
Nordic Summerschool of Cancer
Epidemiology

Bendix Carstensen Steno Diabetes Center
Gentofte, Denmark
http://BendixCarstensen.com
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Chance variation

I Systematic and random variation

I Probability model:
random variable, distribution, parameters

I Poisson and Gaussian models

I Statistic, sampling distribution and
standard error
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Systematic and random variation

Cancer incidence rates vary by known & measured determinants of
disease, such as:

I age,

I gender,

I region,

I time,

I specific risk factors.

This is systematic variation.
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Systematic & random (cont’d)

In addition, observed rates are subject to
random or chance variation:
— variation due to unknown sources like

I latent genetic differences,

I unknown concomitant exposures,

I sampling,

I ”pure chance” — quantum mechanics
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Example 3: Smoking and lung cancer

I Only a minority of smokers get lung cancer.

I . . . and some non-smokers get the disease, too.

I At the individual level the outcome is unpredictable.

I When cancer occurs, it can eventually only be explained just
by ”bad luck”.

I Unpredictability of individual outcomes implies largely
unpredictable — random — variation of disease rates at
population level.
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Example 4

Breast cancer incidence rates in Finland, age group 65-69 years in
three successive years.

Males Females
Year (per 106 P-years) (per 104 P-years)

1989 46 21
1990 11 20
1991 33 19

I Big annual changes in risk among males?
I Steady decline in females?
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Example 4 (cont’d)

Look at observed numbers of cases!

Males Females

Year Cases P-years Cases P-years

1989 4 88,000 275 131,000
1990 1 89,000 264 132,000
1991 3 90,000 253 133,000

Reality of changes over the years?
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Probability models

Simple model for cancer incidence: In homogenous population
we assume:

I the unknown theoretical incidence rate

I hazard or intensity — λ

I of contracting cancer

I is constant over a short period of time.

λ = Pr{Cancer in(t , t + dt)}/dt
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Simple model (cont’d)

I Observations:

I Number of cases D in
I Y person-years at risk
I and empirical incidence rate R = D/Y

I are random variables with unpredictable values in a given
observation period.

I The probability distribution of possible values of a random
variable has some known mathematical form.

I Key properties of the distribution are determined by quantities
called parameters;

I — in this case the theoretical rate λ.
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Probability model

If the hazard of lung cancer, λ, is constant over time, we can
simulate lung cancer occurrence in a population:

I Start with N persons

I 1st day: P {lung cancer} = λ× 1 day for all N

I 2nd day: P {lung cancer} = λ× 1 day for those left w/o LC

I 3rd day: P {lung cancer} = λ× 1 day for those left w/o LC

I . . .

Thus a probability model shows how to generate data with known
parameters.
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Statistics

The opposite of a probability models:

I the data is known

I want to find parameters

I estimation

I . . . mostly using maximum likelihood

Thus statistical modelling is how to estimate parameters from
observed data.

Chance (chance) 11/ 145



Poisson and Gaussian models

I Poisson distribution: simple probability model for number of
cases D (in a fixed follow-up time, Y ) with

I expectation (theoretical mean) µ = λY ,

I standard deviation
√
µ

I When the expectation µ of D is large enough, the Poisson
distribution resembles more and more the Gaussian or
Normal distribution.
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Poisson distribution with different means µ:
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Gaussian distribution

Gaussian or Normal distribution:

I common model for continuous variables,
I symmetric and bell-shaped,
I has two parameters:

– µ = expectation or mean,
– σ = standard deviation.

I Most important use of Gaussian model:

I Approximation of sampling distribution of empirical
measures:

I observed incidence rates

I log(observed incidence rates)
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Gaussian distribution (cont’d)

Probability density funtion – the ”Bell Curve”.
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Gaussian distribution (cont’d)

Areas under curve limited by selected quantiles
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2.4 Statistic, sampling distribution and standard error

A “statistic” is a summary measure calculated from empirical data
(a “formula”).

I X — a variable having certain distribution in population with
mean µ and standard deviation σ.

I Take a random sample of n subjects.

I Values of X in the sample: X1,X2, . . . ,Xn .

I Before sampling these are random variables.
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Sample statistics:

I Sample mean (arithmetic):

X̄ =
1

n

n∑

i=1

Xi

I Sample standard deviation:

SD =

√√√√ 1

n − 1

n∑

i=1

(Xi − X̄ )2
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Sample statistics:

I One-sample t-statistic:

t =
X̄ − µ0
SD/
√
n

(µ0 is the hypothesized value of µ).
How far from µ0 is the observed X ?
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Sampling distribution

I Describes variation of a summary statistic,

I = behaviour of values of the statistic over hypothetical
repetitions of taking new random samples of size n.

I Its form depends on:
I original distribution & parameters,
I sample size n.

I The larger the sample size n → the narrower and more
Gaussian-like sampling distribution!
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Example 5
I Sampling distribution of the sample mean X̄ of variable X

with mean µ and standard deviation σ is approximately
Gaussian with:

I expectation µ,
I standard deviation σ/

√
n,

I with sufficiently big sample size, whatever the original
distribution of X .

I This is the Central Limit Theorem (CLT) from probability
theory.
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Standard error (s.e.)

Estimated standard deviation of sampling distribution of statistic.

Example 5 (cont’d):

I Sample X1, . . . ,Xn drawn of variable X from population
distribution with mean µ and standard deviation σ.
The sample mean is X̄ and the sample standard deviation s.e..

I ⇒ Standard error of the mean:

s.e.(X̄ ) =
s.e.√
n

Describes precision in estimation of µ by X̄ .
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Standard error (cont’d)

I Confidence interval (CI) for µ:

X̄ ± z × s.e.(X̄ )

where z is an approriate quantile of the t- or Normal
distribution (in Normal dist’n z = 1.960 for 95% CI).

I Used in one-sample t-statistic:

t =
X̄ − µ0
s.e.(X̄ )

to test null hypothesis H0 : µ = µ0.
(How far from µ0 is X̄ , in s.e. units)
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Example 6: Single incidence rate

Parameter λ
= true unknown incidence rate in population.

I Empirical rate R = D/Y ,

I estimator of λ.
I R is a statistic, random variable whose:

I value varies from one study population (”sample”) to another in
hypothetical repetitions,

I sampling distribution is (under the Poisson model & other conditions)
a transformation of the Poisson distribution,
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Example 6 (cont’d)

I Expectation of empirical rate R is λ,
standard deviation in the sampling distribution for R is

√
λ/Y .

I Standard error of empirical rate R:

s.e.(R) =

√
R

Y
=

√
D

Y
= R × 1√

D

⇒ The amount of random error depends inversely on (the square
root of) the number of cases.

