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Internet resources on cancer statistics
NORDCAN : Cancer Incidence and Mortality in the Nordic

Countries, Version 4.0. Association of Nordic
Cancer Registries, Danish Cancer Society, 2002.
http://www-dep.iarc.fr/nordcan.htm

NORDCAN is a graphical package providing data on the

incidence of, and mortality from 40 major cancers for 80

regions of the Nordic countries (Denmark, Finland,

Iceland, Norway and Sweden). Using NORDCAN, these

data can be presented as a variety of tables and graphs

that can be easily exported or printed. NORDCAN allows

countries and cancer sites to be grouped and compared as

desired.

GLOBOCAN 2008 : Cancer Incidence and Mortality
Worldwide in 2008 http://globocan.iarc.fr/
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What is Epidemiology?
Some textbook definitions of epidemiology:
Greek: epi = upon, demos = people

� “study of the distribution and determinants of disease
frequency in man” (MacMahon and Pugh, 1970)

� “study of the distribution and determinants of health
related states and events in specified populations,. . . ”
(Last (ed.) Dictionary of Epidemiology, 2000)

� “discipline on principles of occurrence research in
medicine” (Miettinen, 1985)
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Different epidemiologies
� descriptive epidemiology

— monitoring & surveillance of diseases for planning of
health services
— a major activity of cancer registries.

� etiologic or “analytic” epidemiology
— study of cause-effect relationships

� disease epidemiologies — e.g. of cancer, cardiovascular
diseases, infectious diseases, musculoskeletal disorders,
mental health, . . .

� determinant-based epidemiologies — e.g. occupational
epidemiology, nutritional epidemiology, . . .

� clinical epidemiology — study of diagnosis, prognosis and
effectiveness of therapies in patient populations
— basis of evidence-based medicine
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Frequency (from Webster’s Dictionary)

Etymology: frequentia = assembly, multitude, crowd.

1. Also, frequency. the state or fact of being frequent;
frequent occurrence. We are alarmed by the frequency of
fires in the neighborhood.

2. Rate of occurrence:
The doctor has increased the frequency of his visits.

3. Physics: number of periods or . . . regularly occurring
events . . . of any given kind in unit of time, usually in one
second.

4. Math: the number of times a value recurs in a unit
change of the independent variable of a given function.

5. Statistics: the number of items occurring in a given
category. Cf. relative frequency.

Meanings 2 and 5 are both relevant in epidemiology.

But what is “rate” and “occurrence”?
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Cancer i Norden 1997 (NORDCAN)
Frequency of cancer (all sites excl. non-melanoma skin) in
Nordic male populations expressed by different measures:

New Crude ASR Cumul.
cases rate (World) risk SIR

Denmark 11,787 452 281 27.8 104
Finland 10,058 401 269 26.5 101
Iceland 633 464 347 32.6 132
Norway 10,246 469 294 29.4 109
Sweden 19 908 455 249 25.4 93

� Where is the frequency truly highest, where lowest?

� What do these measures mean?
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Questions on frequency & occurrence
How many women in Denmark:

� are carriers of breast cancer today? — prevalence

� will contract a new breast ca. during 2007? — incidence

� die from breast ca. in 2007? — mortality

� will be alive after 5 years since diagnosis among those
getting breast ca. in 2007? — survival

� are cured from breast cancer during 2007? — cure
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Questions on frequency & occurrence
� What is the relative frequency or/and rate of occurrence

of these states and events?

� How great are the risks of these events?

� Is the frequency/occurrence/risk of breast cancer greater
among nulliparous than parous women?

� What are the excess and relative risks for nulliparous
compared to parous women?

� What is the dose-response relationship between
occupational exposure to crystalline silica and the risk of
getting lung cancer in terms of level and length of
exposure?
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What is risk?
What do we mean by “risk of disease S”?

(a) probability of getting S during a given risk period
→ incidence probability,

(b) rate of change of that probability
→ hazard or intensity,

(c) probability of carrying S at a given time point
→ prevalence probability.

Most commonly meaning (a) is attached with risk.
NB: “Risk” should not be used in the meaning of risk factor
However, in risk assessment literature: “hazard” is often
used in that meaning. In statistics, though, hazard refers to
notion (b): change of probability per unit time.

Basic Concepts 9/ 1

Risks are conditional probabilities
� There are no “absolute risks”.

� All risks are conditional on a multitude of factors, like

– length of risk period (e.g. next week or lifetime),
– age and gender,
– genetic constitution,
– health behaviour & environmental exposures.

� In principle each individual has a “personal” value for the
risk of given disease in any defined risk period, depending
on his/her own risk factor profile.

� Yet, these individual risks are latent and unmeasurable.

� Average risks of disease in large groups sharing common
characteristics (like gender, age, smoking status) are
estimable from appropriate epidemiologic studies by
pertinent measures of occurrence.
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Types of epidemiologic studies
Can crudely be classified along the following axes:

� study question: descriptive ↔ causal

� study unit: individual ↔ aggregate (ecological study)

� allocation of exposure: experimental ↔ observational

� population: closed (cohort) ↔ open (dynamic)

� dimensionality: cross-sectional ↔ longitudinal

� timing of observations: concurrent ↔ historical
(“pro-” vs. “retrospective”)

� sampling of exposure data: cohort ↔ case-control

Focus in this course: observational, and longitudinal cohort
and case-control studies.
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Descriptive and causal questions
Descriptive: What is the occurrence of outcome C in different

population groups.
— Medical demography

Descriptive (II) — groups defined e.g. by exposure to a
determinant or risk factor X?

Causal (also etiological or “analytical”): What is the
occurrence of outcome C in a population exposed
to risk factor X as compared to . . . what the
occurrence in the same population would have
been, if not exposed?

N.B.: Causal question — counterfactual conditional !

Challenge: How to find a comparable group of unexposed?
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Experimental and observational studies
Allocation of exposure in etiologic studies?

• Experimental: Exposure controlled by investigators, its
levels being randomized among the study subjects.

+ Comparability of exposure groups.

+ Feasible in clinical and preventive trials.

– Ethically impossible for hazardous exposures.

• Observational: Exposure imposed by the own behaviour of
the subjects themselves & and by their environment.

– Possibility of confounding: due to other determinants of
the outcome, correlated with exposure.

* Challenges: Valid: and efficient non-randomized design
and statistical analysis.
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Experimental and observational studies
Allocation of exposure or risk factor in causal studies?

Experimental (Intervention trial): Exposure is controlled by
investigators; its levels are allocated among
recruited subjects by randomization,

⇒ comparability of exposure groups.

