loss of precision

I Continuous risk factors must be categorized

I loss of precision
I arbitrary (unreasonable) assumptions about effect shape

I More than 2 exposure categories:

I Pairwise comparisons give inconsistent results
I (non)Linear trends not easily estimated
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Limitations

I Joint effects of several risk factors difficult to quantify

I Matched case-control studies:
difficult to allow for confounders & modifiers not matched on.

These limitations may be overcome to some extent by regression
modeling.

Key concept: statistical model
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Log-linear model for rates

Assume that the theoretical rate λ depends on
explanatory variables or regressors X , Z (& U , V , . . . )
according to a log-linear model

log
(
λ(X ,Z , . . . )

)
= α + βX + γZ + . . .

Equivalent expression, multiplicative model:

λ(X ,Z , . . . ) = exp(α + βX + γZ + . . . )

= λ0 ρ
X τZ · · ·
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Log-linear model

Model parameters

α = log(λ0) = intercept, log-baseline rate λ0
(i.e. rate when X = Z = · · · = 0)

β = log(ρ) = slope,
change in log(λ) for unit change in X ,
adjusting for the effect of Z (& U ,V , . . . )

eβ = ρ = rate ratio for unit change in X .

No effect modification w.r.t. rate ratios assumed in this model.
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Lung cancer incidence,
asbestos exposure and smoking

Dichotomous explanatory variables coded:

I X = asbestos: 1: exposed, 0: unexposed,

I Z = smoking: 1: smoker, 0: non-smoker

Log-linear model for theoretical rates

log
(
λ(X ,Z )

)
= 2.485 + 1.609X + 2.303Z
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Log-linear model: Variables

Rates Variables

X Z
Asbestos Smoke Non-sm Smoke Non-sm Smoke Non-sm

exposed 600 60 1 1 1 0
unexposed 120 12 0 0 1 0

Note: There will be 4 lines in the dataset, one for each
combination of exposure and smoking
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Lung cancer, asbestos and smoking

Entering the data:
— note that the data are artificial assuming the no. of PY among
asbestos exposed is 1/4 of that among non-exposed

> D <- c( 150, 15, 120, 12 ) # cases
> Y <- c( 25, 25, 100, 100 ) / 100 # PY (100,000s)
> asb <- c( 1, 1, 0, 0 ) # Asbestos exposure
> smk <- c( 1, 0, 1, 0 ) # Smoking
> cbind( D, Y, asb, smk )

D Y asb smk
[1,] 150 0.25 1 1
[2,] 15 0.25 1 0
[3,] 120 1.00 0 1
[4,] 12 1.00 0 0
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Lung cancer, asbestos and smoking

I Regression modeling

I Multiplicative (default) Poisson model

I 2 equivalent approaches

I D response, log(Y) offset (mostly used in the literature)
I cbind(D,Y) response, family=poisreg
I . . . the latter approach also useful for additive models
I

> library( Epi )
> mo <- glm( D ~ asb + smk, family=poisson, offset=log(Y) )
> mm <- glm( cbind(D,Y) ~ asb + smk, family=poisreg )
> ma <- glm( cbind(D,Y) ~ asb + smk, family=poisreg(link=identity) )

Regression models (regress) 128/ 149



Lung cancer, asbestos and smoking

Summary and extraction of parameters:

> summary( mo )

Call:
glm(formula = D ~ asb + smk, family = poisson, offset = log(Y))

Deviance Residuals:
1 2 3 4

1.154e-07 0.000e+00 1.032e-07 0.000e+00

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.4849 0.2031 12.23 <2e-16
asb 1.6094 0.1168 13.78 <2e-16
smk 2.3026 0.2018 11.41 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 4.1274e+02 on 3 degrees of freedom
Residual deviance: 2.3093e-14 on 1 degrees of freedom
AIC: 28.37