⇒ s.e. of R is proportional to R.
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3 STATISTICAL INFERENCE

3.1 Inferential questions

3.2 Point estimation

3.3 Statistical testing

3.4 Interpretation of P -values

3.5 Confidence interval

3.6 Recommendations

Inference (inference) 26/ 145

Inferential questions

I What is the best single-number assesment of the parameter
value?

I Is the result consistent or in disagreement with a certain value
of the parameter proposed beforehand?

I What is a plausible range of values of the parameter consistent
with our data?
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Statistical notation:

I Probability: parameters → data

I Statistics: data → parameter(estimate)s
I Notation:

I Parameter denoted by a Greek letter
I Estimator & estimate by the same Greek letter with ”hat”.

I Ex: Incidence rate:
I True unknown rate: λ
I Estimator: λ̂ = R = D/Y , empirical rate.

I Rate ratio:
I True rate ratio ρ = λ1/λ0 between exposed and unexposed,
I Estimator: ρ̂ = RR = R1/R0,

ratio between the empirical rates.
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3.2 Statistical testing

I Are the observed data
— summarized by an estimate and its SE —
consistent with a given value of the parameter?

I Such a given value is often represented in the form a null
hypothesis (H0), which is a statement on the true value of the
parameter before study.

I In comparative problems typically a conservative assumption,
e.g.
”no difference in outcome between the groups”
”true rate ratio ρ = 1”.
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Purpose of statistical testing

I Evaluation of consistency or disagreement of observed data
with H0.

I Checking whether or not the observed difference can
reasonably be explained by chance.

I Note: This is not so ambitious.

I The NULL is never true — there is always a difference between
two groups

⇒ not testing if H0 is TRUE,

I . . . but if we have evidence enough to assert is as FALSE
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Test statistic

I Function of observed data and null hypothesis value,
I a common form of test statistic is:

Z =
O − E

S

O = some ”observed” statistic,
E = ”expected value” of O under H0,
S = SE or standard deviation of O under H0.
I Evaluates the size of the ”signal”O − E against the size of the

”noise”S .
I Under H0 the sampling distribution of this statistic is (with

sufficient amount of data) close to the standard Gaussian.
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Example 2: OC & breast ca. (cont’d)

Null hypothesis:

OC use has no effect on breast ca. risk ⇔ true rate difference
δ = λ1 − λ0 equals 0.

O = Observed rate difference

δ̂ = RD = 217− 187 = 30 per 105 y.

E = Expected rate difference = 0, if H0 true.
S = Standard error of RD:

SE(RD) =

√
2172

204
+

1872

240
= 19.4 per 105 y.
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Example 2: OC & breast ca. (cont’d)

I Test statistic Z = (O − E )/S , its observed value:

Zobs =
30− 0

19.4
= 1.55

I One-tailed P = 0.06, two-tailed P = 0.12

I What does this mean?

I How do we proceed?

Inference (inference) 33/ 145

Questions about the test statistic

I How does the observed value Zobs locate itself in the sampling
distribution of Z ?

I How common or how rare it is to
obtain Zobs under H0?

I What is the probability of getting Z larger than observed Zobs

if H0 were true?

I The latter probability is the one-tailed observed
significance level or P -value against alternative ρ > 1.
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Two-tailed P value

= probability for test statistic Z being more extreme than the
absolute value of Zobs.

I Considers deviations from H0 in either direction.

I Is usually preferred to one-tailed P .
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Distribution of test statistic

— under H0 and graphical derivation of P -value.

 

 

Right tail
P = 0.06

Left tail
P = 0.06

−4 −2 0 2 41.55−1.55

One-tailed P = 0.06, two-tailed P = 0.12
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P-value

I Synonym for “observed significance level”.

I Measures the evidence against H0:

I The smaller the p value, the stronger the evidence against H0.
I Yet, a large p as such does not provide supporting evidence for H0.

I Operationally: the probability of getting a statistic at least as
extreme as the observed, given that H0 is true

I However, it is not
”the probability that H0 is true”!
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3.4 Interpretation of P-values

I No mechanical rules of inference
I Rough guidelines

I “large” value (p > 0.1): consistent with H0 but not necessarily
supporting it,

I “small” value (p < 0.01): indicates evidence against H0

I “intermediate” value (p ≈ 0.05): weak evidence against H0

I Division of p-values into ”significant” or ”non-significant” by
cut-off 0.05 — To be avoided!
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3.5 Confidence interval (CI)

I Range of conceivable values of parameter between lower and
upper confidence limits.

I Specified at certain confidence level, commonly 95% (also 90
% and 99% used).

I The limits of CI are statistics, random variables with sampling
distribution, such that

I the probability that the random interval covers the true
parameter value equals the confidence level (e.g. 95%).
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Confidence interval (cont’d)

I The latter is the long-term property of the procedure for
calculating CI under hypothetical “repeated sampling”.

I Yet, the obtained CI from data at hand either covers or does
not cover the parameter of interest.

I (N.B. As with P values the accuracy of nominal confidence
level depends on lack of bias and on validity of some statistical
assumptions.)
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Long-term behaviour of CI

Variability of 95% CI
under hypothetical
repetitions of similar
study, when true rate
ratio is RR.
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In the long run 95% of these intervals would cover the true value
but 5% would not.
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Example 2: OC & breast ca (cont’d)

I Observed rate difference RD = 30 per 105 y.

I Standard error SE(RD) = 19.4 per 105 y.

I Limits of the 95% approximate CI (per 105 y):

I lower: 30− 1.96× 19.4 = −8,
I upper: 30 + 1.96× 19.4 = 68

I For 90% level, use 1.645 instead of 1.960.
For 99% level, 2.58 is the multiplier.
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Interpretation of obtained CI

Frequentist school of statistics: no probability interpretation!
(In contrast to Bayesian school).

Single CI is viewed by frequentists as a range of conceivable values
of the unknown parameter with which the observed
estimate is fairly consistent, taking into account
”probable” random error:

I narrow CI → precise estimation
→ small statistical uncertainty about parameter.

I wide CI → imprecise estimation
→ great uncertainty.
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Interpretation of CI (cont’d)

I CI gives more quantitative information on the parameter and
on statistical uncertainty about its value than P value.

I In particular, interpretation of ”non-significant” results, i.e.
large P values:

I narrow CI about H0 value:
→ results give support to H0.

I wide CI about H0 value:
→ results inconclusive.

I The latter is more commonly encountered.
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CI and P-value

95 % CIs of rate dif-
ference δ and P val-
ues for H0 : δ = 0 in
different studies.

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Estimated effect

p = 0.382

p = 0.417

p = 0.003

p = 0.005

Similar P -values but different interpretation!
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3.6 Recommendations

ICMJE: Uniform Requirements for Manuscripts submitted to
Biomedical Journals. http://www.icmje.org/

Extracts from section Statistics:

I When possible, quantify findings and present them with
appropriate indicators of measurement error or uncertainty
(such as confidence intervals).