Observational: Exposure imposed by own behaviour of study
subjects and/or by their environment,

⇒ possibility of confounding due to other
determinants.
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Time dimensionality of a study
Cross-sectional: Outcome status and its prevalence in

population at given time point are studied, e.g.

� number of Danish citizens living with
existing cancer on 13 August 2007.

Longitudinal: Change in health status, like the incidence of
new cases over a time period is of interest, e.g.

� number of Danish citizens getting a new
cancer diagnosed during year 2007.

Causal question −→ longitudinal study preferred.
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Study population & study base
Types of study population & its membership defined

� closed – cohort: members taken by certain event, e.g.

1. birth cohort, people born during same year,
2. workers employed by Carlsberg brewery during 1970’s,

followed up since then, even after retirement

� open – dynamic: defined by changeable status, e.g.

1. citizens of Copenhagen, currently resident;
2. catchment population of the Oncological Clinic at

Rigshospitalet (CPH),

Study base = study population × its experience in time.
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Study base (SB): population experience
Cross-sectional: SB = study population at a time point,

Longitudinal: SB comprises follow-up times of individuals in
the study population over a given period.

Cohort: Follow-up time = period
from entry
until a single exit at which
outcome or censoring occurs.

Dynamic: Follow-up time consists of possibly
several periods of membership since
the first entry until the final exit.

� Follow-up calculation
complicated.

� Approximation by
mid-population.
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Nordic Summerschool of Cancer Epidemiology
15–26 August 2011
Copenhagen
http://BendixCarstensen.com/NSCE

Logarithms and exponentials
102 = 10× 10

103 = 10× 10× 10

102 × 103 = 105

103/102 = 101

(103)2 = 106

102/102 = 100 = 1

102/103 = 10−1 = 1/10

101/2 × 101/2 = 101

101/3 × 101/3 × 101/3 = 101

100.3010 = 2

log10(2) = 0.3010

100.4771 = 3

log10(3) = 0.4771Matematical reminder 18/ 1

Multiplication and division
2× 3 = 6

100.3010 × 100.4771 = 100.7781

100.7781 = 6

log10(2) = 0.3010

log10(3) = 0.4771

0.3010 + 0.4771 = 0.7781

100.7781 = 6

In general: log(xy) = log(x) + log(y)

log(x/y) = log(x)− log(y)

log(xa) = a log(x)
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Natural logarithms e = 2.7183
loge(e) = 1

e0.6931 = 2

loge(2) = 0.6931

e1.0986 = 3

loge(3) = 1.0986

2× 3 = 6

e0.6931 × e1.0986 = e1.7918

e1.7918 = 6

In general: ex × ey = ex+y

ex/ey = ex−y

(ex)y = ex×y
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Names for the logartithms
Engineers and calculators:

log is the logarithm to base 10.

ln is the logarithm to base e, the natural log

Matematicians:

log is the logarithm to base e, the natural log

log10 is the logarithm to base 10.

We use log for the natural logarithm, and explicitly log10 when
this is needed.
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Why natural logarithms?
For small values of x: ex ≈ 1 + x

e−x ≈ 1− x

ln(1 + x) ≈ x

ln(1− x) ≈ −x

For example: ln(1.01) = 0.01

ln(0.99) = −0.01

But: log10(1.01) = 0.4343× 0.01

log10(0.99) = 0.4343×−0.01

In general: log10(x) = 0.4343× ln(x)
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What is R?
� A practical calculator:

� You can see what you compute
� ...and change easily to do similar calculations.

� A statistical program.

� An environment for data analysis and graphics.

� Free.

� Runs on any computer.

� Updated every 6 months.
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A simple calculator
R lets you enter simple arithmetic and giver you back the
ansver straightaway:

> 5+8

[1] 13

> sqrt( 1/12 + 1/17 )

[1] 0.3770370

> exp( 1.96 * sqrt( 1/12 + 1/17 ) )

[1] 2.093825

> D0 <- 12

> D1 <- 17

> exp( 1.96 * sqrt( 1/D0 + 1/D1 ) )

[1] 2.093825

Handy in daily life too.
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A smart calculator
Case-control study of MI:

Men Women

PA index Case Cont Case Cont

2500+ kcals 141 208 49 58
< 2500 kcals 144 112 32 45

Total 285 320 81 103

> (141/208)/(144/112)

[1] 0.5272436

> (49/58)/(32/45)

[1] 1.188039
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A smart calculator

> D1 <- c(141, 49)

> D0 <- c(144, 32)

> H1 <- c(208, 58)

> H0 <- c(112, 45)

> OR <- (D1/D0)/(H1/H0)

> OR

[1] 0.5272436 1.1880388

Things done in parallel for the two exposure groups.
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R for epidemiology
Versatile graphics:

� Simple graphs easy

� Complicated graphs possible

� You can add things to a graph

� Interactive graphs:
� Put things on with the mouse
� Identify points with the mouse
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Calendar time
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Getting your graphs out
You can save graphs to disk and later fetch them into your
documents in almost any format you like:
(.eps, .pdf, .emf, .bmp, .png).

You can choose to save graphs from the screen or to write
directly to a file.
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Tools for anything!
� More than 1500 add-on packages.

� Several packages for epidemiology:
� Epi: Mostly chronic disease epidemiology:

� Cohort studies, split follow-up time
� Lexis diagram, sevral timescales
� Multistate model support
� Advanced tabulation
� Parameter reporting

� epicalc: For a book by Virasakdi Chongsuvivatwong.
� epitools: Mostly infectious diseases.
� epiR: Leaning towards veterinay epidemiology.

� Install and update packages from within R.
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Versatility is paid by steep learning curve
Command line interface:

� You must write commands

� You must know what they are called

� Easy to repeat analyses, because you always have a script
of what you did.

� There is a simple editor built into R.

� A good workbook introduction is:
www.mhills.pwp.blueyonder.co.uk/Rwork_book.

html

� Many other introductions to R on the R homepage.

R and how we use it 32/ 1

R in this course
� Only use R as a simple calculator.

� No need for for a lot of fancy stuff.

� The script editor (we will show you what that is) will help
you keep your solutions for future reference.

� A short recap of exercises tomorrow morning, and
tomorrow afternoon.

� After the course, solutions to all exercises will be provided.
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Measuring frequency:
Cases, population, time

Quantification of the occurence of disease (or any other
health-related state or event) requires specification of:

1. what is meant by a case, i.e., an individual in a
population who has or gets the disease
(more generally: possesses the state or undergoes the
event of interest).
⇒ challenge to accurate diagnosis and classification!

2. the population from which the cases originate.

3. the time point or period of observation.
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Types of occurrence measures
� Longitudinal – incidence measures.

� Cross-sectional – prevalence measures.

