Nordic Summer School in Cancer Epidemiology 17 to 27 August, 2015 Danish Cancer Society, Copenhagen

Measures of disease frequency and effects

Esa Läärä

Department of Mathematical Sciences, University of Oulu, Finland esa.laara@oulu.fi http://math.oulu.fi/

& Bendix Carstensen

Steno Diabetes Center, Denmark & Department of Biostatistics, University of Copenhagen bxc@steno.dk www.bendixcarstensen.com

Outline

Introduction

Basic measures of frequency or occurrence

Measures of effect - comparative measures

Rates in many time scales

Standardization of rates

Survival analysis

Conclusion

Appendix: Introduction to R

1/ 105

Key references

- IS: dos Santos Silva, I. (1999). *Cancer Epidemiology: Principles and Methods.* International Agency for Research on Cancer, Lyon.
- B&D: Breslow, N.E., Day, N.E. (1987). Statistical Methods in Cancer Research Vol. II – The Design and Analysis of Cohort Studies. IARC, Lyon.
- C&H: Clayton, D., Hills, M. (1993). Statistical Models in Epidemiology. OUP, Oxford.

Internet resources on cancer statistics

 NORDCAN: Incidence, mortality, prevalence and survival statistics from 41 major cancers in the Nordic countries.

Association of the Nordic Cancer Registries (ANCR), Danish Cancer Society

http://www-dep.iarc.fr/nordcan/English/frame.asp

Reference: Engholm, G. *et al.* (2010) NORDCAN – a Nordic tool for cancer information, planning, quality control and research. *Acta Oncologica* **49**: 725-736.

 GLOBOCAN: Estimates of the incidence of, mortality, prevalence and disability-adjusted life years (DALYs) from major type of cancers, at national level, for 184 countries of the world in 2008.

International Agency for Research on Cancer (IARC); http://globocan.iarc.fr/

3/ 105

INTRODUCTION

What is epidemiology?

Some textbook definitions:

- "study of the distribution and determinants of disease frequency in man" (MacMahon and Pugh 1970)
- "study of the distribution and determinants of health related states and events in specified populations, ..." (Porta (ed.) Dictionary of Epidemiology, 2014)
- "discipline on principles of occurrence research in medicine" (Miettinen 1985)

4/ 105

Different epidemiologies

- descriptive epidemiology monitoring & surveillance of diseases for planning of health services
 a major activity of cancer registries.
- etiologic or "analytic" epidemiology study of cause-effect relationships
- disease epidemiologies e.g. of cancer, cardiovascular diseases, infectious diseases, musculoskeletal disorders, mental health, ...
- determinant-based epidemiologies e.g. occupational epidemiology, nutritional epidemiology, . . .
- clinical epidemiology study of diagnosis, prognosis and effectiveness of therapies in patient populations
 - basis of evidence-based medicine

Frequency (from Webster's Dictionary)

Etymology: < L *frequentia* = assembly, multitude, crowd.

- 2. rate of occurrence
- 3. *Physics*. number of . . . regularly occurring events . . . in unit of time,
- 5. *Statistics*. the number of items occurring in a given category. Cf. **relative frequency**.

These meanings are all relevant in epidemiology.

But what are rate and occurrence?

6/105

Cancer in Norden 1997 (NORDCAN)

Frequency of cancer (all sites excl. non-melanoma skin) in Nordic male populations expressed by different measures.

	New cases	Crude rate	ASR (World)	Cumul. risk	SIR
Denmark	11 787	452	281	27.8	104
Finland	10 058	<u>401</u>	269	26.5	101
Iceland	<u>633</u>	464	347	32.6	132
Norway	10 246	469	294	29.4	109
Sweden	19 908	455	<u>249</u>	<u>25.4</u>	<u>93</u>

- Where is the frequency truly highest, where lowest?
- What do these measures mean?

7/ 105

Questions on frequency & occurrence

How many women in Denmark

- ▶ are carriers of breast cancer today at 12? prevalence
- will contract a new breast ca. during 2015? incidence
- die from breast ca. in 2015? mortality
- will be alive after 5 years since diagnosis among those getting breast ca. in 2015? – survival
- ▶ are cured of breast cancer during 2015? cure

What are the **proportions** or/and **rates** of occurrence of these states and events?

Questions on risk

- ► How great are the **risks** of these events?
- Is the risk of breast ca. among nulliparous greater than among parous women?
- What are the excess and relative risks for nulliparous compared to parous women?
- What is the dose-response relationship between occupational exposure to crystalline silica and the risk of getting lung cancer in terms of level and length of exposure?

9/ 105

Descriptive and causal questions

- Descriptive: What is the occurrence of lung cancer workers exposed to silica dust as compared to that in subjects of other occupations?
- Causal: What is the risk of lung cancer among silica dust workers <u>as compared to</u> ... what the risk in these same men would be, had they not been exposed to silica?

NB. Causal question – counterfactual conditional!

Challenge: How to find a comparable group of unexposed?

10/ 105

What is risk?

Phrase "Risk of disease S" may refer to different concepts:

- (i) probability of getting S during a given risk period \rightarrow incidence probability,
- (ii) rate of change of that probability \rightarrow hazard or intensity, or
- (iii) **probability** of *carrying* S at a given *time point* \rightarrow **prevalence** probability.

Most commonly meaning (i) is attached with risk.

NB. "Risk" should not be used in the meaning of **risk factor**.

However, in **risk assessment** literature: "hazard" is often used in that meaning. In statistics, though, hazard refers to notion (ii): change of probability per unit time.

Risks are conditional probabilities

- ► There are no "absolute risks".
- All risks are conditional on a multitude of factors, like
 - length of risk period (e.g. next week or lifetime),
 - age and gender,
 - $-\,$ genetic constitution,
 - health behaviour & environmental exposures.
- In principle each individual has an own quantitative value for the risk of given disease in any defined risk period, depending on his/her own risk factor profile.
- > Yet, these individual risks are latent and unmeasurable.
- Average risks of disease in large groups sharing common characteristics (like gender, age, smoking status) are estimable from appropriate epidemiologic studies by pertinent measures of occurrence.

12/ 105

BASIC MEASURES OF FREQUENCY OR OCCURRENCE

Quantification of the occurence of disease (or any other health-related state or event) requires specification of:

(1) what is meant by a **case**, *i.e.*, an individual in a population who has or gets the disease

(more generally: possesses the state or undergoes the event of interest).

- \Rightarrow challenge to accurate diagnosis and classification!
- (2) the **population** from which the cases originate.
- (3) the **time point** or **period** of observation.

13/ 105

Types of occurrence measures

- Longitudinal incidence measures: incidence rate & incidence proportion
- Cross-sectional prevalence measures.

General form of frequency or occurrence measures

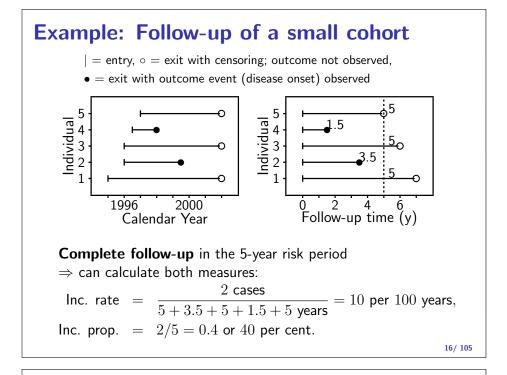
numerator denominator

Numerator: number of cases observed in the population.

