Nordic Summerschool of Cancer Epidemiology

Bendix Carstensen Steno Diabetes Center

Gentofte, Denmark

http://BendixCarstensen.com

Esa Läärä University of Oulu

Oulu, Finland

Danish Cancer Society

August 2015

http://BendixCarstensen.com/NSCE/2015

1/ 145

Chance

Nordic Summerschool of Cancer Epidemiology August 2015

Danish Cancer Society

http://BendixCarstensen.com/NSCE/2015

chance

Chance variation

- Systematic and random variation
- Probability model: random variable, distribution, parameters
- ▶ Poisson and Gaussian models
- Statistic, sampling distribution and standard error

Chance (chance) 2/ 145

Systematic and random variation

Cancer incidence rates vary by known & measured determinants of disease, such as:

- age,
- gender,
- region,
- time,
- specific risk factors.

This is **systematic variation**.

Chance (chance) 3/145

Systematic & random (cont'd)

In addition, observed rates are subject to random or chance variation:

- variation due to unknown sources like
 - ▶ latent genetic differences,
 - unknown concomitant exposures,
 - sampling,
 - ▶ "pure chance" quantum mechanics

Chance (chance) 4/145

Example 3: Smoking and lung cancer

- Only a minority of smokers get lung cancer.
- ...and some non-smokers get the disease, too.
- ▶ At the individual level the outcome is unpredictable.
- ▶ When cancer occurs, it can eventually only be explained just by "bad luck".
- Unpredictability of individual outcomes implies largely unpredictable — random — variation of disease rates at population level.

Chance (chance) 5/ 145

Example 4

Breast cancer incidence rates in Finland, age group 65-69 years in three successive years.

Year	Males (per 10^6 P-years)	Females (per 10^4 P-years)
1989	46	21
1990	11	20
1991	33	19

- ▶ Big annual changes in risk among males?
- ▶ Steady decline in females?

Chance (chance) 6/145

Example 4 (cont'd)

Look at observed numbers of cases!

	М	Males		males
Year	Cases	P-years	Cases	P-years
1989	4	88,000	275	131,000
1990	1	89,000	264	132,000
1991	3	90,000	253	133,000

Reality of changes over the years?

Chance (chance) 7/ 145

Probability models

Simple model for cancer incidence: In homogenous population we assume:

- the unknown theoretical incidence rate
- hazard or intensity λ
- ▶ of contracting cancer
- ▶ is **constant** over a short period of time.

$$\lambda = \Pr{\text{Cancer in}(t, t + dt)}/dt$$

Chance (chance) 8/ 145

Simple model (cont'd)

- Observations:
 - ▶ Number of cases *D* in
 - Y person-years at risk
 - and empirical incidence rate R = D/Y
- are random variables with unpredictable values in a given observation period.
- ► The **probability distribution** of possible values of a random variable has some known mathematical form.
- Key properties of the distribution are determined by quantities called parameters;
- ightharpoonup in this case the theoretical rate λ .

Chance (chance) 9/145

Probability model

If the hazard of lung cancer, λ , is constant over time, we can **simulate** lung cancer occurrence in a population:

- lacksquare Start with N persons
- ▶ 1st day: P {lung cancer} = $\lambda \times 1$ day for all N
- ▶ 2nd day: P {lung cancer} = $\lambda \times 1$ day for those left w/o LC
- ▶ 3rd day: P {lung cancer} = $\lambda \times 1$ day for those left w/o LC

Thus a **probability model** shows how to generate data with known parameters.

Chance (chance)

Statistics

The opposite of a probability models:

- the data is known
- want to find parameters
- estimation
- ... mostly using maximum likelihood

Thus **statistical modelling** is how to **estimate parameters** from observed data.

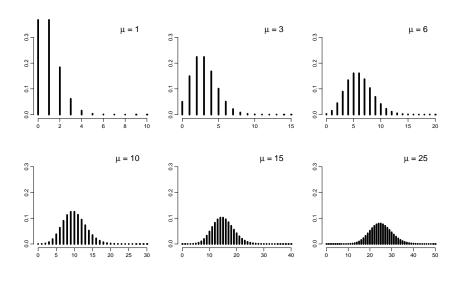
Chance (chance)

Poisson and Gaussian models

- ▶ **Poisson distribution**: simple probability model for number of cases *D* (in a fixed follow-up time, *Y*) with
- **expectation** (theoretical mean) $\mu = \lambda Y$,
- standard deviation $\sqrt{\mu}$
- When the expectation μ of D is large enough, the Poisson distribution resembles more and more the **Gaussian** or **Normal** distribution.

Chance (chance) 12/ 145

Poisson distribution with different means μ :



13/ 145

Gaussian distribution

Chance (chance)

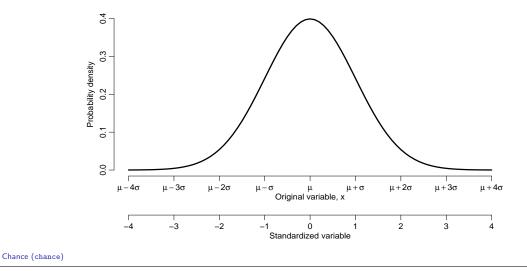
Gaussian or Normal distribution:

- common model for continuous variables,
 - symmetric and bell-shaped,
 - has two parameters:
 - $-\mu = \text{expectation or mean},$
 - $-\sigma = \text{standard deviation}.$
- ▶ Most important use of Gaussian model:
- Approximation of sampling distribution of empirical measures:
- observed incidence rates
- ▶ log(observed incidence rates)

Chance (chance)

Gaussian distribution (cont'd)

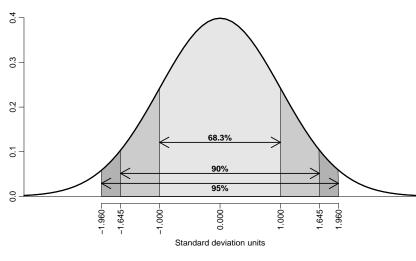
Probability density funtion - the "Bell Curve".



15/ 145

Gaussian distribution (cont'd)

Areas under curve limited by selected quantiles



Chance (chance) 16/ 145

2.4 Statistic, sampling distribution and standard error

A "**statistic**" is a summary measure calculated from empirical data (a "formula").

- X a variable having certain distribution in population with mean μ and standard deviation σ .
- ightharpoonup Take a random sample of n subjects.
- ▶ Values of X in the sample: $X_1, X_2, ..., X_n$.
- ▶ Before sampling these are random variables.

Chance (chance)

Sample statistics:

▶ Sample mean (arithmetic):

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

► Sample standard deviation:

$$SD = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

Chance (chance) 18/ 145

Sample statistics:

▶ One-sample *t*-statistic:

$$t = \frac{\bar{X} - \mu_0}{\text{SD}/\sqrt{n}}$$

(μ_0 is the hypothesized value of μ). How far from μ_0 is the observed X?

Chance (chance) 19/ 145

Sampling distribution

- Describes variation of a summary statistic,
- ightharpoonup = behaviour of values of the statistic over hypothetical repetitions of taking new random samples of size n.
- Its form depends on:
 - original distribution & parameters,
 - \triangleright sample size n.
- ▶ The larger the sample size $n \rightarrow$ the narrower and more Gaussian-like sampling distribution!