General form of frequency or occurrence measures

numerator

denominator

Numerator: number of cases observed in the population
— at a certain time point or during a specified period.

Denominator: generally proportional to the size of the
population from which the cases emerge.

Numerator and denominator must cover the same population.
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Prevalence
Prevalence:
Point prevalence, is the proportion of existing cases (old and
new) in a population at a single point of time.

P =
No. of existing cases in a population at one point of time

No. of people in the population at the same point of time

This measure is called point prevalence, because it refers to a
single point in time. It is often referred to simply as prevalence.
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Incidence measures
Incidence proportion (Q) over a fixed risk period:

Q =
number of incident (new) cases during period

size of pop’n at risk at start of the period

Also called cumulative incidence or
cumulative risk (e.g. by IS).

Indidence rate (I) over a defined observation period:

I =
number of incident (new) cases during period

sum of follow-up times of pop’n at risk

Also called incidence density or hazard.

Later we will provide a more precise mathematical definition of
the concepts.
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Example: Follow-up of a small cohort
◦ = exit with censoring; outcome not observed,
• = exit with outcome event (disease onset) observed

2002 2004 2006 2008

1

2

3

4

5

Calendar year

●

●

●

●

●

●

●

●

●

●

0 1 2 3 4 5 6 7
Follow−up time

●

●

●

●

●

●

●

●

●

●

In
di

vi
du

al

Inc. rate =
2 cases

5 + 3.5 + 5 + 1.5 + 5 years
= 10 per 100 years

No censoring in the 5-year risk period ⇒ can calculate:

Inc. prop. = 2/5 = 0.4 (40 %)
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Properties of incidence proportion
� Dimensionless quantity ranging from 0 to 1

(0% to 100%) = relative frequency,

� Estimates the average theoretical risk or probability of
the outcome occurring during the risk period,
in the population at risk — i.e. among those who are
still free from the outcome at the start of the period,

� Simple formula valid when the follow-up time is fixed &
equals the risk period, and when there are no competing
events or censoring (see below),

� Competing events & censoring ⇒
Calculations need to be corrected using special methods
of survival analysis.
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Properties of incidence rate
� Like a frequency quantity in physics; it is a scaled

quantity; it is measured in time−1: cases/1000 Y, say.

� Estimates the average underlying intensity or hazard
rate of the outcome in a population,

� Estimation accurate in the constant hazard model,
� Calculation straightforward also with competing events

and censored observations.

� Hazard depends on age (& other time variables)
⇒ rates specific to age group etc. needed,

� Incidence proportions can be estimated from rates.
In the constant hazard model with no competing risks:

Q = 1− exp(−I ×Δ) ≈ I ×Δ

(we shall return to the derivation of this).
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Competing events and censoring
The outcome event of interest (e.g. onset of disease) is not
always observed for all subjects during the chosen risk period.

� Some subjects die (from other causes) before the event.
⇒ Death is a competing event after which the outcome
cannot occur any more.

� Others emigrate and escape national disease registration,
or the whole study is closed “now”, which prematurely
interrupts the follow-up of some individuals,
⇒ censoring, withdrawal, or loss to follow-up

Competing events and censorings require special statistical
treatment in incidence and risk calculations.
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Follow-up of another small cohort

2001 2003 2005 2007
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Two censored observations ⇒ can calculate the rate:

I = 2/12.5 y = 16 per 100 years

but the 5-year Q is no more 2/5 !
However, under constant rate model

Q = 1− exp(−5× 2/12.5) = 0.55
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Person-years in dynamic populations
With dynamic study population individual follow-up times are
always variable and impossible to measure accurately.

Common approximation – mid-population principle:

� Let the population size be Nt−1 at start and Nt at the
end of the observation period t with length Lt years,

� Mid-population for the period: N̄t =
1
2
× (Nt−1 +Nt).

� Approximate person-years: Yt ≈ N̄t × Lt.

NB. The actual study population often contains also some
already affected, who thus do not belong to the population at
risk. With rare outcomes the influence of this is small.
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Male person-years in Finland 1991-95
Total male population (1000s) on 31 December by year:

1990 1991 1992 1993 1994 1995

2431 2443 2457 2470 2482 2492

Approximate person-years (1000s):

1992: 1
2
× (2443 + 2457)× 1 = 2450

1993-94: 1
2
× (2457 + 2482)× 2 = 4937

1991-95: 1
2
× (2431 + 2492)× 5 = 12307.5
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Relationships between incidence measures
With constant incidence rate over risk period (length = Δ),
incidence proportion Q and rate I are related:

Q = 1− exp(−I ×Δ) ≈ I ×Δ

I = − log(1−Q)/Δ ≈ Q/Δ,

The approximations are good when

� the incidence proportion is ”small” (under 10 %).
� incidence rate (I) is small
� the risk period (Δ) is small
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Mortality
Cause-specific mortality from disease C is described by
mortality rate (and proportion), defined like I (and Q), but

� cases are only deaths from cause C, and

� follow-up is extended until death (from any acuse) or
censoring

The cumulative risk of death from a given cause
(cause-specific mortality proportion/risk) requires correction
for competing events. Total mortality: cases are deaths from
any cause. Mortality depends on the incidence and the
prognosis or fatality of the disease, i.e. the survival of those
affected.
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Theoretical concepts behind incidences
Analysis of incidences
= analysis of time to event or failure time or survival data.

Mathematical concepts:

T = time to outcome event – random variable,

S(t) = P (T > t) = survival function of T ,

= probability of avoiding the event up to given time t,

λ(t) = −S ′(t)/S(t) = intensity or hazard function,

Λ(t) =

∫ t

0

λ(u)du = − log S(t) = cumulative hazard,

F (t) = 1− S(t) = 1− exp{−Λ(t)} = risk function

= probability of the outcome to occur before t

Frequency measures 47/ 1

Intensity or hazard function
Can be viewed as theoretical incidence rate. Formally:

λ(t) = lim
Δ→0

P (t < T ≤ t+Δ | T > t)

Δ

≈ Probability of outcome event occurring in a short risk
period ]t, t+Δ], given ”survival” or avoidance of the
event up to the start t, divided by the period length
— “risk per time”.

This is equivalent to saying that over a short interval

risk ≈ intensity × length of interval

or P (t < T ≤ t+Δ | T > t) ≈ λ(t)×Δ.
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Exponential survival times
(constant hazard)

Simplest probability model for time to event:

Exponential distribution, Exp(λ), in which

rate λ(t) = λ (constant) ⇒ risk over ]0, t] = 1− exp(−λt)

Analysis of event data of n individuals. For subject i let

yi = time to event or censoring, total: Y =
∑

yi

di = 1/0-indicator for observing event, total: D =
∑

di

Exp(λ) model ⇒ Likelihood function of λ is equivalent to
that when number of cases D is Poisson-distributed

(Analysis part of the course)
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Basic statistical analysis of empirical rates
Asymptotic statistical inference based on likelihood:

� Maximum likelihood estimator (MLE) of λ is

λ̂ =
D

Y
=

number of cases

total person-time
= I, empirical incidence rate!

