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Chance variation

I Systematic and random variation
I Probability model:

I random variable — observation — data
I distribution
I parameters

I Statistic

I Standard error
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Systematic and random variation

Cancer incidence rates vary by known & measured determinants of
disease, such as:

I age,

I gender,

I region,

I time,

I specific risk factors.

This is systematic variation.
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Systematic and random variation

In addition, observed rates are subject to
random or chance variation:
— variation due to unknown sources like

I latent genetic differences,

I unknown concomitant exposures,

I sampling,

I ”pure chance” — quantum mechanics
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Example: Smoking and lung cancer

I Only a minority of smokers get lung cancer

I . . . and some non-smokers get the disease, too.

I At the individual level the outcome is unpredictable.

I When cancer occurs, it can eventually only be explained just
by “bad luck”.

I Unpredictability of individual outcomes implies largely
unpredictable — random — variation of disease rates at
population level.
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Example: Breast cancer

Breast cancer incidence rates in Finland, age group 65-69 years in
three successive years.

Males Females
Year (per 106 P-years) (per 104 P-years)

1989 46 21
1990 11 20
1991 33 19

I Big annual changes in risk among males?
I Is there steady decline in females?
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Example: Breast cancer

Look at observed numbers of cases!

Males Females

Year Cases P-years Cases P-years

1989 4 88,000 275 131,000
1990 1 89,000 264 132,000
1991 3 90,000 253 133,000

Reality of changes over the years?

The information is in the number of cases
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Simple probability model for cancer occurrence

Assume that the population is homogeneous

I the theoretical incidence rate

I hazard or intensity — λ

I of contracting cancer

I is constant over a short period of time, dt

λ = Pr{Cancer in(t , t + dt)}/dt
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Simple probability model for cancer occurrence

I The observations:
I Number of cases D in
I Y person-years at risk
I ⇒ empirical incidence rate R = D/Y

I are all random variables with unpredictable values
I The probability distribution of possible values of a random

variable has some known mathematical form
I . . . some properties of the probability distribution are

determined by the assumptions
I . . . other properties are determined by quantities called

parameters
I — in this case the theoretical rate λ.
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How a probability model works

If the hazard of lung cancer, λ, is constant over time, we can
simulate lung cancer occurrence in a population:

I Start with N persons

I 1st day: P {lung cancer} = λ× 1 day for all N

I 2nd day: P {lung cancer} = λ× 1 day for those left w/o LC

I 3rd day: P {lung cancer} = λ× 1 day for those left w/o LC

I . . .

Thus a probability model shows how to generate data with known
parameters. Model → Data
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Component of a probability model

I structure of the model
— a priori assumptions:
— constant incidence rate

I parameters of the model
— size of the incidence rate:
— derived from data conditional on structure
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Statistics

The opposite of a probability models:

I the data is known

I want to find parameters

I this is called estimation

I . . . mostly using maximum likelihood

Thus statistical modelling is how to estimate parameters from
observed data. Data → Model
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Statistics — the workings

I Fix the model (structure)

I For any set of parameters we can generate data

I Find parameters that generates data that look most like the
observed data

I Recall the notion of random variables:

I Given model and parameter
I we know the distribution of functions of data

I Essential distributions are Poisson and Normal (Gaussian)
distributions
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Poisson and Gaussian models

I Poisson distribution: simple probability model for number of
cases D (in a fixed follow-up time, Y ) with

I expectation (theoretical mean) µ = λY ,

I standard deviation
√
µ

I When the expectation µ of D is large enough, the Poisson
distribution resembles more and more the Gaussian or
Normal distribution.
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Poisson distribution with different means (µ)
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Gaussian distribution

Gaussian or Normal distribution:

I common model for continuous variables,
I symmetric and bell-shaped,
I has two parameters:

– µ = expectation or mean,
– σ = standard deviation.

I Approximates sampling distribution of empirical measures:

I observed incidence rates
I log(observed incidence rates)
I other functions of these
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Normal probability density funtion — the “Bell Curve”
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Areas under curve limited by selected quantiles
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Sampling distribution

I Describes variation of a summary statistic,

I = behaviour of values of the statistic over hypothetical
repetitions of taking new random samples of size n.

I Its form depends on:
I original distribution & parameters,
I sample size n.

I The larger the sample size n → the narrower and more
Gaussian-like sampling distribution!
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Example: Observed incidence rate

Parameter λ = (unknown) incidence rate in population.

I Model incidence rate is constant over time

I Empirical rate R = D/Y ,

I Estimator of λ, λ̂ = R.

I λ̂ = R is a statistic, random variable:

I its value varies from one study population (“sample”) to another on
hypothetical repetitions

I its sampling distribution is (under the constant rate model & other
conditions) a transformation of the Poisson distribution
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Example: Observed incidence rate

I D approximately Poisson, mean λY , sd
√
λY

I R = D/Y scaled Poisson, mean λ, sd
√
λY /Y =

√
λ/Y

I Expectation of R is λ,
standard deviation

√
λ/Y .

I Standard error of empirical rate R is estimated by replacing λ
with R:

s.e.(R) =

√
λ̂

Y
=

√
R

Y
=

√
D

Y
= R × 1√

D

⇒ Random error depends inversely on the number of cases.

⇒ s.e. of R is proportional to R.
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Example: Observed incidence rate

I Use the central limit theorem:

I λ̂ = R ∼ N (λ, λ/Y ) = N (λ, λ2/D)

⇒ Observed R is with 95% proability in the interval

(λ− 1.96× λ/
√
D ;λ+ 1.96× λ/

√
D)

⇒ with 95% probability λ is in the interval

(R − 1.96× R/
√
D ;R + 1.96× R/

√
D)

I . . . a 95% confidence interval for the rate.
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Chance summary

I Observations vary systematically by known factors

I Observations vary randomly by unknown factors

I Probability model describes the random variation

I We observe random variables — draws from a probability
distribution

I Central limit theorem allows us to quantify the random
variation

I Confidence interval

I . . . but we need a better foundation for the estimators
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Inference

I Inferential questions

I Point estimation

I Maximum likelihood

I Statistical testing

I Interpretation of P -values

I Confidence interval

I Recommendations
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Inferential questions

I What is the best single-number assesment of the parameter
value?

I Is the result consistent or in disagreement with a certain value
of the parameter proposed beforehand?

I What is a credible range of parameter values, consistent with
our data?
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Models and data

I Probability model can be used to generate data
(by simulation)

I Interest is the inverse:

I What model generated the data?
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Models and data — model components

I External, a priori information on observations
— structure of the model

I quantitative parameter(s) within model structure

I only the latter is the target for inference
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Statistical concepts

I Probability: parameters → data

I Statistics: data → parameter(estimate)s

I Notation:

I Parameter denoted by a Greek letter
I Estimator & estimate by the same Greek letter with ”hat”.

I Ex: Incidence rate:

I True unknown rate: λ
I Estimator: λ̂ = R = D/Y , empirical rate.

I . . . but where did this come from?
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Maximum likelihood principle

I Define your model (e.g. constant rate)

I Choose a parameter value

I How likely is it that
— this model with
— this parameter
generated data

I P {data|parameter}, P {(d , y)|λ}
I Find the parameter value that gives the maximal probability of

data

I Find the interval of parameter values that give probabilities not
too far from the maximum.
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Likelihood

Probability of the data given the parameter:

Assuming the rate (intensity) is constant, λ, the probability of
observing 7 deaths in the course of 500 person-years:

P {D = 7,Y = 500|λ} = λDeλY ×K

= λ7eλ500 ×K

= L(λ|data)

I Estimate of λ is where this function is as large as possible.