Chance (chance) 20/ 145

Example 5

- Sampling distribution of the sample mean \bar{X} of variable X with mean μ and standard deviation σ is approximately Gaussian with:
 - expectation μ ,
 - standard deviation σ/\sqrt{n} ,
- ▶ with sufficiently big sample size, whatever the original distribution of *X*.
- ► This is the **Central Limit Theorem** (CLT) from probability theory.

Chance (chance) 21/ 145

Standard error (s.e.)

Estimated standard deviation of sampling distribution of statistic.

Example 5 (cont'd):

- ▶ Sample X_1, \ldots, X_n drawn of variable X from population distribution with mean μ and standard deviation σ . The sample mean is \bar{X} and the sample standard deviation s.e..
- ightharpoonup \Rightarrow Standard error of the mean:

$$s.e.(\bar{X}) = \frac{s.e.}{\sqrt{n}}$$

Describes *precision* in estimation of μ by \bar{X} .

Chance (chance) 22/ 145

Standard error (cont'd)

▶ Confidence interval (CI) for μ :

$$\bar{X} \pm z \times \text{s.e.}(\bar{X})$$

where z is an approriate quantile of the t- or Normal distribution (in Normal dist'n z=1.960 for 95% CI).

▶ Used in one-sample *t*-statistic:

$$t = \frac{\bar{X} - \mu_0}{\text{s.e.}(\bar{X})}$$

to test null hypothesis $H_0: \mu = \mu_0$. (How far from μ_0 is \bar{X} , in s.e. units)

Chance (chance) 23/ 145

Example 6: Single incidence rate

Parameter λ

- = true unknown incidence rate in population.
 - Empirical rate R = D/Y,
 - estimator of λ .
 - ▶ R is a statistic, random variable whose:
 - value varies from one study population ("sample") to another in hypothetical repetitions,
 - sampling distribution is (under the Poisson model & other conditions) a transformation of the Poisson distribution.

Chance (chance) 24/ 145

Example 6 (cont'd)

- Expectation of empirical rate R is λ , standard deviation in the sampling distribution for R is $\sqrt{\lambda/Y}$.
- ▶ Standard error of empirical rate *R*:

s.e.
$$(R) = \sqrt{\frac{R}{Y}} = \frac{\sqrt{D}}{Y} = R \times \frac{1}{\sqrt{D}}$$

- ⇒ The amount of random error depends inversely on (the square root of) the number of cases.
- \Rightarrow s.e. of R is proportional to R.

Chance (chance) 25/ 145

Inference

Nordic Summerschool of Cancer Epidemiology August 2015 Danish Cancer Society http://BendixCarstensen.com/NSCE/2015

inference

3 STATISTICAL INFERENCE

- 3.1 Inferential questions
- 3.2 Point estimation
- 3.3 Statistical testing
- 3.4 Interpretation of P-values
- 3.5 Confidence interval
- 3.6 Recommendations

Inference (inference) 26/145

Inferential questions

- What is the best single-number assessment of the parameter value?
- ▶ Is the result consistent or in disagreement with a certain value of the parameter proposed beforehand?
- ▶ What is a plausible range of values of the parameter consistent with our data?

Inference (inference) 27/145

Statistical notation:

- ightharpoonup Probability: parameters ightarrow data
- ▶ Statistics: data → parameter(estimate)s
- Notation:
 - Parameter denoted by a Greek letter
 - Estimator & estimate by the same Greek letter with "hat".
- Ex: Incidence rate:
 - ▶ True unknown rate: λ
 - Estimator: $\lambda = R = D/Y$, empirical rate.
- Rate ratio:
 - True rate ratio $\rho = \lambda_1/\lambda_0$ between exposed and unexposed,
 - ► Estimator: $\widehat{\rho} = RR = R_1/R_0$, ratio between the empirical rates.

Inference (inference) 28/145

3.2 Statistical testing

- Are the observed data
 - summarized by an estimate and its SE consistent with a given value of the parameter?
- Such a given value is often represented in the form a *null* hypothesis (H_0) , which is a statement on the true value of the parameter before study.
- ▶ In comparative problems typically a conservative assumption, e.g.

"no difference in outcome between the groups"

"true rate ratio $\rho = 1$ ".

Inference (inference) 29/145

Purpose of statistical testing

- Evaluation of consistency or disagreement of observed data with H_0 .
- Checking whether or not the observed difference can reasonably be explained by chance.
- ▶ **Note:** This is not so ambitious.
- ► The NULL is never true there is always a difference between two groups
- \Rightarrow not testing if H_0 is **TRUE**,
 - ... but if we have evidence enough to assert is as FALSE

Inference (inference) 30/145

Test statistic

- Function of observed data and null hypothesis value,
- a common form of test statistic is:

$$Z = \frac{O - E}{S}$$

O =some "observed" statistic,

E= "expected value" of O under H_0 ,

S = SE or standard deviation of O under H_0 .

- ▶ Evaluates the size of the "signal" O-E against the size of the "noise" S.
- Under H_0 the sampling distribution of this statistic is (with sufficient amount of data) close to the standard Gaussian.

Inference (inference) 31/ 145

Example 2: OC & breast ca. (cont'd)

Null hypothesis:

OC use has no effect on breast ca. risk \Leftrightarrow true rate difference $\delta = \lambda_1 - \lambda_0$ equals 0.

O = Observed rate difference

$$\hat{\delta} = \text{RD} = 217 - 187 = 30 \text{ per } 10^5 \text{ y}.$$

 $E = \mathsf{Expected}$ rate difference $= \mathsf{0}$, if H_0 true.

 $S = \mathsf{Standard} \; \mathsf{error} \; \mathsf{of} \; \mathsf{RD}$:

$$\mathsf{SE}(\mathsf{RD}) = \sqrt{\frac{217^2}{204} + \frac{187^2}{240}} = 19.4 \ \mathsf{per} \ 10^5 \ \mathsf{y}.$$

Inference (inference)

32/ 145

Example 2: OC & breast ca. (cont'd)

▶ Test statistic Z = (O - E)/S, its observed value:

$$Z_{\text{obs}} = \frac{30 - 0}{19.4} = 1.55$$

- One-tailed P = 0.06, two-tailed P = 0.12
- What does this mean?
- How do we proceed?

Inference (inference)

33/ 145

Questions about the test statistic

- ▶ How does the observed value Z_{obs} locate itself in the sampling distribution of Z?
- ► How common or how rare it is to obtain Z_{obs} under H_0 ?
- ▶ What is the probability of getting Z larger than observed Z_{obs} if H_0 were true?
- ► The latter probability is the **one-tailed observed significance level** or P-value against alternative $\rho > 1$.

Inference (inference) 34/ 145

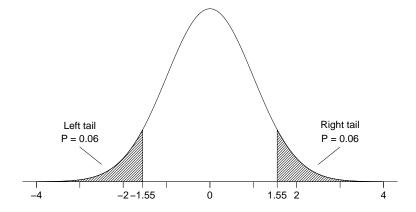
Two-tailed P value

- = probability for test statistic Z being more extreme than the absolute value of $Z_{\rm obs}$.
- ightharpoonup Considers deviations from H_0 in either direction.
- ▶ Is usually preferred to one-tailed *P*.

Inference (inference) 35/ 145

Distribution of test statistic

— under H_0 and graphical derivation of P-value.



One-tailed P = 0.06, two-tailed P = 0.12

Inference (inference) 36/ 145

P-value

- Synonym for "observed significance level".
- ▶ Measures the **evidence against** H_0 :
 - ▶ The smaller the p value, the stronger the evidence against H_0 .
 - \triangleright Yet, a large p as such **does not** provide supporting evidence for H_0 .
- Operationally: the probability of getting a statistic at least as extreme as the observed, given that H_0 is true
- ► However, it is not "the probability that *H*₀ is true"!

