Nordic Summerschool of Cancer Epidemiology

Bendix Carstensen Steno Diabetes Center
Gentofte, Denmark
http://BendixCarstensen.com
Esa Läärä University of Oulu
Oulu, Finland

Danish Cancer Society, August 2017 / Januay 2018

http://BendixCarstensen.com/NSCE/2017

1/ 156

Chance

Bendix Carstensen & Esa Laara

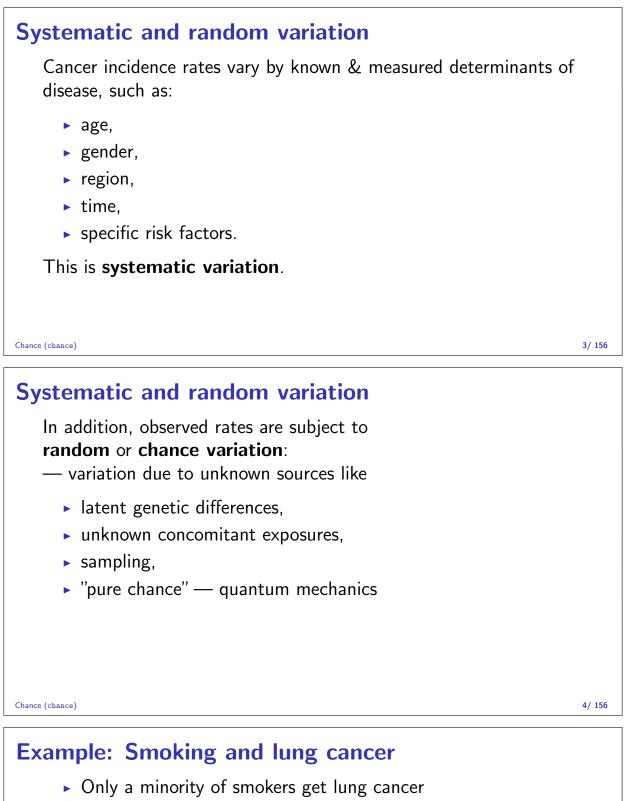
Nordic Summerschool of Cancer Epidemiology Danish Cancer Society, August 2017 / Januay 2018

http://BendixCarstensen.com/NSCE/2017

chance

Chance variation

- Systematic and random variation
- Probability model:
 - random variable observation data
 - distribution
 - parameters
- Statistic
- Standard error



- ... and some non-smokers get the disease, too.
- At the **individual** level the outcome is unpredictable.
- When cancer occurs, it can eventually only be explained just by "bad luck".
- Unpredictability of individual outcomes implies largely unpredictable — random — variation of disease rates at population level.

Example: Breast cancer

Breast cancer incidence rates in Finland, age group 65-69 years in three successive years.

Year	Males (per 10^6 P-years)	Females (per 10^4 P-years)
1989	46	21
1990	11	20
1991	33	19

Big annual changes in risk among males?

Is there steady decline in females?

Chance (chance)

Example: Breast cancer

Look at observed numbers of cases!

	Males		Females	
Year	Cases	P-years	Cases	P-years
1989	4	88,000	275	131,000
1990	1	89,000	264	132,000
1991	3	90,000	253	133,000

Reality of changes over the years?

The information is in the **number** of cases

Chance (chance)

7/156

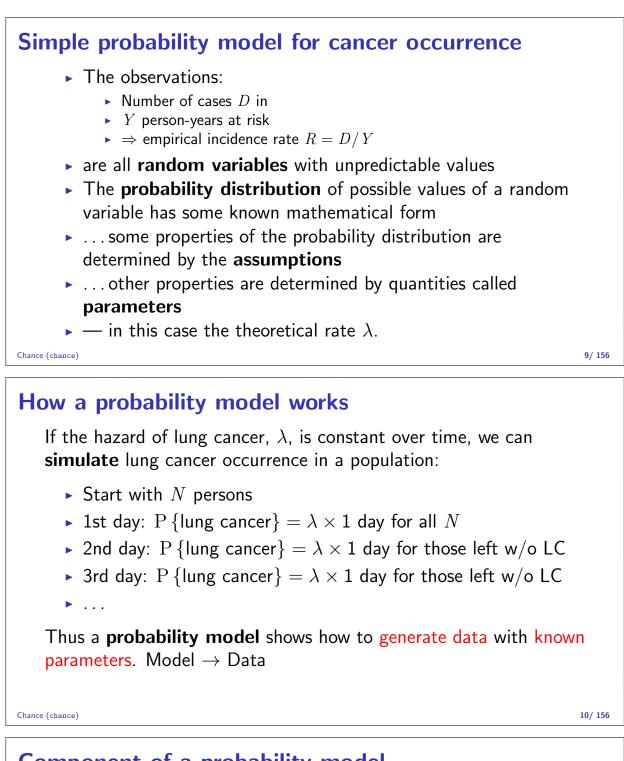
6/156

Simple probability model for cancer occurrence

Assume that the population is homogeneous

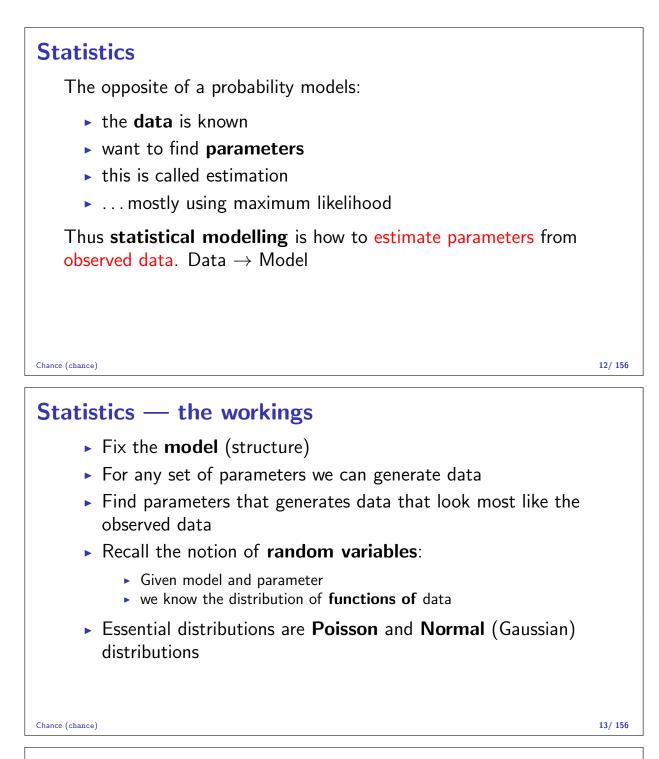
- the theoretical incidence rate
- hazard or intensity λ
- of contracting cancer
- \blacktriangleright is **constant** over a short period of time, dt

 $\lambda = \Pr{\{\text{Cancer in}(t, t + dt)\}/dt}$



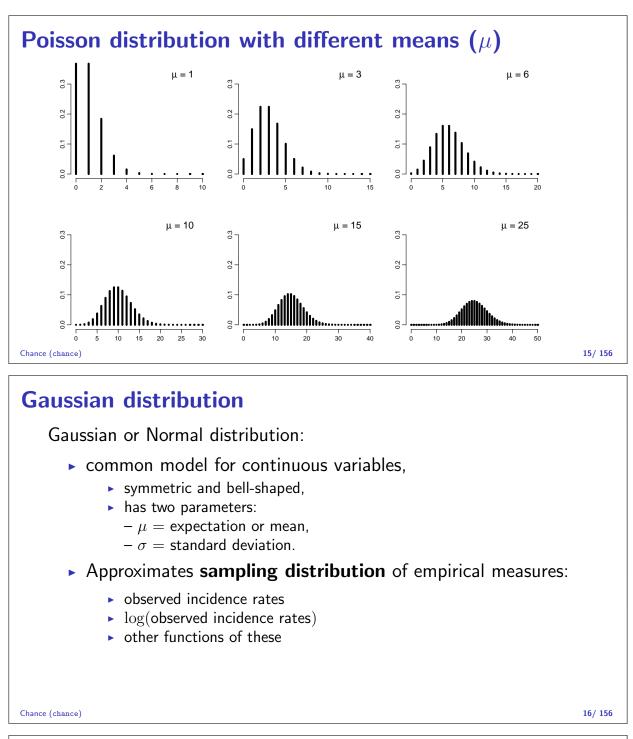
Component of a probability model

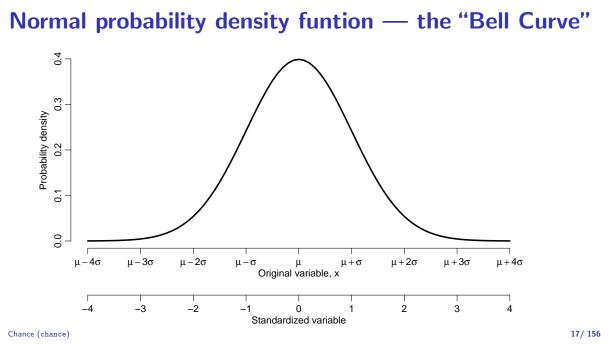
- structure of the model
 - *a priori* assumptions:
 - constant incidence rate
- parameters of the model
 - *size* of the incidence rate:
 - derived from data conditional on structure

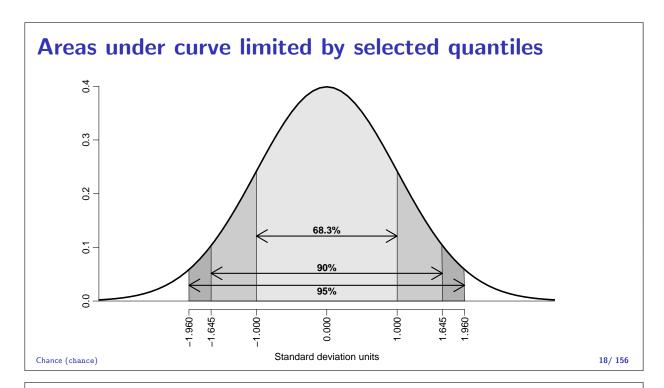


Poisson and Gaussian models

- Poisson distribution: simple probability model for number of cases D (in a fixed follow-up time, Y) with
- expectation (theoretical mean) $\mu = \lambda Y$,
- standard deviation $\sqrt{\mu}$
- When the expectation µ of D is large enough, the Poisson distribution resembles more and more the Gaussian or Normal distribution.







Sampling distribution

- Describes variation of a summary statistic,
- behaviour of values of the statistic over hypothetical repetitions of taking new random samples of size n.
- Its form depends on:
 - original distribution & parameters,
 - ► sample size *n*.
- ► The larger the sample size n → the narrower and more Gaussian-like sampling distribution!

19/ 156

Example: Observed incidence rate

Parameter $\lambda = (unknown)$ incidence rate in population.

- Model incidence rate is constant over time
- Empirical rate R = D/Y,
- Estimator of λ , $\hat{\lambda} = R$.
- $\hat{\lambda} = R$ is a statistic, random variable:
 - its value varies from one study population ("sample") to another on hypothetical repetitions
 - its sampling distribution is (under the constant rate model & other conditions) a transformation of the Poisson distribution

Example: Observed incidence rate

- D approximately Poisson, mean λY , sd $\sqrt{\lambda Y}$
- R = D/Y scaled Poisson, mean λ , sd $\sqrt{\lambda Y}/Y = \sqrt{\lambda/Y}$
- Expectation of R is λ , standard deviation $\sqrt{\lambda/Y}$.
- Standard error of empirical rate R is estimated by replacing λ with R:

s.e.
$$(R) = \sqrt{\frac{\hat{\lambda}}{Y}} = \sqrt{\frac{R}{Y}} = \frac{\sqrt{D}}{Y} = R \times \frac{1}{\sqrt{D}}$$

 \Rightarrow Random error depends inversely on the number of cases.