� Standard error of the empirical rate is I/
√
D

⇒ The more cases, the greater is precision in rate!

� Approximate confidence interval for ”true” rate λ:

estimator ± 1.96× standard error

More about these issues in the analysis lectures.
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Prevalence measures
Point prevalence or simply prevalence P of a health state
C in a population at a given time point t is defined

P =
number of existing or prevalent cases of C

size of the whole population

This is calculable from a cross-sectional study base.

Period prevalence for period from t1 to t2 is like P but

� numerator refers to all cases prevalent already at t1 plus
new cases occurring during the period, and

� denominator is the population size at t2.
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Example 4.1 (IS: p. 59)

o =

r =
d =
m =

disease
onset

recovery
death
migration

o r
o r

o m
o

m
o d

o r

t1 t2Time (t) �

Prevalence at time t1 : 2/10 = 0.2 = 20%
Prevalence at time t2 : 3/8 = 0.38 = 38%
Period prevalence: 5/8 = 0.62 = 62%
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Relationships between measures
Point prevalence of C at given time point t depends on

� incidence of new cases of C before t

� duration of C, depending in turn on the probability of
cure or recovery from C or survival of those affected.

Stationary (”stable”) population: prevalence (P ), incidence
(I), and average duration (d̄) of C are related:

P =
I × d̄

I × d̄+ 1
≈ I × d̄

prevalence = incidence× duration

The approximation works well, when P < 0.1 (10%).
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Prevalence of cancer?
Difficult to ascertain, whether and when a cancer is cured.

⇒ Existing or prevalent cancer case problematic to define.

Cancer registry practice: Prevalence of cancer C at time point
t in the target population refers to the

number & proportion of population members who

� are alive and resident in the population at t, and

� have a record of incident cancer C diagnosed before t.

Often further classified by years since diagnosis.
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Example: Liver and testis cancer
Crude comparison of incidence, mortality and prevalence
in the male population of Finland 1999

Liver Testis

No. of new cases during 1999 119 103

No. of deaths during 1999 123 8

No. of prevalent cases 1.1.2000 120 1337

– ” – diagnosed < 1 y ago 36 97
– ” – diagnosed 1-< 5 y ago 53 291
– ” – diagnosed 5-< 10 y ago 17 304
– ” – diagnosed > 10 y ago 14 642
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Relative and absolute comparisons
(IS: Ch 5.2)

Quantification of the association between a determinant
(risk factor or exposure) and an outcome (disease) is based on

comparison of occurrence between the index (”exposed”)
and the reference (”unexposed”) groups or populations by

� relative measures (ratio)

� absolute measures (difference)

In causal studies these are used to estimate the
causal effect of the exposure factor on the disease risk.

⇒ comparative measures ≈ effect measures
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Relative comparative measures
Generic name ”relative risk” RR comparing occurrences
between exposed (1) and unexposed (0) groups can be

� incidence rate ratio I1/I0,

� incidence proportion ratio Q1/Q0,

� incidence odds ratio [Q1/(1−Q1)]/[Q0/(1−Q0)],

� prevalence ratio P1/P0, or

� prevalence odds ratio [P1/(1− P1)]/[P0/(1− P0)],

depending on study base and details of its design.
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Absolute comparative measures
Generic ”excess risk” btw exposed and unexposed can be

� incidence rate difference I1 − I0,

� incidence proportion difference Q1 −Q0,

� prevalence difference P1 − P0.

Use of relative and absolute comparisons

Ratio – describes the biological strength of the exposure

Difference – informs about its public health importance.
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Example: (IS, Table 5.2, p.97)

Relative and absolute comparisons between the exposed and
the unexposed to risk factor X in two diseases.

Disease A Disease B

Incidence rate among exposeda 20 80
Incidence rate among unexposeda 5 40
Rate ratio 4.0 2.0
Rate differencea 15 40
a Rates per 100 000 pyrs.

Factor X has a stronger biological potency for disease A, but
it has a greater public health importance for disease B.
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Ratio measures in “rare diseases”
(IS: Ex 5.13)

Exposure

Yes No

No. initially at risk 4 000 16 000
Deaths 30 60
Person-years at risk 7 970 31 940

Inc. prop’n ratio = 30/4 000
60/16 000 = 7.5 per 1 000

3.75 per 1 000 = 2.0000

Inc. rate ratio = 30/7 970 y
60/31 940 y = 3.76 per 1 000 y

1.88 per 1 000 y = 2.0038

= 0.00756
0.00376 = 2.0076
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Attributable fraction
Combine absolute and relative comparisons.

When incidence is higher for the exposed, we can calculate

Excess fraction, EF =
Q1 −Q0

Q1

=
RR− 1

RR

also called attributable fraction, AF or attributable risk.

EF Estimates the fraction out of all new cases among those
exposed, which are ”caused” by the exposure itself, and which
thus could be ”avoided” if the exposure were absent
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Attributable fraction, AF

AF =
RR− 1

RR

1−p p

1

non−Exposed Exposed

RR

RR−1
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Population attributable fraction, PAF

PAF =
(RR− 1)p

1 + (RR− 1)p

1−p p

1

non−Exposed Exposed

RR

RR−1
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Population attributable fraction
If we instead ask:
“How large a fraction of all cases would be prevented if
exposure was abolished?”.

Depends on the fraction of the population which is exposed

PAF =
(RR− 1)p

1 + (RR− 1)p

PAF Estimates the fraction out of all new cases, which are
”caused” by the exposure itself, and which thus could be
”avoided” if the exposure were absent.

AF is a “biological” measure.
PAF is a “population level” measure.
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Measures of potential impact (cont’d)

When the exposed have a lower incidence, we can calculate

Preventive fraction, PF =
Q0 −Q1

Q0

= 1− RR

also called relative risk reduction = percentage of cases
prevented among the exposed due to the exposure.