I Confidence interval is where it is not too far from the maximum
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Likelihood function, 7 events, 500 PY
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Likelihood function, 7 events, 500 PY
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Log-likelihood function, 7 events, 500 PY
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Log-likelihood function, 7 events, 500 PY
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Log-likelihood function, 7 events, 500 PY
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Log-likelihood function, 7 events, 500 PY
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Log-likelihood function, 7 events, 500 PY
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Likelihood function, 14 events, 843.6 PY
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Likelihood function, 14 events, 843.6 PY
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Log-likelihood function 14 events, 843.6 PY
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Log-likelihood function 14 events, 843.6 PY
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Log-likelihood function 14 events, 843.6 PY
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Log-likelihood function 14 events, 843.6 PY
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Log-likelihood function 14 events, 843.6 PY
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Confidence interval for a rate

I Based on the quadratic approximation:

I A 95% confidence interval for the log of a rate is:

θ̂ ± 1.96/
√
D = log(λ)± 1.96/

√
D

I Take the exponential to get the confidence interval for the rate:

λ
×
÷ exp(1.96/

√
D)︸ ︷︷ ︸

error factor,erf
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Example

Suppose we have 14 deaths during 843.6 years of follow-up.

The rate is computed as:

λ̂ = D/Y = 14/843.7 = 0.0165 = 16.5 per 1000 years

The confidence interval is computed as:

λ̂
×
÷ erf = 16.5

×
÷ exp(1.96/

√
14) = (9.8, 28.0)

per 1000 person-years.
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Ratio of two rates

If we have observations two rates λ1 and λ0, based on (D1,Y1) and
(D0,Y0), the variance of the difference of the log-rates, the
log(RR), is:

var(log(RR)) = var(log(λ1/λ0))

= var(log(λ1)) + var(log(λ0))

= 1/D1 + 1/D0

As before a 95% c.i. for the RR is then:

RR
×
÷ exp

(
1.96

√
1

D1
+

1

D0

)

︸ ︷︷ ︸
error factor
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Example

Suppose we in group 0 have 14 deaths during 843.6 years of
follow-up in one group, and in group 1 have 28 deaths during 632.3
years.

The rate-ratio is computed as:

RR = λ̂1/λ̂0 = (D1/Y1)/(D0/Y0)

= (28/632.3)/(14/843.7) = 0.0443/0.0165 = 2.669

The 95% confidence interval is computed as:

R̂R
×
÷ erf = 2.669

×
÷ exp

(
1.96

√
1/14 + 1/28

)

= 2.669
×
÷ 1.899 = (1.40, 5.07)
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Example using R

Poisson likelihood for one rate, based on 14 events in 843.7 PY:

> library( Epi )
> D <- 14 ; Y <- 843.7
> m1 <- glm( D ~ 1, offset=log(Y/1000), family=poisson)
> ci.exp( m1 )

exp(Est.) 2.5% 97.5%
(Intercept) 16.59358 9.827585 28.01774

Poisson likelihood, two rates, or one rate and RR:

> D <- c(14,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1)
> m2 <- glm( D ~ gg, offset=log(Y/1000), family=poisson)
> ci.exp( m2 )

exp(Est.) 2.5% 97.5%
(Intercept) 16.59358 9.827585 28.017744
gg1 2.66867 1.404992 5.068926
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Example using R

Poisson likelihood, two rates, or one rate and RR:

> D <- c(14,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1)
> m2 <- glm( D ~ gg, offset=log(Y/1000), family=poisson)
> ci.exp( m2 )

exp(Est.) 2.5% 97.5%
(Intercept) 16.59358 9.827585 28.017744
gg1 2.66867 1.404992 5.068926

> m3 <- glm( D ~ gg - 1, offset=log(Y/1000), family=poisson)
> ci.exp( m3 )

exp(Est.) 2.5% 97.5%
gg0 16.59358 9.827585 28.01774
gg1 44.28278 30.575451 64.13525
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Statistical testing

I Are the observed data
(possibly summarized by an estimate and its SE)
consistent with a given value of the parameter?

I Such a value is often represented in the form a null hypothesis
(H0), which is a statement about the belief about value of the
parameter before study.

I Typically a conservative assumption, e.g.:
”no difference in outcome between the groups”
”true rate ratio ρ = 1”.
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Purpose of statistical testing

I Evaluation of consistency or disagreement of observed data
with H0.

I Checking whether or not the observed difference can
reasonably be explained by chance.

I Note: This is not so ambitious.
I The NULL is never true — there is always a difference between

two groups
⇒ not testing if H0 is TRUE,

I if it were true could we see this kind of data
I . . . not investigating if there were other probability models

that could have generated the data
I . . . but if we have evidence enough to assert is as FALSE
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Test statistic

I Function of observed data and null hypothesis value,
I a common form of test statistic is:

Z =
O − E

S

O = some ”observed” statistic,
E = ”expected value” of O under H0,
S = SE or standard deviation of O under H0.
I Evaluates the size of the ”signal”O − E against the size of the

”noise”S — if numerically large, H0 unlikely
I Under H0 the sampling distribution of this statistic is (with

sufficient amount of data) close to the standard Gaussian.
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Example — rate difference

Null hypothesis:

I OC use has no effect on breast ca. risk
⇔ true rate difference δ = λ1 − λ0 equals 0.

O = Observed rate difference

δ̂ = RD = (28/632.3)−(14/843.7) = 44.2−16.5 = 27.7 per 103PY.

E = Expected rate difference = 0, if H0 true.
S = Standard error of RD:

SE(RD) =

√
28

632.32
+

14

843.72
= 9.5 per 103 y.
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Example — rate difference

I Test statistic Z = (O − E )/S , its observed value:

Zobs =
27.7− 0

9.5
= 2.92

I One-tailed P = 0.0017:
probability of more extreme observations in one direction

I Two-tailed P = 0.0034:
probability of more extreme observations in any direction

I Question of a priori assumptions

I Two-tailed is the preferred in most cases
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P-value

I Synonym for “observed significance level”.

I Measures the evidence against H0:

I The smaller the p value, the stronger the evidence against H0.
I Yet, a large p as such does not provide supporting evidence for H0.

I Operationally: the probability of getting a statistic at least as
extreme as the observed, assuming H0 is true

I However, it is not
“the probability that H0 is true”!
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Interpretation of P-values

I No mechanical rules of inference
I Rough guidelines

I “large” value (p > 0.1): consistent with H0 but not necessarily
supporting it,

I “small” value (p < 0.01): indicates evidence against H0

I “intermediate” value (p ≈ 0.05): weak evidence against H0

I Division of p-values into ”significant” or ”non-significant” by
cut-off 0.05 — To be avoided!

I . . . remember that the 5% is an arbitrary number taken out pf
thin air.
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Confidence interval (CI)

I Range of values of the parameter compatible with the observed
data

I Specified at certain confidence level, commonly 95% (also 90
% and 99% used)

I The limits of a CI are statistics, random variables with
sampling distribution, such that

I the probability that the random interval covers the true
parameter value equals the confidence level (e.g. 95%).
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Interpretation of obtained CI

Frequentist school of statistics: no probability interpretation!
(In contrast to Bayesian school).