 \Rightarrow s.e. of R is proportional to R.

Chance (chance)

21/ 156

22/156

Example: Observed incidence rate

- Use the central limit theorem:
- $\hat{\lambda} = R \sim \mathcal{N}(\lambda, \lambda/Y) = \mathcal{N}(\lambda, \lambda^2/D)$
- \Rightarrow Observed R is with 95% proability in the interval

$$(\lambda - 1.96 \times \lambda/\sqrt{D}; \lambda + 1.96 \times \lambda/\sqrt{D})$$

 \Rightarrow with 95% probability λ is in the interval

$$(R-1.96 \times R/\sqrt{D}; R+1.96 \times R/\sqrt{D})$$

• ... a 95% confidence interval for the rate.

Chance (chance)

Chance summary

- Observations vary systematically by known factors
- Observations vary randomly by **unknown** factors
- Probability model describes the random variation
- We observe random variables draws from a probability distribution
- Central limit theorem allows us to quantify the random variation
- Confidence interval
- ... but we need a better foundation for the estimators

Inference

Bendix Carstensen & Esa Laara

Nordic Summerschool of Cancer Epidemiology Danish Cancer Society, August 2017 / Januay 2018

http://BendixCarstensen.com/NSCE/2017

inference

Inference

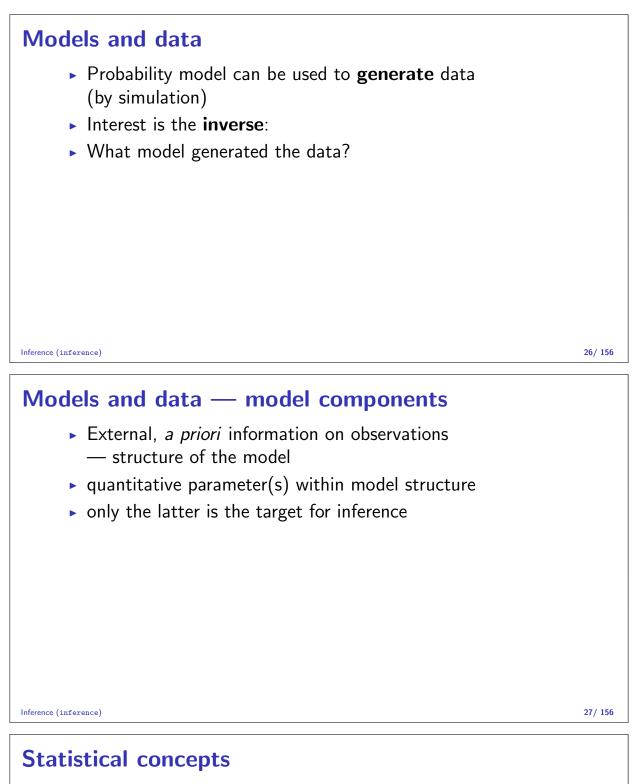
- Inferential questions
- Point estimation
- Maximum likelihood
- Statistical testing
- Interpretation of *P*-values
- Confidence interval
- Recommendations

Inference (inference)

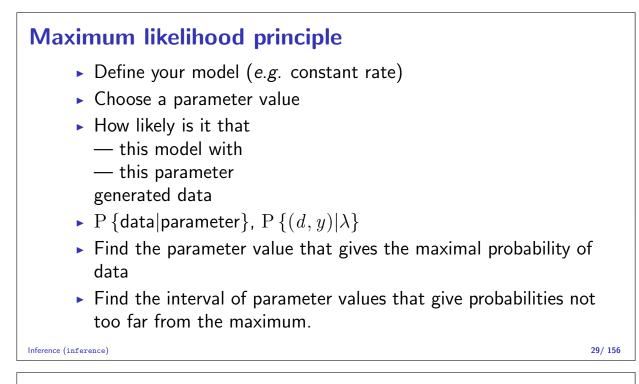
24/ 156

Inferential questions

- What is the best single-number assessment of the parameter value?
- Is the result consistent or in disagreement with a certain value of the parameter proposed beforehand?
- What is a credible range of parameter values, consistent with our data?



- Probability: parameters \rightarrow data
- ► Statistics: data → parameter(estimate)s
- Notation:
 - Parameter denoted by a Greek letter
 - Estimator & estimate by the same Greek letter with "hat".
- Ex: Incidence rate:
 - True unknown rate: λ
 - Estimator: $\widehat{\lambda} = R = D/Y$, empirical rate.
- but where did this come from?



Likelihood

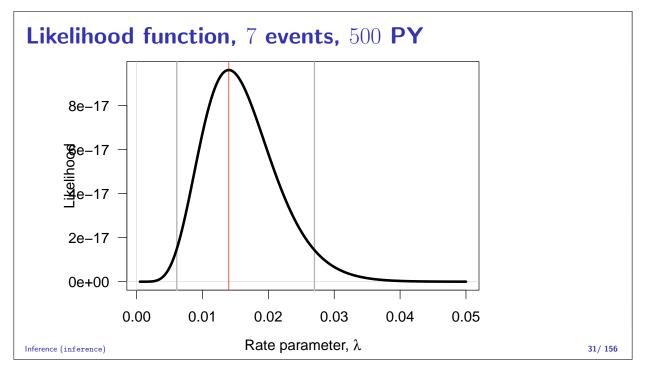
Probability of the data given the parameter:

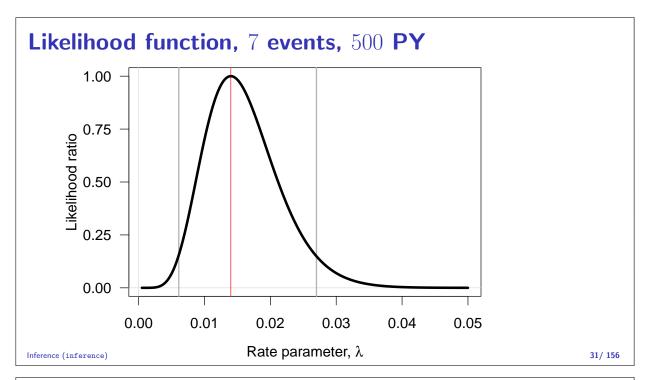
Assuming the rate (intensity) is constant, λ , the probability of observing 7 deaths in the course of 500 person-years:

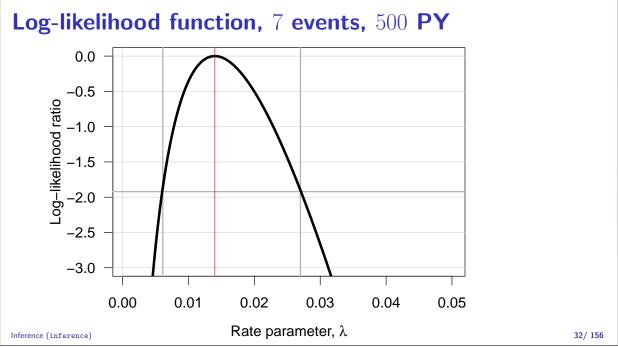
$$P \{ D = 7, Y = 500 | \lambda \} = \lambda^{D} e^{\lambda Y} \times K$$
$$= \lambda^{7} e^{\lambda 500} \times K$$
$$= L(\lambda | data)$$

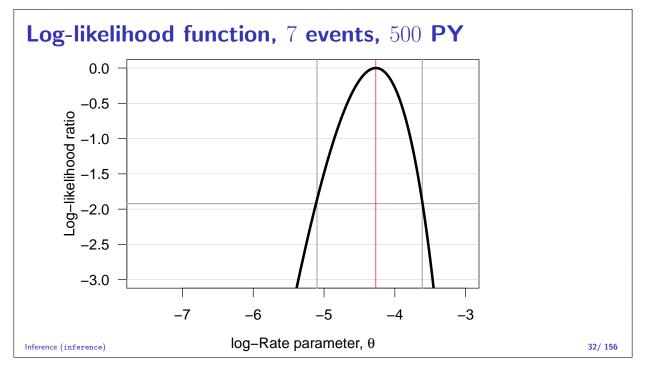
- Estimate of λ is where this function is as large as possible.
- Confidence interval is where it is not too far from the maximum

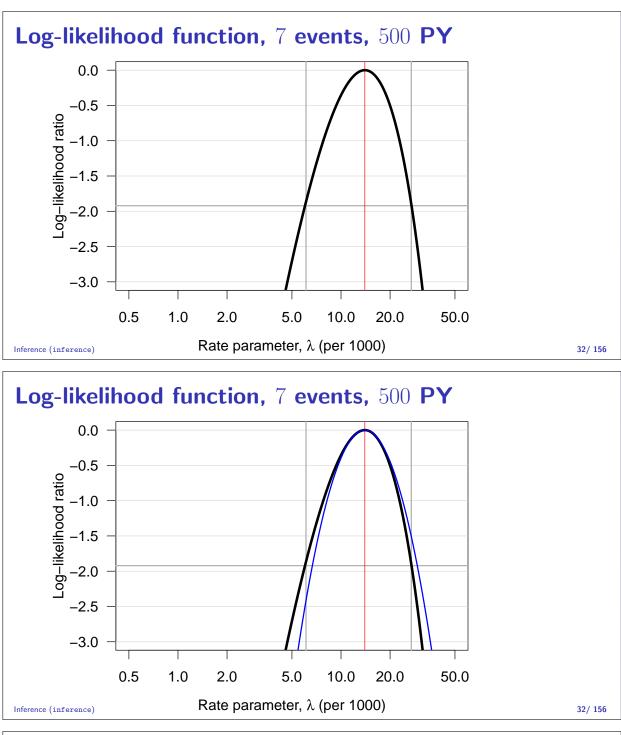
Inference (inference)