Used to evaluate the relative effect of a preventive intervention
(exposed) vs. no intervention (unexposed).
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Effect of smoking on mortality by cause
(IS: Example 5.14, p. 98)

Underlying Never Current Rate Rate Excess
cause of smoked cigarette ratio differ- fraction
death regularly smoker enceb (%)

Rateb Rateb

(1) (2) (2)/(1) (2)− (1)
(2)− (1)

(2)
× 100

Cancer
All sites 305 656 2.2 351 54
Lung 14 209 14.9 195 93
Oesophagus 4 30 7.5 26 87
Bladder 13 30 2.3 17 57

Respiratory diseases
(except cancer) 107 313 2.9 206 66
Vascular diseases 1037 1643 1.6 606 37
All causes 1706 3038 1.8 1332 44

a Data from Doll et al., 1994a.
b Age-adjusted rates per 100 000 pyrs.
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Incidence by age, calendar year, and
other time variables

Incidence can be studied on various time scales, e.g.:

Time scale Origin (date of:)

age birth
exposure time first exposure
follow-up time entry to study

duration of disease diagnosis

Age is usully the strongest time-dependent determinant of
health outcomes.

Age is also often correlated with duration of ”chronic”
exposure (e.g. years of smoking).
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Follow-up of a geriatric cohort
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Age (y)
Overall rate: 4 cases/53.5 person-years = 7.5 per 100 y
Hides the fact that the ”true” rate probably varies by age,
being higher among the old.
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Person-years and cases in agebands:
age-specific rates

Ageband

Subject 70-74 75-79 80-84 Total

1 5.0 5.0 3.5 13.5
2 4.5 - - 4.5
3 4.5 1.0 - 5.5
4 4.0 2.0 - 6.0
5 3.0 5.0 5.0 13.0
6 - 3.0 2.0 5.0
7 - - 3.0 3.0
8 - - 3.0 3.0

Sum of person-years 21.0 16.0 16.5 53.5
Cases 1 1 2 4
Rate (/100 y) 4.8 6.2 12.1 7.5

Age-specific rates overall
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Lung cancer incidence rates in Finland by
age, period and cohort

Calendar Age group (y)

period 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85+

1953-57 21 61 119 209 276 340 295 279 193 93
1958-62 22 65 135 243 360 405 429 368 265 224
1963-67 24 61 143 258 395 487 509 479 430 280
1968-72 21 61 134 278 424 529 614 563 471 358
1973-77 16 50 134 251 413 541 629 580 490 392
1978-82 13 36 115 234 369 514 621 653 593 442
1983-87 11 31 74 186 347 450 566 635 592 447
1988-92 9 25 57 128 262 411 506 507 471 441
1993-97 7 22 48 106 188 329 467 533 487 367
1998-02 5 14 46 77 150 239 358 445 396 346

� Rows: age-incidence pattern in different calendar periods.

� Columns: Trends of age-specific rates over calendar time.

� Diagonals: age-incidence pattern in birth cohorts.
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Incidence by age, calendar time
& birth cohort

� Secular trends of specific and adjusted rates show, how
the ”cancer burden” has developed over periods of
calendar time.

Birth cohort = people born during the same limited time
interval, e.g. single calendar year, or 5 years period.

� Analysis of rates by birth cohort reveals, how the level of
incidence (or mortality) differs between successive
generations.

� Often more informative about ”true” age-incidence
pattern than age-specific incidences of single calendar
period.
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Age-incidence curves by period (rows)
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Time trends by age (columns)
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Age-specific rates by birth cohort

Calendar Age group (y)

period 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79

1953-57 21 61 119 209 276 340 295 279

1958-62 22 65 135 243 360 405 429 368

1963-67 24 61 143 258 395 487 509 479 A

1968-72 21 61 134 278 424 529 614 563

1973-77 16 50 134 251 413 541 629 580

1978-82 13 36 115 234 369 514 621 653 B

1983-87 11 31 74 186 347 450 566 635

1988-92 9 25 57 128 262 411 506 507

1993-97 7 22 48 106 188 329 467 533 C

1998-02 5 14 46 77 150 239 358 445

E: 1947/48 D: 1932/33

A = synthetic cohort born around 1887/88, B: 1902/03, C: 1917/18
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Age-incidence curves in 5 birth cohorts
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Split of follow-up by age and period
Incidence of (or mortality from) disease C in special study
cohort (e.g. occupational group, users of certain medicine)

→ often compared to incidence in a reference or ”general”
population

Appropriate adjustment for age and calendar time needed in
this, e.g. by comparing observed to expected cases with SIR
(see p. 70-71).

⇒ Cases and person-years in the study cohort must be split
by more than one time scale (age).
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Example of follow-up

Entry and exit dates for a small cohort of four subjects

Subject Born Entry Exit Age at entry Outcome

1 1904 1943 1952 39 Migrated
2 1924 1948 1955 24 Disease C
3 1914 1945 1961 31 Study ends
4 1920 1948 1956 28 Unrelated death

Subject 1: Follow-up time spent in each ageband

Age band Date in Date out Time (years)

35–39 1943 1944 1
40–44 1944 1949 5
45–49 1949 1952 3
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Follow-up of cohort members by calendar
time and age

| entry
• exit because of disease onset (outcome of interest)
◦ exit due to other reason (censoring)
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Follow-up in Lexis-diagrams — by age and
period
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Follow-up lines run diagonally through different
ages and calendar periods.
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Crude & adjusted rates
� Incidence of most cancers (and many other diseases)

increases strongly by age in all populations.
⇒ Most of the caseload comes from older age groups.

� Crude incidence rate is a rate in which:
� numerator = sum of age-specific numbers of cases,
� denominator = sum of age-specific person-years.

� This is generally a poor summary measure.

� Comparisons of crude incidences between populations can
be very misleading, when the age structures differ.

� Solution: Standardization.

Standardization 80/ 1

Stomach cancer in Cali and
Birmingham (IS, Table 4.2, p. 71)

Cali Birmingham

No. of Male Inci- No. of Male Inci-
Male Popu- Rate Male Popu- Rate
cases lation (/105 y) cases lation (/105 y)

Age 1982 1984 1982 1983 1985 1983 Rate
(y) -86 (103s) -86 -86 (103s) -86 ratio

0–44 39 524.2 1.5 79 1 683.6 1.2 1.25
45-64 266 76.3 69.7 1037 581.5 44.6 1.56
65+ 315 22.4 281.3 2352 291.1 202.0 1.39

Total 620 622.9 19.9 3468 2 556.2 33.9 0.59

In each age group Cali has a higher incidence but the crude
incidence is higher in Birmingham. Is there a paradox?
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Comparison of age structures
(IS, Tables 4.3,4.4)

% of male population

Age Cali B’ham Finland World
(years) 1984 1985 1999 Stand.

0–44 84 66 61 74
45–64 12 23 27 19
65+ 4 11 12 7
All ages 100 100 100 100

• The fraction of old men greater in Birmingham than in Cali.
⇒ The crude rates are confounded by age.
⇒ Any summary rate must be adjusted for age.