Single CI is viewed by frequentists as a range of conceivable values
of the unknown parameter with which the observed
estimate is fairly consistent, taking into account
”probable” random error:

I narrow CI → precise estimation
→ small statistical uncertainty about parameter.

I wide CI → imprecise estimation
→ great uncertainty.
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Long-term behaviour of CI

Variability of 95% CI under
hypothetical repetitions of
similar study, when true rate
ratio is RR.
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In the long run 95% of these intervals would cover the true value
but 5% would not.
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Long-term behaviour of CI

Variability of 95% CI under
hypothetical repetitions of
similar study, when true rate
ratio is RR.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.2 0.5 1.0 2.0

Rate ratio

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

RR

In the long run 95% of these intervals would cover the true value
but 5% would not.

Inference (inference) 50/ 156



Interpretation of CI

I CI gives more quantitative information on the parameter and
on statistical uncertainty about its value than P value.

I narrow CI about H0 value:
→ results give support to H0.

I wide CI about H0 value:
→ results inconclusive.

I The latter is more commonly encountered.
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Confidence interval and P-value

95 % CIs of rate dif-
ference δ and P val-
ues for H0 : δ = 0 in
different studies.
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I Which ones are significant?

I Which ones are informative?
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Recommendations

ICMJE: Uniform Requirements for Manuscripts submitted to
Biomedical Journals. http://www.icmje.org/

Extracts from section Statistics:

I When possible, quantify findings and present them with
appropriate indicators of measurement error or uncertainty
(such as confidence intervals).

I Avoid relying solely on statistical hypothesis testing, such as
the use of p values, which fails to convey important
quantitative information.
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Recommendations

Sterne and Davey Smith: Sifting the evidence – what’s wrong with
significance tests? BMJ 2001; 322: 226-231.

“Suggested guidelines for the reporting of results of statistical
analyses in medical journals”

1. The description of differences as
statistically significant is not acceptable.

2. Confidence intervals (CI) for the main results should always be
included, but 90% rather than 95% levels should be used.
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Recommendations

3. CIs should not be used as a surrogate means of examining
significance at the conventional 5% level.

4. Interpretation of CIs should focus on the implications (clinical
importance) of the range of values in the interval.

5. In observational studies it should be remembered that
considerations of confounding and bias are at least as
important as the issues discussed in this paper.
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Analysis
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Crude analysis

I Single incidence rate

I Rate ratio in cohort study

I Rate ratio in case-control study

I Rate difference in cohort study

I Analysis of proportions

I Extensions and remarks
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Single incidence rate

I Model: Events occur with constant rate λ.

I Parameter of interest:

λ = true rate in target population

I Estimator: λ̂ = R, the empirical rate in a “representative
sample” from the population:

R =
D

Y
=

no. of cases

person-time

I Standard error of rate: SE(R) = R/
√
D .
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Single rate

I Simple approximate 95% CI:

[R − EM,R + EM]

I using 95% error margin:

EM = 1.96× SE(R)

I Problem: When D ≤ 4, lower limit ≤ 0!
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Single rate

I Better approximation on log-scale:

SE
(
log(R)

)
= 1/

√
D

I From this we get the 95% error factor (EF)

EF = exp
(
1.96× SE

(
log(R)

))

where exp is the exponential function or antilog (inverse of the
natural logarithm)

I From these items we get 95% CI for λ:

[R/EF, R × EF].

I These limits are always > 0 whenever D ≥ 1.
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Single rate example

I The observed incidence of breast cancer in Finnish men aged
65-69 y in 1991 was 33 per 106 py based on 3 cases.

I Standard error of the rate is:

SE(R) = 33×
√

1/3 = 19 per 106 y

I The 95% error margin:

EM = 1.96× 19 = 37 per 106 y

33± 37 = [−4, 70] per 106 y

Negative lower limit — illogical!
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Single rate example

I A better approximate CI obtained on the log-rate scale:

SE
(
log(R)

)
=
√
1/3 = 0.577

I via the 95% error factor:

EF = exp(1.96× 0.577) = 3.1

from which the confidence limits (both > 0):

[33/3.1, 33× 3.1] = [10.6, 102] per 106py
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Rate estimation in Poisson model

3 male breast cancers in 90, 909 person years:

> library( Epi )
> D <- 3 ; Y <- 90909 / 10^6 ; D/Y

[1] 33.00003

> m0 <- glm( D ~ 1, offset=log(Y), family=poisson )
> ci.exp( m0 )

exp(Est.) 2.5% 97.5%
(Intercept) 33.00003 10.64322 102.3189

I Response variable: D — no. cases
I Offset variable: log(Y) — log-person-years

note the scaling of Y to the units desired.
I Explanatory variable: “1” — intercept only
I ci.exp transforms back to rate scale.Analysis (analysis) 62/ 156

Rate ratio in cohort study

Question: What is the rate ratio of cancer in the exposed as
compared to the unexposed group?

Model Cancer incidence rates constant in both groups, values
λ1, λ0

Parameter of interest is true rate ratio:

ρ =
λ1
λ0

=
rate among exposed

rate among unexposed

Null hypothesis H0 : ρ = 1: exposure has no effect.
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Rate ratio

Summarized data on outcome from cohort study with person-time

Exposure to risk factor Cases Person-time

Yes D1 Y1

No D0 Y0

Total D+ Y+

Empirical rates by exposure group provide estimates for the true
rates:

λ̂1 = R1 =
D1

Y1
, λ̂0 = R0 =

D0

Y0
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Rate ratio

I Point estimate of the true rate ratio, ρ, is the empirical rate
ratio (RR):

ρ̂ = RR =
λ̂1

λ̂0
=

R1

R0
=

D1/Y1

D0/Y0
=

D1/D0

Y1/Y0

I The last form is particularly useful in case-control studies —
see next section.

I Easier to use the log-transformation:

log(RR) = log(λ̂1)− log(λ̂0)
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Rate ratio
I

log(RR) = log(λ̂1)− log(λ̂0)

⇒ variance of log(RR) = sum of the variances of the log-rates.
I Standard error of log(RR), 95% error factor and

approximate 95% CI for ρ:

SE
(
log(RR)

)
=

√
1

D1
+

1

D0

EF = exp
(
1.96× SE

(
log(RR)

))

CI = [RR/EF, RR× EF].

Note: SE (EF) of estimate depends inversely on numbers of
cases.
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Example: Helsinki Heart Study

I In the study (Frick et al. NEJM 1987) over 4000 men were
randomized to daily intake of either:

I gemfibrozil (”exposed”, N1 ≈ 2000 ), or
I placebo (”unexposed”, N0 ≈ 2000).

I After mean follow-up of 5 y, the numbers of cases of any
cancer in the two groups were:
D1 = 31 and D0 = 26.