Denominator: generally proportional to the size of the population from which the cases emerge.

Numerator and denominator must cover the *same population*, and the *same period* or *same time point*.

▶ Incidence proportion (Q) over a fixed risk period:


 $Q = \frac{\text{number of incident (new) cases during period}}{\text{size of pop'n at risk at start of the period}}$

Also called **cumulative incidence** (even "risk"; *e.g.* **IS**). **NB.** "Cumulative incidence" has other meanings, too.

- ▶ **Indidence rate** (*I*) over a defined observation period:
 - $I = \frac{\text{number of incident (new) cases during period}}{\text{sum of follow-up times of pop'n at risk}}$

Also called incidence density.

15/ 105

Properties of incidence proportion

- Dimensionless quantity ranging from 0 to 1 (0% to 100%) = relative frequency,
- Estimates the average theoretical **risk** or probability of the outcome occurring during the risk period, in the **population at risk** – *i.e.* among those who are still free from the outcome at the start of the period,
- Simple formula valid when the follow-up time is fixed & equals the risk period, and when there are no competing events or censoring.
- Competing events & censoring ⇒ Calculations need to be corrected using special methods of survival analysis.

Properties of incidence rate

- Like a frequency quantity in physics; measurement unit: e.g. Hz = 1/second, 1/year, or 1/1000 y.
- Estimates the average underlying intensity or hazard rate of the outcome in a population,
- Estimation accurate in the constant hazard model,
- Calculation straightforward also with competing events and censored observations.
- ► Hazard depends on age (& other time variables) ⇒ rates specific to age group etc. needed,
- Incidence proportions can be estimated from rates. In the constant hazard model with no competing risks:

 $Q = 1 - \exp(-I \times \Delta) \approx I \times \Delta$

18/ 105

Competing events and censoring

The outcome event of interest (*e.g.* onset of disease) is not always observed for all subjects during the chosen risk period.

- Some subjects die (from other causes) before the event.
 - ⇒ Death is a competing event after which the outcome cannot occur any more.
- Others emigrate and escape national disease registration, or the whole study is closed "now", which prematurely interrupts the follow-up of some individuals
 - ⇒ censoring, withdrawal, or loss to follow-up

Competing events and censorings require special statistical treatment in estimation of incidence and risk.

Person-years in dynamic populations

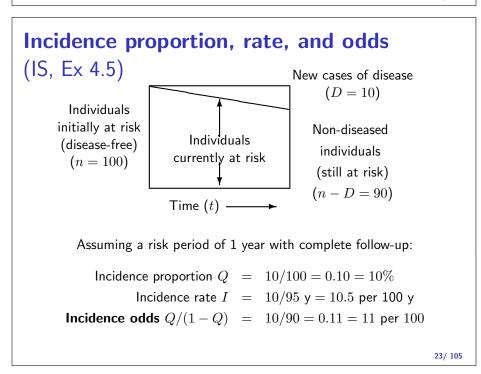
With dynamic study population individual follow-up times are always variable and impossible to measure accurately.

Common approximation - mid-population principle:

- (1) Let the population size be N_{t-1} at start and N_t at the end of the observation period t with length u_t years,
- (2) Mid-population for the period: $N_t = \frac{1}{2} \times (N_{t-1} + N_t)$.
- (3) Approximate person-years: $\widetilde{Y}_t = \overline{N}_t \times u_t$.

NB. The actual study population often contains also some already affected, who thus do not belong to the population at risk. With rare outcomes the influence of this is small.

21/ 105


Male person-years in Finland 1991-95

Total male population (1000s) on 31 December by year:

1990	1991	1992	1993	1994	1995
2431	2443	2457	2470	2482	2492

Approximate person-years (1000s) in various periods:

1992:	$\frac{1}{2} \times (2443 + 2457) \times 1 =$	2450
1993-94:	$\frac{1}{2} \times (2457 + 2482) \times 2 =$	4937
1991-95:	$\frac{1}{2} \times (2431 + 2492) \times 5 =$	12307.5

Approximate relations btw measures

With sufficiently

- "short" length Δ of risk period and
- "low" risk (say Q < 5%)

the incidence proportion Q, rate I and odds are approximately related as follows:

$$\frac{Q}{1-Q} \approx Q \approx I \times \Delta$$

The "rare disease assumption".

24/105

Mortality

Cause-specific mortality from disease S is described by **mortality rates** defined like I but

- cases are *deaths* from S, and
- follow-up is extended until death or censoring.

Cause-specific **mortality proportions** must be corrected for the incidence of **competing causes of death**

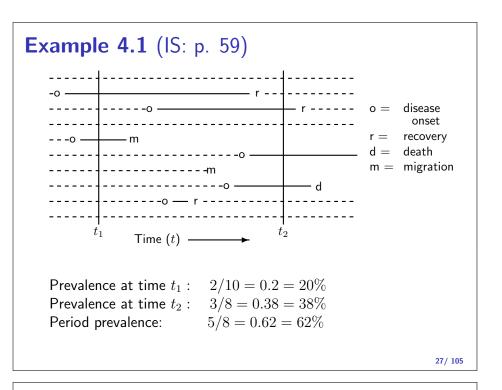
Total mortality:

cases are deaths from any cause.

Mortality depends on the incidence and the **prognosis** or **case fatality** of the disease, *i.e.* the **survival** of those affected by it.

25/105

Prevalence measures


Point prevalence or simply **prevalence** P of a health state C in a population at a given time point t is defined

 $P = \frac{\text{number of existing or prevalent cases of } C}{\text{size of the whole population}}$

This is calculable from a cross-sectional study base.

Period prevalence for period from t_1 to t_2 is like P but

- numerator refers to all cases prevalent already at t₁ plus new cases occurring during the period, and
- denominator is the population size at t₂.

Prevalence and incidence are related

Point prevalence of S at given time point t depends on the

- (a) *incidence* of new cases of S before t, and the
- (b) *duration* of *S*, depending in turn on the probability of *cure* or recovery from *S*, or *survival* of those affected

typically in a complicated way.

Simple special case: In a **stationary** population, the prevalence (P), incidence (I), and average duration (\overline{d}) of S have a simple relationship:

$$P = \frac{I \times \bar{d}}{I \times \bar{d} + 1} \quad \approx \quad I \times \bar{d}$$

The approximation works well, when P < 0.1 (10%).

28/ 105

Prevalence of cancer?

- How do we know, whether and when cancer is cured?
 - \Rightarrow Existing or prevalent case problematic to define.
- ► NORDCAN: Prevalence of cancer C at time point t in the target population refers to the
 - number & proportion of population members who
 - (a) are alive and resident in the population at t, and
 - (b) have a record of an incident cancer C diagnosed before t.
- Partial prevalence: Cases limited to those diagnosed during a fixed time in the past; e.g. within 1 y (initial treatment period), 3 y (clinical follow-up), or 5 y (cure?).

Ex: Cancers with poor and good prognosis

Age-standardized^{*a*} incidence, mortality, prevalence, and survival for cancers of kidney and thyroid in women of Finland.