Inference (inference) 37/ 145

3.4 Interpretation of *P*-values

- ▶ No mechanical rules of inference
- Rough guidelines
 - "large" value (p > 0.1): consistent with H_0 but not necessarily supporting it,
 - "small" value (p < 0.01): indicates evidence against H_0
 - "intermediate" value ($p \approx 0.05$): weak evidence against H_0
- ▶ Division of p-values into "significant" or "non-significant" by cut-off 0.05 **To be avoided!**

Inference (inference) 38/145

3.5 Confidence interval (CI)

- Range of conceivable values of parameter between lower and upper confidence limits.
- Specified at certain confidence level, commonly 95% (also 90 % and 99% used).
- ► The limits of CI are statistics, random variables with sampling distribution, such that
- ▶ the probability that the random interval covers the true parameter value equals the confidence level (e.g. 95%).

Inference (inference) 39/145

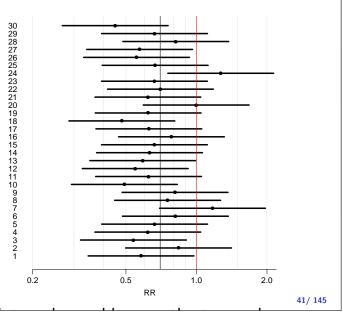
Confidence interval (cont'd)

- ► The latter is the **long-term property** of the **procedure** for calculating CI under hypothetical "repeated sampling".
- ► Yet, the obtained CI from data at hand either covers or does not cover the parameter of interest.
- ▶ (N.B. As with *P* values the accuracy of nominal confidence level depends on lack of bias and on validity of some statistical assumptions.)

Inference (inference) 40/145

Long-term behaviour of CI

Variability of 95% CI under hypothetical repetitions of similar study, when true rate ratio is RR.



Inference (inference)

Example 2: OC & breast ca (cont'd)

- ▶ Observed rate difference RD = 30 per 10^5 y.
- Standard error $SE(RD) = 19.4 \text{ per } 10^5 \text{ y.}$
- ▶ Limits of the 95% approximate CI (per 10⁵ y):
 - lower: $30 1.96 \times 19.4 = -8$,
 - upper: $30 + 1.96 \times 19.4 = 68$
- ► For 90% level, use 1.645 instead of 1.960. For 99% level, 2.58 is the multiplier.

Inference (inference)

42/ 145

Interpretation of obtained CI

Frequentist school of statistics: no probability interpretation! (In contrast to *Bayesian* school).

Single CI is viewed by frequentists as a range of conceivable values of the unknown parameter with which the observed estimate is fairly consistent, taking into account "probable" random error:

- ightharpoonup narrow CI ightharpoonup precise estimation
 - \rightarrow small statistical uncertainty about parameter.
- ightharpoonup wide CI ightharpoonup imprecise estimation
 - ightarrow great uncertainty.

Inference (inference) 43/145

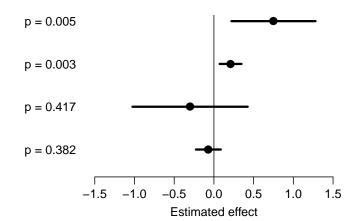
Interpretation of CI (cont'd)

- ▶ Cl gives more quantitative information on the parameter and on statistical uncertainty about its value than *P* value.
- ▶ In particular, interpretation of "non-significant" results, *i.e.* large *P* values:
 - narrow CI about H_0 value:
 - \rightarrow results give support to H_0 .
 - ▶ wide CI about *H*₀ value:
 - \rightarrow results inconclusive.
- ▶ The latter is more commonly encountered.

Inference (inference) 44/ 145

CI and *P*-value

95 % Cls of rate difference δ and P values for $H_0: \delta = 0$ in different studies.



Similar P-values but different interpretation!

Inference (inference) 45/145

3.6 Recommendations

ICMJE: Uniform Requirements for Manuscripts submitted to Biomedical Journals. http://www.icmje.org/

Extracts from section Statistics:

- When possible, quantify findings and present them with appropriate indicators of measurement error or uncertainty (such as confidence intervals).
- ▶ Avoid relying solely on statistical hypothesis testing, such as the use of *p* values, which fails to convey important quantitative information.

Inference (inference) 46/145

Recommendations (cont'd)

Sterne and Davey Smith: Sifting the evidence – what's wrong with significance tests? *BMJ* 2001; **322**: 226-231.

"Suggested guidelines for the reporting of results of statistical analyses in medical journals"

- 1. The description of differences as statistically significant is not acceptable.
- 2. Confidence intervals (CI) for the main results should always be included, but 90% rather than 95% levels should be used.

Inference (inference) 47/145

Recommendations in BMJ (cont'd)

- 3. Cls should not be used as a surrogate means of examining significance at the conventional 5% level.
- 4. Interpretation of CIs should focus on the implications (clinical importance) of the range of values in the interval.
- 5. In observational studies it should be remembered that considerations of confounding and bias are at least as important as the issues discussed in this paper.

Inference (inference) 48/145

Analysis

Nordic Summerschool of Cancer Epidemiology August 2015 Danish Cancer Society http://BendixCarstensen.com/NSCE/2015

analysis

CRUDE ANALYSIS

- ▶ Single incidence rate
- Rate ratio in cohort study
- Rate ratio in case-control study
- Analysis of proportions
- Extensions and remarks

Analysis (analysis) 49/ 145

Single incidence rate

▶ **Parameter** of interest:

 $\lambda = \text{true rate in target population}$

▶ **Estimator**: $\widehat{\lambda} = R$, the empirical rate in a "representative sample" from the population:

$$R = \frac{D}{Y} = \frac{\text{no. of cases}}{\text{person-time}}$$

▶ **Model**: D is Poisson with expectation λY .

▶ Standard error of rate: $SE(R) = R/\sqrt{D}$.

Analysis (analysis) 50/145

Single rate (cont'd)

► Simple approximate 95% CI:

$$[R - EM, R + EM]$$

▶ using 95% **error margin**:

$$EM = 1.96 \times SE(R)$$

▶ Problem: When $D \le 4$, lower limit ≤ 0 !

Analysis (analysis) 51/ 145

Single rate (cont'd)

▶ Better approximation on log-scale:

$$SE(ln(R)) = 1/\sqrt{D}$$

▶ From this we get the 95% error factor (EF)

$$EF = \exp(1.96 \times SE(\ln(R)))$$

where \exp is the exponential function or antilog (inverse of the natural logarithm)

▶ From these items we get 95% CI for λ :

$$[R/EF, R \times EF].$$

▶ These limits are always > 0 whenever $D \ge 1$.

Analysis (analysis) 52/145

Example 4 (cont'd)

- ▶ The observed incidence of breast cancer in Finnish men aged 65-69 y in 1991 was 33 per 10^6 py based on 3 cases.
- Standard error of the rate is:

$${
m SE}(R) = 33 \times \sqrt{1/3} = 19 \ {
m per} \ 10^6 \ {
m y}$$

► The 95% error margin:

EM =
$$1.96 \times 19 = 37 \text{ per } 10^6 \text{ y}$$

 $33 \pm 37 = [-4, 70] \text{ per } 10^6 \text{ y}$

Negative lower limit — illogical!