I Avoid relying solely on statistical hypothesis testing, such as
the use of p values, which fails to convey important
quantitative information.
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Recommendations (cont’d)

Sterne and Davey Smith: Sifting the evidence – what’s wrong with
significance tests? BMJ 2001; 322: 226-231.

“Suggested guidelines for the reporting of results of statistical
analyses in medical journals”

1. The description of differences as
statistically significant is not acceptable.

2. Confidence intervals (CI) for the main results should always be
included, but 90% rather than 95% levels should be used.
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Recommendations in BMJ (cont’d)

3. CIs should not be used as a surrogate means of examining
significance at the conventional 5% level.

4. Interpretation of CIs should focus on the implications (clinical
importance) of the range of values in the interval.

5. In observational studies it should be remembered that
considerations of confounding and bias are at least as
important as the issues discussed in this paper.
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CRUDE ANALYSIS

I Single incidence rate

I Rate ratio in cohort study

I Rate ratio in case-control study

I Analysis of proportions

I Extensions and remarks
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Single incidence rate

I Parameter of interest:

λ = true rate in target population

I Estimator: λ̂ = R, the empirical rate in a ”representative
sample” from the population:

R =
D

Y
=

no. of cases

person-time

I Model: D is Poisson with expectation λY .

I Standard error of rate: SE(R) = R/
√
D .
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Single rate (cont’d)

I Simple approximate 95% CI:

[R − EM,R + EM]

I using 95% error margin:

EM = 1.96× SE(R)

I Problem: When D ≤ 4, lower limit ≤ 0!
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Single rate (cont’d)

I Better approximation on log-scale:

SE
(
ln(R)

)
= 1/

√
D

I From this we get the 95% error factor (EF)

EF = exp
(

1.96× SE
(
ln(R)

))

where exp is the exponential function or antilog (inverse of the
natural logarithm)

I From these items we get 95% CI for λ:

[R/EF, R × EF].

I These limits are always > 0 whenever D ≥ 1.
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Example 4 (cont’d)

I The observed incidence of breast cancer in Finnish men aged
65-69 y in 1991 was 33 per 106 py based on 3 cases.

I Standard error of the rate is:

SE(R) = 33×
√

1/3 = 19 per 106 y

I The 95% error margin:

EM = 1.96× 19 = 37 per 106 y

33± 37 = [−4, 70] per 106 y

Negative lower limit — illogical!
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Example 4 (cont’d)

I A better approximate CI obtained on the log-rate scale:

SE
(
ln(R)

)
=
√

1/3 = 0.577

I via the 95% error factor:

EF = exp(1.96× 0.577) = 3.1

from which the confidence limits (both > 0):

[33/3.1, 33× 3.1] = [10.6, 102] per 106py
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Rate estimation in Poisson model

3 male breast cancers in 90, 909 person years, corresponding to a
rate of 3/0.090909 = 33 per 106 PY
> library( Epi )
> D <- 3 ; Y <- 90909
> m0 <- glm( D ~ 1, offset=log(Y/10^6), family=poisson )
> ci.exp( m0 )

exp(Est.) 2.5% 97.5%
(Intercept) 33.00003 10.64322 102.3189

I Response variable: D — no. cases
I Offset variable: log(Y) — log-person-years

note scaling to units desired.
I Explanatory variable: “1” — intercept
I ci.exp transforms back to rate scale.
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4.2 Rate ratio in cohort study

Question: What is the relative risk of cancer in the exposed as
compared to the unexposed group?

Parameter of interest is true rate ratio:

ρ =
λ1
λ0

=
rate among exposed

rate among unexposed

Null hypothesis H0 : ρ = 1: exposure has no effect.
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Rate ratio (cont’d)

Summarized data on outcome from cohort study with person-time

Exposure to risk factor Cases Person-time

Yes D1 Y1

No D0 Y0

total D+ Y+

Empirical rates by exposure group provide estimates for the true
rates:

λ̂1 = R1 =
D1

Y1
, λ̂0 = R0 =

D0

Y0
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Rate ratio (cont’d)

Point estimator of true rate ratio, ρ, is the empirical rate ratio
(RR):

ρ̂ = RR =
λ̂1

λ̂0
=

R1

R0
=

D1/Y1

D0/Y0
=

D1/D0

Y1/Y0

N.B.: The last form is particularly useful in case-control studies —
see next section.
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Rate ratio (cont’d)

ln(RR) = ln(λ̂1)− ln(λ̂0)

⇒ variance of ln(RR) = sum of the variances of the log-rates.

Standard error of ln(RR), 95% error factor and
approximate 95% CI for ρ:

SE
(
ln(RR)

)
=

√
1

D1
+

1

D0

EF = exp
(

1.96× SE
(
ln(RR)

))

CI = [RR/EF, RR× EF].

Note: SE of estimate depends inversely on numbers of cases.
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Example 8: Helsinki Heart Study

I In the study (Frick et al. NEJM 1987) over 4000 men were
randomized to daily intake of either:

I gemfibrozil (”exposed”, N1 ≈ 2000 ), or
I placebo (”unexposed”, N0 ≈ 2000).

I After mean follow-up of 5 y, the numbers of cases of any
cancer in the two groups were:
D1 = 31 and D0 = 26.

I Rounded person-years were Y1 ≈ Y0 ≈ 2000× 5 y = 10000 y.
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Example 8 (cont’d)

Incidence rates 3.1 and 2.6 per 1000 y.
Estimate of true rate ratio ρ with SE etc.:

ρ̂ = RR =
3.1/1000y

2.6/1000 y
= 1.19

SE[ln(RR)] =

√
1

31
+

1

26
= 0.2659

EF = exp(1.96× 0.2659) = 1.68

95 % CI for ρ :

[1.19/1.68, 1.19× 1.68] = [0.7, 2.0]

Two-tailed P = 0.52
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Rate ratio in Poisson model
> library( Epi )
> D <-c(31,26) ; Y <- c(10000,10000) ; E <- c(1,0)
> cbind( D, Y, E)

D Y E
[1,] 31 10000 1
[2,] 26 10000 0
> mr <- glm( D ~ factor(E), offset=log(Y/10^3), family=poisson )
> ci.exp( mr )

exp(Est.) 2.5% 97.5%
(Intercept) 2.600000 1.7702679 3.818631
factor(E)1 1.192308 0.7079898 2.007935

I Response variable: D — no. cases in each group
I Offset variable: log(Y) — log-person-years

note the scaling to units desired for intercept (the rate)
I Explanatory variable: factor(E)
I ci.exp transforms back to rate scale.
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Rates in Poisson model
> cbind( D, Y, E)

D Y E
[1,] 31 10000 1
[2,] 26 10000 0
> mR <- glm( D ~ factor(E)-1, offset=log(Y/10^3), family=poisson )
> ci.exp( mR )

exp(Est.) 2.5% 97.5%
factor(E)0 2.6 1.770268 3.818631
factor(E)1 3.1 2.180125 4.408004

I Response variable: D — no. cases in each group
I Offset variable: log(Y) — log-person-years

note scaling to units desired for intercept
I Explanatory variable: factor(E) - 1

omit intercept: rates separately for each group.
I ci.exp transforms back to rate scale.
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4.3 Rate ratio in case-control study

Parameter of interest: ρ = λ1/λ0
— same as in cohort study.