	Kidney	Thyroid
Incidence rate in 2011 (per 10^5 y)	12	11
Mortality rate in 2011 (per 10^5 y)	5	1
Prevalence on $31.12.2011$ (per 10^5)	92	198
 diagnosed < 1 y ago diagnosed < 3 y ago diagnosed < 5 y ago diagnosed > 5 y ago 	9 24 35 57	10 29 47 151
5-y relative survival; cases 2004–8 (%)	64	90

^{*a*} Standard: Nordic population in 2000

30/105

MEASURES OF EFFECT – COMPARATIVE MEASURES

 Quantification of the association between a determinant (risk factor) and an outcome (disease) is based on

comparison of occurrence between the *index*

("exposed") and the *reference* ("unexposed") groups by

- relative comparative measures (ratio)
- absolute comparative measures (difference)
- In causal studies these are used to estimate the causal effect of the factor on the disease risk.
 - \Rightarrow comparative measure \approx effect measure
- Yet, caution is needed in inferences on causal effects, as often the groups to be compared suffer from poor comparability ⇔ Confounding.

31/ 105

Relative comparative measures

Generic name **"relative risk"** (RR) comparing occurrences between exposed (1) and unexposed (0) groups can refer to

- incidence rate ratio I_1/I_0 ,
- incidence proportion ratio Q_1/Q_0 ,
- incidence odds ratio $[Q_1/(1-Q_1)]/[Q_0/(1-Q_0)]$,
- prevalence ratio P_1/P_0 , or
- prevalence odds ratio $[P_1/(1-P_1)]/[P_0/(1-P_0)]$,

depending on study base and details of its design.

Incidence rate ratio is the most commonly used comparative measure in cancer epidemiology.

Absolute comparative measures

Generic term **"excess risk"** or **"risk difference"** (RD) btw exposed and unexposed can refer to

- incidence rate difference $I_1 I_0$,
- incidence proportion difference $Q_1 Q_0$, or
- prevalence difference $P_1 P_0$.

Use of relative and absolute comparisons

- Ratios describe the biological strength of the exposure
- Differences inform about its public health importance.

33/ 105

Example: (IS, Table 5.2, p.97)

Relative and absolute comparisons between the exposed and the unexposed to risk factor X in two diseases.

	Disease A	Disease B
Incidence rate among exposed ^{a}	20	80
Incidence rate among unexposed a	5	40
Rate ratio	4.0	2.0
Rate difference ^{a}	15	40

^a Rates per 100 000 pyrs.

Factor X has a stronger biological potency for disease A, but it has a greater public health importance for disease B.

34/105

Ratio measures in "rare diseases" (IS: Ex 5.13)

	E×	Exposure				
	Yes		No			
No. initially at risk	4 00	00	16 00	0		
No. of cases		30	6	0		
Person-years at risk	79	70	31 94	0		
Inc. prop'n ratio = $\frac{30/4000}{60/16000}$ Inc. rate ratio = $\frac{30/7970 \text{ y}}{20/010409}$	$=$ $\overline{3}$	7.5 per 10 .75 per 1 .76 per 1	000	=	2.0000 2.0038	
Inc. odds ratio $= \frac{30/(4000-30)}{60/(16000-60)}$) _ 0	.88 per 1 .00756 .00376	000 y	=	2.0038	
With low incidence these ratios are	e very sir	nilar.				
					35/	

Attributable fraction (excess fraction)

Measures of potential impact:

Combination of absolute and relative comparisons.

When the incidence is higher in the exposed, the attributable fraction (AF) for the exposure or risk factor is defined as:

$$\mathsf{AF} = \frac{I_1 - I_0}{I_1} = \frac{\mathsf{RR} - 1}{\mathsf{RR}}$$

Also called **excess fraction** (or even "attributable risk" in old texts).

This measure estimates the fraction out of all new cases of disease <u>among those exposed</u>, which are attributable to (or "caused" by) the exposure itself, and which thus could be avoided if the exposure were absent.

36/105

Population attributable fraction

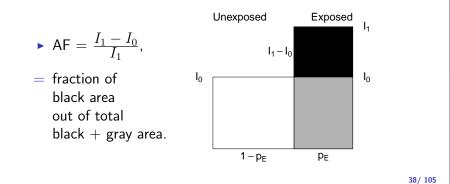
Suppose we ask instead:

"How large a fraction of all cases in the population would be prevented, if the exposure were eliminated?"

The answer to this question depends in addition on

 $p_{\rm E} =$ proportion of exposed in the population.

Population excess fraction (PAF) is now defined:

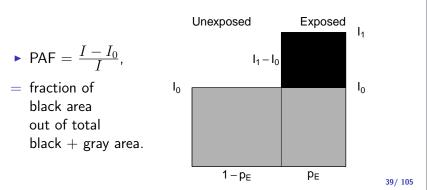

$$\mathsf{PAF} = \frac{I - I_0}{I} = \frac{p_\mathsf{E}(\mathsf{RR} - 1)}{1 + p_\mathsf{E}(\mathsf{RR} - 1)}$$

- AF: biological impact of exposure,
- PAF: impact of exposure on the population level.

37/105

Excess fraction illustrated

- The population divided into exposed and unexposed.
- ► The rate I₁ among exposed would be I₀, *i.e.* same as in unexposed, if the exposure had no effect.
- ▶ The excess $I_1 I_0$ is caused by the exposure.


PAF illustrated

► Total incidence *I* in population – weighted average:

 $I = p_{\mathsf{E}} \times I_1 + (1 - p_{\mathsf{E}}) \times I_0 \quad \text{(total area)}$

would equal I_0 , if exposure had no effect

► Excess incidence caused by exposure: I - I₀ = p_E × (I₁ - I₀) (black area).

Prevented fractions

When the incidence in exposed is lower, we define the prevented fraction for such a preventive factor:

$$\mathsf{PF} = \frac{I_0 - I_1}{I_0} = 1 - \mathsf{RR}$$

also called **relative risk reduction** = percentage of cases prevented among the exposed due to the exposure.

- Used to evaluate the relative effect of a preventive intervention ("exposure") vs. no intervention.
- Population prevented fraction (PPF) combines this with the prevalence of exposure in the population:

$$\mathsf{PPF} = \frac{I_0 - I}{I_0} = p_\mathsf{E} \times (1 - \mathsf{RR}),$$

measuring the relative reduction in caseload attributable to the presence of preventive factor in the population.

40/ 105

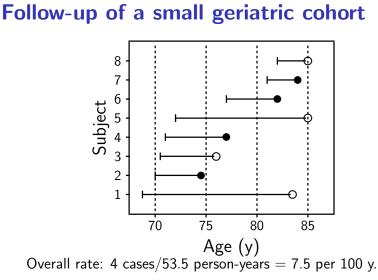
Effect of smoking on mortality by cause

(**IS**: Example 5.14, p. 98)

Underlying cause of death	Never smoked regularly Rate ^b	Current cigarette smoker Rate ^b	Rate ratio	Rate differ- ence ^b	Excess fraction (%)
	(1)	(2)	(2)/(1)	(2) - (1)	$\frac{(2) - (1)}{(2)} \times 100$
Cancer					
All sites	305	656	2.2	351	54
Lung	14	209	14.9	195	93
Oesophagus	4	30	7.5	26	87
Bladder	13	30	2.3	17	57
Respiratory diseases					
(except cancer)	107	313	2.9	206	66
Vascular diseases	1037	1643	1.6	606	37
All causes	1706	3038	1.8	1332	44

^a Data from Doll *et al.*, 1994a.

 b Age-adjusted rates per 100 000 pyrs.


RATES IN MANY TIME SCALES

Incidence can be studied on various distinct time scales, e.g.