Number of Fisher Scoring iterations: 3

> ci.exp( mo )

exp(Est.) 2.5% 97.5%
(Intercept) 12 8.059539 17.867026
asb 5 3.977142 6.285921
smk 10 6.732721 14.852836

> ci.exp( mo, Exp=F )

Estimate 2.5% 97.5%
(Intercept) 2.484907 2.086856 2.882957
asb 1.609438 1.380563 1.838312
smk 2.302585 1.906979 2.698191

> ci.exp( mm, Exp=F )

Estimate 2.5% 97.5%
(Intercept) 2.484907 2.086856 2.882957
asb 1.609438 1.380563 1.838312
smk 2.302585 1.906979 2.698191

Parameters are the same for the two modeling approaches.
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Summary and extraction of parameters I

> ci.exp( mo )

exp(Est.) 2.5% 97.5%
(Intercept) 12 8.059539 17.867026
asb 5 3.977142 6.285921
smk 10 6.732721 14.852836

> ci.exp( mo, Exp=F )

Estimate 2.5% 97.5%
(Intercept) 2.484907 2.086856 2.882957
asb 1.609438 1.380563 1.838312
smk 2.302585 1.906979 2.698191

> ci.exp( mm, Exp=F )
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Summary and extraction of parameters II
Estimate 2.5% 97.5%

(Intercept) 2.484907 2.086856 2.882957
asb 1.609438 1.380563 1.838312
smk 2.302585 1.906979 2.698191

Parameters are the same for the two modeling approaches.
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Interpretation of parameters I

> round( cbind( ci.exp( mm, Exp=F ),
+ ci.exp( mm ) ), 3 )

Estimate 2.5% 97.5% exp(Est.) 2.5% 97.5%
(Intercept) 2.485 2.087 2.883 12 8.060 17.867
asb 1.609 1.381 1.838 5 3.977 6.286
smk 2.303 1.907 2.698 10 6.733 14.853

α = 2.485 = log(12), log of baseline rate,

β = 1.609 = log(5), log of rate ratio ρ = 5 between exposed and
unexposed for asbestos

γ = 2.303 = log(10), log of rate ratio τ = 10 between smokers
and non-smokers.
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Interpretation of parameters II
Rates for all 4 asbestos/smoking combinations can be recovered
from the above formula.
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Log-linear model: Estimated rates

Rates Parameters

Asbestos Smokers Non-smokers Smokers Non-smokers

exposed 600 60 α + γ + β α+ β
unexposed 120 12 α + γ α

Rate ratio 5 5 exp(β) exp(β)
Rate difference 480 48 β β
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Log-linear model

Model with effect modification (two regressors only)

log
(
λ(X ,Z )

)
= α + βX + γZ + δXZ ,

equivalently

λ(X ,Z ) = exp
(
α + βX + γZ + δXZ

)
= λ0ρ

X τZθXZ

where α is as before, but

β = log-rate ratio ρ for a unit change in X when Z = 0,

γ = log-rate ratio τ for a unit change in Z when X = 0
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Interaction parameter

δ = log(θ), interaction parameter, describing
effect modification

For binary X and Z we have

θ = eδ =
λ(1, 1)/λ(0, 1)

λ(1, 0)/λ(0, 0)
,

i.e. the ratio of relative risks associated with X between the two
categories of Z .
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Log-linear model: Estimated rates

Rates Parameters

Asbestos Smokers Non-smokers Smokers Non-smokers

exposed 600 60 α + γ + β + δ α+ β
unexposed 120 12 α + γ α

Rate ratio 5 5 log(β + δ) log(β)
Rate difference 480 48 β + δ β
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Lung cancer, asbestos and smoking

> mi <- glm( cbind(D,Y) ~ asb + smk + I(asb*smk), family=poisreg )
> round( cbind( ci.exp( mi ),
+ rbind(ci.exp( mm ),NA) ), 3 )

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
(Intercept) 12 6.815 21.130 12 8.060 17.867
asb 5 2.340 10.682 5 3.977 6.286
smk 10 5.524 18.101 10 6.733 14.853
I(asb * smk) 1 0.451 2.217 NA NA NA