I Rounded person-years were Y1 ≈ Y0 ≈ 2000× 5 y = 10000 y.
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Example: Helsinki Heart Study

Incidence rates 3.1 and 2.6 per 1000 y.
Estimate of true rate ratio ρ with SE etc.:

ρ̂ = RR =
3.1/1000y

2.6/1000 y
= 1.19

SE[log(RR)] =

√
1

31
+

1

26
= 0.2659

EF = exp(1.96× 0.2659) = 1.68

95 % CI for ρ :

[1.19/1.68, 1.19× 1.68] = [0.7, 2.0]

Two-tailed P = 0.52
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Rate ratio in Poisson model
> library( Epi )
> D <-c(31,26) ; Y <- c(10000,10000)/10^3 ; E <- c(1,0)
> cbind( D, Y, E)

D Y E
[1,] 31 10 1
[2,] 26 10 0

> mr <- glm( D ~ factor(E), offset=log(Y), family=poisson )
> ci.exp( mr )

exp(Est.) 2.5% 97.5%
(Intercept) 2.600000 1.7702679 3.818631
factor(E)1 1.192308 0.7079898 2.007935

I Response variable: D — no. cases in each group
I Offset variable: log(Y) — log-person-years

note the scaling to units desired for intercept (the rate)
I Explanatory variable: factor(E)
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> mR <- glm( D ~ factor(E)-1, offset=log(Y), family=poisson )
> ci.exp( mR )

exp(Est.) 2.5% 97.5%
factor(E)0 2.6 1.770268 3.818631
factor(E)1 3.1 2.180125 4.408004

I Response variable: D — no. cases in each group

I Offset variable: log(Y) — log-person-years
note scaling to units desired for intercept

I Explanatory variable: factor(E) - 1

omit intercept: rates separately for each group.

I ci.exp transforms back to rate scale.
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> mR <- glm( D/Y ~ factor(E)-1, weight=Y, family=poisson )
> ci.exp( mR )

exp(Est.) 2.5% 97.5%
factor(E)0 2.6 1.770268 3.818631
factor(E)1 3.1 2.180125 4.408004

I Response variable: D/Y — rate in each group

I Weight variable: Y — person-years, inversely proportional to
variance of the rate

I Explanatory variable: factor(E) - 1

omit intercept: rates separately for each group.

I ci.exp transforms back to rate scale.
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Rate difference in Poisson model

> mD <- glm( D/Y ~ factor(E)-1, weight=Y, family=poisson(link="identity") )
> ci.exp( mD, Exp=FALSE )

Estimate 2.5% 97.5%
factor(E)0 2.6 1.600611 3.599389
factor(E)1 3.1 2.008738 4.191262

I Response variable: D/Y — rate in each group

I Weight variable: Y — person-years, inversely proportional to
variance of the rate

I Explanatory variable: factor(E) - 1

omit intercept: rates separately for each group.

I ci.exp with Exp=FALSE keeps estimate on the rate scale.
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Rate difference in Poisson model

> md <- glm( D/Y ~ factor(E), weight=Y, family=poisson(link="identity") )
> ci.exp( md, Exp=FALSE )

Estimate 2.5% 97.5%
(Intercept) 2.6 1.6006105 3.599389
factor(E)1 0.5 -0.9797404 1.979740

I Response variable: D/Y — rate in each group

I Weight variable: Y — person-years, inversely proportional to
variance of the rate

I Explanatory variable: factor(E)

rate in reference group and rate difference.

I ci.exp with Exp=FALSE keep estimate on the rate scale.
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Analysis of proportions

I Suppose we have cohort data with a fixed risk period, i.e. all
subjects are followed over the same period and therfore has the
same length, as well as no losses to follow-up (no censoring).

I In this setting the risk, π, of the disease over the risk period is
estimated by simple

I incidence proportion (often called ”cumulative incidence”
or even ”cumulative risk”)
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Analysis of proportions

Incidence proportion:

π̂ = p =
x

n

=
number of new cases during period

size of population-at-risk at start

Analogously, empirical prevalence (proportion) p at a certain point
of time t

p =
no. of prevalent cases at t

total population size at t
=

x

n
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Analysis of proportions

I Proportions (unlike rates) are dimensionless quantities ranging
from 0 to 1

I Analysis of proportions based on binomial distribution

I Standard error for an estimated proportion:

SE(p) =

√
p(1− p)

n
= p ×

√
(1− p)

x

I Depends also inversely on x !

I . . . but not a good approximation...
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Analysis of proportions

I CI : p ± 2× SE(p) are within [0; 1] if x > 4/(1 + 4/n)
I This is always true if x > 3 (if x > 2 for n < 12)
I — but the approximation is not good for x < 10

> ci <- function(x,n) round(cbind( x, n, p=p<-x/n, lo=p-2*sqrt(p*(1-p)/n),
+ hi=p+2*sqrt(p*(1-p)/n) ),4)
> rbind(ci(3,11:13),ci(2,3:5),ci(1,1:2))

x n p lo hi
[1,] 3 11 0.2727 0.0042 0.5413
[2,] 3 12 0.2500 0.0000 0.5000
[3,] 3 13 0.2308 -0.0029 0.4645
[4,] 2 3 0.6667 0.1223 1.2110
[5,] 2 4 0.5000 0.0000 1.0000
[6,] 2 5 0.4000 -0.0382 0.8382
[7,] 1 1 1.0000 1.0000 1.0000
[8,] 1 2 0.5000 -0.2071 1.2071
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Analysis of proportions

I Use confidence limits based on symmetric (normal) log(OR):
I Compute error factor:

EF = exp
(
1.96/

√
np(1− p)

)

I then use to compute confidence interval:

p/
(
p + (1− p)

×
÷ EF

)

I Observed x = 4 out of n = 25: p̂ = 4/25 = 0.16
I Naive CI: 0.16± 1.96×

√
0.16× 0.84/25 = [0.016; 0.304]

I Better: EF = exp(1.96/
√
25× 0.16× 0.84) = 2.913

CI : 0.16/
(
0.16 + (0.84

×
÷ 2.913)

)
= [0.061; 0.357]
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Analysis of proportions by glm

I Default is to model logit(p) = log(p/(1− p)), log-odds
I Using ci.exp gives odds (ω):

ω = p/(1− p) ⇔ p = ω/(1 + ω)

> x <- 4 ; n <- 25
> p0 <- glm( cbind( x, n-x ) ~ 1, family=binomial )
> ( odds <- ci.exp( p0 ) )

exp(Est.) 2.5% 97.5%
(Intercept) 0.1904762 0.06538417 0.5548924

> odds/(odds+1)

exp(Est.) 2.5% 97.5%
(Intercept) 0.16 0.06137145 0.3568687
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Analysis of proportions by glm

I Default is to model logit(p) = log(p/(1− p)), log-odds
I Using ci.exp gives odds (ω):

ω = p/(1− p) ⇔ p = ω/(1 + ω)

> x <- 4 ; n <- 25
> p0 <- glm( cbind( x, n-x ) ~ 1, family=binomial )
> ( odds <- ci.exp( p0 ) )

exp(Est.) 2.5% 97.5%
(Intercept) 0.1904762 0.06538417 0.5548924

> odds/(odds+1)

exp(Est.) 2.5% 97.5%
(Intercept) 0.16 0.06137145 0.3568687
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Analysis of proportions by glm

Also possible to model log(p), log-probability, by changing the link
function:

> x <- 4 ; n <- 25
> pl <- glm( cbind( x, n-x ) ~ 1, family=binomial(link="log") )
> ci.exp( pl )

exp(Est.) 2.5% 97.5%
(Intercept) 0.16 0.06517056 0.3928154

We see that the estimated probability is the same but the
confidence limits are slightly different.
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Rate ratio in case-control study

Parameter of interest: ρ = λ1/λ0
— same as in cohort study.

Case-control design:

I incident cases occurring during a given period in the source
population are collected,

I controls are obtained by incidence density sampling from
those at risk in the source.