Time scaleOrigin: date of ...agebirthexposure timefirst exposurefollow-up timeentry to studyduration of diseasediagnosis

- Age is usully the strongest time-dependent determinant of health outcomes.
- Age is also often correlated with duration of "chronic" exposure (*e.g.* years of smoking).

42/ 105

Hides the fact that the "true" rate probably varies by age, being higher among the old.

43/ 105

Splitting follow-up into agebands

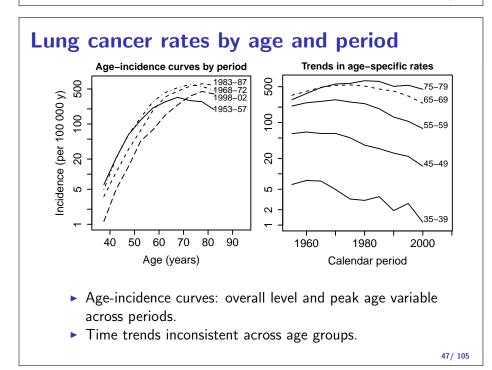
- To describe, how incidence varies by age, individual person-years from age of entry to age of exit must first be split or divided into narrower agebands.
- ► Usually these are based on common 5-year age grouping.
- Numbers of cases are equally divided into same agebands.
- ► Age-specific incidence rate for age group k is

 $I_k = \frac{\text{number of cases observed in ageband}}{\text{person-years contained in ageband}}$

Underlying assumption:
 piecewise constant rates model

Person-years and cases in agebands: age-specific rates

		Ageband		_
Subject	70-74	75-79	80-84	Total
1	5.0	5.0	3.5	13.5
2	4.5	-	-	4.5
3	4.5	1.0	-	5.5
4	4.0	2.0	-	6.0
5	3.0	5.0	5.0	13.0
6	-	3.0	2.0	5.0
7	-	-	3.0	3.0
8	-	-	3.0	3.0
Sum of person-years	21.0	16.0	16.5	53.5
Cases	1	1	2	4
Rate (/100 y)	4.8	6.2	12.1	7.5
	Age-	overall		


Ex. Lung cancer incidence in Finland by age and period (compare IS, Table 4.1)

Calendar				Age group (y)							
period	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85+	
1953-57	21	61	119	209	276	340	295	279	193	93	
1958-62	22	65	135	243	360	405	429	368	265	224	
1963-67	24	61	143	258	395	487	509	479	430	280	
1968-72	21	61	134	278	424	529	614	563	471	358	
1973-77	16	50	134	251	413	541	629	580	490	392	
1978-82	13	36	115	234	369	514	621	653	593	442	
1983-87	11	31	74	186	347	450	566	635	592	447	
1988-92	9	25	57	128	262	411	506	507	471	441	
1993-97	7	22	48	106	188	329	467	533	487	367	
1998-02	5	14	46	77	150	239	358	445	396	346	

Rows: age-incidence pattern in different calendar periods.

► Columns: Trends of age-specific rates over calendar time.

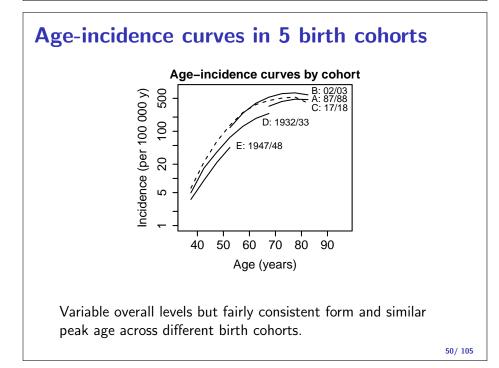
46/105

Incidence by age, period & cohort

 Secular trends of specific and adjusted rates show, how the "cancer burden" has developed over periods of calendar time.

Birth cohort = people born during the same limited time interval, *e.g.* single calendar year, or 5 years period.

- Analysis of rates by birth cohort reveals, how the level of incidence (or mortality) differs between successive generations – may reflect differences in risk factor levels.
- Often more informative about "true" age-incidence pattern than age-specific incidences of single calendar period.


48/105

Calendar				Age gr	oup (y)				
period	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	-
1953-57	21	61	119	209	276	340	295	279	
1958-62	22	65	135	243	360	405	429	368	
1963-67	24	61	143	258	395	487	509	479	A
1968-72	21	61	134	278	424	529	614	563	
1973-77	16	50	134	251	413	541	629	580	
1978-82	13	36	115	234	369	514	621	653	В
1983-87	11	31	74	186	347	450	566	635	
1988-92	9	25	57	128	262	411	506	507	
1993-97	7	22	48	106	188	329	467	533	С
1998-02	5	14	46	77	150	239	358	445	
			E: 19	47/48		D: 19	32/33		

Age-specific rates by birth cohort

A = synthetic cohort born around 1887/88, B: 1902/03, C: 1917/18

Diagonals reflect age-incidence pattern in birth cohorts.

Split of follow-up by age and period

- Incidence of (or mortality from) disease C in special cohort of exposed (e.g. occupational group, users of certain medicine)
 - → often compared to incidence in a reference or "general" population.
- For examples, see Laufey's lecture on cohort studies (*e.g.* atomic bomb survivors, rubber workers, and those exposed to dyestaff)
- Adjustment for age and calendar time needed, *e.g.* by comparing **observed** to **expected** cases with SIR (see p. 70-74).
 - \Rightarrow Cases and person-years in the study cohort must be split by more than one time scale (age).

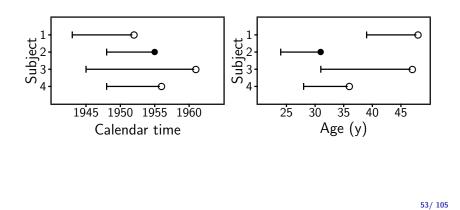
51/105

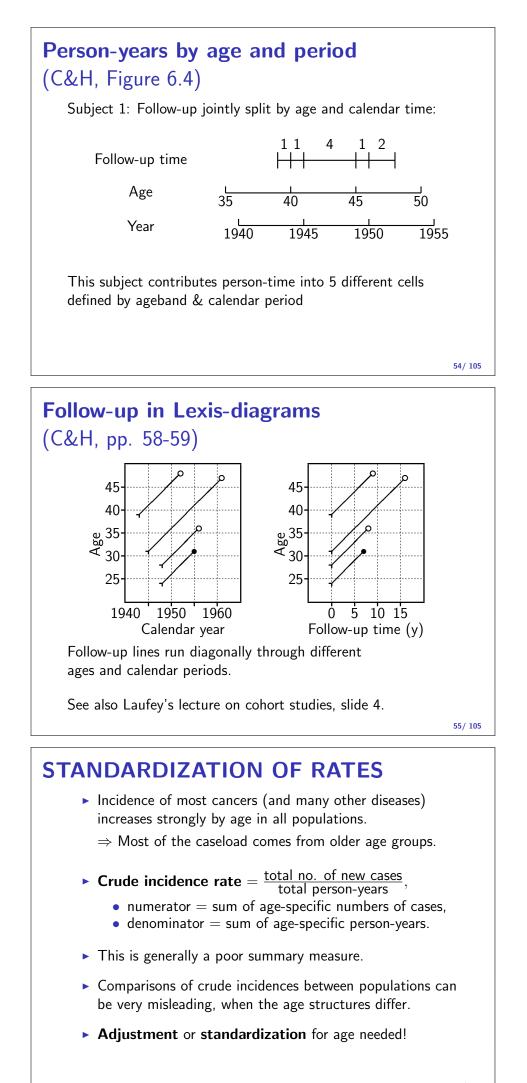
Example (C&H, Tables 6.2 & 6.3, p. 54)