I No interaction on the multiplicative scale:
I interaction parameter is 1,
I asbestos and smoking effects are the unchanged,
I but SEs are larger because they refer to RRs for levels X = 0

and Z = 0 respectively and not both levels jointly
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Additive model for rates

General form with two regressors

λ(X ,Z ) = α + βX + γZ + δXZ

α = λ(0, 0) is the baseline rate,

β = λ(x + 1, 0)− λ(x , 0), rate difference for
unit change in X when Z = 0

γ = λ(0, z + 1)− λ(0, z ), rate difference for
unit change in Z when X = 0,
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Additive model

δ = interaction parameter.

I For binary X ,Z :

δ = [λ(1, 1)− λ(1, 0)]− [λ(0, 1)− λ(0, 0)]

I If no effect modification present, δ = 0, and

β = rate difference for unit change in X
for all values of Z

γ = rate difference for unit change in Z
for all values of X ,
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Example: Additive model

> mai <- glm( cbind(D,Y) ~ asb + smk + asb*smk, family=poisreg(link=identity) )
> round( ci.exp( mai, Exp=FALSE, pval=TRUE ), 4 )

Estimate 2.5% 97.5% P
(Intercept) 12 5.2105 18.7895 0.0005
asb 48 16.8865 79.1135 0.0025
smk 108 85.4817 130.5183 0.0000
asb:smk 432 328.8083 535.1917 0.0000

A very clear interaction (effect modification)
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λ(X ,Z ) = α + βX + γZ + δXZ = 12 + 48X + 108Z + 432XZ

α = 12, baseline rate, i.e. that among non-smokers unexposed to
asbestos (reference group),

β = 48 (60− 12), rate difference between asbestos exposed and
unexposed among non-smokers only,

γ = 108 (= 120− 12), rate difference between smokers and
non-smokers among only those unexposed to asbestos

δ = excess of rate difference between smokers and non-smokers
among those exposed to asbestos:
δ = (600− 120)− (60− 12) = 432
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Model fitting

Output from computer packages will give:

I parameter estimates and SEs,
I goodness-of-fit statistics,
I fitted values,
I residuals,...

May be difficult to interpret!

Model checking & diagnostics:

I assessment whether model assumptions seem reasonable and
consistent with data

I involves fitting and comparing different models
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Problems in modeling

I Simple model chosen may be far from the “truth”.

I possible bias in effect estimation, — underestimation of SEs.

I Multitude of models fit well to the same data
which model to choose?

I Software easy to use:

I . . . easy to fit models blindly

I . . . possibility of unreasonable results
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Modeling

I Modeling should not substitute, but complement crude
analyses:

I Crude analyses should be seen as initial modeling steps:
one or two effects in the model

I Final model for used for reporting developed mainly from
subject matter knowledge

I Adequate training and experience required.

I Ask help from a professional statistician!

I Collaboration is the keyword.
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Concluding remarks

Epidemiologic study is a

Measurement excercise

Target is a parameter of interest, like

I incidence rate
I rate ratio
I rate difference
I relative risk
I difference in prevalences

Result: Estimate of the parameter.
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Estimation and its errors

Like errors in measurement, estimation of parameter is prone to
error:

estimate = true parameter value

+ systematic error (bias)

+ random error

I confounding, non-comparability,
I measurement error, misclassification,
I non-response, loss to follow-up,
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Recommendations

I de-emphasize inferential statistics in favor of pure data
decriptors: graphs and tables

I adopt statistical techniques based on realistic probability
models

I subject the results of these to influence and sensitivity analysis.
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Conclusion

“In presenting and discussing the results of an observational study
the greatest emphasis should be placed on bias and confounding.”
(Brennan and Croft 1994)

Motto (Campbell & Machin 1983):

STATISTICS is about
COMMON SENSE and

GOOD DESIGN!
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