Standardization 82/ 1

Age-adjustment by standardisation
Age-standardised incidence rate (ASR):

ASR =
K∑
k=1

weightk × ratek / sum of weights

= Weighted average of age-specific rates over the
age-groups k = 1, . . . , K.

� Weights describe age distribution of some
standard population.

� Standard population can be real (e.g. one of the
populations under comparison, or their average)
or fictitious (e.g. World Standard Population, WSP)
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Some standard populations:

Age group (years) African World European Truncated

0 2 000 2 400 1 600 –
1–4 8 000 9 600 6 400 –
5–9 10 000 10 000 7 000 –
10–14 10 000 9 000 7 000 –
15–19 10 000 9 000 7 000 –
20–24 10 000 8 000 7 000 –
25–29 10 000 8 000 7 000 –
30–34 10 000 6 000 7 000 –
35–39 10 000 6 000 7 000 6 000
40–44 5 000 6 000 7 000 6 000
45–49 5 000 6 000 7 000 6 000
50–54 3 000 5 000 7 000 5 000
55–59 2 000 4 000 6 000 4 000
60–64 2 000 4 000 5 000 4 000
65–69 1 000 3 000 4 000 –
70–74 1 000 2 000 3 000 –
75–79 500 1 000 2 000 –
80–84 300 500 1 000 –
85+ 200 500 1 000 –

Total 100 000 100 000 100 000 31 000
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Stomach cancer in Cali & B’ham
Age-standardized rates by the World Standard Population:

Cali Birmingham

Age Ratea Weight Ratea Weight

0–44 1.5× 0.74= 1.11 1.2× 0.74= 0.89
45–64 69.7× 0.19=13.24 44.6× 0.19= 8.47
65+ 281.3× 0.07=19.69 202.0× 0.07=14.14

Age-standardised rate 34.04 23.50

ASR in Cali higher – coherent with the age-specific rates.
Summary rate ratio estimate: standardized rate ratio

SRR = 34.0/23.5 = 1.44

Known as comparative mortality figure (CMF) when the
outcome is death (from specific cause C or all causes).
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Cumulative rate and cumulative risk
� Choice of standard population weights somewhat

arbitrary.
� Alternative and perhaps more ”natural” method for

age-adjustment is provided by:

Cumulative rate =
K∑
k=1

widthk × ratek

� Weigths are widths of the agebands to be included:

Cumulative risk = 1−exp(−cumul. rate) ≈ cumul. rate

� Usually calculated up to 65 or 75 years with 5-year
agebands.

� These estimate the average risk in the population to get
the disease by 65 or 75 years given survival until then.

� The competing acuses of exit (death) is not taken into
account.
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Stomach cancer in Cali & B’ham
From age-specific rates of Table 4.2. the cumulative rates up
to 65 years and their ratio are

Cali: 45 y × 1.5
105y

+ 20 y × 69.7
105y

= 0.0146 = 1.46 per 100

B’ham: 45 y × 1.2
105y

+ 20 y × 44.6
105y

= 0.0095 = 0.95 per 100

ratio: 1.46/0.95 = 1.54

Cumulative risks (inc. proportions) & their ratio up to 65 y:

Cali: 1− exp(−0.0146) = 0.0145 = 1.45%

B’ham: 1− exp(−0.0095) = 0.0094 = 0.94%

ratio: 1.45/0.94 = 1.54
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Cumulative measures in 5-y groups

Incidence rate
Age-group (years) (per 100 000 pyrs)

0–4, . . . , 15–19 0.0
20–24, 25–29 0.1
30–34 0.9
35–39 3.5
40–44 6.7
45–49 14.5
50–54 26.8
55–59 52.6
60–64 87.2
65–69 141.7
70–74 190.8

Sum 524.9

Cum. rate 0-75 y = 5 y× 524.9

105 y
= 0.0262 = 2.6%

Cum. risk 0-75 y = 1− exp(−0.0262) = 0.0259 = 2.6%.Standardization 88/ 1

Observed and expected cases
� Suppose O cases are observed in an index population of

interest (e.g. an occupational cohort) during its follow-up
over a lengthy calendar period.

� Question: What would be the expected number of
cases E, if the age- and period-specific rates of a
reference population for comparison were valid for the
index population?

� The ratio ”observed/expected” estimates of the ”true”
rate ratio between the index and the reference
populations jointly adjusted for age and period.
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Standardized incidence ratio, SIR
Let λkl = incidence rate in a Lexis-diagram cell defined by
ageband k and period l in the reference population. Hence,

expected number (E) =
K∑
k=1

L∑
l=1

λkl × Ykl,

where Ykl is the person-years in cell kl of the index population.

The standardised incidence ratio (SIR) is defined

SIR =
O

E

When the outcome is death, this measure is called
standardized mortality ratio, SMR.
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SIR for Cali with Birmingham as reference
Total person-years at risk and expected number of cases in
Cali 1982-86 based on age-specific rates in Birmingham
(IS: Fig. 4.9, p. 74)

Age Person-years Expected cases in Cali
0–44 524 220×5= 2 621 100 0.000012×2 621 100= 31.45
45–64 76 304×5= 381 520 0.000446× 381 520=170.15
65+ 22 398×5= 111 990 0.002020× 111 990=226.00

All ages =3 114 610 Total expected (E) 427.82

Total observed number O = 620. Standardised incidence ratio:

SIR =
O

E
=

620

427.8
= 1.45 (or 145 per 100)
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Crude and adjusted measures
(IS: Table 4.6, p. 78, extended)

Cali, B’ham, Rate
1982-86 1983-86 ratio

Crude rates (/105 y) 19.9 33.9 0.59
ASR (/105 y)B with 3 broad age groups 48.0 33.9 1.42
ASR (/105 y)C –”– 19.9 14.4 1.38
ASR (/105 y)W –”– 34.0 23.5 1.44
Cum. rate < 65 y (per 1000) –”– 14.6 9.5 1.54
ASR (/105 y)W with 18 5-year age groups 36.3 21.2 1.71
Cum. rate < 75 y (per 1000) –”– 46.0 26.0 1.77

Standard population: B Birmingham 1985, C Cali 1985, W World SP

NB: The ratios of age-adjusted rates appear less dependent
on the choice of standard weights than on the coarseness of
age grouping. 5-year age groups are preferred.
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Survival analysis
The prognosis of cancer patients:
what is their chance to survive 1 year, 5 years etc. after
diagnosis?

Survival analysis: In principle like incidence analysis but

� population at risk = patients with cancer,

� basic time variable = time since the date of diagnosis, at
which the follow-up starts,

� outcome event of interest = death,

� measures and methods used somewhat different from
those used in incidence analysis.