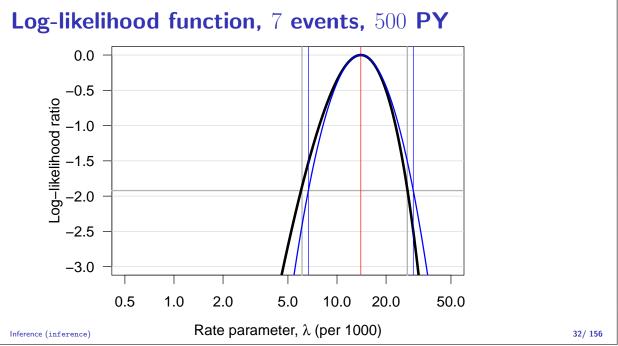


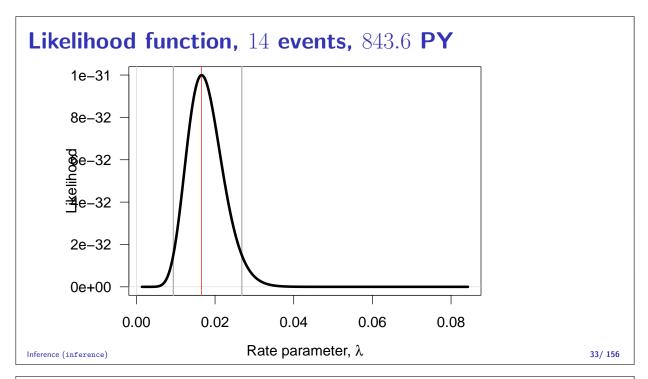


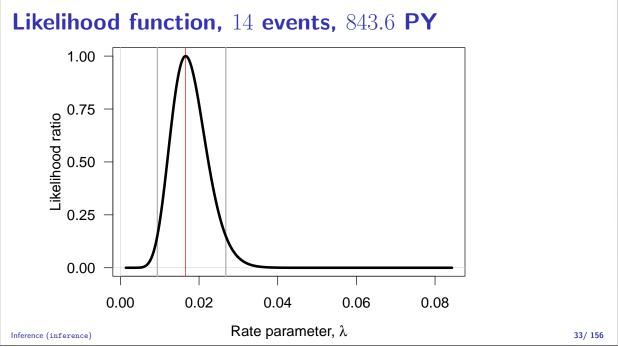


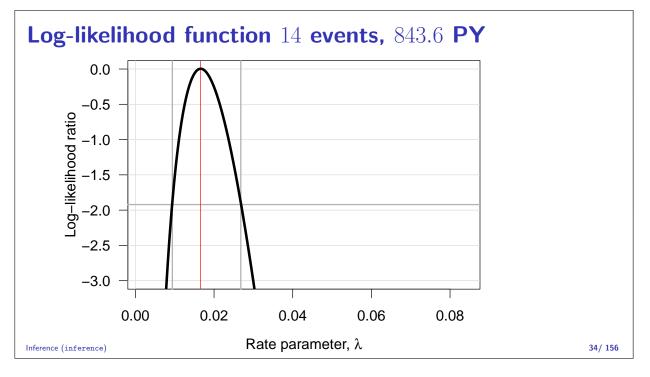


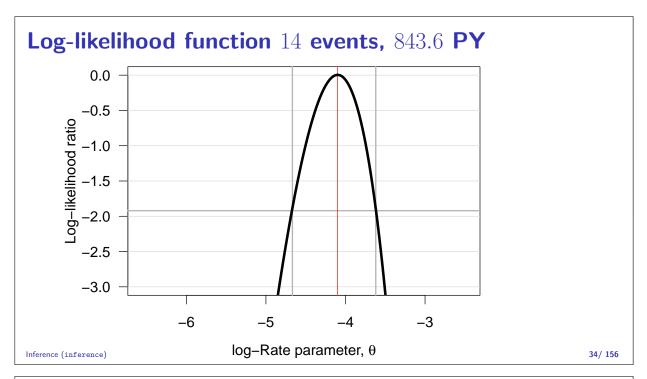


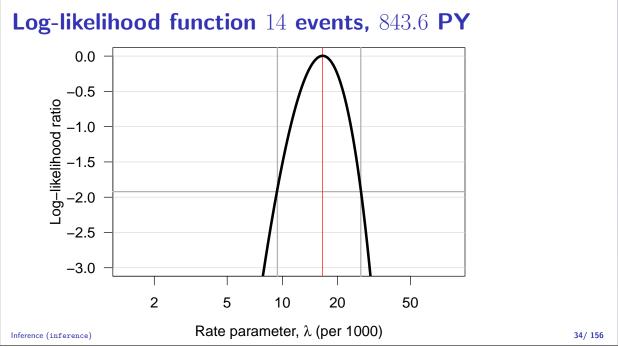


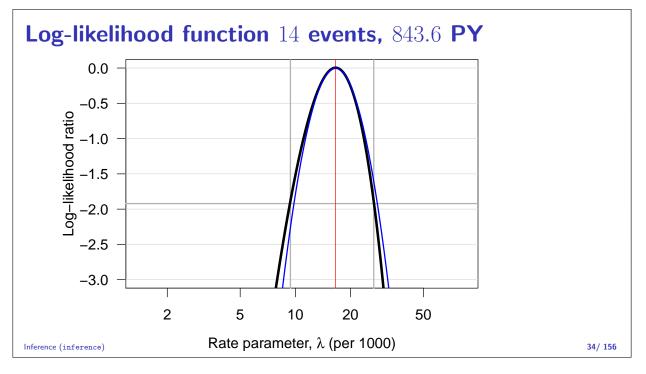


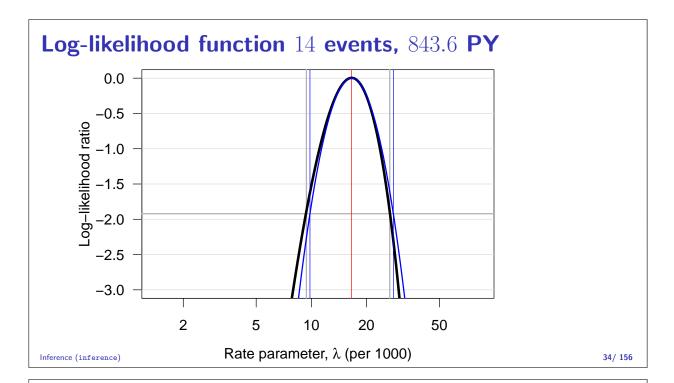












Confidence interval for a rate

- Based on the quadratic approximation:
- ► A 95% confidence interval for the log of a rate is:

$$\hat{\theta} \pm 1.96/\sqrt{D} = \log(\lambda) \pm 1.96/\sqrt{D}$$

▶ Take the exponential to get the confidence interval for the rate:

$$\lambda \stackrel{\times}{\div} \underbrace{\exp(1.96/\sqrt{D})}_{\text{error factor.erf}}$$

Inference (inference)

Example

Suppose we have 14 deaths during 843.6 years of follow-up. The rate is computed as:

 $\hat{\lambda} = D/Y = 14/843.7 = 0.0165 = 16.5$ per 1000 years

The confidence interval is computed as:

 $\hat{\lambda} \stackrel{\times}{\div} \operatorname{erf} = 16.5 \stackrel{\times}{\div} \exp(1.96/\sqrt{14}) = (9.8, 28.0)$

per 1000 person-years.

Inference (inference)

Ratio of two rates

If we have observations two rates λ_1 and λ_0 , based on (D_1, Y_1) and (D_0, Y_0) , the variance of the difference of the log-rates, the $\log(RR)$, is:

 $\operatorname{var}(\log(\operatorname{RR})) = \operatorname{var}(\log(\lambda_1/\lambda_0))$ $= \operatorname{var}(\log(\lambda_1)) + \operatorname{var}(\log(\lambda_0))$ $= 1/D_1 + 1/D_0$

As before a 95% c.i. for the RR is then:

$$\operatorname{RR} \stackrel{\times}{\div} \underbrace{\exp\left(1.96\sqrt{\frac{1}{D_1} + \frac{1}{D_0}}\right)}_{\text{error factor}}$$

Inference (inference)

Example

Suppose we in group 0 have 14 deaths during 843.6 years of follow-up in one group, and in group 1 have 28 deaths during 632.3 years.

The rate-ratio is computed as:

RR =
$$\hat{\lambda}_1 / \hat{\lambda}_0 = (D_1 / Y_1) / (D_0 / Y_0)$$

= $(28/632.3) / (14/843.7) = 0.0443 / 0.0165 = 2.669$

The 95% confidence interval is computed as:

$$\hat{\text{RR}} \stackrel{\times}{\div} \text{erf} = 2.669 \stackrel{\times}{\div} \exp(1.96\sqrt{1/14 + 1/28}) \\ = 2.669 \stackrel{\times}{\div} 1.899 = (1.40, 5.07)$$

Inference (inference)

Example using R

Poisson likelihood for one rate, based on 14 events in 843.7 PY:

Poisson likelihood, two rates, or one rate and RR:

38/ 156

Example using R Poisson likelihood, two rates, or one rate and RR: > D <- c(14,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1) > m2 <- glm(D ~ gg, offset=log(Y/1000), family=poisson)</pre> > ci.exp(m2) exp(Est.) 2.5% 97.5% (Intercept) 16.59358 9.827585 28.017744 2.66867 1.404992 5.068926 gg1 > m3 <- glm(D ~ gg - 1, offset=log(Y/1000), family=poisson)</pre> > ci.exp(m3) exp(Est.) 2.5% 97.5% gg0 16.59358 9.827585 28.01774 gg1 44.28278 30.575451 64.13525

40/ 156

Statistical testing Are the observed data (possibly summarized by an estimate and its SE) consistent with a given value of the parameter? Such a value is often represented in the form a *null hypothesis* (H₀), which is a statement about the belief about value of the parameter before study. Typically a conservative assumption, *e.g.*: "no difference in outcome between the groups" "true rate ratio ρ = 1".

Inference (inference)

Inference (inference)

41/ 156

Purpose of statistical testing

- Evaluation of consistency or disagreement of observed data with H₀.
- Checking whether or not the observed difference can reasonably be explained by chance.
- **Note:** This is not so ambitious.
- The NULL is never true there is always a difference between two groups
- \Rightarrow not testing if H_0 is **TRUE**,
 - if it were true could we see this kind of data
 - ... not investigating if there were other probability models that could have generated the data
 - ... but if we have evidence enough to assert is as **FALSE**

Test statistic

- Function of observed data and null hypothesis value,
- ► a common form of test statistic is:

$$Z = \frac{O - E}{S}$$

O = some "observed" statistic,

- E = "expected value" of O under H_0 ,
- S = SE or standard deviation of O under H_0 .
- Evaluates the size of the "signal" O E against the size of the "noise" S if numerically large, H_0 unlikely
- ▶ Under *H*⁰ the sampling distribution of this statistic is (with sufficient amount of data) close to the standard Gaussian.

Inference (inference)

43/ 156

44/156

Example — rate difference

Null hypothesis:

- OC use has no effect on breast ca. risk
 - \Leftrightarrow true rate difference $\delta = \lambda_1 \lambda_0$ equals 0.
- O = Observed rate difference

$$\widehat{\delta} = \mathrm{RD} = (28/632.3) - (14/843.7) = 44.2 - 16.5 = 27.7$$
 per 10^3 PY.

- E = Expected rate difference = 0, if H_0 true.
- S = Standard error of RD:

$${\sf SE(RD)}=\sqrt{rac{28}{632.3^2}+rac{14}{843.7^2}}=9.5$$
 per 10^3 y.

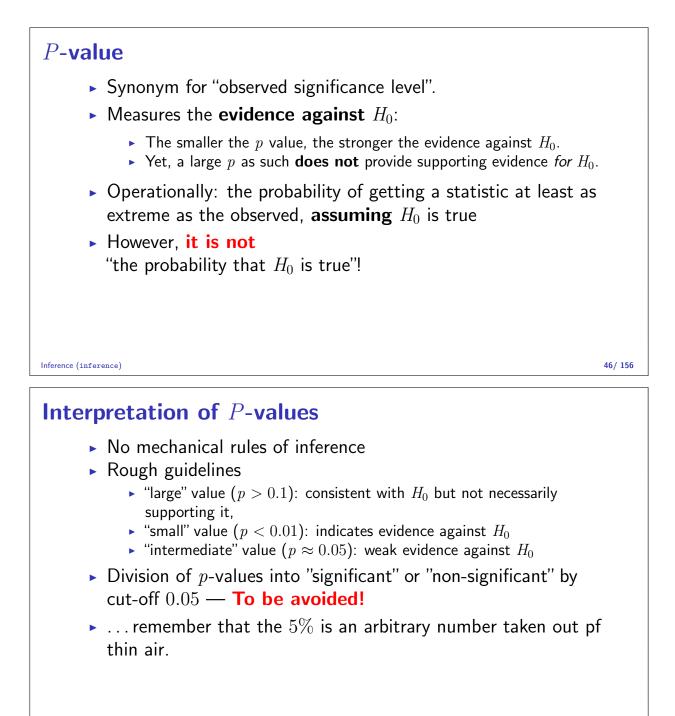
Inference (inference)

Example — rate difference

• Test statistic Z = (O - E)/S, its observed value:

$$Z_{\rm obs} = \frac{27.7 - 0}{9.5} = 2.92$$

- One-tailed P = 0.0017: probability of more extreme observations in one direction
- Two-tailed P = 0.0034: probability of more extreme observations in **any** direction
- Question of a priori assumptions
- Two-tailed is the preferred in most cases