I exposure is ascertained in cases and chosen controls.
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Rate ratio in case-control study

Summarized data on outcome:

Exposure Cases Controls

yes D1 C1

no D0 C0

I Can we directly estimate the rates λ0 and λ1 from this?

I — and the ratio of these?

I NO and YES (respectively)

I Rates are not estimable from a case-control design
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Rate ratio in case-control study

I If controls are representative of the person- years in the
population, their division into exposure groups estimates the
exposure distribution of the person-years:

C1/C0 ≈ Y1/Y0

I Hence, we can estimate the RR by the OR:

R̂R = OR =
D1/Y1

D0/Y0
=

D1/D0

Y1/Y0
≈ D1/D0

C1/C0
=

D1/C1

D0/C0

⇒ RR estimated by the ratio of the case-control ratios (D/C )
I . . . but of course there is a penalty to pay. . .
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Rate ratio from case-control study

Standard error for log(OR), 95% error factor
and approximate CI for ρ:

SE
(
log(OR)

)
=

√
1

D1
+

1

D0
+

1

C1
+

1

C0

EF = exp
(
1.96× SE

(
log(OR)

))

CI = [OR/EF,OR× EF]

NB. Random error again depends inversely on numbers of cases
and controls — the penalty, in the two exposure groups.
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Example: mobile phone use and brain cancer

(Inskip et al. NEJM 2001; 344: 79-86).

Daily use Cases Controls

≥ 15 min 35 51
no use 637 625

The RR associated with use of mobole phone longer than 15 min
(vs. none) is estimated by the OR:

OR =
35/51

637/625
= 0.67
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Example: mobile phone use and brain cancer

SE for log(OR), 95% error factor and approximate CI for ρ:

SE
(
log(OR)

)
=

√
1

35
+

1

637
+

1

51
+

1

625
= 0.2266

EF = exp()1.96× 0.2266) = 1.45

CI = [0.67/1.45, 0.67× 1.45] = [0.43, 1.05]

N.B. model-adjusted estimate (with 95% CI):

OR = 0.6[0.3, 1.0]
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OR from binomial model
> Ca <- c(638,35); Co <- c(625,51); Ex <- factor(c("None",">15"),levels=c("None",">15"))
> data.frame( Ca, Co, Ex )

Ca Co Ex
1 638 625 None
2 35 51 >15

> mf <- glm( cbind(Ca,Co) ~ Ex, family=binomial )
> ci.exp( mf )

exp(Est.) 2.5% 97.5%
(Intercept) 1.0208000 0.9141876 1.139845
Ex>15 0.6722909 0.4311979 1.048185

I Intercept is meaningless; only exposure estimate is relevant
I The parameter in the model is log(OR), so using ci.exp gives

us the estimated OR — same as in the hand-calculation above.
I This is called logistic regression
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Extensions and remarks

I All these methods extend to crude analyses of exposure
variables with several categories when each exposure category
is separately compared to a reference group.

I Evaluation of possible monotone trend in the parameter over
increasing levels of exposure: estimation of regression slope.

I CI calculations here are based on simple approximate formulas
(Wald statistics):

I accurate when numbers of cases are large
I for small numbers, other methods may be preferred

(e.g. ”exact” or likelihood ratio-based as shown by glm).

I Crude analysis is insufficient in observational studies:
control of confounding needed.
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Stratified analysis

Bendix Carstensen & Esa Laara

Nordic Summerschool of Cancer Epidemiology
Danish Cancer Society,
August 2017 / Januay 2018

http://BendixCarstensen.com/NSCE/2017 strat

Stratified analysis

I Shortcomings of crude analysis

I Effect modification

I Confounding

I Steps of stratified analysis

I Estimation of rate ratio

I Mantel-Haenszel estimators

I Matched case-control study
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Shortcomings of crude analysis

Crude analysis is misleading, if

I the rate ratio for the risk factor of interest is not constant,
but varies by other determinants of the disease

I . . . i.e. heterogeneity of the comparative parameter
or effect modification

I the exposure groups are not comparable w.r.t. other
determinants of disease

I . . . i.e. bias in comparison or confounding
I Different cases of a model with effects of

I primary variable (“exposure”)
I secondary variable (“stratum”)
I effect modification is the interaction model
I confounding is the main-effects model

Stratified analysis (strat) 91/ 156

Remedies

Simple approach for remedy:

I Stratification of data
by potentially modifying and/or confounding factor(s)
& use of adjusted estimators

I Conceptually simpler,
and technically less demanding approach is
regression modelling

I Regression modeling is feasible because we have computers.
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Effect modification

Example: True incidence rates (per 105 y) of lung cancer by
occupational asbestos exposure and smoking in a certain
population:

Asbestos Smokers Non-smokers

exposed 600 60
unexposed 120 12

Rate ratio 5 5
Rate difference 480 48

Is the effect of asbestos exposure the same or different in smokers
than in non-smokers?
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Effect modification (cont’d)

Depends how the effect is measured:

I Rate ratio: constant or homogenous

I Rate difference: heterogenous:
The value of rate difference is modified by smoking.

Smoking is thus an effect modifier of asbestos exposure on the
absolute scale but not on the relative scale of comparison.
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Example: Incidence of CHD (per 103 y)
by risk factor E and age:

Factor E Young Old

exposed 4 9
unexposed 1 6

rate ratio 4 1.5
rate difference 3 3

I Rate ratio modified by age

I Rate difference not modified.

There is no such thing as interaction without reference to the
effect scale (e.g. additive or multiplicative)
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Effect modification (cont’d)

I Usually comparative parameters are more or less heterogenous
across categories of other determinants of disease

I This is termed interaction or effect modification

I The effect of X depend on the level of Z

I The effect of X cannot be described by a single number,

I . . . it is a function of Z
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Example:

Age-specific CHD mortality rates (per 104 y) and numbers of cases
(D) among British male doctors by cigarette smoking, rate
differences (RD) and rate ratios (RR) (Doll and Hill, 1966).

Smokers Non-smokers

Age (y) rate D rate D RD RR

35-44 6.1 32 1.1 2 5 5.7
45-54 24 104 11 12 13 2.1
55-64 72 206 49 28 23 1.5
65-74 147 186 108 28 39 1.4
75-84 192 102 212 31 -20 0.9

Total 44 630 26 101 18 1.7
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Example (cont’d)

Both comparative parameters appear heterogenous:

I RD increases by age (at least up to 75 y)

I RR decreases by age

No single-parameter (common rate ratio or rate difference)
comparison captures adequately the joint pattern of rates.
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Evaluation of modification

I Modification or its absence is an inherent property of the
phenomenon:

I cannot be removed or ”adjusted” for

I but it depends on the scale on which it is measured

I Before looking for effect-modification:

I what scale are we using for desciption of effects
I how will we report the modified effects (the interaction)
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Evaluation of modification (cont’d)

I statistical tests for heterogeneity insensitive and rarely helpful

I ⇒ tempting to assume ”no essential modification”:

+ simpler analysis and result presentation,
− misleading if essential modification present.
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Confounding - example

Observational clinical study with comparison of success of
treatment between two types of operation for treating renal calculi:

I OS: open surgery (invasive)

I PN: percutaneous nephrolithotomy (non-invasive)

Treatment Pts Op. OK % OK %-diff.

OS 350 273 78
PN 350 290 83 +5

PN appears more succesful than OS?
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Example (cont’d)
Results stratified by initial diameter size of the stone:

Size Treatment Pts Op. OK % OK %-diff.