Survival 93/ 1

Follow-up of 8 out of 40 breast cancer
patients (from IS, table 12.1., p. 264)

No. Age Sta- Date of Date Vital Cause Full Days
(y) gea diag- at status of years from

nosis end of at end deathc from diagn’s
follow of diagn’s up to
-up follow up to end of

-up end of follow
follow -up
-up

1 39 1 01/02/89 23/10/92 A – 3 1360
3 56 2 16/04/89 05/09/89 D BC 0 142
5 62 2 12/06/89 28/12/95 A – 6 2390

15 60 2 03/08/90 27/11/94 A – 4 1577
22 64 2 17/02/91 06/09/94 D O 3 1297
25 42 2 20/06/91 15/03/92 D BC 0 269
30 77 1 05/05/92 10/05/95 A – 3 1100
37 45 1 11/05/93 07/02/94 D BC 0 272

a 1 = absence of regional lymph node involment and metastases
2 = involvment of regional lymph node and/or presence of metastases

b A = alive; D = dead; c BC = breast cancer; O = other causes
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Follow-up of breast cancer patients (cont’d)

| entry = diagnosis; • exit = death; ◦ exit = censoring
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(IS: Figure 12.1, p. 265)

Survival 95/ 1

Life table or ”actuarial” method
(1) Divide the follow-up time into subintervals k = 1, . . . K;

usually each with 1 year width.

(2) Tabulate from original data for each interval

Nk = size of the risk set, i.e. the no. of subjects still alive and
under follow-up at the start of interval,

Dk = no. of cases, i.e. deaths observed in the interval,
Lk = no. of losses, i.e. individuals censored during the

interval before being observed to die.
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Life table items in a tree diagram

0 1 2 3 4

Follow-up time (years), divided into 1-y subintervals

Nk = population at risk at the start of the kth subinterval

Dk = no. of deaths, Lk = no. of losses or censorings in interval k
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Life table items for breast ca. patients
(IS: Table 12.2., p. 273, first 4 columns)

Inter- Years No. at No. of No. of
val since start of deaths losses

diagnosis interval
(k) (Nk) (Dk) (Lk)

1 0– < 1 40 7 0
2 1– < 2 33 3 6
3 2– < 3 24 4 3
4 3– < 4 17 4 4
5 4– < 5 9 2 3
6 5– < 6 4 1 2
7 6– < 7 1 0 1

Total 21 19
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Life table calculations (cont’d)

(3) Calculate and tabulate for each interval

N ′
k = Nk − Lk/2 = corrected size of the risk set, or

”effective denominator” at start of the interval,

qk = Dk/N
′
k = estimated conditional probability of dying

during the interval given survival up to its start,

pk = 1− qk = conditional survival proportion over the int’l,

Sk = p1 × · · · × pk = cumulative survival proportion from
date of diagnosis until the end of the kth interval

= estimate of survival probability up to this time point.
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Follow-up of breast ca. patients (cont’d)

Actuarial life table completed (IS, table 12.2, p. 273)

Inter- Years No. No. No. Effec- Cond’l Survival Cumul.
val since at of of tive prop’n prop’n survival;

dia- start deaths losses deno- of deaths over est’d
gnosis of in- minator during int’l survival

terval int’l prob’ty
(k) (Nk) (Dk) (Lk) (N ′

k) (qk) (pk) (Sk)

1 0– < 1 40 7 0 40.0 0.175 0.825 0.825
2 1– < 2 33 3 6 30.0 0.100 0.900 0.743
3 2– < 3 24 4 3 22.5 0.178 0.822 0.610
4 3– < 4 17 4 4 15.0 0.267 0.733 0.447
5 4– < 5 9 2 3 7.5 0.267 0.733 0.328
6 5– < 6 4 1 2 3.0 0.333 0.667 0.219
7 6– < 7 1 0 1 0.5 0.0 1.0 0.219

1-year survival probability is thus estimated 82.5% and
5-year probability 32.8%.
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Comparison to previous measures and
methods

Complement of survival proportion Qk = 1− Sk is actually
incidence proportion of deaths. It estimates cumulative risk of
death from start of follow-up till end of kth interval.

”Actuarial” indidence rate in the kth interval:

Ik =
number of cases (Dk)

approximate person-time

where the person-time is approximated by[
Nk − 1

2
(Dk + Lk)

]
× length of interval
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Survival curve and other measures
Line diagram of survival proportions through interval
endpoints provides graphical estimates of interesting
parameters of the survival time distribution, e.g.:

� median and quartiles: time points at which the
curve crosses the 50%, 75%, and 25% levels

� mean residual lifetime: area under the curve, given
that it decreases all the way down to the 0% level.

NB. Often the curve ends at higher level than 0%, in which
case some measures cannot be calculated.

Survival 102/ 1



Survical curve of breast ca. patients (IS: Fig

12.8)
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Numbers above x-axis show the size of population at risk.
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Cause-specific and relative survival
Cause-specific survival analysis:

� outcome event: death from the disease C
itself that defines study population

� deaths from other causes → losses.
� problem: ambiguity in cause of death.

Relative survival: Srel
k = Sobs

k /Sexp
k , i.e. ratio of

� observed survival proportion Sobs
k

in the study population, and
� expected survival proportion Sexp

k

based on age-specific mortalities in the
reference (national) population. (See SIR!)
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Breast Cancer patients (cont’d)

Overall and cause-specific (death from breast ca.) survival
(IS: Fig 12.9 & 12.12, p. 271-3)

Kaplan-Meier curves – alternative to ”actuarial”:
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Conclusion
Measuring and comparing disease frequencies

� not a trivial task but

� demands expert skills in epidemiologic methods.

Major challenges:

� obtain the right denominator for each numerator,

� valid calculation of person-years,

� appropriate treatment of time and its various aspects,

� removal of confounding from comparisons.
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Pracicals
Practicals

Bendix Carstensen & Esa Läärä

Nordic Summerschool of Cancer Epidemiology
15–26 August 2011
Copenhagen
http://BendixCarstensen.com/NSCE

How to do with practicals
� Read the text

� Find out what you want to do

� Then start using R

� Sequence of practicals:

1. Monday: 1, 3, 4, 5, 7, 11, 12, 13
2. Tuesday: 7, 8, 2, 9, 10
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2 CHANCE VARIATION
2.1 Systematic and random variation

2.2 Probability model:
random variable, distribution, parameters

2.3 Poisson and Gaussian models

2.4 Statistic, sampling distribution and
standard error
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2.1 Systematic and random variation
Cancer incidence rates vary by known & measured
determinants of disease, such as:

� age,

� gender

� region,

� time,

� specific risk factors.