Entry and exit dates for a small cohort of four subjects

Subject	Born	Entry	Exit	Age at entry	Outcome
1	1904	1943	1952	39	Migrated
2	1924	1948	1955	24	Disease C
3	1914	1945	1961	31	Study ends
4	1920	1948	1956	28	Unrelated death

Subject 1: Follow-up time spent in each ageband


Age band	Date in	Date out	Time (years)
35–39	1943	1944	1
40–44	1944	1949	5
45–49	1949	1952	3


52/105

Example: (C&H, Figures 6.1 & 6.2, p. 55)

Follow-up of cohort members by calendar time and age

- | entry
- exit because of disease onset (outcome of interest)
- \circ exit due to other reason (censoring)

Ex. Male stomach cancer in Cali and Birmingham (IS, Table 4.2, p. 71)

		Cali			Birmingha	m	
		Male	Incid.		Male	Incid.	
	Male	Popu-	Rate	Male	Popu-	Rate	
	cases	lation	$(/10^{5} y)$	cases	lation	$(/10^{5} y)$	
Age	1982	1984	Ü 1982	1983	1985	Ü 1983	Rate
(y)	-86	$(\times 10^3)$	-86	-86	$(\times 10^3))$	-86	ratic
0–44	39	524.2	1.5	79	1 683.6	1.2	1.25
45-64	266	76.3	69.7	1037	581.5	44.6	1.56
65+	315	22.4	281.3	2352	291.1	202.0	1.39
Total	620	622.9	19.9	3468	2 556.2	33.9	0.59

- In each age group Cali has a higher incidence but the crude incidence is higher in Birmingham.
- Is there a paradox?

57/105

Comparison of age structures (IS, Tables 4.3,4.4)

	% of male population							
Age	Cali	B'ham	Finland	World				
(years)	1984	1985	2011	Stand.				
0–44	84	66	56	74				
45–64	12	23	29	19				
65+	4	11	15	7				
All ages	100	100	100	100				

The fraction of old men greater in Birmingham than in Cali.

- \Rightarrow Crude rates are **confounded** by age.
- \Rightarrow Any summary rate must be **adjusted for age**.

58/105

Adjustment by standardisation

Age-standardised incidence rate (ASR):

$$\mathsf{ASR} = \sum_{k=1}^{K} \mathsf{weight}_k \times \mathsf{rate}_k / \mathsf{sum of weights}$$

- = Weighted average of age-specific rates over the age-groups k = 1, ..., K.
- Weights describe the age distribution of some standard population.
- Standard population can be real (*e.g.* one of the populations under comparison, or their average) or fictitious (*e.g.* World Standard Population, WSP)
- Choice of standard population always more or less arbitrary.

Age group (years)	African	World	European	Nordic
0–4	10 000	12 000	8 000	5 900
5–9	10 000	10 000	7 000	6 600
10–14	10 000	9 000	7 000	6 200
15–19	10 000	9 000	7 000	5 800
20–24	10 000	8 000	7 000	6 100
25–29	10 000	8 000	7 000	6 800
30–34	10 000	6 000	7 000	7 300
35–39	10 000	6 000	7 000	7 300
40–44	5 000	6 000	7 000	7 000
45–49	5 000	6 000	7 000	6 900
50–54	3 000	5 000	7 000	7 400
55–59	2 000	4 000	6 000	6 100
60–64	2 000	4 000	5 000	4 800
65–69	1 000	3 000	4 000	4 100
70–74	1 000	2 000	3 000	3 900
75–79	500	1 000	2 000	3 500
80–84	300	500	1 000	2 400
85+	200	500	1 000	1 900
Total	100 000	100 000	100 000	100 000

60/105

Stomach cancer in Cali & B'ham

Age-standardized rates by the World Standard Population:

		Cali	Bir	mingham
Age	$Rate^a$	Weight	$Rate^a$	Weight
0-44	1.5 imes	0.74 = 1.11	$1.2 \times$	0.74 = 0.89
45–64	69.7 imes	0.19 = 13.24	$44.6 \times$	0.19 = 8.47
65+	281.3 imes	$0.07 \!=\! 19.69$	202.0 imes	$0.07 \!=\! 14.14$
Age-sta	ndardised	rate 34.04		23.50

- ► ASR in Cali higher coherent with the age-specific rates.
- Summary rate ratio estimate: standardized rate ratio

SRR = 34.0/23.5 = 1.44.

► Known as **comparative mortality figure (CMF)** when the outcome is death (from cause *C* or all causes).

61/ 105

Cumulative rate and "cumulative risk"

A neutral alternative to arbitrary standard population for age-adjustment is provided by cumulative rate:

$$\mathsf{CumRate} = \sum_{k=1}^K \mathsf{width}_k imes \mathsf{rate}_k$$

- Weights are now widths of the agebands to be included, usually up to 65 or 75 y with 5-y bands.
- ► NORDCAN & GLOBOCAN use a transformation:

CumRisk = 1 - exp(-CumRate),

calling it as the **cumulative risk** of getting the disease by given age, in the absence of competing causes.

Yet, in reality competing events are present, so the probability interpretation of CumRisk is problematic.

Stomach cancer in Cali & B'ham

From age-specific rates of Table 4.2. the cumulative rates up to 65 years and their ratio are

Cali: $45 \ y \times \frac{1.5}{10^5 y} + 20 \ y \times \frac{69.7}{10^5 y} = 0.0146 = \mathbf{1.46} \text{ per } 100$ B'ham: $45 \ y \times \frac{1.2}{10^5 y} + 20 \ y \times \frac{44.6}{10^5 y} = 0.0095 = \mathbf{0.95} \text{ per } 100$ ratio: $1.46/0.95 = \mathbf{1.54}$

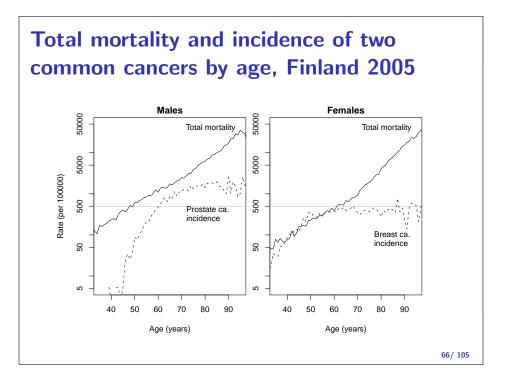
"Cumulative risks" & their ratio up to 65 y:

Cali: $1 - \exp(-0.0146) = 0.0145 = 1.45\%$ B'ham: $1 - \exp(-0.0095) = 0.0094 = 0.94\%$ ratio: 1.45/0.94 = 1.54

NB. For more appropriate estimates of cumulative risks, correction for total mortality (competing event) needed.