< 2 cm: OS 87 81 93
PN 270 235 87 −6

≥ 2 cm: OS 263 192 73
PN 80 55 69 −4

OS seems more succesful in both subgroups.

Is there a paradox here?
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Operation example

I Treatment groups are not comparable w.r.t. initial size.

I Size of the stone (SS) is a confounder of the association
between operation type and success:

1. an independent determinant of outcome (success), based on external
knowledge,

2. statistically associated with operation type in the study population,
3. not causally affected by operation type.

Stratified analysis (strat) 103/ 156

Example 13 (cont’d)

I Instance of “confounding by indication”:
— patient status affects choice of treatment,
⇒ bias in comparing treatments.

I This bias is best avoided in planning:
— randomized allocation of treatment.
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Grey hair and cancer incidence

Gray P-years Rate
Age hair Cases ×1000 /1000 y RR

Total yes 66 25 2.64 2.2
no 30 25 1.20

Young yes 6 10 0.60 1.09
no 11 20 0.55

Old yes 60 15 4.0 1.05
no 19 5 3.8

Observed crude association nearly vanishes after controlling for age.
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Means for control of confounding

Design:

I Randomization

I Restriction

I Matching
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Means for control of confounding (cont’d)

Analysis:

I Stratification

I Regression modelling

Only randomization can remove confounding due to
unmeasured factors.

Other methods provide partial removal, but
residual confounding may remain.
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Steps of stratified analysis

I Stratify by levels of the potential confounding/modifying
factor(s)

I Compute stratum-specific estimates of the effect parameter
(e.g. RR or RD)

I Evaluate similarity of the stratum-specific estimates by
“eye-balling” or test of heterogeneity.
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Steps of stratified analysis (cont.)

I If the parameter is judged to be homogenous enough, calculate
an adjusted summary estimate.

I If effect modification is judged to be present:

I report stratum-specific estimates with CIs,
I if desired, calculate an adjusted summmary estimate by appropriate

standardization — (formally meaningless).
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Estimation of rate ratio

I Suppose that true rate ratio ρ is sufficiently homogenous
across strata (no modification), but confounding is present.

I Crude RR estimator is biased.

I Adjusted summary estimator, controlling for confounding,
must be used.

I These estimators are weighted averages of stratum-specific
estimators.
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Adjusted summary estimators

Different weighting methods:

I maximum likelihood (ML)

I weighted least squares (WLS)

I Mantel-Haenszel (MH) weights

I (direct) standardization by external standard population (CMF)

I standardized morbidity ratio (SMR)
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Mantel-Haenszel estimators

Cohort study, data summary in each stratum k :

Exposure Cases Person-time

yes D1k Y1k

no D0k Y0k

Total D+k Y+k

Compaute stratum-specific rates by exposure group:
R1k = D1k/Y1k , R0k = D0k/Y0k

. . . weighted together to give a common log-RR across strata.
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Mantel-Haenszel estimator

I Combination of stratum-specific RRs as a proxy for a model
estimate of a common parameter

I Formulae devised in times of the hand-calculator
— before the advent of computers

I Replaced by statistical models

I Out of date since about mid-1990s

I . . . but you will still see it occasionally
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Gray hair & cancer

> D <- c(6,11,60,19)
> Y <- c(10,20,15,5)
> age <- factor( c("Young","Young","Old","Old") )
> hair <- factor( c("Gray","Col","Gray","Col") )
> data.frame( D, Y, age, hair )

D Y age hair
1 6 10 Young Gray
2 11 20 Young Col
3 60 15 Old Gray
4 19 5 Old Col
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Gray hair & cancer

Crude and adjusted risk estimate by Poisson model:

> library( Epi )
> ci.exp( glm( D ~ hair , offset=log(Y), family=poisson ) )

exp(Est.) 2.5% 97.5%
(Intercept) 1.2 0.8390238 1.716280
hairGray 2.2 1.4288764 3.387277

> ci.exp( glm( D ~ hair + age, offset=log(Y), family=poisson ) )

exp(Est.) 2.5% 97.5%
(Intercept) 3.7782269 2.49962654 5.7108526
hairGray 1.0606186 0.67013527 1.6786339
ageYoung 0.1470116 0.08418635 0.2567211
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Case-control study of
Alcohol and oesophageal cancer

I Tuyns et al 1977, see Breslow & Day 1980,
I 205 incident cases,
I 770 unmatched population controls,
I Risk factor: daily consumption of alcohol.
I Crude summary:

Exposure
≥ 80 g/d Cases Controls OR

yes 96 109 5.64
no 104 666
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Crude analysis of CC-data

> Ca <- c( 96,104)
> Co <- c(109,666)
> Ex <- factor(c(">80","<80"))
> data.frame( Ca, Co, Ex )

Ca Co Ex
1 96 109 >80
2 104 666 <80

> m0 <- glm( cbind(Ca,Co) ~ Ex, family=binomial )
> round( ci.exp( m0 ), 2 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.16 0.13 0.19
Ex>80 5.64 4.00 7.95

The odds-ratio of oesophageal cancer, comparing high vs. low
alcohol consumption is 5.64[4.00; 7.95]
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Stratification by age
Exposure

Age ≥ 80 g/d Cases Controls EOR

25-34 yes 1 9 ∞
no 0 106

35-44 yes 4 26 5.05
no 5 164

45-54 yes 25 29 5.67
no 21 138

55-64 yes 42 27 6.36
no 34 139

65-74 yes 19 18 2.58
no 36 88

75-84 yes 5 0 ∞
no 8 31

NB! Selection of controls: inefficient study
Should have employed stratified sampling by age.
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Stratified analysis

> ca <- c( 1, 0, 4, 5, 25, 21, 42, 34, 19, 36, 5, 8 )
> co <- c(9, 106, 26, 164, 29, 138, 27, 139, 18, 88, 0, 31)
> alc <- rep( c(">80","<80"), 6 )
> age <- factor( rep( seq(25,75,10), each=2 ) )
> data.frame( ca, co, alc, age )

ca co alc age
1 1 9 >80 25
2 0 106 <80 25
3 4 26 >80 35
4 5 164 <80 35
5 25 29 >80 45
6 21 138 <80 45
7 42 27 >80 55
8 34 139 <80 55
9 19 18 >80 65
10 36 88 <80 65
11 5 0 >80 75
12 8 31 <80 75
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Stratified analysis

The “age:” operator produces a separate alc-OR for each age
class (in the absence of a main effect of alc):

> mi <- glm( cbind(ca,co) ~ age + age:alc, family=binomial )
> round( ci.exp( mi ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.000000e+00 0.000 Inf
age35 2.345328e+10 0.000 Inf
age45 1.170624e+11 0.000 Inf
age55 1.881661e+11 0.000 Inf
age65 3.147003e+11 0.000 Inf
age75 1.985206e+11 0.000 Inf
age25:alc>80 8.547416e+10 0.000 Inf
age35:alc>80 5.046000e+00 1.272 20.025
age45:alc>80 5.665000e+00 2.799 11.464
age55:alc>80 6.359000e+00 3.449 11.726
age65:alc>80 2.580000e+00 1.216 5.475
age75:alc>80 1.755246e+11 0.000 Inf
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Stratified analysis

...only the relevant parameters:

> round( ci.exp( mi, subset="alc" ), 3 )

exp(Est.) 2.5% 97.5%
age25:alc>80 8.547416e+10 0.000 Inf
age35:alc>80 5.046000e+00 1.272 20.025
age45:alc>80 5.665000e+00 2.799 11.464
age55:alc>80 6.359000e+00 3.449 11.726
age65:alc>80 2.580000e+00 1.216 5.475
age75:alc>80 1.755246e+11 0.000 Inf

I The age-specific ORs are quite variable
I Random error in some of them apparently large
I No clear pattern in the interaction
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Oesophageal cancer CC — effect modification?