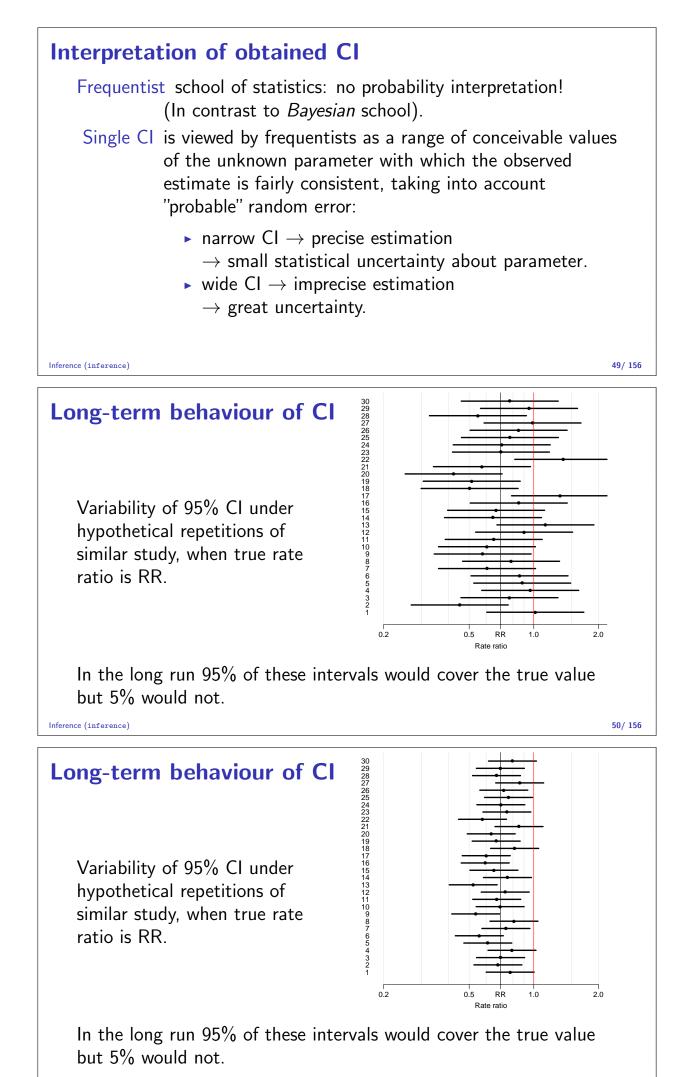


47/156

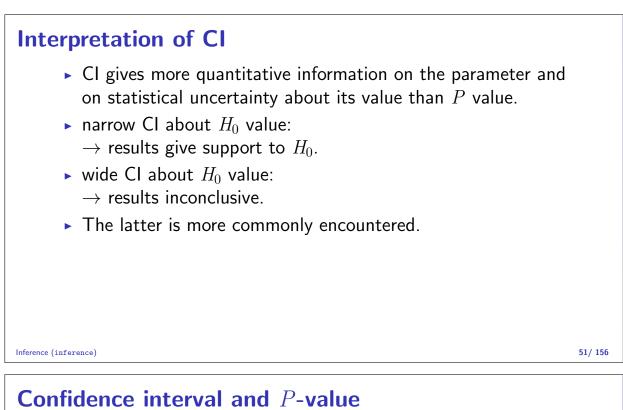
Confidence interval (CI)

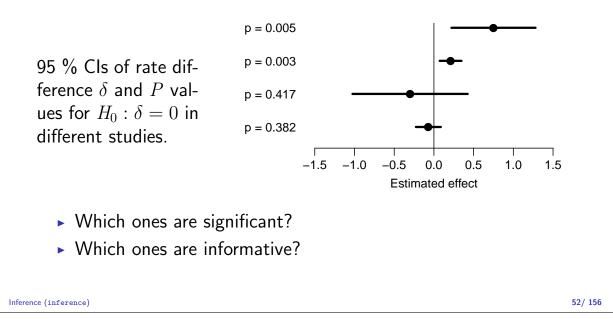
- Range of values of the parameter compatible with the observed data
- Specified at certain confidence level, commonly 95% (also 90 % and 99% used)
- The limits of a CI are statistics, random variables with sampling distribution, such that
- the probability that the random interval covers the true parameter value equals the confidence level (e.g. 95%).

Inference (inference)



Inference (inference)





Recommendations

ICMJE: Uniform Requirements for Manuscripts submitted to Biomedical Journals. http://www.icmje.org/

Extracts from section *Statistics*:

- When possible, quantify findings and present them with appropriate indicators of measurement error or uncertainty (such as confidence intervals).
- Avoid relying solely on statistical hypothesis testing, such as the use of p values, which fails to convey important quantitative information.

Recommendations

Sterne and Davey Smith: Sifting the evidence – what's wrong with significance tests? *BMJ* 2001; **322**: 226-231.

"Suggested guidelines for the reporting of results of statistical analyses in medical journals"

- 1. The description of differences as statistically significant is not acceptable.
- 2. Confidence intervals (CI) for the main results should always be included, but 90% rather than 95% levels should be used.

Inference (inference)

Recommendations

- 3. Cls should not be used as a surrogate means of examining significance at the conventional 5% level.
- 4. Interpretation of CIs should focus on the implications (clinical importance) of the range of values in the interval.
- 5. In observational studies it should be remembered that considerations of confounding and bias are at least as important as the issues discussed in this paper.

Inference (inference)

55/ 156

54/156

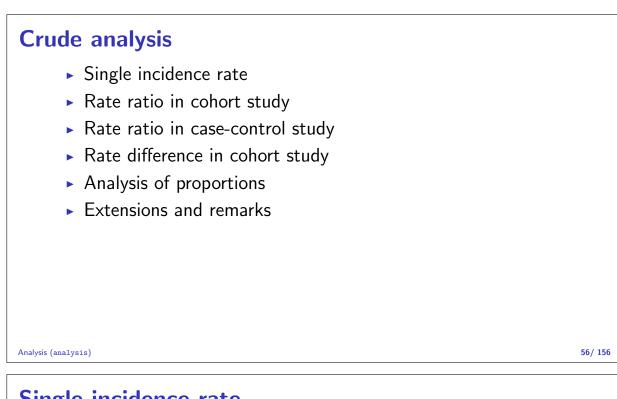
Analysis

Bendix Carstensen & Esa Laara

Nordic Summerschool of Cancer Epidemiology Danish Cancer Society, August 2017 / Januay 2018

http://BendixCarstensen.com/NSCE/2017

analysis



Single incidence rate

- **Model**: Events occur with constant rate λ .
- **Parameter** of interest:

 $\lambda =$ true rate in target population

• Estimator: $\hat{\lambda} = R$, the empirical rate in a "representative sample" from the population:

$$R = \frac{D}{Y} = \frac{\text{no. of cases}}{\text{person-time}}$$

• Standard error of rate: $SE(R) = R/\sqrt{D}$.

Analysis (analysis)

57/156

Single rate

► Simple approximate 95% CI:

$$[R - \mathrm{EM}, R + \mathrm{EM}]$$

using 95% error margin:

$$EM = 1.96 \times SE(R)$$

• Problem: When $D \leq 4$, lower limit $\leq 0!$

Single rate

Better approximation on log-scale:

 $\operatorname{SE}(\log(R)) = 1/\sqrt{D}$

▶ From this we get the 95% error factor (EF)

$$\mathrm{EF} = \exp\left(1.96 \times \mathrm{SE}\left(\log(R)\right)\right)$$

where exp is the exponential function or antilog (inverse of the natural logarithm)

• From these items we get 95% CI for λ :

 $[R/EF, R \times EF].$

• These limits are always > 0 whenever $D \ge 1$.

Analysis (analysis)

Single rate example

- ► The observed incidence of breast cancer in Finnish men aged 65-69 y in 1991 was 33 per 10⁶ py based on 3 cases.
- Standard error of the rate is:

$$\operatorname{SE}(R) = 33 imes \sqrt{1/3} = 19$$
 per 10^6 y

► The 95% error margin:

EM =
$$1.96 \times 19 = 37$$
 per 10^6 y
 $33 \pm 37 = [-4, 70]$ per 10^6 y

Negative lower limit — illogical!

Analysis (analysis)

Single rate example

• A better approximate CI obtained on the log-rate scale:

$$SE(log(R)) = \sqrt{1/3} = 0.577$$

▶ via the 95% error factor:

 $EF = exp(1.96 \times 0.577) = 3.1$

from which the confidence limits (both > 0):

 $[33/3.1, 33 \times 3.1] = [10.6, 102]$ per 10^6 py

Analysis (analysis)

59/156

Rate estimation in Poisson model

3 male breast cancers in 90,909 person years:

- ▶ Response variable: D no. cases
- Offset variable: log(Y) log-person-years note the scaling of Y to the units desired.
- ► Explanatory variable: "1" intercept only

Analysis (analysis Gi. exp transforms back to rate scale.

62/156

Rate ratio in cohort study

Question: What is the rate ratio of cancer in the exposed as compared to the unexposed group?

Model Cancer incidence rates constant in both groups, values $\lambda_1,\,\lambda_0$

Parameter of interest is true rate ratio:

$$\rho = \frac{\lambda_1}{\lambda_0} = \frac{\text{rate among exposed}}{\text{rate among unexposed}}$$

Null hypothesis $H_0: \rho = 1$: exposure has no effect.

Analysis (analysis)

63/ 156

Rate ratio

Summarized data on outcome from cohort study with person-time

Exposure to risk factor	Cases	Person-time
Yes	D_1	Y_1
No	D_0	Y_0
Total	D_+	Y_+

Empirical rates by exposure group provide estimates for the true rates:

$$\widehat{\lambda}_1 = R_1 = \frac{D_1}{Y_1}, \qquad \widehat{\lambda}_0 = R_0 = \frac{D_0}{Y_0}$$

Analysis (analysis)

Rate ratio

• Point estimate of the true rate ratio, ρ , is the empirical rate ratio (RR):

$$\hat{\rho} = \mathrm{RR} = \frac{\hat{\lambda}_1}{\hat{\lambda}_0} = \frac{R_1}{R_0} = \frac{D_1/Y_1}{D_0/Y_0} = \frac{D_1/D_0}{Y_1/Y_0}$$

- ▶ The last form is particularly useful in case-control studies see next section.
- Easier to use the log-transformation:

$$\log(\mathrm{RR}) = \log(\hat{\lambda}_1) - \log(\hat{\lambda}_0)$$

Analysis (analysis)

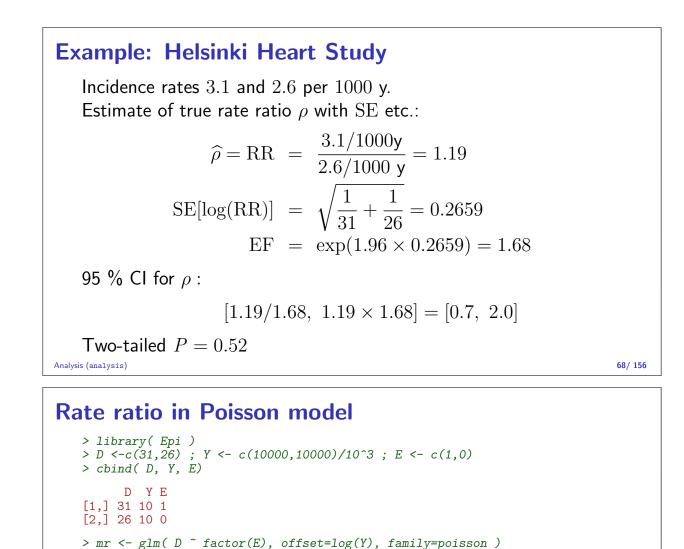
65/156

Rate ratio $\log(\mathrm{RR}) = \log(\hat{\lambda}_1) - \log(\hat{\lambda}_0)$ \Rightarrow variance of $\log(RR) =$ sum of the variances of the log-rates. • Standard error of log(RR), 95% error factor and approximate 95% CI for ρ : $\operatorname{SE}(\log(\operatorname{RR})) = \sqrt{\frac{1}{D_1} + \frac{1}{D_0}}$ $EF = \exp(1.96 \times SE(\log(RR)))$ $CI = [RR/EF, RR \times EF].$ Note: SE (EF) of estimate depends inversely on numbers of cases. 66/156

Analysis (analysis)

Example: Helsinki Heart Study

- In the study (Frick et al. NEJM 1987) over 4000 men were randomized to daily intake of either:
 - gemfibrozil ("exposed", $N_1 \approx 2000$), or
 - placebo ("unexposed", $N_0 \approx 2000$).
- After mean follow-up of 5 y, the numbers of cases of any cancer in the two groups were: $D_1 = 31$ and $D_0 = 26$.
- ▶ Rounded person-years were $Y_1 \approx Y_0 \approx 2000 \times 5$ y = 10000 y.



note the scaling to units desired for intercept (the rate) Explanatory variable: factor(E)

exp(Est.)