Case-control design:

I incident cases occurring during a given period in the source
population are collected,

I controls are obtained by incidence density sampling from
those at risk in the source.

I exposure is ascertained in cases and chosen controls.
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Rate ratio in case-control study

Summarized data on outcome:

Exposure Cases Controls

yes D1 C1

no D0 C0

I Can we directly estimate the rates λ0 and λ1 from this?

I — and the ratio of these?

I NO and YES!

I Rates are not directly estimable from a case-control design.
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Rate ratio in case-control study

I If controls are representative of the person- years in the
population, their division into exposure groups estimates the
exposure distribution of the person-years:

C1/C0 ≈ Y1/Y0

I Hence, we can estimate the RR by the OR:

R̂R = OR =
D1/Y1

D0/Y0
=

D1/D0

Y1/Y0
≈ D1/D0

C1/C0
=

D1/C1

D0/C0

I ⇒ RR estimated by the ratio of the case-control ratios (D/C )
I . . . but of course there is a penalty to pay. . .
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Rate ratio from case-control study

Standard error for ln(OR), 95% error factor
and approximate CI for ρ:

SE
(
ln(OR)

)
=

√
1

D1
+

1

D0
+

1

C1
+

1

C0

EF = exp
(

1.96× SE
(
ln(OR)

))

CI = [OR/EF,OR× EF]

NB. Random error again depends inversely on numbers of cases
and controls — the penalty, in the two exposure groups.
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Example 9

Use of mobile phone and brain cancer

(Inskip et al. NEJM 2001; 344: 79-86).

Daily use Cases Controls

≥ 15 min 35 51
no use 637 625

The RR associated with use of mobole phone longer than 15 min
(vs. none) is estimated by the OR:

OR =
35/51

637/625
= 0.67
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Example 9 (cont’d)

SE for ln(OR), 95% error factor and approximate CI for ρ:

SE
(
ln(OR)

)
=

√
1

35
+

1

637
+

1

51
+

1

625
= 0.2266

EF = exp()1.96× 0.2266) = 1.45

CI = [0.67/1.45, 0.67× 1.45] = [0.43, 1.05]

N.B. model-adjusted estimate (with 95% CI):

OR = 0.6[0.3, 1.0]
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OR from binomial model
> Ca <- c(638,35); Co <- c(625,51); Ex <- factor(c("None",">15"),levels=c("None",">15"))
> levels(Ex)
[1] "None" ">15"
> data.frame( Ca, Co, Ex )

Ca Co Ex
1 638 625 None
2 35 51 >15
> mf <- glm( cbind(Ca,Co) ~ Ex, family=binomial )
> ci.exp( mf )

exp(Est.) 2.5% 97.5%
(Intercept) 1.0208000 0.9141876 1.139845
Ex>15 0.6722909 0.4311979 1.048185

I The intercept is meaningless; only the exposure estimate is
relevant

I The parameter in the model is ln(OR), so using ci.exp gives
us the estimated OR — same as in the hand-calculation above.

I This is called logistic regression
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Analysis of proportions

I Suppose we have cohort data with a fixed risk period, i.e. all
subjects are followed over the same period and therfore has the
same length, as well as no losses to follow-up (no censoring).

I In this setting the risk, π, of the disease over the risk period is
estimated by simple

I incidence proportion (often called ”cumulative incidence”
or even ”cumulative risk”)
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Analysis of proportions (cont’d)

Incidence proportion:

π̂ = p =
x

n

=
number of new cases during period

size of population-at-risk at start

Analogously, empirical prevalence (proportion) p at a certain point
of time t

p =
no. of prevalent cases at t

total population size at t
=

x

n
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Analysis of proportions (cont’d)

I Proportions (unlike rates) are dimensionless quantities ranging
from 0 to 1

I Analysis of proportions based on binomial distribution

I Standard error for an estimated proportion:

SE(p) =

√
p(1− p)

n
= p ×

√
(1− p)

x

Depends also inversely on x !
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Analysis of proportions (cont’d)

I CI : p ± 2× SE(p) are within [0; 1] if x > 4/(1 + 4/n)
I This is always true if x > 3 (if x > 2 for n < 12)
I — but the approximation is not good for x < 10
I ⇒ a better approximation is needed.

> ci <- function(x,n) round(cbind( x, n, p=p<-x/n, lo=p-2*sqrt(p*(1-p)/n),
+ hi=p+2*sqrt(p*(1-p)/n) ),4)
> rbind(ci(4,8:10),ci(3,11:13),ci(2,3:5),ci(1,1:2))

x n p lo hi
[1,] 4 8 0.5000 0.1464 0.8536
[2,] 4 9 0.4444 0.1132 0.7757
[3,] 4 10 0.4000 0.0902 0.7098
[4,] 3 11 0.2727 0.0042 0.5413
[5,] 3 12 0.2500 0.0000 0.5000
[6,] 3 13 0.2308 -0.0029 0.4645
[7,] 2 3 0.6667 0.1223 1.2110
[8,] 2 4 0.5000 0.0000 1.0000
[9,] 2 5 0.4000 -0.0382 0.8382
[10,] 1 1 1.0000 1.0000 1.0000
[11,] 1 2 0.5000 -0.2071 1.2071
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Analysis of proportions (cont’d)

I Use confidence limits based on symmetric (normal) ln(OR):
I Compute error factor:

EF = exp
(
1.96/

√
np(1− p)

)

I then use to compute confidence interval:

p/
(
p + (1− p)

×
÷ EF

)

I Observed x = 4 out of n = 25: p̂ = 4/25 = 0.16
I Naive CI: 0.16± 1.96×

√
0.16× 0.84/25 = [0.016; 0.304]

I Better: EF = exp(1.96/
√

25× 0.16× 0.84) = 2.913

CI : 0.16/
(
0.16 + (0.84

×
÷ 2.913)

)
= [0.061; 0.357]
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Analysis of proportions by glm

I Default is to model logit(p) = ln(p/(1− p)), log-odds

I Using ci.exp gives odds (ω):

ω = p/(1− p) ⇔ p = ω/(1 + ω)

> x <- 4 ; n <- 25
> p0 <- glm( cbind( x, n-x ) ~ 1, family=binomial )
> ( odds <- ci.exp( p0 ) )

exp(Est.) 2.5% 97.5%
(Intercept) 0.1904762 0.06538417 0.5548924

> odds/(odds+1)

exp(Est.) 2.5% 97.5%
(Intercept) 0.16 0.06137145 0.3568687
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Extensions and remarks

I All these methods extend to crude analyses of polychotomous
exposure variables when each exposure category is separately
compared to a reference group (unexposed).