> ma <- glm( cbind(ca,co) ~ age + alc, family=binomial )
> anova( mi, ma, test="Chisq" )

Analysis of Deviance Table

Model 1: cbind(ca, co) ~ age + age:alc
Model 2: cbind(ca, co) ~ age + alc
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 0 0.000
2 5 11.041 -5 -11.041 0.05057

I Some evidence against homogeneity,
but no clear pattern in the interaction (effect mdodification)

I Extract a common effect from the reduced model
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Oesophageal cancer CC — linear effect modification

> ml <- glm( cbind(ca,co) ~ age + alc*as.integer(age), family=binomial )
> round( ci.exp( ml, subset="alc" ), 3 )

exp(Est.) 2.5% 97.5%
alc>80 8.584 1.961 37.579
alc>80:as.integer(age) 0.883 0.609 1.279

> ma <- glm( cbind(ca,co) ~ age + alc, family=binomial )
> anova( mi, ml, ma, test="Chisq" )[1:3,1:5]

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 0 0.000
2 4 10.609 -4 -10.6093 0.03132
3 5 11.041 -1 -0.4319 0.51107

Evidence against linear interaction (OR decreasing by age)
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Oesophageal cancer CC — effect modification?

> mn <- glm( cbind(ca,co) ~ alc , family=binomial )
> round( ci.exp( mn, subset="alc" ), 2 )

exp(Est.) 2.5% 97.5%
alc>80 5.64 4 7.95

> ma <- glm( cbind(ca,co) ~ age + alc, family=binomial )
> round( ci.exp( ma, subset="alc" ), 2 )

exp(Est.) 2.5% 97.5%
alc>80 5.31 3.66 7.7

I No clear interaction (effect modification) detected
I Crude OR: 5.64(4.00; 7.95)
I Adjusted OR: 5.31(3.66; 7.70)
I Note: No test for confounding exists.
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Regression models

Bendix Carstensen & Esa Laara

Nordic Summerschool of Cancer Epidemiology
Danish Cancer Society,
August 2017 / Januay 2018

http://BendixCarstensen.com/NSCE/2017 regress

Regression modeling

I Limitations of stratified analysis

I Log-linear model for rates

I Additive model for rates

I Model fitting

I Problems in modelling
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Limitations of stratified analysis

I Multiple stratification:

I many strata with sparse data
I loss of precision

I Continous risk factors must be categorized

I loss of precision
I arbitrary (unreasonable) assumptions about effect shape

I More than 2 exposure categories:

I Pairwise comparisons give inconsistent results
I (non)Linear trends not easily estimated
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Limitations

I Joint effects of several risk factors difficult to quantify

I Matched case-control studies:
difficult to allow for confounders & modifiers not matched on.

These limitations may be overcome to some extent by regression
modelling.

Key concept: statistical model
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Log-linear model for rates

Assume that the theoretical rate λ depends on
explanatory variables or regressors X , Z (& U , V , . . . )
according to a log-linear model

log
(
λ(X ,Z , . . . )

)
= α + βX + γZ + . . .

Equivalent expression, multiplicative model:

λ(X ,Z , . . . ) = exp(α + βX + γZ + . . . )

= λ0 ρ
X τZ · · ·
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Log-linear model

Model parameters

α = log(λ0) = intercept, log-baseline rate λ0
(i.e. rate when X = Z = · · · = 0)

β = log(ρ) = slope,
change in log(λ) for unit change in X ,
adjusting for the effect of Z (& U ,V , . . . )

eβ = ρ = rate ratio for unit change in X .

No effect modification w.r.t. rate ratios assumed in this model.
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Lung cancer incidence,
asbestos exposure and smoking

Dichotomous explanatory variables coded:

I X = asbestos: 1: exposed, 0: unexposed,

I Z = smoking: 1: smoker, 0: non-smoker

Log-linear model for theoretical rates

log
(
λ(X ,Z )

)
= 2.485 + 1.609X + 2.303Z
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Log-linear model: Variables

Rates Variables

X Z
Asbestos Smoke Non-sm Smoke Non-sm Smoke Non-sm

exposed 600 60 1 1 1 0
unexposed 120 12 0 0 1 0
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Lung cancer, asbestos and smoking

Entering the data:
— note that the data are artificial assuming the no. of PY among
asbestos exposed is 1/4 of that among non-exposed

> D <- c( 150, 15, 120, 12 ) # cases
> Y <- c( 25, 25, 100, 100 ) / 100 # PY (100,000s)
> A <- c( 1, 1, 0, 0 ) # Asbestos exposure
> S <- c( 1, 0, 1, 0 ) # Smoking
> cbind( D, Y, A, S )

D Y A S
[1,] 150 0.25 1 1
[2,] 15 0.25 1 0
[3,] 120 1.00 0 1
[4,] 12 1.00 0 0
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Lung cancer, asbestos and smoking

I Regression modelling

I Multiplicative (default) Poisson model

I 2 equivalent approaches

I D response, log(Y ) offset
I D/Y response, Y weight

(warning can be ignored)
I the latter approach also useful for additive models

> mo <- glm( D ~ A + S, offset=log(Y), family=poisson )
> mm <- glm( D/Y ~ A + S, weight=Y, family=poisson )
> ma <- glm( D/Y ~ A + S, weight=Y, family=poisson(link=identity) )

Regression models (regress) 133/ 156

Lung cancer, asbestos and smoking

Summary and extraction of parameters:

> summary( mo )

Call:
glm(formula = D ~ A + S, family = poisson, offset = log(Y))

Deviance Residuals:
1 2 3 4

0.000e+00 0.000e+00 -1.032e-07 0.000e+00

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.4849 0.2031 12.23 <2e-16
A 1.6094 0.1168 13.78 <2e-16
S 2.3026 0.2018 11.41 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 4.1274e+02 on 3 degrees of freedom
Residual deviance: -1.5987e-14 on 1 degrees of freedom
AIC: 28.37

Number of Fisher Scoring iterations: 3

> library( Epi )
> ci.exp( mo )

exp(Est.) 2.5% 97.5%
(Intercept) 12 8.059539 17.867026
A 5 3.977142 6.285921
S 10 6.732721 14.852836

> ci.exp( mo, Exp=F )

Estimate 2.5% 97.5%
(Intercept) 2.484907 2.086856 2.882957
A 1.609438 1.380563 1.838312
S 2.302585 1.906979 2.698191

> ci.exp( mm, Exp=F )

Estimate 2.5% 97.5%
(Intercept) 2.484907 2.086856 2.882957
A 1.609438 1.380563 1.838312
S 2.302585 1.906979 2.698191

Parameters are the same for the two modelling approaches.
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Summary and extraction of parameters

> ci.exp( mo )

exp(Est.) 2.5% 97.5%
(Intercept) 12 8.059539 17.867026
A 5 3.977142 6.285921
S 10 6.732721 14.852836

> ci.exp( mo, Exp=F )

Estimate 2.5% 97.5%
(Intercept) 2.484907 2.086856 2.882957
A 1.609438 1.380563 1.838312
S 2.302585 1.906979 2.698191

> ci.exp( mm, Exp=F )

Estimate 2.5% 97.5%
(Intercept) 2.484907 2.086856 2.882957
A 1.609438 1.380563 1.838312
S 2.302585 1.906979 2.698191
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Interpretation of parameters

> round( cbind( ci.exp( mm, Exp=F ),
+ ci.exp( mm ) ), 3 )

Estimate 2.5% 97.5% exp(Est.) 2.5% 97.5%
(Intercept) 2.485 2.087 2.883 12 8.060 17.867
A 1.609 1.381 1.838 5 3.977 6.286
S 2.303 1.907 2.698 10 6.733 14.853

α = 2.485 = log(12), log of baseline rate,
β = 1.609 = log(5), log of rate ratio ρ = 5 between exposed and

unexposed for asbestos
γ = 2.303 = log(10), log of rate ratio τ = 10 between smokers

and non-smokers.