(Intercept) 2.600000 1.7702679 3.818631 factor(E)1 1.192308 0.7079898 2.007935

> ci.exp(mr)

69/156

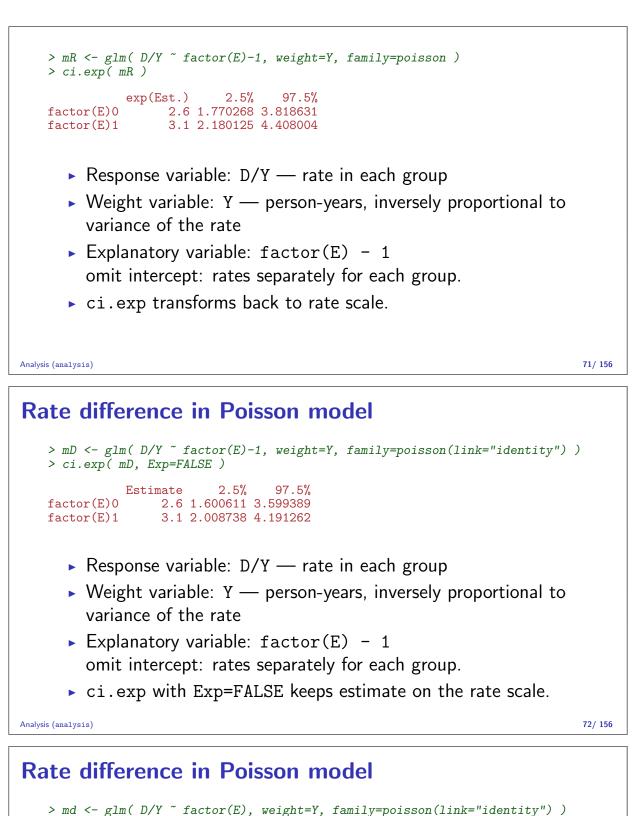
2.5%

Offset variable: log(Y) — log-person-years

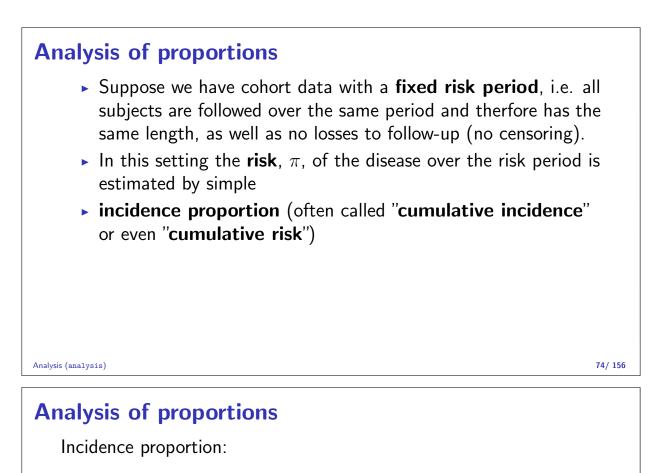
▶ Response variable: D — no. cases in each group

97.5%

- Response variable: D no. cases in each group
- Offset variable: log(Y) log-person-years note scaling to units desired for intercept
- Explanatory variable: factor(E) 1 omit intercept: rates separately for each group.
- ci.exp transforms back to rate scale.



- Response variable: D/Y rate in each group
- Weight variable: Y person-years, inversely proportional to variance of the rate
- Explanatory variable: factor(E)
 rate in reference group and rate difference.
- ci.exp with Exp=FALSE keep estimate on the rate scale.



 $\widehat{\pi} = p = \frac{x}{n}$ $= \frac{\text{number of new cases during period}}{\text{size of population-at-risk at start}}$

Analogously, empirical **prevalence** (proportion) p at a certain point of time t

$$p = \frac{\text{no. of prevalent cases at } t}{\text{total population size at } t} = \frac{x}{n}$$

Analysis (analysis)

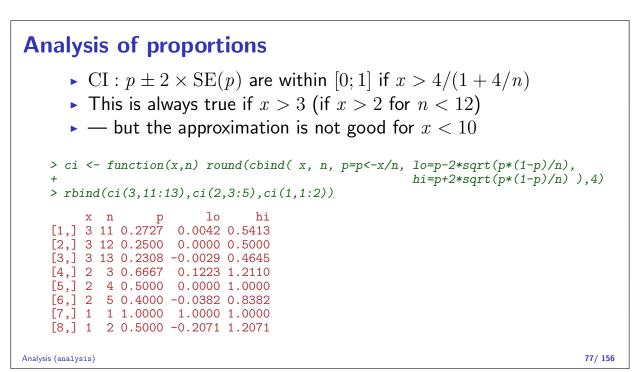
75/156

Analysis of proportions

- Proportions (unlike rates) are dimensionless quantities ranging from 0 to 1
- Analysis of proportions based on binomial distribution
- Standard error for an estimated proportion:

$$\operatorname{SE}(p) = \sqrt{\frac{p(1-p)}{n}} = p \times \sqrt{\frac{(1-p)}{x}}$$

- ▶ Depends also inversely on *x*!
- but not a good approximation...

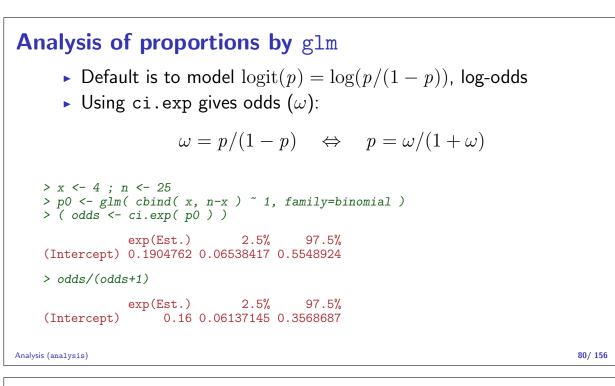


Analysis of proportions • Use confidence limits based on symmetric (normal) $\log(OR)$: • Compute error factor: $EF = \exp(1.96/\sqrt{np(1-p)})$ • then use to compute confidence interval: $p/(p + (1-p) \stackrel{\times}{\div} EF)$ • Observed x = 4 out of n = 25: $\hat{p} = 4/25 = 0.16$ • Naive CI: $0.16 \pm 1.96 \times \sqrt{0.16 \times 0.84/25} = [0.016; 0.304]$ • Better: $EF = \exp(1.96/\sqrt{25 \times 0.16 \times 0.84}) = 2.913$ CI : $0.16/(0.16 + (0.84 \stackrel{\times}{\div} 2.913)) = [0.061; 0.357]$ Analysis of proportions by glm • Default is to model logit(p) = log(p/(1-p)), log-odds

- $Default is to model <math>\operatorname{log}(p) = \operatorname{log}(p/(1 p))$
- Using ci.exp gives odds (ω):

$$\omega = p/(1-p) \quad \Leftrightarrow \quad p = \omega/(1+\omega)$$

Analysis (analysis)



Analysis of proportions by glm

Also possible to model $\log(p),$ log-probability, by changing the link function:

We see that the estimated probability is the same but the confidence limits are slightly different.

Analysis (analysis)

81/ 156

Rate ratio in case-control study

Parameter of interest: $\rho = \lambda_1 / \lambda_0$

- same as in cohort study.

Case-control design:

- incident cases occurring during a given period in the source population are collected,
- controls are obtained by *incidence density sampling* from those at risk in the source.
- **exposure** is ascertained in cases and chosen controls.

Rate ratio in case-control study

Summarized data on outcome:

Exposure	Cases	Controls
yes	D_1	C_1
no	D_0	C_0

- Can we directly estimate the rates λ_0 and λ_1 from this?
- and the ratio of these?
- NO and YES (respectively)
- Rates are not estimable from a case-control design

Analysis (analysis)

83/ 156

Rate ratio from case-control study

Standard error for $\log(OR)$, 95% error factor and approximate CI for ρ :

$$SE(log(OR)) = \sqrt{\frac{1}{D_1} + \frac{1}{D_0} + \frac{1}{C_1} + \frac{1}{C_0}}$$
$$EF = exp(1.96 \times SE(log(OR)))$$
$$CI = [OR/EF, OR \times EF]$$

NB. Random error again depends inversely on numbers of cases **and** controls — the penalty, in the two exposure groups.

Example: mobile phone use and brain cancer

(Inskip et al. NEJM 2001; 344: 79-86).

Daily use	Cases	Controls
$\geq 15 \text{ min}$	35	51
no use	637	625

The RR associated with use of mobole phone longer than 15 min (vs. none) is estimated by the OR:

$$OR = \frac{35/51}{637/625} = 0.67$$

Analysis (analysis)

Example: mobile phone use and brain cancer

SE for $\log(OR)$, 95% error factor and approximate CI for ρ :

$$SE(log(OR)) = \sqrt{\frac{1}{35} + \frac{1}{637} + \frac{1}{51} + \frac{1}{625}} = 0.2266$$
$$EF = exp()1.96 \times 0.2266) = 1.45$$
$$CI = [0.67/1.45, 0.67 \times 1.45] = [0.43, 1.05]$$

N.B. model-adjusted estimate (with 95% CI):

$$OR = 0.6[0.3, 1.0]$$

Analysis (analysis)

87/156

86/156

OR from binomial model

```
> Ca <- c(638,35); Co <- c(625,51); Ex <- factor(c("None",">15"),levels=c("None",
> data.frame( Ca, Co, Ex )
  Ca Co
          Ex
1 638 625 None
2 35 51 >15
> mf <- glm( cbind(Ca,Co) ~ Ex, family=binomial )</pre>
> ci.exp( mf )
           exp(Est.)
                         2.5%
                                 97.5%
(Intercept) 1.0208000 0.9141876 1.139845
Ex>15
           0.6722909 0.4311979 1.048185
  Intercept is meaningless; only exposure estimate is relevant
  \blacktriangleright The parameter in the model is \log(OR), so using ci.exp gives
     us the estimated OR — same as in the hand-calculation above.
```

This is called logistic regression

Extensions and remarks

- All these methods extend to crude analyses of exposure variables with several categories when each exposure category is separately compared to a reference group.
- Evaluation of possible monotone trend in the parameter over increasing levels of exposure: estimation of regression slope.
- Cl calculations here are based on simple approximate formulas (Wald statistics):
 - accurate when numbers of cases are large
 - for small numbers, other methods may be preferred (e.g. "exact" or likelihood ratio-based as shown by glm).
- Crude analysis is insufficient in observational studies: control of confounding needed.