I Evaluation of possible monotonic trend in the parameter over
increasing levels of exposure: estimation of regression slope.

I CI calculations here are based on simple approximate formulas
(Wald statistics):

I accurate when numbers of cases are large
I for small numbers, other methods may be preferred

(e.g. ”exact” or likelihood ratio-based as shown by glm).

I Crude analysis is insufficient in observational studies:
control of confounding needed.
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Stratified analysis

I Shortcomings of crude analysis

I Effect modification

I Confounding

I Steps of stratified analysis

I Estimation of rate ratio

I Mantel-Haenszel estimators

I Matched case-control study
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Shortcomings of crude analysis

Crude analysis is misleading, if

I the rate ratio for the risk factor of interest is not constant,
but varies by other determinants of the disease

I . . . i.e. heterogeneity of the comparative parameter
or effect modification

I OR

I the exposure groups are not comparable w.r.t. other
determinants of disease

I . . . i.e. bias in comparison or confounding
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Remedies

Simple approach for remedy:

I Stratification of data
by potentially modifying and/or confounding factor(s)
& use of adjusted estimators

I Conceptually simpler,
but technically more demanding approach is
regression modelling
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Effect modification

Example: True incidence rates (per 105 y) of lung cancer by
occupational asbestos exposure and smoking in a certain
population:

Asbestos Smokers Non-smokers

exposed 600 60
unexposed 120 12

Rate ratio 5 5
Rate difference 480 48

Is the effect of asbestos exposure the same or different in smokers
than in non-smokers?
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Effect modification (cont’d)

Depends how the effect is measured:

I Rate ratio: constant or homogenous

I Rate difference: heterogenous:
The value of rate difference is modified by smoking.

Smoking is thus an effect modifier of asbestos exposure on the
absolute scale but not on the relative scale of comparison.
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Example: Incidence of CHD (per 103 y)
by risk factor E and age:

Factor E Young Old

exposed 4 9
unexposed 1 6

rate ratio 4 1.5
rate difference 3 3

I Rate ratio modified by age
I Rate difference not modified.

There is no such thing as interaction without reference to the
effect scale (e.g. additive or multiplicative)
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Effect modification (cont’d)

I Perfect homogeneity is rare

I Usually comparative parameters are more or less heterogenous
across categories of other determinants of disease

I Implications to analysis and presentation?
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Example:

Age-specific CHD mortality rates (per 104 y) and numbers of cases
(D) among British male doctors by cigarette smoking, rate
differences (RD) and rate ratios (RR) (Doll and Hill, 1966).

Smokers Non-smokers

Age (y) rate D rate D RD RR

35-44 6.1 32 1.1 2 5 5.7
45-54 24 104 11 12 13 2.1
55-64 72 206 49 28 23 1.5
65-74 147 186 108 28 39 1.4
75-84 192 102 212 31 -20 0.9

Total 44 630 26 101 18 1.7
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Example (cont’d)

Both comparative parameters appear heterogenous:

I RD increases by age (at least up to 75 y)

I RR decreases by age

No single-parameter (common rate ratio or rate difference)
comparison captures adequately the joint pattern of rates.
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Evaluation of modification

I Modification or its absence is an inherent property of the
phenomenon:

I cannot be removed or ”adjusted” for

I but it depends on the scale on which it is measured

I Problems:

I Stratum-specific numbers have large random error
I estimates of stratum specific effect parameters variable even if no

true modification present,
I or essential modification may remain undetected
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Evaluation of modification (cont’d)

I statistical tests for heterogeneity insensitive and rarely helpful

I ⇒ tempting to assume ”no essential modification”:

+ simpler analysis and result presentation,
− misleading if essential modification present.
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Confounding - example

Observational clinical study with comparison of success of
treatment between two types of operation for treating renal calculi:

I OS: open surgery (invasive)

I PN: percutaneous nephrolithotomy (non-invasive)

Treatment Pts Op. OK % OK %-diff.

OS 350 273 78
PN 350 290 83 +5

PN appears more succesful than OS?
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Example (cont’d)
Results stratified by initial diameter size of the stone:

Size Treatment Pts Op. OK % OK %-diff.

< 2 cm: OS 87 81 93
PN 270 235 87 −6

≥ 2 cm: OS 263 192 73
PN 80 55 69 −4

OS seems more succesful in both subgroups.

Is there a paradox here?
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Operation example

I Treatment groups are not comparable w.r.t. initial size.

I Size of the stone (SS) is a confounder of the association
between operation type and success:

1. an independent determinant of outcome (success), based on external
knowledge,

2. statistically associated with operation type in the study population,
3. not causally affected by operation type.
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Example 13 (cont’d)

I Instance of “confounding by indication”:
— patient status affects choice of treatment,
⇒ bias in comparing treatments.

I This bias is best avoided in planning:
— randomized allocation of treatment.
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Grey hair and cancer incidence

Gray P-years Rate
Age hair Cases ×1000 /1000 y RR

Total yes 66 25 2.64 2.2
no 30 25 1.20

Young yes 6 10 0.60 1.09
no 11 20 0.55

Old yes 60 15 4.0 1.05
no 19 5 3.8

Observed crude association nearly vanishes after controlling for age.
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Means for control of confounding

Design:

I Randomization

I Restriction

I Matching
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Means for control of confounding (cont’d)

Analysis:

I Stratification

I Regression modelling

Only randomization can remove confounding due to
unmeasured factors.

Other methods provide partial removal, but
residual confounding may remain.
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Steps of stratified analysis

I Stratify by levels of the potential confounding/modifying
factor(s)

I Compute stratum-specific estimates of the effect parameter
(e.g. RR or RD)

I Evaluate similarity of the stratum-specific estimates by
“eye-balling” or test of heterogeneity.
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Steps of stratified analysis (cont.)

I If the parameter is judged to be homogenous enough, calculate
an adjusted summary estimate.

I If effect modification is judged to be present:

I report stratum-specific estimates with CIs,
I if desired, calculate an adjusted summmary estimate by appropriate

standardization — (formally meaningless).
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Estimation of rate ratio

I Suppose that true rate ratio ρ is sufficiently homogenous
across strata (no modification), but confounding is present.