Analysis (analysis) 53/145

Example 4 (cont'd)

▶ A better approximate CI obtained on the log-rate scale:

$$SE(\ln(R)) = \sqrt{1/3} = 0.577$$

via the 95% error factor:

$$EF = \exp(1.96 \times 0.577) = 3.1$$

from which the confidence limits (both > 0):

$$[33/3.1, 33 \times 3.1] = [10.6, 102] \text{ per } 10^6 \text{py}$$

Analysis (analysis) 54/ 145

Rate estimation in Poisson model

3 male breast cancers in 90,909 person years, corresponding to a rate of 3/0.090909=33 per 10^6 PY

- ▶ Response variable: D no. cases
- Offset variable: log(Y) log-person-years note scaling to units desired.
- Explanatory variable: "1" intercept
- ci.exp transforms back to rate scale.

Analysis (analysis) 55/ 145

4.2 Rate ratio in cohort study

Question: What is the relative risk of cancer in the exposed as compared to the unexposed group?

Parameter of interest is true rate ratio:

$$\rho = \frac{\lambda_1}{\lambda_0} = \frac{\text{rate among exposed}}{\text{rate among unexposed}}$$

Null hypothesis $H_0: \rho = 1$: exposure has no effect.

Analysis (analysis) 56/145

Rate ratio (cont'd)

Summarized data on outcome from cohort study with person-time

Exposure to risk factor	Cases	Person-time
Yes No	D_1 D_0	Y_1 Y_0
total	D_+	Y_{+}

Empirical rates by exposure group provide estimates for the true rates:

$$\hat{\lambda}_1 = R_1 = \frac{D_1}{Y_1}, \qquad \hat{\lambda}_0 = R_0 = \frac{D_0}{Y_0}$$

Analysis (analysis) 57/145

Rate ratio (cont'd)

Point estimator of true rate ratio, ρ , is the empirical rate ratio (RR):

$$\widehat{\rho} = RR = \frac{\widehat{\lambda}_1}{\widehat{\lambda}_0} = \frac{R_1}{R_0} = \frac{D_1/Y_1}{D_0/Y_0} = \frac{D_1/D_0}{Y_1/Y_0}$$

N.B.: The last form is particularly useful in case-control studies — see next section.

Analysis (analysis) 58/145

Rate ratio (cont'd)

$$\ln(RR) = \ln(\hat{\lambda}_1) - \ln(\hat{\lambda}_0)$$

 \Rightarrow variance of ln(RR) = sum of the variances of the log-rates.

Standard error of ln(RR), 95% error factor and approximate 95% CI for ρ :

$$SE(\ln(RR)) = \sqrt{\frac{1}{D_1} + \frac{1}{D_0}}$$

$$EF = \exp(1.96 \times SE(\ln(RR)))$$

$$CI = [RR/EF, RR \times EF].$$

Note: SE of estimate depends inversely on numbers of cases.

Analysis (analysis) 59/ 145

Example 8: Helsinki Heart Study

- ▶ In the study (Frick et al. NEJM 1987) over 4000 men were randomized to daily intake of either:
 - gemfibrozil ("exposed", $N_1 \approx 2000$), or
 - ▶ placebo ("unexposed", $N_0 \approx 2000$).
- ▶ After mean follow-up of 5 y, the numbers of cases of any cancer in the two groups were:

$$D_1 = 31$$
 and $D_0 = 26$.

▶ Rounded person-years were $Y_1 \approx Y_0 \approx 2000 \times 5$ y = 10000 y.

Analysis (analysis) 60/145

Example 8 (cont'd)

Incidence rates 3.1 and 2.6 per 1000 y. Estimate of true rate ratio ρ with SE etc.:

$$\widehat{\rho} = RR = \frac{3.1/1000y}{2.6/1000 y} = 1.19$$

$$SE[ln(RR)] = \sqrt{\frac{1}{31} + \frac{1}{26}} = 0.2659$$

$$EF = exp(1.96 \times 0.2659) = 1.68$$

95 % CI for ρ :

$$[1.19/1.68, 1.19 \times 1.68] = [0.7, 2.0]$$

Two-tailed P = 0.52

Analysis (analysis) 61/145

Rate ratio in Poisson model

- ▶ Response variable: D no. cases in each group
- Offset variable: log(Y) log-person-years note the scaling to units desired for intercept (the rate)
- Explanatory variable: factor(E)
- ci.exp transforms back to rate scale.

Analysis (analysis) 62/145

Rates in Poisson model

- ▶ Response variable: D no. cases in each group
- ▶ Offset variable: log(Y) log-person-years note scaling to units desired for intercept
- Explanatory variable: factor(E) 1
 omit intercept: rates separately for each group.
- ci.exp transforms back to rate scale.

Analysis (analysis) 63/145

4.3 Rate ratio in case-control study

Parameter of interest: $\rho = \lambda_1/\lambda_0$

— same as in cohort study.

Case-control design:

- incident cases occurring during a given period in the source population are collected,
- **controls** are obtained by *incidence density sampling* from those at risk in the source.
- exposure is ascertained in cases and chosen controls.

Analysis (analysis) 64/ 145

Rate ratio in case-control study

Summarized data on outcome:

Exposure	Cases	Controls
yes	D_1	C_1
no	D_0	C_0

- ▶ Can we directly estimate the rates λ_0 and λ_1 from this?
- and the ratio of these?
- NO and YES!
- Rates are not directly estimable from a case-control design.

Analysis (analysis) 65/145

Rate ratio in case-control study

▶ If controls are representative of the person- years in the population, their division into exposure groups estimates the exposure distribution of the person-years:

$$C_1/C_0 \approx Y_1/Y_0$$

▶ Hence, we can estimate the RR by the OR:

$$\widehat{\mathsf{RR}} = \mathsf{OR} = \frac{D_1/Y_1}{D_0/Y_0} = \frac{D_1/D_0}{Y_1/Y_0} \approx \frac{D_1/D_0}{C_1/C_0} = \frac{D_1/C_1}{D_0/C_0}$$

- ightharpoonup RR estimated by the ratio of the case-control ratios (D/C)
- ▶ ... but of course there is a penalty to pay...

Analysis (analysis) 66/145

Rate ratio from case-control study

Standard error for $\ln(OR)$, 95% error factor and approximate CI for ρ :

$$SE(\ln(OR)) = \sqrt{\frac{1}{D_1} + \frac{1}{D_0} + \frac{1}{C_1} + \frac{1}{C_0}}$$

$$EF = \exp(1.96 \times SE(\ln(OR)))$$

$$CI = [OR/EF, OR \times EF]$$

NB. Random error again depends inversely on numbers of cases **and** controls — the penalty, in the two exposure groups.

Analysis (analysis) 67/ 145

Example 9

Use of mobile phone and brain cancer (Inskip et al. NEJM 2001; 344: 79-86).

Daily use	Cases	Controls
$\geq 15 \; min$	35	51
no use	637	625

The RR associated with use of mobole phone longer than 15 min (vs. none) is estimated by the OR:

$$OR = \frac{35/51}{637/625} = 0.67$$

Analysis (analysis)

68/ 145

Example 9 (cont'd)

SE for ln(OR), 95% error factor and approximate CI for ρ :

$$SE(ln(OR)) = \sqrt{\frac{1}{35} + \frac{1}{637} + \frac{1}{51} + \frac{1}{625}} = 0.2266$$

$$EF = exp()1.96 \times 0.2266) = 1.45$$

$$CI = [0.67/1.45, 0.67 \times 1.45] = [0.43, 1.05]$$

N.B. model-adjusted estimate (with 95% CI):

$$OR = 0.6[0.3, 1.0]$$

Analysis (analysis) 69/ 145

OR from binomial model

- ► The intercept is meaningless; only the exposure estimate is relevant
- ▶ The parameter in the model is ln(OR), so using ci.exp gives us the estimated OR same as in the hand-calculation above.