Analysis (analysis)

89/ 156

Stratified analysis

Bendix Carstensen & Esa Laara

Nordic Summerschool of Cancer Epidemiology Danish Cancer Society, August 2017 / Januay 2018

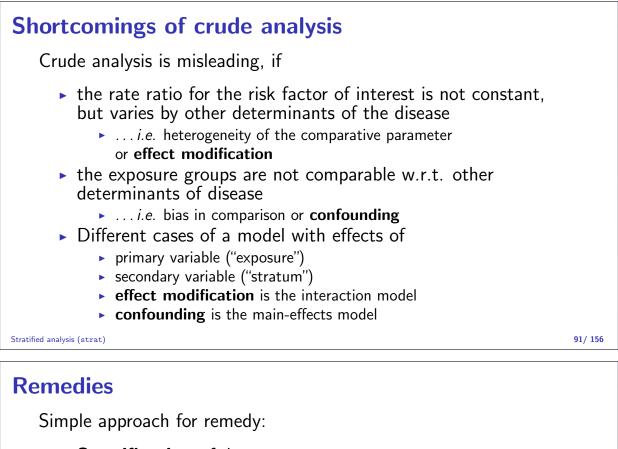
http://BendixCarstensen.com/NSCE/2017

strat

Stratified analysis

- Shortcomings of crude analysis
- Effect modification
- Confounding
- Steps of stratified analysis
- Estimation of rate ratio
- Mantel-Haenszel estimators
- Matched case-control study

Stratified analysis (strat)



- Stratification of data by potentially modifying and/or confounding factor(s) & use of adjusted estimators
- Conceptually simpler, and technically less demanding approach is regression modelling
- ▶ Regression modeling is feasible because we have computers.

Stratified analysis (strat)

92/ 156

Effect modification

Example: True incidence rates (per 10^5 y) of lung cancer by occupational asbestos exposure and smoking in a certain population:

Asbestos	Smokers	Non-smokers
exposed	600	60
unexposed	120	12
Rate ratio	5	5
Rate difference	480	48

Is the effect of asbestos exposure the same or different in smokers than in non-smokers?

Effect modification (cont'd)

Depends how the effect is measured:

- Rate ratio: constant or homogenous
- Rate difference: heterogenous: The value of rate difference is modified by smoking.

Smoking is thus an **effect modifier** of asbestos exposure on the absolute scale but not on the relative scale of comparison.

Stratified analysis (strat)

94/ 156

95/156

Factor E	Young	Old
exposed	4	9
unexposed	1	6
rate ratio	4	1.5
rate difference	3	3

There is no such thing as interaction without reference to the **effect scale** (*e.g.* additive or multiplicative)

Stratified analysis (strat)

Effect modification (cont'd)

- Usually comparative parameters are more or less heterogenous across categories of other determinants of disease
- This is termed interaction or effect modification
- The effect of X depend on the level of Z
- The effect of X cannot be described by a single number,
- ... it is a function of Z

Example:

Age-specific CHD mortality rates (per 10^4 y) and numbers of cases (D) among British male doctors by cigarette smoking, rate differences (RD) and rate ratios (RR) (Doll and Hill, 1966).

	Smokers		Non-smokers			
Age (y)	rate	D	rate	D	RD	\mathbf{RR}
35-44	6.1	32	1.1	2	5	5.7
45-54	24	104	11	12	13	2.1
55-64	72	206	49	28	23	1.5
65-74	147	186	108	28	39	1.4
75-84	192	102	212	31	-20	0.9
Total	44	630	26	101	18	1.7

Stratified analysis (strat)

Example (cont'd)

Both comparative parameters appear heterogenous:

- RD increases by age (at least up to 75 y)
- $\blacktriangleright~\mathrm{RR}$ decreases by age

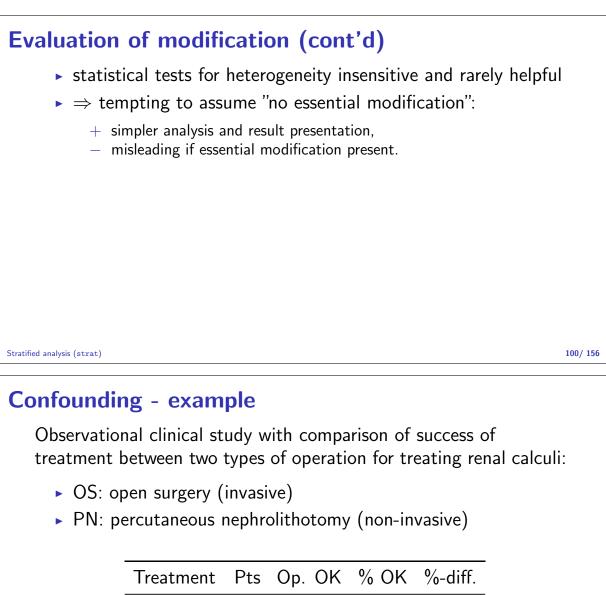
No single-parameter (common rate ratio or rate difference) comparison captures adequately the joint pattern of rates.

Stratified analysis (strat)

Evaluation of modification

- Modification or its absence is an inherent property of the phenomenon:
- cannot be removed or "adjusted" for
- but it depends on the scale on which it is measured
- Before looking for effect-modification:
 - what scale are we using for desciption of effects
 - how will we report the modified effects (the interaction)

97/156



OS 350 273 **78** PN 350 290 **83** +5

PN appears more succesful than OS?

Stratified analysis (strat)

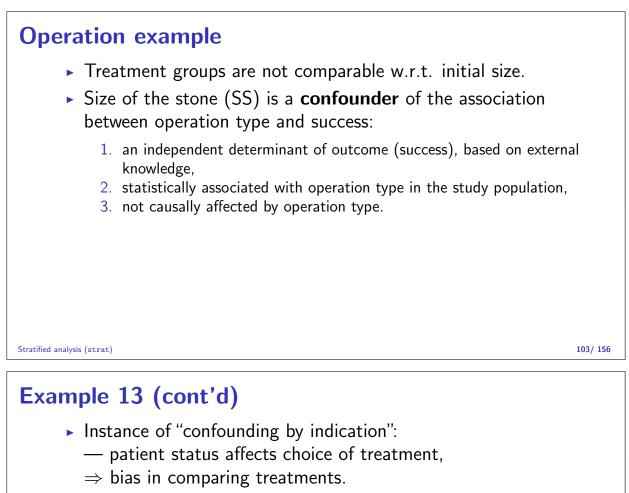
Example (cont'd)

Results stratified by initial diameter size of the stone:

Size	Treatment	Pts	Op. OK	% OK	%-diff.
< 2 cm:	OS	87	81	93	
	PN	270	235	87	-6
$\geq 2 \mathrm{cm}:$	OS	263	192	73	
	PN	80	55	69	-4

OS seems more succesful in both subgroups.

Is there a paradox here?



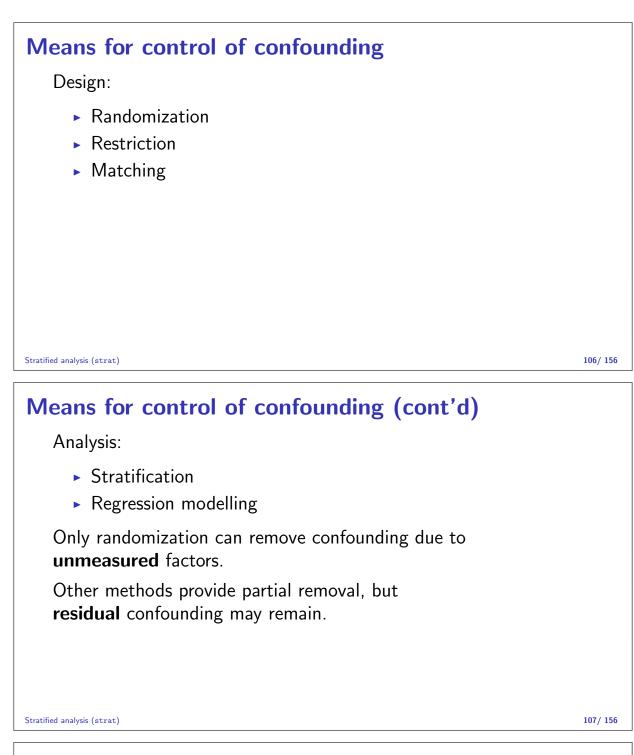
This bias is best avoided in planning:
 — randomized allocation of treatment.

Stratified analysis (strat)

104/156

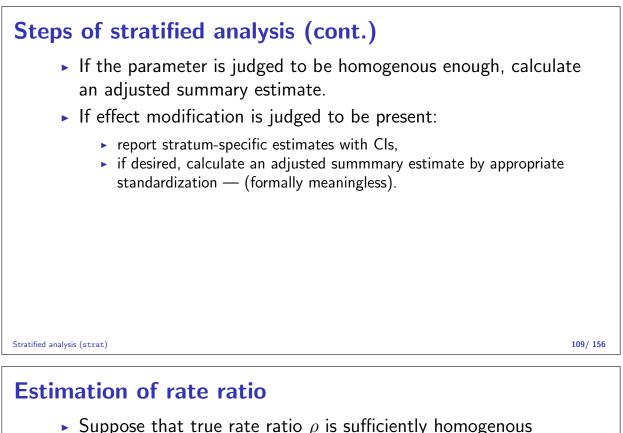
/ hair ar	iu Ca	incer	Incla	ence		
	Age	Gray hair	Cases	$\begin{array}{c} \text{P-years} \\ \times 1000 \end{array}$		RR
	Total	yes no	66 30	25 25	2.64 1.20	2.2
Y	oung	yes no	6 11	10 20	0.60 0.55	1.09
	Old	yes no	60 19	15 5	4.0 3.8	1.05

Observed crude association nearly vanishes after controlling for age.



Steps of stratified analysis

- Stratify by levels of the potential confounding/modifying factor(s)
- Compute stratum-specific estimates of the effect parameter (e.g. RR or RD)
- Evaluate similarity of the stratum-specific estimates by "eye-balling" or test of heterogeneity.



- across strata (no modification), but confounding is present.
- Crude RR estimator is biased.
- Adjusted summary estimator, controlling for confounding, must be used.
- These estimators are weighted averages of stratum-specific estimators.

Stratified analysis (strat)

110/ 156

Adjusted summary estimators

Different weighting methods:

- maximum likelihood (ML)
- weighted least squares (WLS)
- Mantel-Haenszel (MH) weights
- (direct) standardization by external standard population (CMF)
- standardized morbidity ratio (SMR)

Mantel-Haenszel estimators

Cohort study, data summary in each stratum k:

Exposure	Cases	Person-time
yes no	$\begin{array}{c} D_{1k} \\ D_{0k} \end{array}$	$\begin{array}{c} Y_{1k} \\ Y_{0k} \end{array}$
Total	D_{+k}	Y_{+k}

Compaute stratum-specific rates by exposure group:

 $R_{1k} = D_{1k}/Y_{1k}, \quad R_{0k} = D_{0k}/Y_{0k}$

 \ldots weighted together to give a common log-RR across strata.