I Crude RR estimator is biased.

I Adjusted summary estimator, controlling for confounding,
must be used.

I These estimators are weighted averages of stratum-specific
estimators.
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Adjusted summary estimators

Different weighting methods:

I maximum likelihood (ML)

I weighted least squares (WLS)

I Mantel-Haenszel (MH) weights

I (direct) standardization by external standard population (CMF)

I standardized morbidity ratio (SMR)
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Mantel-Haenszel estimators

Cohort study, data summary in each stratum k :

Exposure Cases Person-time

yes D1k Y1k

no D0k Y0k

Total D+k Y+k

Stratum-specific rates by exposure group:
R1k = D1k/Y1k , R0k = D0k/Y0k

. . . weighted together, by a multiplicative (log-linear) model
ln(R1k) = β + ln(R0k)
β a common log-RR across strata.
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Mantel-Haenszel estimator

I Combination of stratum-specific RRs as a proxy for a model
estimate of β

I Formulae devised in times of the hand-calculator
— before the advent of computers

I Replaced by statistical models

I Out of date since about mid-1990s
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Gray hair & cancer (cont’d)

> D <- c(6,11,60,19)
> Y <- c(10,20,15,5)
> age <- factor( c("Young","Young","Old","Old") )
> hair <- factor( c("Gray","Col","Gray","Col") )
> data.frame( D, Y, age, hair )

D Y age hair
1 6 10 Young Gray
2 11 20 Young Col
3 60 15 Old Gray
4 19 5 Old Col
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Gray hair & cancer (cont’d)

Crude and adjusted risk estimate by Poisson model:

> library( Epi )
> ci.exp( glm( D ~ hair , offset=log(Y), family=poisson ) )

exp(Est.) 2.5% 97.5%
(Intercept) 1.2 0.8390238 1.716280
hairGray 2.2 1.4288764 3.387277

> ci.exp( glm( D ~ hair + age, offset=log(Y), family=poisson ) )

exp(Est.) 2.5% 97.5%
(Intercept) 3.7782269 2.49962654 5.7108526
hairGray 1.0606186 0.67013527 1.6786339
ageYoung 0.1470116 0.08418635 0.2567211
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Case-control study of
Alcohol and oesophageal cancer

I Tuyns et al 1977, see Breslow & Day 1980,
I 205 incident cases,
I 770 unmatched population controls,
I Risk factor: daily consumption of alcohol.
I Crude summary:

Exposure
≥ 80 g/d Cases Controls OR

yes 96 109 5.64
no 104 666
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Crude analysis of CC-data

> Ca <- c( 96,104)
> Co <- c(109,666)
> Ex <- factor(c(">80","<80"))
> data.frame( Ca, Co, Ex )

Ca Co Ex
1 96 109 >80
2 104 666 <80

> m0 <- glm( cbind(Ca,Co) ~ Ex, family=binomial )
> round( ci.exp( m0 ), 2 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.16 0.13 0.19
Ex>80 5.64 4.00 7.95

The odds-ratio of oesophageal cancer, comparing high vs. low
alcohol consumption is 5.64[4.00; 7.95]
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Stratification by age
Exposure

Age ≥ 80 g/d Cases Controls EOR

25-34 yes 1 9 ∞
no 0 106

35-44 yes 4 26 5.05
no 5 164

45-54 yes 25 29 5.67
no 21 138

55-64 yes 42 27 6.36
no 34 139

65-74 yes 19 18 2.58
no 36 88

75-84 yes 5 0 ∞
no 8 31

NB! Selection of controls: inefficient study
Should have employed stratified sampling by age.
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Stratified analysis
> ca <- c( 1, 0, 4, 5, 2, 2, 4, 3, 1, 3, 5, 8 )
> co <- c(9, 106, 26, 164, 29, 138, 27, 139, 18, 88, 0, 31)
> alc <- rep( c(">80","<80"), 6 )
> age <- factor( rep( seq(25,75,10), each=2 ) )
> data.frame( ca, co, alc, age )

ca co alc age
1 1 9 >80 25
2 0 106 <80 25
3 4 26 >80 35
4 5 164 <80 35
5 2 29 >80 45
6 2 138 <80 45
7 4 27 >80 55
8 3 139 <80 55
9 1 18 >80 65
10 3 88 <80 65
11 5 0 >80 75
12 8 31 <80 75
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Stratified analysis

The “age:” operator produces a separate alcohol-OR for each age
class:
> mi <- glm( cbind(ca,co) ~ age + age:alc, family=binomial )
> round( ci.exp( mi ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.000000e+00 0.000 Inf
age35 2.345328e+10 0.000 Inf
age45 1.114880e+10 0.000 Inf
age55 1.660289e+10 0.000 Inf
age65 2.622503e+10 0.000 Inf
age75 1.985206e+11 0.000 Inf
age25:alc>80 8.547416e+10 0.000 Inf
age35:alc>80 5.046000e+00 1.272 20.025
age45:alc>80 4.759000e+00 0.644 35.177
age55:alc>80 6.864000e+00 1.453 32.427
age65:alc>80 1.630000e+00 0.160 16.570
age75:alc>80 1.755246e+11 0.000 Inf

The age-specific ORs are very variable...
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Oesophageal cancer CC — effect modification?
> ma <- glm( cbind(ca,co) ~ age + alc, family=binomial )
> anova( mi, ma, test="Chisq" )
Analysis of Deviance Table

Model 1: cbind(ca, co) ~ age + age:alc
Model 2: cbind(ca, co) ~ age + alc
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 0 0.0000
2 5 8.0552 -5 -8.0552 0.1532
> round( ci.exp( ma, subset="alc" ), 3 )

exp(Est.) 2.5% 97.5%
alc>80 6.801 3.181 14.539

I Stratum-specific ORs somewhat variable.
I Random error in some of them apparently large
I Only weak evidence against homogeneity,

so assumption of a common rate ratio seems plausible.
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Oesophageal cancer CC — confounding?
I Is exposure associated with age in the study population?
I Look at variation in the age-specific prevalences of exposure

among controls.
I Adjustment for age is generally reasonable.
I There is substatial age-confounding of the alc-OR:

> ma <- glm( cbind(ca,co) ~ age + alc, family=binomial )
> m0 <- glm( cbind(ca,co) ~ alc, family=binomial )
> round( ci.exp( ma, subset="alc" ), 3 )

exp(Est.) 2.5% 97.5%
alc>80 6.801 3.181 14.539
> round( ci.exp( m0, subset="alc" ), 3 )

exp(Est.) 2.5% 97.5%
alc>80 4.946 2.529 9.673

Note: there exist no test for confounding
— only test for effect modification (interaction).
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Regression models
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regress

Regression modeling

I Limitations of stratified analysis

I Log-linear model for rates

I Additive model for rates

I Model fitting

I Problems in modelling
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Limitations of stratified analysis

I Multiple stratification:

I many strata with sparse data
I loss of precision

I Continous risk factors must be categorized

I loss of precision
I arbitrary (unreasonable) assumptions about effect shape

I More than 2 exposure categories:

I Pairwise comparisons give inconsistent results
I (non)Linear trends not easily estimated

Regression models (regress) 112/ 145



Limitations (cont’d)

I Joint effects of several risk factors difficult to quantify

I Matched case-control studies:
difficult to allow for confounders & modifiers not matched on.