70 / 145

► This is called **logistic regression**

Analysis (analysis)

Analysis of proportions

- ► Suppose we have cohort data with a **fixed risk period**, i.e. all subjects are followed over the same period and therfore has the same length, as well as no losses to follow-up (no censoring).
- ▶ In this setting the **risk**, π , of the disease over the risk period is estimated by simple
- incidence proportion (often called "cumulative incidence" or even "cumulative risk")

Analysis (analysis) 71/145

Analysis of proportions (cont'd)

Incidence proportion:

$$\widehat{\pi} = p = \frac{x}{n}$$

$$= \frac{\text{number of new cases during period}}{\text{size of population-at-risk at start}}$$

Analogously, empirical **prevalence** (proportion) p at a certain point of time t

$$p = \frac{\text{no. of prevalent cases at } t}{\text{total population size at } t} = \frac{x}{n}$$

Analysis (analysis) 72/ 145

Analysis of proportions (cont'd)

- ▶ Proportions (unlike rates) are dimensionless quantities ranging from 0 to 1
- Analysis of proportions based on binomial distribution
- Standard error for an estimated proportion:

$$SE(p) = \sqrt{\frac{p(1-p)}{n}} = p \times \sqrt{\frac{(1-p)}{x}}$$

Depends also inversely on x!

73/145 Analysis (analysis)

Analysis of proportions (cont'd)

```
ightharpoonup CI: p \pm 2 \times SE(p) are within [0;1] if x > 4/(1+4/n)
```

- ▶ This is always true if x > 3 (if x > 2 for n < 12)
- ightharpoonup but the approximation is not good for x < 10
- ightharpoonup \Rightarrow a better approximation is needed.

```
> ci <- function(x,n) round(cbind( x, n, p=p<-x/n, lo=p-2*sqrt(p*(1-p)/n),
                                                                                               hi=p+2*sqrt(p*(1-p)/n)),4)
       > rbind(ci(4,8:10),ci(3,11:13),ci(2,3:5),ci(1,1:2))
        x n p lo hi

[1,] 4 8 0.5000 0.1464 0.8536

[2,] 4 9 0.4444 0.1132 0.7757

[3,] 4 10 0.4000 0.0902 0.7098

[4,] 3 11 0.2727 0.0042 0.5413

[5,] 3 12 0.2500 0.0000 0.5000
         [6,] 3 13 0.2308 -0.0029 0.4645
        [7,] 2 3 0.6667 0.1223 1.2110
[8,] 2 4 0.5000 0.0000 1.0000
[9,] 2 5 0.4000 -0.0382 0.8382
Analysis (drQlysis)1 1 1.0000 1.0000 1.0000
                                                                                                                                         74/ 145
```

Analysis of proportions (cont'd)

- Use confidence limits based on symmetric (normal) $\ln(OR)$:
- Compute error factor:

$$EF = \exp(1.96/\sqrt{np(1-p)})$$

then use to compute confidence interval:

$$p/(p+(1-p)\stackrel{\times}{\div} \mathrm{EF})$$

- Observed x = 4 out of n = 25: $\hat{p} = 4/25 = 0.16$
- Naive CI: $0.16 \pm 1.96 \times \sqrt{0.16 \times 0.84/25} = [0.016; 0.304]$
- Better: EF = $\exp(1.96/\sqrt{25 \times 0.16 \times 0.84}) = 2.913$

CI:
$$0.16/(0.16 + (0.84 \div 2.913)) = [0.061; 0.357]$$

75/ 145 Analysis (analysis)

Analysis of proportions by glm

- ▶ Default is to model logit(p) = ln(p/(1-p)), log-odds
- Using ci.exp gives odds (ω) :

```
\omega = p/(1-p) \quad \Leftrightarrow \quad p = \omega/(1+\omega)
```

Analysis (analysis) 76/145

Extensions and remarks

- All these methods extend to crude analyses of polychotomous exposure variables when each exposure category is separately compared to a reference group (unexposed).
- ► Evaluation of possible monotonic trend in the parameter over increasing levels of exposure: estimation of regression slope.
- CI calculations here are based on simple approximate formulas (Wald statistics):
 - accurate when numbers of cases are large
 - ▶ for small numbers, other methods may be preferred (e.g. "exact" or likelihood ratio-based as shown by glm).
- Crude analysis is insufficient in observational studies: control of confounding needed.

Analysis (analysis) 77/ 145

Stratified analysis

Nordic Summerschool of Cancer Epidemiology August 2015 Danish Cancer Society http://BendixCarstensen.com/NSCE/2015

strat

Stratified analysis

- Shortcomings of crude analysis
- Effect modification
- Confounding
- Steps of stratified analysis
- Estimation of rate ratio
- Mantel-Haenszel estimators
- Matched case-control study

Stratified analysis (strat) 78/ 145

Shortcomings of crude analysis

Crude analysis is misleading, if

- the rate ratio for the risk factor of interest is not constant, but varies by other determinants of the disease
- ...i.e. heterogeneity of the comparative parameter or effect modification
- OR
- ▶ the exposure groups are not comparable w.r.t. other determinants of disease
- ... i.e. bias in comparison or **confounding**

Stratified analysis (strat) 79/145

Remedies

Simple approach for remedy:

- Stratification of data
 by potentially modifying and/or confounding factor(s)
 & use of adjusted estimators
- Conceptually simpler,
 but technically more demanding approach is regression modelling

Stratified analysis (strat)

Effect modification

Example: True incidence rates (per 10^5 y) of lung cancer by occupational asbestos exposure and smoking in a certain population:

AsbestosSmokersNon-smokersexposed60060unexposed12012Rate ratio55Rate difference48048

Is the effect of asbestos exposure the same or different in smokers than in non-smokers?

Stratified analysis (strat) 81/145

Effect modification (cont'd)

Depends how the effect is measured:

- ▶ Rate ratio: constant or **homogenous**
- Rate difference: heterogenous:
 The value of rate difference is modified by smoking.

Smoking is thus an **effect modifier** of asbestos exposure on the absolute scale but not on the relative scale of comparison.

Stratified analysis (strat) 82/145

Example: Incidence of CHD (per 10³ y)

by risk factor E and age: __

Factor E	Young	Old
exposed unexposed	4 1	9 6
rate ratio rate difference	4 3	1.5

- Rate ratio modified by age
- Rate difference not modified.

There is no such thing as interaction without reference to the **effect scale** (*e.g.* additive or multiplicative)

Stratified analysis (strat)

Effect modification (cont'd)

- ▶ Perfect homogeneity is rare
- ▶ Usually comparative parameters are more or less heterogenous across categories of other determinants of disease
- Implications to analysis and presentation?

Stratified analysis (strat)

Example:

Age-specific CHD mortality rates (per 10^4 y) and numbers of cases (D) among British male doctors by cigarette smoking, rate differences (RD) and rate ratios (RR) (Doll and Hill, 1966).