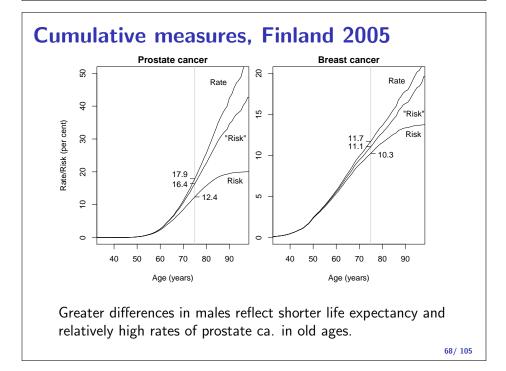
63/105

Cumulative mea	asures using	5-y groups
(IS, Fig 4.11, p. 77)		
	Age-group (years)	Incidence rate (per 100 000 pyrs)
	0-4,, 15-19	0.0
	20-24, 25-29	0.1
	30–34	0.9
	35–39	3.5
	40–44	6.7
	45–49	14.5
	50–54	26.8
	55–59	52.6
	60–64	87.2
	65–69	141.7
	70–74	190.8
	Sum	524.9
Cum. rate 0-75 y	$= 5 \text{ y} \times \frac{524.9}{10^5 \text{ y}} =$	0.0262 = 2.6 per 100
"Cum. risk" 0-75 y	$= 1 - \exp(-0.026)$	62) = 0.0259 = 2.6%.
		64/ 105


Cumulative and life-time risks

Of course, it is an interesting and relevant question to ask:

"What are my chances of getting cancer *C*, say, in the next 10 years, between ages 50 to 75 years, or during the whole lifetime?"


However, this is difficult to answer.

- Fully individualized risks are unidentifiable.
- Age-specific and standardized rates are not very informative as such.
- Average cumulative risks are often estimated from cumulative rates using the simple formula above.
- Yet, these naive estimates fictitiously presume that a person would not die from any cause before cancer hits him/her, but could even survive forever!

Estimation of cumulative risks

- The probability of contracting cancer during realistic lifespan or in any age range depends not only on age-specific hazard rates of cancer itself but also of probabilities of overall survival up to relevant ages,
- Hence, the dependence of total mortality by age in the population at risk must be incorporated in the estimation of cumulative risks of cancer.
- When this is properly done, the corrected estimates of cumulative risk will always be lower than the uncorrected "risks".
- The magnitude of bias in the latter grows by age, but is reduced with increased life expectancy.

Special cohorts of exposed subjects

- Occupational cohorts, exposed to potentially hazardous agents (*e.g.* rubber workers, see Laufey's lecture on cohort studies)
- Cohorts of patients on chronic medication, which may have harmful long-term side-effects
- ► No internal comparison group of unexposed subjects.

Question: Do incidence or mortality rates in the *exposed* target cohort differ from those of a roughly comparable **reference** population?

Reference rates obtained from:

- population statistics (mortality rates)
- disease & hospital discharge registers (incidence)

69/105

Observed and expected cases – SIR

- Compare rates in a study cohort with a standard set of age-specific rates from the reference population.
- Reference rates normally based on large numbers of cases, so they are assumed to be "known" without error.
- Calculate expected number of cases, *E*, if the standard age-specific rates had applied in our study cohort.
- Compare this with the observed number of cases, D, by the standardized incidence ratio SIR (or st'zed mortality ratio SMR with death as outcome)

$$SIR = D/E$$
, $SE(\log[SIR]) = 1/\sqrt{D}$

70/ 105

Example: HT and breast ca.

- A cohort of 974 women treated with hormone (replacement) therapy were followed up.
- D = 15 incident cases of breast cancer were observed.
- Person-years (Y) and reference rates (λ^{*}_a, per 100000 y) by age group (a) were:

Age	Y	λ_a^*	E
40–44	975	113	1.10
45–49	1079	162	1.75
50–54	2161	151	3.26
55–59	2793	183	5.11
60–64	3096	179	5.54
\sum			16.77

Ex: HT and breast ca. (cont'd)

• "Expected" cases at ages 40–44:

$$975 \times \frac{113}{100\,000} = 1.10$$

- Total "expected" cases is E = 16.77
- ▶ SIR = 15/16.77 = 0.89.
- Error-factor: $\exp(1.96 \times \sqrt{1/15}) = 1.66$
- ▶ 95% confidence interval is:

$$0.89 \stackrel{\times}{\div} 1.66 = (0.54, 1.48)$$

72/105

SIR for Cali with B'ham as reference

Total person-years at risk and expected number of cases in Cali 1982-86 based on age-specific rates in Birmingham (**IS**: Fig. 4.9, p. 74)

Age	Person-years	Expected cases in Cali
0–44	524 220×5= 2 621 100	$0.000012 \times 2\ 621\ 100 =\ 31.45$
45–64	76 304×5= 381 520	$0.000446 \times 381520 = 170.15$
65+	$22 \ 398 \times 5 = 111 \ 990$	$0.002020 \times 111\ 990 = 226.00$
All ages	=3 114 610	Total expected (E) 427.82

Total observed number O = 620.

Standardised incidence ratio:

$$\mathsf{SIR} = \frac{O}{E} = \frac{620}{427.8} = 1.45 \quad (\text{or } 145 \text{ per } 100)$$

73/105

Crude and adjusted rates compared

(IS: Table 4.6, p. 78, extended)

	Cali, 1982-86	B'ham, 1983-86	Rate ratio
Crude rates ($/10^5$ y)	19.9	33.9	0.59
ASR $(/10^5 \text{ y})^B$ with 3 broad age groups	48.0	33.9	1.42
ASR $(/10^5 \text{ y})^C$ –"–	19.9	14.4	1.38
ASR $(/10^5 \text{ y})^W$ –"–	34.0	23.5	1.44
Cum. rate < 65 y (per 1000) –"–	14.6	9.5	1.54
ASR $(/10^5 \text{ y})^W$ with 18 5-year age groups	36.3	21.2	1.71
Cum. rate < 75 y (per 1000) –"–	46.0	26.0	1.77

Standard population: B Birmingham 1985, C Cali 1985, W World SP

NB: The ratios of age-adjusted rates appear less dependent on the choice of standard weights than on the coarseness of age grouping. 5-year age groups are preferred.

SURVIVAL ANALYSIS

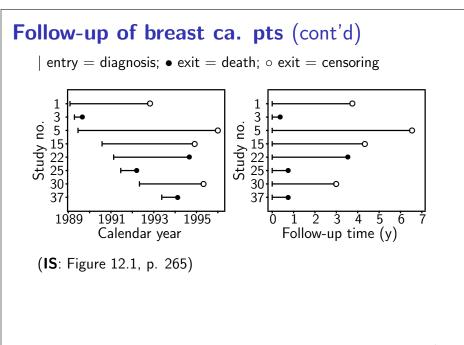
Questions of interest on the prognosis of cancer:

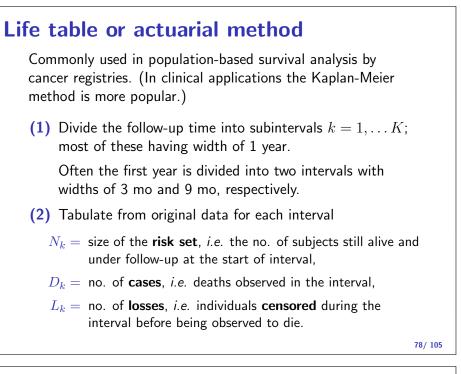
what are the patients' chances to survive at least 1 year, or 5 years etc., since diagnosis?