Stratified analysis (strat)

112/ 156

Mantel-Haenszel estimator

- Combination of stratum-specific RRs as a proxy for a model estimate of a common parameter
- Formulae devised in times of the hand-calculator
 before the advent of computers
- Replaced by statistical models
- Out of date since about mid-1990s
-but you will still see it occasionally

Stratified analysis (strat)

113/ 156

Gray hair & cancer

```
> D <- c(6,11,60,19)
> Y <- c(10,20,15,5)
> age <- factor( c("Young", "Young", "Old", "Old") )
> hair <- factor( c("Gray", "Col", "Gray", "Col") )
> data.frame( D, Y, age, hair )
D Y age hair
1 6 10 Young Gray
```

2 11 20 Young Col 3 60 15 Old Gray 4 19 5 Old Col

Gray hair & cancer Crude and adjusted risk estimate by Poisson model: > library(Epi) > ci.exp(glm(D ~ hair , offset=log(Y), family=poisson)) exp(Est.) 2.5% 97.5% 1.2 0.8390238 1.716280 (Intercept) hairGray 2.2 1.4288764 3.387277 > ci.exp(glm(D ~ hair + age, offset=log(Y), family=poisson)) exp(Est.) 2.5% 97.5% (Intercept) 3.7782269 2.49962654 5.7108526 hairGray 1.0606186 0.67013527 1.6786339 ageYoung 0.1470116 0.08418635 0.2567211

115/ 156

Case-control study of Alcohol and oesophageal cancer

- ▶ Tuyns et al 1977, see Breslow & Day 1980,
- 205 incident cases,
- 770 unmatched population controls,
- Risk factor: daily consumption of alcohol.
- Crude summary:

$\frac{\text{Exposure}}{\geq 80 \text{ g/d}}$	Cases	Controls	OR
yes	96	109	5.64
no	104	666	

Stratified analysis (strat)

Stratified analysis (strat)

116/ 156

Crude analysis of CC-data

The odds-ratio of oesophageal cancer, comparing high vs. low alcohol consumption is 5.64[4.00; 7.95]

Stratified analysis (strat)

Stratification by age

	Exposure			
Age	$\geq 80 \text{ g/d}$	Cases	Controls	EOR
25-34	yes	1	9	∞
35-44	no yes	0 4	106 26	5.05
45-54	no yes	5 25	164 29	5.67
55-64	no yes	21 42	138 27	6.36
65-74	no	34 19	139 18	2.58
	yes no	36	88	2.30
75-84	yes no	5 8	0 31	∞
	-	-		

NB! Selection of controls: inefficient study Should have employed stratified sampling by age. Stratified analysis (strat)

118/ 156

119/156

Stratified analysis

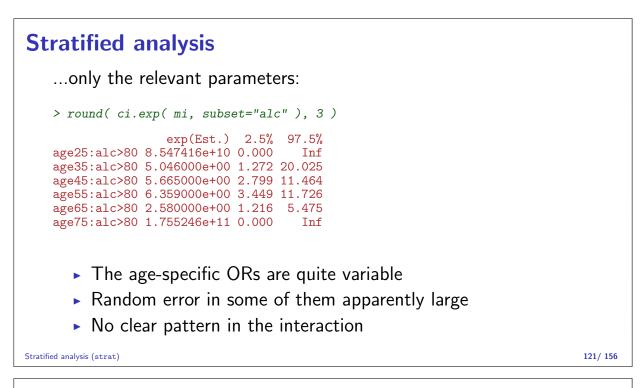
```
> ca <- c( 1, 0, 4, 5, 25, 21, 42, 34, 19, 36, 5, 8 )
   > co <- c(9, 106, 26, 164, 29, 138, 27, 139, 18, 88, 0, 31)
   > alc <- rep( c(">80","<80"), 6 )
   > age <- factor( rep( seq(25,75,10), each=2 ) )</pre>
   > data.frame( ca, co, alc, age )
      ca co alc age
       1 9 > 80 25
   1
   2
       0 106 <80
                   25
   3
      4 26 >80
                  35
   4
      5 164 <80 35
   5
      25 29 >80 45
   6
      21 138 <80
                  45
   7
      42 27 >80
                  55
   8
      34 139 <80
                  55
   9
      19 18 >80
                  65
   10 36 88 <80
                  65
   11 5 0 >80 75
   12 8 31 <80 75
Stratified analysis (strat)
```

Stratified analysis

The "age:" operator produces a separate alc-OR for each age class (in the absence of a main effect of alc):

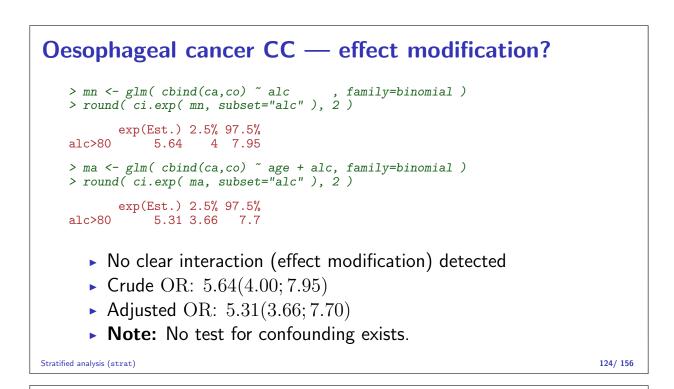
```
> mi <- glm( cbind(ca,co) ~ age + age:alc, family=binomial )</pre>
> round( ci.exp( mi ), 3 )
                exp(Est.) 2.5% 97.5%
(Intercept) 0.000000e+00 0.000
                                    Inf
age35 2.345328e+10 0.000
age45 1.170624e+11 0.000
                                    Inf
                                    Inf
age55
            1.881661e+11 0.000
                                    Inf
age65
            3.147003e+11 0.000
                                    Inf
age75
             1.985206e+11 0.000
                                    Tnf
age25:alc>80 8.547416e+10 0.000
                                    Inf
age35:alc>80 5.046000e+00 1.272 20.025
age45:alc>80 5.665000e+00 2.799 11.464
age55:alc>80 6.359000e+00 3.449 11.726
age65:alc>80 2.580000e+00 1.216 5.475
age75:alc>80 1.755246e+11 0.000
                                    Tnf
```

Stratified analysis (strat)



Oesophageal cancer CC — effect modification? > ma <- glm(cbind(ca,co) ~ age + alc, family=binomial)</pre> > anova(mi, ma, test="Chisq") Analysis of Deviance Table Model 1: cbind(ca, co) ~ age + age:alc Model 2: cbind(ca, co) ~ age + alc Resid. Df Resid. Dev Df Deviance Pr(>Chi) 0 0.000 1 2 5 11.041 -5 -11.041 0.05057 Some evidence against homogeneity, but no clear pattern in the interaction (effect mdodification) Extract a common effect from the reduced model 122/156 Stratified analysis (strat)

Oesophageal cancer CC — linear effect modification > ml <- glm(cbind(ca,co) ~ age + alc*as.integer(age), family=binomial) > round(ci.exp(ml, subset="alc"), 3) exp(Est.) 2.5% 97.5% alc>80 8.584 1.961 37.579 alc>80:as.integer(age) 0.883 0.609 1.279 > ma <- glm(cbind(ca,co) ~ age + alc, family=binomial)</pre> > anova(mi, ml, ma, test="Chisq")[1:3,1:5] Resid. Df Resid. Dev Df Deviance Pr(>Chi) 1 0 0.000 2 4 10.609 -4 -10.6093 0.03132 3 5 11.041 -1 -0.4319 0.51107 Evidence against linear interaction (OR decreasing by age)



Regression models

Bendix Carstensen & Esa Laara

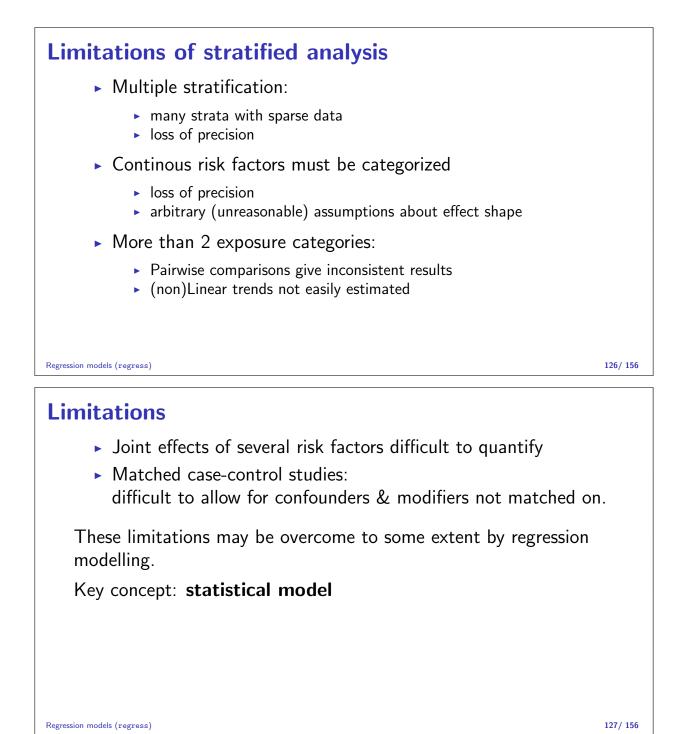
Nordic Summerschool of Cancer Epidemiology Danish Cancer Society, August 2017 / Januay 2018

http://BendixCarstensen.com/NSCE/2017

regress

Regression modeling

- Limitations of stratified analysis
- Log-linear model for rates
- Additive model for rates
- Model fitting
- Problems in modelling



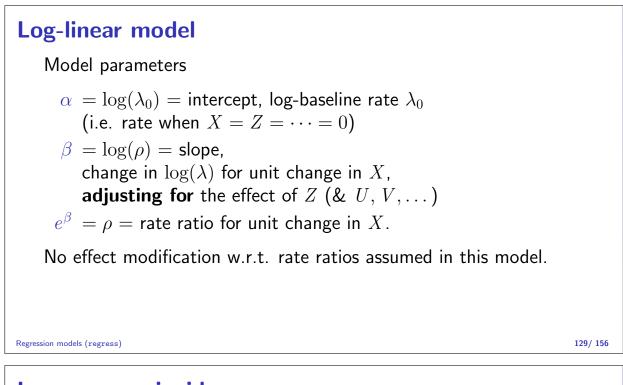
Log-linear model for rates

Assume that the theoretical rate λ depends on **explanatory variables** or **regressors** X, Z (& U, V, ...) according to a **log-linear** model

$$\log(\lambda(X, Z, \dots)) = \alpha + \beta X + \gamma Z + \dots$$

Equivalent expression, multiplicative model:

$$\lambda(X, Z, \dots) = \exp(\alpha + \beta X + \gamma Z + \dots)$$
$$= \lambda_0 \rho^X \tau^Z \cdots$$



Lung cancer incidence, asbestos exposure and smoking

Dichotomous explanatory variables coded:

- X =asbestos: 1: exposed, 0: unexposed,
- Z =smoking: 1: smoker, 0: non-smoker

Log-linear model for theoretical rates

$$\log(\lambda(X,Z)) = 2.485 + 1.609X + 2.303Z$$

Regression models (regress)

Ra	ates		Varia	ables	
		-	X		Z
Smoke	Non-sm	Smoke	Non-sm	Smoke	Non-sm
600	60	1	1	1	(
120	12	0	0	1	(
	Smoke 600	600 60	SmokeNon-smSmoke600601	SmokeNon-smX6006011	SmokeNon-smSmokeNon-smSmoke60060111

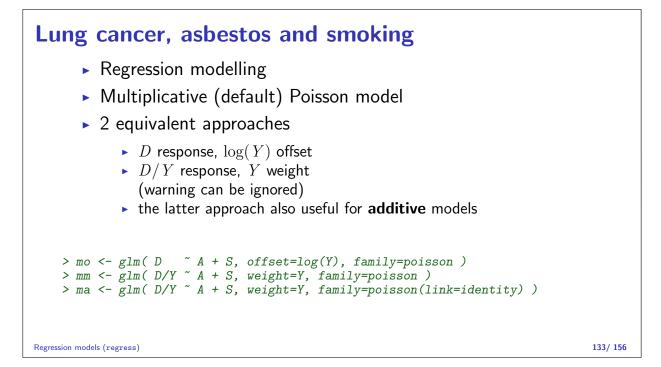
Lung cancer, asbestos and smoking

Entering the data:

— note that the data are artificial assuming the no. of PY among asbestos exposed is 1/4 of that among non-exposed

```
> D <- c( 150, 15, 120, 12 )  # cases
> Y <- c( 25, 25, 100, 100 ) / 100 # PY (100,000s)
> A <- c( 1, 1, 0, 0 ) # Asbestos exposure
> S <- c( 1, 0, 1, 0 ) # Smoking
> cbind( D, Y, A, S )
D Y A S
[1,] 150 0.25 1 1
[2,] 15 0.25 1 0
[3,] 120 1.00 0 1
[4,] 12 1.00 0 0
```

132/ 156



Lung cancer, asbestos and smoking

Summary and extraction of parameters:

```
> summary( mo )
   Call:
   glm(formula = D ~ A + S, family = poisson, offset = log(Y))
   Deviance Residuals:
                      2
                                3
                                           4
           1
    0.000e+00 0.000e+00 -1.032e-07 0.000e+00
   Coefficients:
            Estimate Std. Error z value Pr(>|z|)
   (Intercept) 2.4849 0.2031 12.23 <2e-16
               1.6094
                        0.1168 13.78 <2e-16
   Α
               2.3026 0.2018 11.41 <2e-16
   S
   (Dispersion parameter for poisson family taken to be 1)
      Null deviance: 4.1274e+02 on 3 degrees of freedom
Regress Residual degrees of freedom
                                                                      134/156
```

Summary and extraction of parameters > ci.exp(mo) exp(Est.) 2.5% 97.5% (Intercept) 12 8.059539 17.867026 5 3.977142 6.285921 Α 10 6.732721 14.852836 S > ci.exp(mo, Exp=F) 2.5% 97.5% Estimate (Intercept) 2.484907 2.086856 2.882957 A 1.609438 1.380563 1.838312 S 2.302585 1.906979 2.698191 > ci.exp(mm, Exp=F) Estimate 2.5% 97.5% (Intercept) 2.484907 2.086856 2.882957 1.609438 1.380563 1.838312 Α 2.302585 1.906979 2.698191 S Regressi Parameters are the same for the two modelling approaches. **Interpretation of parameters** Estimate 2.5% 97.5% exp(Est.) 2.5% 97.5% 2.485 2.087 2.883 12 8.060 17.867 1.609 1.381 1.838 5 3.977 6.286 (Intercept) Α 2.303 1.907 2.698 10 6.733 14.853 S

- $\alpha = 2.485 = \log(12)$, log of baseline rate,
- $\beta~=1.609=\log(5),$ log of rate ratio $\rho=5$ between exposed and unexposed for asbestos
- $\gamma = 2.303 = \log(10),$ log of rate ratio $\tau = 10$ between smokers and non-smokers.

Rates for all 4 asbestos/smoking combinations can be recovered from the above formula.

136/ 156

135/156

Log-linear model: Estimated rates

	I	Rates	Parameters		
Asbestos	Smokers	Non-smokers	Smokers	Non-smokers	
exposed unexposed	600 120		$\begin{array}{c} \alpha+\gamma+\beta\\ \alpha+\gamma \end{array}$	$\begin{array}{c} \alpha+\beta\\ \alpha \end{array}$	
Rate ratio Rate difference	5 480	5 48	$\log(eta) \ eta$	$\log(eta) \ eta$	

Log-linear model

Model with effect modification (two regressors only)

$$\log(\lambda(X,Z)) = \alpha + \beta X + \gamma Z + \delta XZ,$$

equivalently

$$\lambda(X,Z) = \exp(\alpha + \beta X + \gamma Z + \delta XZ) = \lambda_0 \rho^X \tau^Z \theta^{XZ}$$

where α is as before, but

 β = log-rate ratio ρ for a unit change in X when Z = 0,

 $\gamma~=$ log-rate ratio τ for a unit change in Z when X=0

Regression models (regress)

138/ 156

Interaction parameter

 $\delta = \log(\theta)$, interaction parameter, describing effect modification

For binary X and Z we have

$$\theta = e^{\delta} = \frac{\lambda(1,1)/\lambda(0,1)}{\lambda(1,0)/\lambda(0,0)},$$

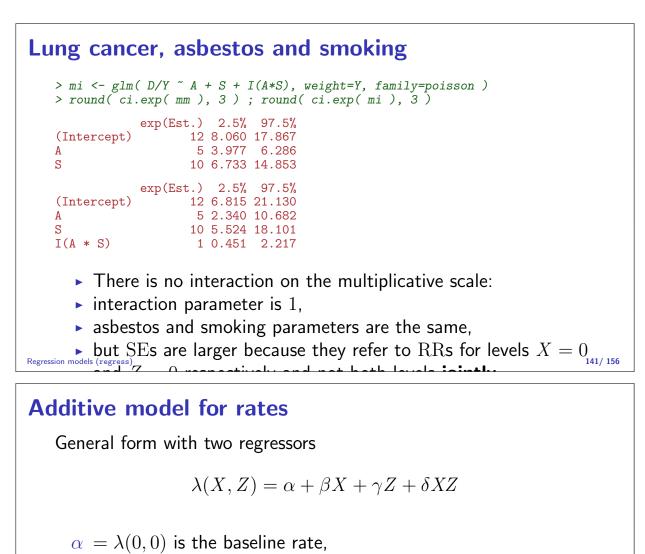
i.e. the ratio of relative risks associated with \boldsymbol{X} between the two categories of $\boldsymbol{Z}.$

Regression models (regress)

139/ 156

Log-linear model: Estimated rates

	ŀ	Rates	Param	eters
Asbestos	Smokers	Non-smokers	Smokers	Non-smoker
exposed unexposed	600 120		$\begin{array}{c} \alpha+\gamma+\beta+\delta\\ \alpha+\gamma \end{array}$	$\begin{array}{c} \alpha+\beta\\ \alpha\end{array}$
Rate ratio Rate difference	5 480		$\frac{\log(\beta + \delta)}{\beta + \delta}$	$\log(eta) \ eta$



- $\beta = \lambda(x+1,0) \lambda(x,0),$ rate difference for unit change in X when Z=0
- $\gamma = \lambda(0, z + 1) \lambda(0, z)$, rate difference for unit change in Z when X = 0,

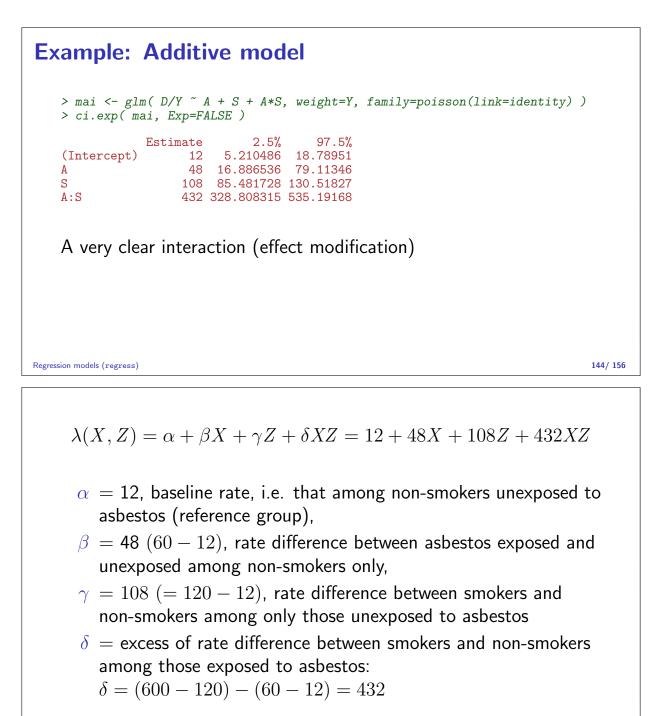
Regression models (regress)

Additive model

- δ = interaction parameter.
- For binary X, Z:

 $\delta = [\lambda(1,1) - \lambda(1,0)] - [\lambda(0,1) - \lambda(0,0)]$

- If no effect modification present, $\delta = 0$, and
- β = rate difference for unit change in X for all values of Z
- γ = rate difference for unit change in Z for all values of X,



Regression models (regress)

145/ 156

Model fitting

Output from computer packages will give:

- parameter estimates and SEs,
- goodness-of-fit statistics,
- fitted values,
- residuals,...

May be difficult to interpret!

Model checking & diagnostics:

- assessment whether model assumptions seem reasonable and consistent with data
- involves fitting and comparing different models

Problems in modelling

- Simple model chosen may be far from the "truth".
- ▶ possible bias in effect estimation, underestimation of SEs.
- Multitude of models fit well to the same data which model to choose?
- Software easy to use:
- ... easy to fit models blindly
- ... possibility of unreasonable results

Regression models (regress)

147/156

Modeling

- Modelling should not substitute but complement crude analyses:
- Crude analyses should be seen as initial modeling steps
- Final model for reporting developed mainly from subject matter knowledge
- Adequate training and experience required.
- Ask help from professional statistician!
- **Collaboration** is the keyword.

Regression models (regress)

148/ 156

Conclusion

Bendix Carstensen & Esa Laara

Nordic Summerschool of Cancer Epidemiology Danish Cancer Society, August 2017 / Januay 2018

http://BendixCarstensen.com/NSCE/2017

concl-analysis

Concluding remarks

Epidemiologic study is a

Measurement excercise

Target is a parameter of interest, like

- incidence rate
- rate ratio
- relative risk
- difference in prevalences

Result: Estimate of the parameter.

Conclusion (concl-analysis)

149/ 156

Estimation and its errors

Like errors in measurement, estimation of parameter is prone to error:

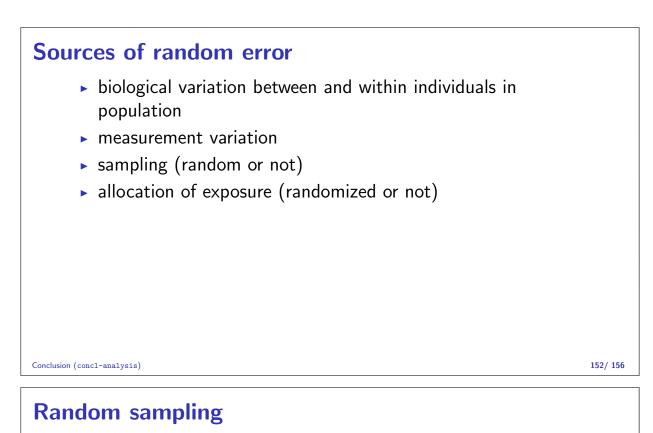
estimate = true parameter value + systematic error (bias) + random error

Conclusion (concl-analysis)

150/ 156

Sources of bias

- confounding, non-comparability,
- measurement error, misclassification,
- non-response, loss to follow-up,
- sampling, selection



- relevant in descriptive studies
- estimation of parameters of occurrence of given health outcomes in a target population
- target population well-defined, finite, restricted by time and space
- representativeness of study population (sample) important

Conclusion (concl-analysis)

153/ 156

Randomization

- relevant in causal studies
- estimation of comparative parameters of effect of an exposure factor on given health outcomes
- abstract (infinite) target population
- comparability of exposure groups important
- study population usually a convenience sample from available source population

Recommendations

Possible remedies for these problems:

- de-emphasize inferential statistics in favor of pure data decriptors: graphs and tables
- adopt statistical techniques based on realistic probability models
- subject the results of these to influence and sensitivity analysis.

(from Greenland 1990) Interpretation of obtained values of inferential statistics

- not mechanical reporting!

Conclusion (concl-analysis)

155/ 156

Conclusion

"In presenting and discussing the results of an observational study the greatest emphasis should be placed on bias and confounding." (Brennan and Croft 1994)

Motto (Campbell & Machin 1983):

STATISTICS is about COMMON SENSE and GOOD DESIGN!

Conclusion (concl-analysis)