These limitations may be overcome to some extent by regression
modelling.

Key concept: statistical model
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Log-linear model for rates

Assume that the theoretical rate λ depends on
explanatory variables or regressors X , Z (& U , V , . . . )
according to a log-linear model

ln
(
λ(X ,Z , . . . )

)
= α + βX + γZ + . . .

Equivalent expression, multiplicative model:

λ(X ,Z , . . . ) = exp(α + βX + γZ + . . . )

= λ0 ρ
X τZ · · ·
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Log-linear model (cont’d)

Model parameters

α = ln(λ0) = intercept, log-baseline rate λ0
(i.e. rate when X = Z = · · · = 0)

β = ln(ρ) = slope,
change in ln(λ) for unit change in X ,
adjusting for the effect of Z (& U ,V , . . . )

eβ = ρ = rate ratio for unit change in X .

No effect modification w.r.t. rate ratios assumed in this model.
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Lung cancer incidence,
asbestos exposure and smoking

Dichotomous explanatory variables coded:

I X = asbestos: 1: exposed, 0: unexposed,

I Z = smoking: 1: smoker, 0: non-smoker

Log-linear model for theoretical rates

ln
(
λ(X ,Z )

)
= 2.485 + 1.609X + 2.303Z
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Log-linear model: Variables

Rates Variables

X Z
Asbestos Smoke Non-sm Smoke Non-sm Smoke Non-sm

exposed 600 60 1 1 1 0
unexposed 120 12 0 0 1 0
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Lung cancer, asbestos and smoking

Entering the data:
— note that the data are artificial assuming the no. of PY among
asbestos exposed is 1/4 of that among non-exposed

> D <- c( 150, 15, 120, 12 ) # cases
> Y <- c( 25, 25, 100, 100 ) / 100 # PY (100,000s)
> A <- c( 1, 1, 0, 0 ) # Asbestos exposure
> S <- c( 1, 0, 1, 0 ) # Smoking
> cbind( D, Y, A, S )

D Y A S
[1,] 150 0.25 1 1
[2,] 15 0.25 1 0
[3,] 120 1.00 0 1
[4,] 12 1.00 0 0
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Lung cancer, asbestos and smoking

I Regression modelling

I Multiplicative (default) Poisson model

I 2 equivalent approaches

I D response, ln(Y ) offset
I D/Y response, Y weight

(warning can be ignored)
I the latter approach also useful for additive models

> mo <- glm( D ~ A + S, offset=log(Y), family=poisson )
> mm <- glm( D/Y ~ A + S, weight=Y, family=poisson )
> ma <- glm( D/Y ~ A + S, weight=Y, family=poisson(link=identity) )

Regression models (regress) 119/ 145

Lung cancer, asbestos and smoking

Summary and extraction of parameters:
> summary( mo )
Call:
glm(formula = D ~ A + S, family = poisson, offset = log(Y))

Deviance Residuals:
1 2 3 4

0.000e+00 0.000e+00 -1.032e-07 0.000e+00

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.4849 0.2031 12.23 <2e-16
A 1.6094 0.1168 13.78 <2e-16
S 2.3026 0.2018 11.41 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 4.1274e+02 on 3 degrees of freedom
Residual deviance: -1.5987e-14 on 1 degrees of freedom
AIC: 28.37

Number of Fisher Scoring iterations: 3
> library( Epi )
> ci.exp( mo )

exp(Est.) 2.5% 97.5%
(Intercept) 12 8.059539 17.867026
A 5 3.977142 6.285921
S 10 6.732721 14.852836
> ci.exp( mo, Exp=F )

Estimate 2.5% 97.5%
(Intercept) 2.484907 2.086856 2.882957
A 1.609438 1.380563 1.838312
S 2.302585 1.906979 2.698191
> ci.exp( mm, Exp=F )

Estimate 2.5% 97.5%
(Intercept) 2.484907 2.086856 2.882957
A 1.609438 1.380563 1.838312
S 2.302585 1.906979 2.698191

Parameters are the same for the two modelling approaches.
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Summary and extraction of parameters

> ci.exp( mo )

exp(Est.) 2.5% 97.5%
(Intercept) 12 8.059539 17.867026
A 5 3.977142 6.285921
S 10 6.732721 14.852836

> ci.exp( mo, Exp=F )

Estimate 2.5% 97.5%
(Intercept) 2.484907 2.086856 2.882957
A 1.609438 1.380563 1.838312
S 2.302585 1.906979 2.698191

> ci.exp( mm, Exp=F )

Estimate 2.5% 97.5%
(Intercept) 2.484907 2.086856 2.882957
A 1.609438 1.380563 1.838312
S 2.302585 1.906979 2.698191

Parameters are the same for the two modelling approaches.
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Interpretation of parameters

> round( cbind( ci.exp( mm, Exp=F ),
+ ci.exp( mm ) ), 3 )

Estimate 2.5% 97.5% exp(Est.) 2.5% 97.5%
(Intercept) 2.485 2.087 2.883 12 8.060 17.867
A 1.609 1.381 1.838 5 3.977 6.286
S 2.303 1.907 2.698 10 6.733 14.853

α = 2.485 = ln(12), log of baseline rate,

β = 1.609 = ln(5), log of rate ratio ρ = 5 between exposed and
unexposed for asbestos

γ = 2.303 = ln(10), log of rate ratio τ = 10 between smokers
and non-smokers.