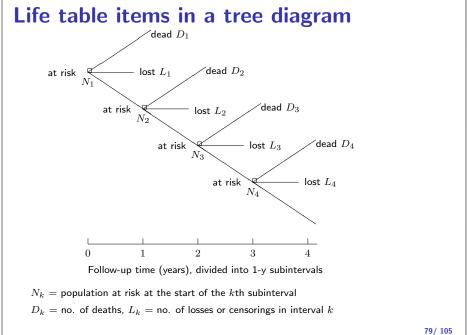
Survival analysis: In principle like incidence analysis but

- population at risk = patients with cancer,
- basic time variable = time since the date of diagnosis, on which the follow-up starts,
- outcome event of interest = death,
- measures and methods used somewhat different from those used in incidence analysis.

75/ 105


Follow-up of 8 out of 40 breast cancer patients (from IS, table 12.1., p. 264)


No.	Age (y)	Sta- ge ^a	Date of diag- nosis	Date at end of follow -up	Vital status at end of follow -up	Cause of death ^c	Full years from diagn's up to end of follow -up	Days from diagn's up to end of follow -up
1	39	1	01/02/89	23/10/92	А	_	3	1360
3	56	2	16/04/89	05/09/89	D	BC	0	142
5	62	2	12/06/89	28/12/95	А	_	6	2390
15	60	2	03/08/90	27/11/94	А	_	4	1577
22	64	2	17/02/91	06/09/94	D	0	3	1297
25	42	2	20/06/91	15/03/92	D	BC	0	269
30	77	1	05/05/92	10/05/95	А	-	3	1100
37	45	1	11/05/93	07/02/94	D	BC	0	272


 a 1 = absence of regional lymph node involment and metastases

2 = involvment of regional lymph node and/or presence of metastases

 b A = alive; D = dead; c BC = breast cancer; O = other causes

Life table items for breast ca. patients

(IS: Table 12.2., p. 273, first 4 columns)

Inter- val	Years since	No. at start of	No. of deaths	No. of losses
	diagnosis	interval		
(k)		(N_k)	(D_k)	(L_k)
1	0- < 1	40	7	0
2	1 - < 2	33	3	6
3	2 - < 3	24	4	3
4	3 - < 4	17	4	4
5	4 - < 5	9	2	3
6	5 - < 6	4	1	2
7	6 - < 7	1	0	1
Total			21	19

Life table calculations (cont'd)

- (3) Calculate and tabulate for each interval
 - $N_k' = N_k L_k/2 =$ corrected size of the risk set, or "effective denominator" at start of the interval,
 - $q_k = D_k/N'_k$ = estimated conditional probability of dying during the interval given survival up to its start,
 - $p_k = 1 q_k =$ conditional survival proportion over the int'l,
 - $S_k = p_1 \times \cdots \times p_k =$ cumulative survival proportion from date of diagnosis until the end of the *k*th interval

= estimate of **survival probability** up to this time point.

81/105

Follow-up of breast ca. patients (cont'd)

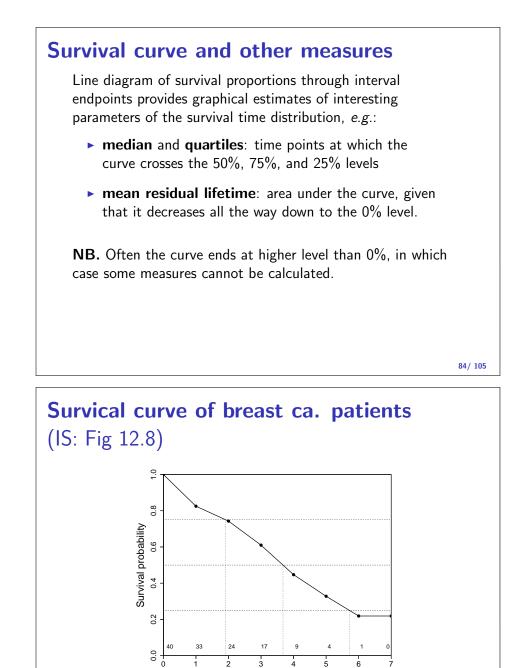
Actuarial life table completed (IS, table 12.2, p. 273)

Inter- val	Years since dia- gnosis	No. at start of in- terval	No. of deaths	No. of losses	Effec- tive deno- minator	Cond'l prop'n of deaths during int'l	Survival prop'n over int'l	Cumul. survival; est'd survival prob'ty
(k)		(N_k)	(D_k)	(L_k)	(N'_k)	(q_k)	(p_k)	(S_k)
1	0- < 1	40	7	0	40.0	0.175	0.825	0.825
2	1 - < 2	33	3	6	30.0	0.100	0.900	0.743
3	2 - < 3	24	4	3	22.5	0.178	0.822	0.610
4	3 - < 4	17	4	4	15.0	0.267	0.733	0.447
5	4 - < 5	9	2	3	7.5	0.267	0.733	0.328
6	5 - < 6	4	1	2	3.0	0.333	0.667	0.219
7	6 - < 7	1	0	1	0.5	0.0	1.0	0.219

1-year survival probability is thus estimated 82.5% and 5-year probability 32.8%.

82/105

Comparison to previous methods


- Complement of survival proportion Q_k = 1 S_k
 = incidence proportion of deaths.
 Estimates the cumulative risk of death from the start of follow-up till the end of kth interval.
- ▶ Indidence rate in the *k*th interval is computed as:

$$I_k = \frac{\text{number of cases } (D_k)}{\text{approximate person-time } (\widetilde{Y}_k)}$$

where the approximate person-time is given by

$$\widetilde{Y}_k = \left[N_k - \frac{1}{2} (D_k + L_k) \right] \times \text{width of interval}$$

The dead and censored thus contribute half of the interval width.

Numbers above *x*-axis show the size of population at risk.

Years

85/105

Relative survival analysis

Another interesting and relevant question:

"How much worse are the chances of a cancer patient to survive, say, 5 years, as compared with a comparable person without the disease?"

An answer is provided by relative survival proportions:

$$R_k = S_k^{obs} / S_k^{exp}, \qquad \text{where}$$

- $S_k^{obs} = observed$ survival proportion in cancer patient group k by age, gender and year of diagnosis,
- $S_k^{exp} = expected$ survival proportion based on the age-specific mortality rates of the same gender and calendar time in a reference population (*cf.* SIR!)
- $+\,$ No information on causes of death needed.

CONCLUSION

Measuring and comparing disease frequencies

- not a trivial task but
- demands expert skills in epidemiologic methods.

Major challenges:

- obtain the right denominator for each numerator,
- valid calculation of person-years,
- appropriate treatment of time and its various aspects,
- removal of confounding from comparisons.

87/105

APPENDIX: Introduction to R

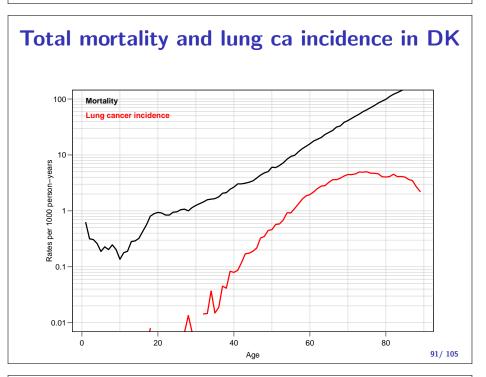
What is R?