	Smo	kers	Non-smokers			
Age (y)	rate	D	rate	D	RD	RR
35-44	6.1	32	1.1	2	5	5.7
45-54	24	104	11	12	13	2.1
55-64	72	206	49	28	23	1.5
65-74	147	186	108	28	39	1.4
75-84	192	102	212	31	-20	0.9
Total	44	630	26	101	18	1.7

Stratified analysis (strat) 85/ 145

Example (cont'd)

Both comparative parameters appear heterogenous:

- ▶ RD increases by age (at least up to 75 y)
- $\blacktriangleright \ RR$ decreases by age

No single-parameter (common rate ratio or rate difference) comparison captures adequately the joint pattern of rates.

Stratified analysis (strat) 86/ 145

Evaluation of modification

- ► Modification or its absence is an inherent property of the phenomenon:
- cannot be removed or "adjusted" for
- ▶ but it depends on the **scale** on which it is measured
- Problems:
 - Stratum-specific numbers have large random error
 - estimates of stratum specific effect parameters variable even if no true modification present,
 - or essential modification may remain undetected

Stratified analysis (strat) 87/145

Evaluation of modification (cont'd)

- statistical tests for heterogeneity insensitive and rarely helpful
- ▶ ⇒ tempting to assume "no essential modification":
 - + simpler analysis and result presentation,
 - misleading if essential modification present.

Stratified analysis (strat) 88/ 145

Confounding - example

Observational clinical study with comparison of success of treatment between two types of operation for treating renal calculi:

- OS: open surgery (invasive)
- ▶ PN: percutaneous nephrolithotomy (non-invasive)

Treatment	Pts	Op. OK	% OK	%-diff.
OS	350	273	78	
PN	350	290	83	+5

PN appears more succesful than OS?

Stratified analysis (strat)

Example (cont'd)

Results stratified by initial diameter size of the stone:

Size	Treatment	Pts	Op. OK	% OK	%-diff.
< 2 cm:	OS PN	87 270	81 235	93 87	-6
≥ 2 cm:	OS PN	263 80	192 55	73 69	-4

OS seems more succesful in both subgroups.

Is there a paradox here?

Stratified analysis (strat) 90/ 145

Operation example

- ▶ Treatment groups are not comparable w.r.t. initial size.
- ► Size of the stone (SS) is a **confounder** of the association between operation type and success:
 - 1. an independent determinant of outcome (success), based on external knowledge,
 - 2. statistically associated with operation type in the study population,
 - 3. not causally affected by operation type.

Stratified analysis (strat) 91/ 145

Example 13 (cont'd)

- ▶ Instance of "confounding by indication":
 - patient status affects choice of treatment,
 - \Rightarrow bias in comparing treatments.
- ► This bias is best avoided in planning:
 - randomized allocation of treatment.

Stratified analysis (strat) 92/ 145

Grey hair and cancer incidence

Age	Gray hair	Cases	P-years ×1000	Rate /1000 y	RR
Total	yes no	66 30	25 25	2.64 1.20	2.2
Young	yes no	6 11	10 20	0.60 0.55	1.09
Old	yes no	60 19	15 5	4.0 3.8	1.05

Observed crude association nearly vanishes after controlling for age.

Stratified analysis (strat) 93/ 145

Means for control of confounding

Design:

- Randomization
- Restriction
- Matching

Stratified analysis (strat) 94/ 145

Means for control of confounding (cont'd)

Analysis:

- Stratification
- Regression modelling

Only randomization can remove confounding due to **unmeasured** factors.

Other methods provide partial removal, but **residual** confounding may remain.

Stratified analysis (strat) 95/145

Steps of stratified analysis

- Stratify by levels of the potential confounding/modifying factor(s)
- ► Compute stratum-specific estimates of the effect parameter (e.g. RR or RD)
- ► Evaluate similarity of the stratum-specific estimates by "eye-balling" or test of heterogeneity.

Stratified analysis (strat) 96/ 145

Steps of stratified analysis (cont.)

- ▶ If the parameter is judged to be homogenous enough, calculate an adjusted summary estimate.
- If effect modification is judged to be present:
 - report stratum-specific estimates with Cls,
 - if desired, calculate an adjusted summmary estimate by appropriate standardization — (formally meaningless).

Stratified analysis (strat) 97/ 145

Estimation of rate ratio

- Suppose that true rate ratio ρ is sufficiently homogenous across strata (no modification), but confounding is present.
- Crude RR estimator is biased.
- Adjusted summary estimator, controlling for confounding, must be used.
- ► These estimators are **weighted** averages of stratum-specific estimators.

Stratified analysis (strat) 98/ 145

Adjusted summary estimators

Different weighting methods:

- maximum likelihood (ML)
- weighted least squares (WLS)
- Mantel-Haenszel (MH) weights
- ▶ (direct) standardization by external standard population (CMF)
- standardized morbidity ratio (SMR)

Stratified analysis (strat) 99/ 145

Mantel-Haenszel estimators

Cohort study, data summary in each stratum k:

Exposure	Cases	Person-time
yes no	$D_{1k} \\ D_{0k}$	$Y_{1k} \ Y_{0k}$
Total	D_{+k}	Y_{+k}

Stratum-specific rates by exposure group:

$$R_{1k} = D_{1k}/Y_{1k}, \quad R_{0k} = D_{0k}/Y_{0k}$$

... weighted together, by a multiplicative (log-linear) model $\ln(R_{1k}) = \beta + \ln(R_{0k})$

 β a common log-RR across strata. Stratified analysis (strat)

100/145

Mantel-Haenszel estimator

- \blacktriangleright Combination of stratum-specific RRs as a proxy for a model estimate of β
- Formulae devised in times of the hand-calculator
 - before the advent of computers
- Replaced by statistical models
- Out of date since about mid-1990s

Stratified analysis (strat) 101/ 145

Gray hair & cancer (cont'd)

Stratified analysis (strat)

102/145

Gray hair & cancer (cont'd)

Crude and adjusted risk estimate by Poisson model:

```
> library( Epi )
> ci.exp( glm( D ~ hair
                           , offset=log(Y), family=poisson ) )
                       2.5%
          exp(Est.)
                               97.5%
(Intercept) 1.2 0.8390238 1.716280
               2.2 1.4288764 3.387277
hairGray
> ci.exp( glm( D ~ hair + age, offset=log(Y), family=poisson ) )
         exp(Est.) 2.5%
                                 97.5%
(Intercept) 3.7782269 2.49962654 5.7108526
hairGray 1.0606186 0.67013527 1.6786339
ageYoung
          0.1470116 0.08418635 0.2567211
```

Stratified analysis (strat) 103/145

Case-control study of Alcohol and oesophageal cancer

- ► Tuyns et al 1977, see Breslow & Day 1980,
- ▶ 205 incident cases,
- ▶ 770 unmatched population controls,
- ▶ Risk factor: daily consumption of alcohol.
- Crude summary:

Exposure $\geq 80 \text{ g/d}$	Cases	Controls	OR
yes	96	109	5.64
no	104	666	

Stratified analysis (strat) 104/145

Crude analysis of CC-data

The odds-ratio of oesophageal cancer, comparing high vs. low alcohol consumption is 5.64[4.00;7.95]

Stratified analysis (strat) 105/145

Stratification by age

Age	Exposure $\geq 80~\mathrm{g/d}$	Cases	Controls	EOR
25-34	yes	1	9	∞
	no	0	106	
35-44	yes	4	26	5.05
	no	5	164	
45-54	yes	25	29	5.67
	no	21	138	
55-64	yes	42	27	6.36
	no	34	139	
65-74	yes	19	18	2.58
	no	36	88	
75-84	yes	5	0	∞
	no	8	31	
		•	-	

106/145

NB! Selection of controls: inefficient study Should have employed stratified sampling by age.