Rates for all 4 asbestos/smoking combinations can be recovered
from the above formula.
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Log-linear model: Estimated rates

Rates Parameters

Asbestos Smokers Non-smokers Smokers Non-smokers

exposed 600 60 α + γ + β α + β
unexposed 120 12 α + γ α

Rate ratio 5 5 ln(β) ln(β)
Rate difference 480 48 β β
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Log-linear model (cont’d)

Model with effect modification (two regressors only)

ln
(
λ(X ,Z )

)
= α + βX + γZ + δXZ ,

equivalently

λ(X ,Z ) = exp
(
α + βX + γZ + δXZ

)
= λ0ρ

X τZθXZ

where α is as before, but

β = log-rate ratio ρ for a unit change in X when Z = 0,

γ = log-rate ratio τ for a unit change in Z when X = 0
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Interaction parameter

δ = ln(θ), interaction parameter, describing
effect modification

For binary X and Z we have

θ = eδ =
λ(1, 1)/λ(0, 1)

λ(1, 0)/λ(0, 0)
,

i.e. the ratio of relative risks associated with X between the two
categories of Z .
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Log-linear model: Estimated rates

Rates Parameters

Asbestos Smokers Non-smokers Smokers Non-smokers

exposed 600 60 α + γ + β + δ α + β
unexposed 120 12 α + γ α

Rate ratio 5 5 ln(β + δ) ln(β)
Rate difference 480 48 β + δ β
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Lung cancer, asbestos and smoking
> mi <- glm( D/Y ~ A + S + I(A*S), weight=Y, family=poisson )
> round( ci.exp( mm ), 3 ) ; round( ci.exp( mi ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 12 8.060 17.867
A 5 3.977 6.286
S 10 6.733 14.853

exp(Est.) 2.5% 97.5%
(Intercept) 12 6.815 21.130
A 5 2.340 10.682
S 10 5.524 18.101
I(A * S) 1 0.451 2.217

I There is no interaction on the multiplicative scale:
I interaction parameter is 1,
I asbestos and smoking parameters are the same,
I but SEs are larger because they refer to RRs for levels X = 0

and Z = 0 respectively and not both levels jointly
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Additive model for rates

General form with two regressors

λ(X ,Z ) = α + βX + γZ + δXZ

α = λ(0, 0) is the baseline rate,

β = λ(x + 1, 0)− λ(x , 0), rate difference for
unit change in X when Z = 0

γ = λ(0, z + 1)− λ(0, z ), rate difference for
unit change in Z when X = 0,
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Additive model (cont’d)

δ = interaction parameter.

I For binary X ,Z :

δ = [λ(1, 1)− λ(1, 0)]− [λ(0, 1)− λ(0, 0)]

I If no effect modification present, δ = 0, and

β = rate difference for unit change in X
for all values of Z

γ = rate difference for unit change in Z
for all values of X ,
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Example: Additive model

> mai <- glm( D/Y ~ A + S + A*S, weight=Y, family=poisson(link=identity) )
> ci.exp( mai, Exp=FALSE )

Estimate 2.5% 97.5%
(Intercept) 12 5.210486 18.78951
A 48 16.886536 79.11346
S 108 85.481728 130.51827
A:S 432 328.808315 535.19168

A very clear interaction (effect modification)
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λ(X ,Z ) = α + βX + γZ + δXZ = 12 + 48X + 108Z + 432XZ

α = 12, baseline rate, i.e. that among non-smokers unexposed to
asbestos (reference group),

β = 48 (60− 12), rate difference between asbestos exposed and
unexposed among non-smokers only,

γ = 108 (= 120− 12), rate difference between smokers and
non-smokers among only those unexposed to asbestos

δ = excess of rate difference between smokers and non-smokers
among those exposed to asbestos:
δ = (600− 120)− (60− 12) = 432
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Model fitting (cont’d)

Output from computer packages will give:

I parameter estimates and SEs,
I goodness-of-fit statistics,
I fitted values,
I residuals,...

May be difficult to interpret!

Model checking & diagnostics:

I assessment whether model assumptions seem reasonable and
consistent with data

I involves fitting and comparing different models
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Problems in modelling

I Simple model chosen may be far from the “truth”.

I possible bias in effect estimation, — underestimation of SEs.

I Multitude of models fit well to the same data
which model to choose?

I Software easy to use
I easy to fit models blindly,
I possibility of unreasonable results.
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Modeling

I Modelling should not substitute but complement crude &
stratified analyses:

I Crude and stratified analyses are initial modeling steps
I Final model for reporting developed mainly from subject matter

knowledge

I Adequate training and experience required.

I Ask help from professional statistician!

I Collaboration is the keyword.
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Conclusion
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concl-analysis

Concluding remarks

Epidemiologic study is a

Measurement excercise

Target is a parameter of interest, like

I incidence rate

I rate ratio

I relative risk

I difference in prevalences

Result: Estimate of the parameter.
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Estimation and its errors

Like errors in measurement, estimation of parameter is prone to
error:

estimate = true parameter value

+ systematic error (bias)

+ random error
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Sources of bias

I confounding, non-comparability,

I measurement error, misclassification,

I non-response, loss to follow-up,

I sampling, selection
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Sources of random error

I biological variation between and within individuals in
population

I measurement variation

I sampling (random or not)

I allocation of exposure (randomized or not)
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Random sampling

I relevant in descriptive studies

I estimation of parameters of occurrence of given health
outcomes in a target population

I target population well-defined, finite, restricted by time and
space

I representativeness of study population (sample) important
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Randomization

I relevant in causal studies

I estimation of comparative parameters of effect of an exposure
factor on given health outcomes

I abstract (infinite) target population

I comparability of exposure groups important

I study population usually a convenience sample from available
source population
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Controlled randomness

If controlled randomness (random sampling or randomization) is
employed as appropriate

⇒ parameter estimate has a well defined
sampling distribution

This forms the basic tool used in statistical inference concerning
the value of the parameter

I point estimation

I statistical testing, P -value

I confidence interval
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Controlled randomness (cont’d)

Question: How often controlled randomness actually employed in
epidemiology?

Answer: Rarely!

“In most epidemiologic studies, randomization and random sampling
play little or no role in the assembly of study cohorts.”
(Greenland S. Epidemiology 1990; 1: 421-9)
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Implications

“. . . probabilistic interpretations of conventional statistics are rarely
justified . . . such interpretations may encourage misinterpretation of
nonrandomized studies.”

“. . . the continuing application of tests of significance to such
non-randomized investigations is inappropriate” (Greenland 1990)

“Confidence intervals should be relegated to a small part of both
the results and discussion section as an indication, but no more, of
the possible influence of chance imbalance on the result.”
(Brennan & Croft. BMJ 1994; 309: 727-30)
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Recommendations

Possible remedies for these problems:

I de-emphasize inferential statistics in favor of pure data
decriptors: graphs and tables,

I adopt statistical techniques based on more realistic probability
models than those in common use,

I subject the results of these to influence and sensitivity analysis.

(from Greenland 1990)
Interpretation of obtained values of inferential statistics
– not mechanical reporting!
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Conclusion

“In presenting and discussing the results of an observational study
the greatest emphasis should be placed on bias and confounding.”
(Brennan and Croft 1994)

Motto (Campbell & Machin 1983):

STATISTICS is about
COMMON SENSE and

GOOD DESIGN!

Conclusion (concl-analysis) 145/ 145