Rates for all 4 asbestos/smoking combinations can be recovered
from the above formula.
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Log-linear model: Estimated rates

Rates Parameters

Asbestos Smokers Non-smokers Smokers Non-smokers

exposed 600 60 α + γ + β α+ β
unexposed 120 12 α + γ α

Rate ratio 5 5 log(β) log(β)
Rate difference 480 48 β β
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Log-linear model

Model with effect modification (two regressors only)

log
(
λ(X ,Z )

)
= α + βX + γZ + δXZ ,

equivalently

λ(X ,Z ) = exp
(
α + βX + γZ + δXZ

)
= λ0ρ

X τZθXZ

where α is as before, but

β = log-rate ratio ρ for a unit change in X when Z = 0,

γ = log-rate ratio τ for a unit change in Z when X = 0
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Interaction parameter

δ = log(θ), interaction parameter, describing
effect modification

For binary X and Z we have

θ = eδ =
λ(1, 1)/λ(0, 1)

λ(1, 0)/λ(0, 0)
,

i.e. the ratio of relative risks associated with X between the two
categories of Z .

Regression models (regress) 139/ 156

Log-linear model: Estimated rates

Rates Parameters

Asbestos Smokers Non-smokers Smokers Non-smokers

exposed 600 60 α + γ + β + δ α+ β
unexposed 120 12 α + γ α

Rate ratio 5 5 log(β + δ) log(β)
Rate difference 480 48 β + δ β
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Lung cancer, asbestos and smoking

> mi <- glm( D/Y ~ A + S + I(A*S), weight=Y, family=poisson )
> round( ci.exp( mm ), 3 ) ; round( ci.exp( mi ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 12 8.060 17.867
A 5 3.977 6.286
S 10 6.733 14.853

exp(Est.) 2.5% 97.5%
(Intercept) 12 6.815 21.130
A 5 2.340 10.682
S 10 5.524 18.101
I(A * S) 1 0.451 2.217

I There is no interaction on the multiplicative scale:
I interaction parameter is 1,
I asbestos and smoking parameters are the same,
I but SEs are larger because they refer to RRs for levels X = 0

and Z = 0 respectively and not both levels jointly
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Additive model for rates

General form with two regressors

λ(X ,Z ) = α + βX + γZ + δXZ

α = λ(0, 0) is the baseline rate,

β = λ(x + 1, 0)− λ(x , 0), rate difference for
unit change in X when Z = 0

γ = λ(0, z + 1)− λ(0, z ), rate difference for
unit change in Z when X = 0,
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Additive model

δ = interaction parameter.

I For binary X ,Z :

δ = [λ(1, 1)− λ(1, 0)]− [λ(0, 1)− λ(0, 0)]

I If no effect modification present, δ = 0, and

β = rate difference for unit change in X
for all values of Z

γ = rate difference for unit change in Z
for all values of X ,
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Example: Additive model

> mai <- glm( D/Y ~ A + S + A*S, weight=Y, family=poisson(link=identity) )
> ci.exp( mai, Exp=FALSE )

Estimate 2.5% 97.5%
(Intercept) 12 5.210486 18.78951
A 48 16.886536 79.11346
S 108 85.481728 130.51827
A:S 432 328.808315 535.19168

A very clear interaction (effect modification)
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λ(X ,Z ) = α + βX + γZ + δXZ = 12 + 48X + 108Z + 432XZ

α = 12, baseline rate, i.e. that among non-smokers unexposed to
asbestos (reference group),

β = 48 (60− 12), rate difference between asbestos exposed and
unexposed among non-smokers only,

γ = 108 (= 120− 12), rate difference between smokers and
non-smokers among only those unexposed to asbestos

δ = excess of rate difference between smokers and non-smokers
among those exposed to asbestos:
δ = (600− 120)− (60− 12) = 432
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Model fitting

Output from computer packages will give:

I parameter estimates and SEs,
I goodness-of-fit statistics,
I fitted values,
I residuals,...

May be difficult to interpret!

Model checking & diagnostics:

I assessment whether model assumptions seem reasonable and
consistent with data

I involves fitting and comparing different models
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Problems in modelling

I Simple model chosen may be far from the “truth”.

I possible bias in effect estimation, — underestimation of SEs.

I Multitude of models fit well to the same data
which model to choose?

I Software easy to use:

I . . . easy to fit models blindly

I . . . possibility of unreasonable results
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Modeling

I Modelling should not substitute but complement crude
analyses:

I Crude analyses should be seen as initial modeling steps

I Final model for reporting developed mainly from subject
matter knowledge

I Adequate training and experience required.

I Ask help from professional statistician!

I Collaboration is the keyword.
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Conclusion
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Concluding remarks

Epidemiologic study is a

Measurement excercise

Target is a parameter of interest, like

I incidence rate

I rate ratio

I relative risk

I difference in prevalences

Result: Estimate of the parameter.
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Estimation and its errors

Like errors in measurement, estimation of parameter is prone to
error:

estimate = true parameter value

+ systematic error (bias)

+ random error
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Sources of bias

I confounding, non-comparability,

I measurement error, misclassification,

I non-response, loss to follow-up,

I sampling, selection
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Sources of random error

I biological variation between and within individuals in
population

I measurement variation

I sampling (random or not)

I allocation of exposure (randomized or not)
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Random sampling

I relevant in descriptive studies

I estimation of parameters of occurrence of given health
outcomes in a target population

I target population well-defined, finite, restricted by time and
space

I representativeness of study population (sample) important
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Randomization

I relevant in causal studies

I estimation of comparative parameters of effect of an exposure
factor on given health outcomes

I abstract (infinite) target population

I comparability of exposure groups important

I study population usually a convenience sample from available
source population

Conclusion (concl-analysis) 154/ 156



Recommendations

Possible remedies for these problems:

I de-emphasize inferential statistics in favor of pure data
decriptors: graphs and tables

I adopt statistical techniques based on realistic probability
models

I subject the results of these to influence and sensitivity analysis.

(from Greenland 1990) Interpretation of obtained values of
inferential statistics
– not mechanical reporting!
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Conclusion

“In presenting and discussing the results of an observational study
the greatest emphasis should be placed on bias and confounding.”
(Brennan and Croft 1994)

Motto (Campbell & Machin 1983):

STATISTICS is about
COMMON SENSE and

GOOD DESIGN!
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