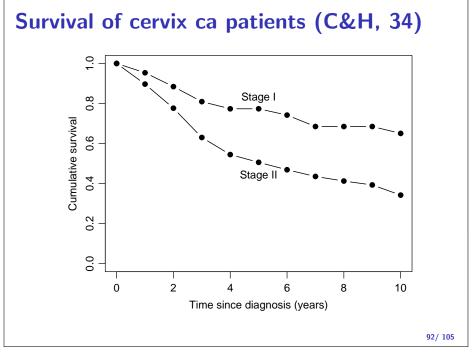
- A practical calculator:
 - You can see what you compute
 - ... and change easily to do similar calculations.
- A statistical program.
- An environment for data analysis and graphics.
- A programming language
- Developed by international community of volunteers.
- Free.
- Runs on any computer.
- Updated every 6 months.

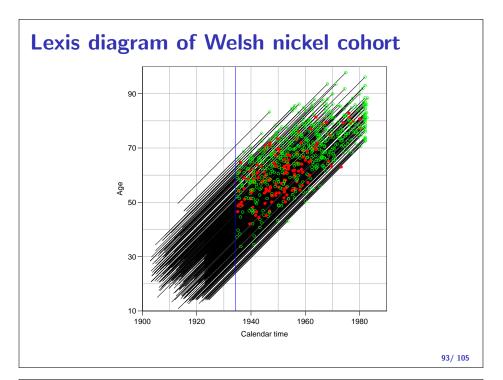
88/105

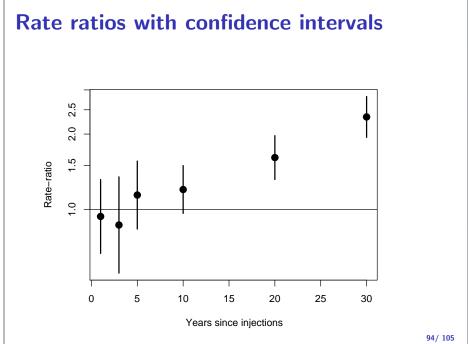
What does R offer for epidemiologists?

- Descriptive tools
 - Versatile tabulation
 - High-quality graphics
- Analytic methods
 - Basic epidemiologic statistics
 - Survival analysis methods
 - Common regression models and their extensions
 - Other...


These are provided by e.g. SPSS, SAS and Stata, too, so ...?


Many features of R are more appealing in the long run.


Graphics in R


- ► Versatile, flexible, high quality, ...
- Easy to add items (points, lines, text, legends ...) to an existing graph.
- Fine tuning of symbols, lines, axes, colours, etc. by graphical parameters (> 67 of them!)
- Interactive tools using the mouse
 - Put new things on a graph
 - Identify points

Getting your graphs out

- Graphs can be saved to disk in almost any format
 - .eps, .pdf, .bmp, .jpg, .png, ...
- Save graphs from the screen or write directly to a file.
- You can also directly transport an R graph as a metafile into a Word document!

Tools for nearly anything!

- Thousands of add-on packages.
- Several packages for epidemiological analyses:
 - Epi: focus on chronic disease epidemiology:
 - Cohort studies, splitting follow-up time
 - Lexis diagram, several timescales
 - Multistate model support
 - Advanced tabulation
 - Informative reporting of estimation results
 - epicalc:
 - epitools: Mostly infectious diseases.
 - epiR: Leaning towards veterinary epidemiology.
- Packages may be installed and updated from within R.

96/105

Running R

- Interactive but not mouse-driven!
- Commands typed from keyboard.
- More practical: commands written and saved in a script file from which they are run.
- Execution of tasks:
 - evaluation of expressions contained in commands,
 - based on calls of functions.

Difficult to learn & slow to use?

- Maybe in the beginning.
- Versatility and flexibility rewarding in the long run.

97/105

Running R on Windows

- Start by double-clicking the R-icon.
- R Console: the console window
 - command lines to be typed or pasted from a script file – after prompt '>',
 - prompt '+' marks continuation of an incomplete command line,
 - output follows a completed command requesting it,
 - arrow key $|\uparrow|$ leads to previous command lines.
- Menu bar for a few useful pull-down menus.
- On-line help in HTML form.

R as a simple calculator

Write the arithmetic expression on the empty line after the prompt and press Enter. The result is displayed immediately.

> 2+2
[1] 4
> 3*5 - 6/2
[1] 12
> (2+3)^2
[1] 25
> sqrt(1/12 + 1/17)
[1] 0.3770370
> exp(1.96 * sqrt(1/12 + 1/17))
[1] 2.093825

99/ 105

R as a sn	nart calculato	r		
Simple sun	nmary of results from	a cohort stu	dy:	
		Exposed	Unexposed	
No. o	f cases/Person-years	20/2000	25/5000	
	ers of cases and perso into vectors D and Y;	n-years are	first assigned &	
	nce rates in the two g ifference are then calc	•		
> rate <- [1] 10 5	- rate[1]/rate[2] ;		ate[1]-rate[2]]
				100/ 105

A couple of important things

- Names of variables (or any other objects)
 - Start with a letter from A,...,Z or a,..., z;
 lower case separated from upper case, e.g. 'x' ≠ 'X'
 - Letters, integers 0, ..., 9, dots '.', and underlines '_' allowed after 1st letter.
- Assignment operator '<-' (consists of '<' and '-')</p>
 - assigns a value to an object, for example > A <- 5+2 ; A [1] 7

means that a numeric variable 'A' is given 5+2=7 as its value, and is then printed,

 the equal sign '=' is also allowed as assignment operator.

Vectors and their arithmetics

Vector = ordered set of numbers (or other similar elements)

- Can be assigned values elementwise by function c()
- Vector x with 4 elements 1, 2, 4, 7 assigned and printed: > x <- c(1,2,4,7) > x
 - [1] 1 2 4 7
- Arithmetic operations +, -, *, /, ^ (power) for vectors of same length *i.e.* same number of elements.
- \Rightarrow Outcome: a new vector whose elements are results of the operation on the corresponding elements in original vectors.
- Common mathematical functions, like sqrt(), log(), exp() work in the same way for numeric vectors.

102/105

R script – commands in a file

R script file is an ASCII file containing a sequence of R commands to be executed.

The script editor of R works as follows:

- 1. In RGui open the script editor window: *File New script*, or when editing an existing script file: *File Open script*,
- 2. Write the command lines without prompt '>' or '+'.
- 3. Save the script file: *File Save e.g.* as c:\...\mycmds.R or with some other file name having extension .R

103/ 105

R script (cont'd)

- 4. Paint the lines to be excecuted and paste them on the console window using the third icon on the toolbar.
- 5. Edit the file using *Edit* menu, save & continue.
- > To run a whole script file, write in console window: > source("c:/.../mycmds.R", echo=TRUE)
- The script can also be written and edited by any external editor programs (like Notepad).
- Of these, *Tinn-R* provides nice facilities for editing, checking and running R scripts, see http://www.sciviews.org/Tinn-R/.
- R Studio very versatile interface; see http://www.rstudio.com/.

R in this course

- The main purpose is to inform you about the existence and potential of R, which you might find useful in any future work involving serious epidemiologic data analysis.
- ▶ Here, R will be used only as a simple calculator.
- ▶ No need for a lot of the more fancy stuff.
- The script editor will help you keep your solutions for future reference.
- After the course, solutions to all exercises will be provided.
- A good workbook introduction to R: http://bendixcarstensen.com/Epi/R-intro.pdf