Should have employed stratified sampling by age Stratified analysis (strat)

```
Stratified analysis
    > ca <- c(1, 0, 4, 5, 2, 2, 4, 3, 1, 3, 5, 8)
> co <- c(9, 106, 26, 164, 29, 138, 27, 139, 18, 88, 0, 31)
> alc <- rep( c(">80", "<80"), 6)
    > age <- factor( rep( seq(25,75,10), each=2 ) )</pre>
    > data.frame( ca, co, alc, age )
        ca co alc age
        1 9 > 80 25
        0 106 <80 25
       4 26 >80 35
       5 164 <80 35
       2 29 >80 45
       2 138 <80 45
    7
        4 27 >80
                     55
        3 139 <80
       1 18 >80 65
    9
    10 3 88 <80 65
    11 5 0 >80 75
    12 8 31 <80 75
Stratified analysis (strat)
                                                                                            107/ 145
```

Stratified analysis

The "age:" operator produces a separate alcohol-OR for each age class:

The age-specific ORs are **very** variable...

108/145

Oesophageal cancer CC — effect modification?

- ▶ Stratum-specific ORs somewhat variable.
- Random error in some of them apparently large
- Only weak evidence against homogeneity, so assumption of a common rate ratio seems plausible.

Stratified analysis (strat) 109/145

Oesophageal cancer CC — confounding?

- ▶ Is exposure associated with age in the study population?
- Look at variation in the age-specific prevalences of exposure among controls.
- ▶ Adjustment for age is generally reasonable.
- ► There is substatial age-confounding of the alc-OR:

Note: there exist no **test** for confounding — only test for effect modification (interaction).

Stratified analysis (strat) 110/ 145

Regression models

Nordic Summerschool of Cancer Epidemiology August 2015 Danish Cancer Society http://BendixCarstensen.com/NSCE/2015

regress

Regression modeling

- ▶ Limitations of stratified analysis
- Log-linear model for rates
- Additive model for rates
- Model fitting
- ▶ Problems in modelling

Regression models (regress) 111/ 145

Limitations of stratified analysis

- Multiple stratification:
 - many strata with sparse data
 - ▶ loss of precision
- Continous risk factors must be categorized
 - ▶ loss of precision
 - arbitrary (unreasonable) assumptions about effect shape
- More than 2 exposure categories:
 - ▶ Pairwise comparisons give inconsistent results
 - (non)Linear trends not easily estimated

Regression models (regress) 112/ 145

Limitations (cont'd)

- ▶ Joint effects of several risk factors difficult to quantify
- Matched case-control studies:
 difficult to allow for confounders & modifiers not matched on.

These limitations may be overcome to some extent by regression modelling.

Key concept: statistical model

Regression models (regress) 113/145

Log-linear model for rates

Assume that the theoretical rate λ depends on **explanatory variables** or **regressors** X, Z (& U, V, ...) according to a **log-linear** model

$$\ln(\lambda(X, Z, \dots)) = \alpha + \beta X + \gamma Z + \dots$$

Equivalent expression, multiplicative model:

$$\lambda(X, Z, \dots) = \exp(\alpha + \beta X + \gamma Z + \dots)$$
$$= \lambda_0 \rho^X \tau^Z \dots$$

Regression models (regress) 114/145

Log-linear model (cont'd)

Model parameters

 $lpha = \ln(\lambda_0) = ext{intercept, log-baseline rate } \lambda_0$ (i.e. rate when $X = Z = \cdots = 0$) $eta = \ln(
ho) = ext{slope,}$ change in $\ln(\lambda)$ for unit change in X, adjusting for the effect of Z (& U, V, \ldots) $e^{\beta} =
ho = ext{rate ratio for unit change in } X$.

No effect modification w.r.t. rate ratios assumed in this model.

Regression models (regress) 115/ 145

Lung cancer incidence, asbestos exposure and smoking

Dichotomous explanatory variables coded:

- ightharpoonup X = asbestos: 1: exposed, 0: unexposed,
- ightharpoonup Z = smoking: 1: smoker, 0: non-smoker

Log-linear model for theoretical rates

$$\ln(\lambda(X,Z)) = 2.485 + 1.609X + 2.303Z$$

Regression models (regress) 116/ 145

Log-linear model: Variables

	Rates		Variables			
			X		\overline{Z}	
Asbestos	Smoke	Non-sm	Smoke	Non-sm	Smoke	Non-sm
exposed	600	60	1	1	1	0
unexposed	120	12	0	0	1	0

Regression models (regress) 117/ 145

Lung cancer, asbestos and smoking

Entering the data:

— note that the data are artificial assuming the no. of PY among asbestos exposed is 1/4 of that among non-exposed

Regression models (regress) 118/ 145

Lung cancer, asbestos and smoking

- Regression modelling
- Multiplicative (default) Poisson model
- 2 equivalent approaches
 - ▶ D response, ln(Y) offset
 - ▶ D/Y response, Y weight (warning can be ignored)
 - the latter approach also useful for additive models

```
> mo <- glm( D ~ A + S, offset=log(Y), family=poisson ) 
> mm <- glm( D/Y ~ A + S, weight=Y, family=poisson ) 
> ma <- glm( D/Y ~ A + S, weight=Y, family=poisson(link=identity) )
```

Regression models (regress)

Lung cancer, asbestos and smoking

Summary and extraction of parameters:

Summary and extraction of parameters

```
> ci.exp( mo )
           exp(Est.)
                        2.5%
             12 8.059539 17.867026
                  5 3.977142 6.285921
                  10 6.732721 14.852836
> ci.exp( mo, Exp=F )
           Estimate 2.5% 97.5%
(Intercept) 2.484907 2.086856 2.882957
           1.609438 1.380563 1.838312
           2.302585 1.906979 2.698191
> ci.exp( mm, Exp=F )
           Estimate
                      2.5%
(Intercept) 2.484907 2.086856 2.882957
           1.609438 1.380563 1.838312
           2.302585 1.906979 2.698191
```

Parameters are the same for the two modelling approaches.

Regression models (regress) 121/ 145

Interpretation of parameters

 $\alpha = 2.485 = \ln(12)$, log of baseline rate,

 $\beta=1.609=\ln(5),$ log of rate ratio $\rho=5$ between exposed and unexposed for asbestos

 $\gamma=2.303=\ln(10)$, log of rate ratio $\tau=10$ between smokers and non-smokers.

Rates for all 4 asbestos/smoking combinations can be recovered from the above formula.

Regression models (regress)

Log-linear model: Estimated rates

	Rates		Parameters	
Asbestos	Smokers	Non-smokers	Smokers	Non-smokers
exposed unexposed	600 120		$\frac{\alpha + \gamma + \beta}{\alpha + \gamma}$	$\alpha + \beta$ α
Rate ratio Rate difference	5 480		$\ln(\beta)$ β	$\frac{\ln(\beta)}{\beta}$

Regression models (regress) 123/ 145

Log-linear model (cont'd)

Model with effect modification (two regressors only)

$$\ln(\lambda(X,Z)) = \alpha + \beta X + \gamma Z + \delta XZ,$$

equivalently

$$\lambda(X, Z) = \exp(\alpha + \beta X + \gamma Z + \delta XZ) = \lambda_0 \rho^X \tau^Z \theta^{XZ}$$

where α is as before, but

 $\beta = \text{log-rate ratio } \rho \text{ for a unit change in } X \text{ when } Z = 0,$

 $\gamma = \text{log-rate ratio } \tau \text{ for a unit change in } Z \text{ when } X = 0$

Regression models (regress) 124/ 145

Interaction parameter

 $\delta = \ln(\theta)$, interaction parameter, describing effect modification

For binary X and Z we have

$$\theta = e^{\delta} = \frac{\lambda(1,1)/\lambda(0,1)}{\lambda(1,0)/\lambda(0,0)},$$

i.e. the ratio of relative risks associated with X between the two categories of Z.

Regression models (regress) 125/ 145

Log-linear model: Estimated rates

	Rates		Parameters	
Asbestos	Smokers	Non-smokers	Smokers	Non-smoker
exposed unexposed	600 120		$\frac{\alpha + \gamma + \beta + \delta}{\alpha + \gamma}$	$\alpha + \beta$ α
Rate ratio Rate difference	5 480		$\frac{\ln(\beta + \delta)}{\beta + \delta}$	$\frac{\ln(\beta)}{\beta}$

Regression models (regress) 126/ 145

Lung cancer, asbestos and smoking

- ▶ There is no interaction on the multiplicative scale:
- ▶ interaction parameter is 1,
- asbestos and smoking parameters are the same,
- but SEs are larger because they refer to RRs for levels X=0 and Z=0 respectively and not both levels **jointly**

Regression models (regress) 127/ 145

Additive model for rates

General form with two regressors

$$\lambda(X, Z) = \alpha + \beta X + \gamma Z + \delta XZ$$

 $\alpha = \lambda(0,0)$ is the baseline rate,

- $\beta = \lambda(x+1,0) \lambda(x,0)$, rate difference for unit change in X when Z=0
- $\gamma = \lambda(0,z+1) \lambda(0,z)$, rate difference for unit change in Z when X=0,

Regression models (regress) 128/145

Additive model (cont'd)

 $\delta = \text{interaction parameter}.$

• For binary X, Z:

$$\delta = [\lambda(1,1) - \lambda(1,0)] - [\lambda(0,1) - \lambda(0,0)]$$

- ▶ If no effect modification present, $\delta = 0$, and
- β = rate difference for unit change in X for all values of Z
- γ = rate difference for unit change in Z for all values of X,

Regression models (regress) 129/ 145

Example: Additive model

A very clear interaction (effect modification)

Regression models (regress) 130/ 145

$$\lambda(X, Z) = \alpha + \beta X + \gamma Z + \delta XZ = 12 + 48X + 108Z + 432XZ$$

- $\alpha=12$, baseline rate, i.e. that among non-smokers unexposed to asbestos (reference group),
- $\beta=$ 48 (60-12), rate difference between asbestos exposed and unexposed among non-smokers only,
- $\gamma=108~(=120-12)$, rate difference between smokers and non-smokers among only those unexposed to asbestos
- $\delta=$ excess of rate difference between smokers and non-smokers among those exposed to asbestos:

$$\delta = (600 - 120) - (60 - 12) = 432$$

Regression models (regress) 131/ 145

Model fitting (cont'd)

Output from computer packages will give:

- parameter estimates and SEs,
- goodness-of-fit statistics,
- fitted values.
- residuals,...

May be difficult to interpret!

Model checking & diagnostics:

- assessment whether model assumptions seem reasonable and consistent with data
- involves fitting and comparing different models

Regression models (regress) 132/ 145

Problems in modelling

- Simple model chosen may be far from the "truth".
- possible bias in effect estimation, underestimation of SEs.
- Multitude of models fit well to the same data which model to choose?
- Software easy to use
 - easy to fit models blindly,
 - possibility of unreasonable results.

Regression models (regress) 133/ 145

Modeling

- Modelling should not substitute but complement crude & stratified analyses:
 - Crude and stratified analyses are initial modeling steps
 - ► Final model for reporting developed mainly from subject matter knowledge
- Adequate training and experience required.
- ► Ask help from professional statistician!
- **Collaboration** is the keyword.

Regression models (regress)

Conclusion

Nordic Summerschool of Cancer Epidemiology August 2015 Danish Cancer Society http://BendixCarstensen.com/NSCE/2015

concl-analysis

Concluding remarks

Epidemiologic study is a

Measurement excercise

Target is a parameter of interest, like

- incidence rate
- rate ratio
- relative risk
- difference in prevalences

Result: Estimate of the parameter.

Conclusion (concl-analysis) 135/145

Estimation and its errors

Like errors in measurement, estimation of parameter is prone to error:

```
estimate = true parameter value
+ systematic error (bias)
+ random error
```

Conclusion (concl-analysis)

136/ 145

Sources of bias

- confounding, non-comparability,
- measurement error, misclassification,
- ▶ non-response, loss to follow-up,
- sampling, selection

Conclusion (concl-analysis)

137/ 145

Sources of random error

- biological variation between and within individuals in population
- measurement variation
- sampling (random or not)
- allocation of exposure (randomized or not)

Conclusion (concl-analysis) 138/ 145

Random sampling

- relevant in descriptive studies
- estimation of parameters of occurrence of given health outcomes in a target population
- target population well-defined, finite, restricted by time and space
- representativeness of study population (sample) important

Conclusion (concl-analysis)

139/ 145

Randomization

- relevant in causal studies
- estimation of comparative parameters of effect of an exposure factor on given health outcomes
- abstract (infinite) target population
- comparability of exposure groups important
- study population usually a convenience sample from available source population

Conclusion (concl-analysis)

140/ 145

Controlled randomness

If **controlled randomness** (random sampling or randomization) is employed as appropriate

 \Rightarrow parameter estimate has a well defined

sampling distribution

This forms the basic tool used in **statistical inference** concerning the value of the parameter

- point estimation
- statistical testing, P-value
- confidence interval

Conclusion (concl-analysis) 141/145

Controlled randomness (cont'd)

Question: How often controlled randomness actually employed in epidemiology?

Answer: Rarely!

"In most epidemiologic studies, randomization and random sampling play little or no role in the assembly of study cohorts."

(Greenland S. Epidemiology 1990; 1: 421-9)

Conclusion (concl-analysis) 142/145

Implications

"... probabilistic interpretations of conventional statistics are rarely justified ... such interpretations may encourage misinterpretation of nonrandomized studies."

"... the continuing application of tests of significance to such non-randomized investigations is inappropriate" (Greenland 1990)

"Confidence intervals should be relegated to a small part of both the results and discussion section as an indication, but no more, of the possible influence of chance imbalance on the result." (Brennan & Croft. *BMJ* 1994; **309**: 727-30)

Conclusion (concl-analysis) 143/145

Recommendations

Possible remedies for these problems:

- de-emphasize inferential statistics in favor of pure data decriptors: graphs and tables,
- adopt statistical techniques based on more realistic probability models than those in common use,
- subject the results of these to influence and sensitivity analysis.

(from Greenland 1990)

Interpretation of obtained values of inferential statistics

- not mechanical reporting!

Conclusion (concl-analysis) 144/145

Conclusion

"In presenting and discussing the results of an observational study the greatest emphasis should be placed on bias and confounding." (Brennan and Croft 1994)

Motto (Campbell & Machin 1983):

STATISTICS is about COMMON SENSE and GOOD DESIGN!

Conclusion (concl-analysis)