This is systematic variation.
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Systematic & random (cont’d)
In addition, observed rates are subject to
random or chance variation, or variation due to unknown
sources like

� latent genetic differences,

� unknown concomitant exposures,

� sampling,

� ”pure chance”
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Example 3: Smoking and lung cancer
� Only a minority of smokers get lung cancer. Yet, some

non-smokers get the disease, too.

� At the individual level the outcome is unpredictable.

� When cancer occurs, it can eventually only be explained
just by ”bad luck”.

� Unpredictability of individual outcomes cause more or less
unpredictable – random – variation of disease rates at
population level.
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Example 4
Breast cancer incidence rates in Finland, age group 65-69
years in three successive years.

Males Females
(per 106 (per 104

Year p-years) p-years)
1989 46 21
1990 11 20
1991 33 19

� Big annual changes in risk among males?

� Steady decline in females?
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Example 4 (cont’d)
Look at observed numbers of cases!

Males Females
Year Cases P-years Cases P-years
1989 4 88000 275 131000
1990 1 89000 264 132000
1991 3 90000 253 133000

Reality of changes over the years?
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2.2 Probability model: random variable,
distribution, parameters

Simple model for cancer incidence

In homogenous population we assume

� constant ”true” but unknown theoretical incidence rate –
hazard or intensity –
λ of contracting cancer over short period of time.
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Simple model (cont’d)
Number of cases D and empirical incidence rate R = D/Y in
Y person-years at risk are:

� random variables with unpredictable values in given
observation periods.

The probability distribution of possible values of a random
variable has some known mathematical form.

Key properties of the distribution are determined by quantities
called parameters; in this case the theoretical rate λ.
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2.3 Poisson and Gaussian models

Poisson distribution: simple probability model for number of
cases D with

� expectation (theoretical mean) μ = λY ,

� standard deviation
√
μ.

When the expectation μ of D is large enough, the Poisson
distribution resembles more and more the Gaussian or Normal
distribution.
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Poisson distribution with different means μ:

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

μ = 1

0 5 10 15

0.
0

0.
1

0.
2

0.
3

μ = 3

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

μ = 6

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

μ = 10

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

μ = 15

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

μ = 25

Chance 117/ 1

Gaussian distribution
Gaussian or Normal distribution:

� common model for continuous variables,

� symmetric and bell-shaped,

� has two parameters:
– μ = expectation or mean,
– σ = standard deviation.

Most important use of Gaussian model:

Easy approximation of sampling distribution of empirical
measures (like observed rates) in certain conditions.
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Gaussian distribution (cont’d)
Probability density funtion – the ”Bell Curve”.
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Gaussian distribution (cont’d)
Areas under curve limited by selected quantiles
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2.4 Statistic, sampling distribution and
standard error

Statistic = summary measure calculated from empirical data
(sample).

Let X be a variable having certain distribution in population
with mean μ and standard deviation σ.

� Take a random sample of n subjects.

� Values of X in the sample: X1, X2, . . . , Xn.

� Before sampling these are random variables.
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Statistics (cont’d)
Some statistics derived from this sample:

� Sample mean (arithmetic): X̄ =
1

n

n∑
i=1

Xi

� Sample standard deviation:

SD =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄)2

� One-sample T -statistic: T =
X̄ − μ0

SD/
√
n

(μ0 is the hypothesized value of μ).
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Sampling distribution
� Describes variation of a summary statistic,

= behaviour of values of the statistic over hypothetical
repetitions of taking new random samples of size n.

� Its form depends on:

• original distribution & parameters,
• sample size n.

The larger the sample size n → the narrower and more
Gaussian-like sampling distribution!
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Example 5
Sampling distribution of the sample mean X̄ of variable X
with mean μ and standard deviation σ is approximately
Gaussian with:

� expectation μ,

� standard deviation σ/
√
n,

with sufficiently big sample size, whatever the original
distribution of X.

This holds by virtue of the Central Limit Theorem (CLT) in
probability theory.
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Standard error (SE)
Estimated standard deviation of sampling distribution of
statistic.

Example 5 (cont’d): Sample X1, . . . , Xn drawn of variable
X from population distribution with mean μ and standard
deviation σ. The sample mean is X̄ and the sample standard
deviation SD.

⇒ Standard error of the mean:

SE(X̄) =
SD√
n

Describes precision in estimation of μ by X̄.
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Standard error (cont’d)
� Used in one-sample T-statistic:

T =
X̄ − μ0

SE(X̄)

to test null hypothesis H0 : μ = μ0.
(How far from μ0 is X̄, in SE units)

� Confidence interval (CI) for μ:

X̄ ± z × SE(X̄)

where z is an approriate quantile of the t- or Normal
distribution (in Normal dist’n z = 1.960 for 95% CI).
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Example 6: Single incidence rate
Parameter λ
= true unknown incidence rate in population.

Empirical rate R = D/Y , estimator of λ.

R is a statistic, random variable whose:

� value varies from one study population (”sample”) to
another in hypothetical repetitions,

� sampling distribution is (under the Poisson model & other
conditions) transformation of the Poisson distribution,
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Example 6 (cont’d)
� Expectation of empirical rate R is λ,

standard deviation in the sampling distribution for R is√
λ/Y .

� Standard error of empirical rate R:

SE(R) =

√
R

Y
=

√
D

Y
= R× 1√

D

⇒ The amount of random error depends inversely on the
number of cases.

⇒ SE of R is proportional to R.
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3 STATISTICAL INFERENCE
3.1 Inferential questions

3.2 Point estimation

3.3 Statistical testing

3.4 Interpretation of P -values

3.5 Confidence interval

3.6 Recommendations
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3.1 Inferential questions
Problem: The parameter value is unknown:

What can we learn about the value?

Data from empirical study :

→ information on parameter is provided by values of some
statistics,

→ uncertainty on it is reduced.

Still the true value remains unknown.
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Inferential questions
� What is the best single-number assesment of the

parameter value?

� Is the result consistent or in disagreement with a certain
value of the parameter proposed beforehand?

� What is a plausible range of values of the parameter
consistent with our data?
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3.2 Point estimation
Point estimation

= assessing the value of the unknown parameter by a single
number obtained from data.

Estimator (point estimator) of parameter

= statistic to be calculated from observable data (sample),
whose sampling distribution is concentrated about the
true value of the parameter.

Estimate (point estimate) of parameter

= realized value of the estimator in the data.
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Point estimation (cont’d)
Standard error (SE) of estimate

= estimated standard deviation of the sampling distribution
of an estimator.

Measures the (im)precision of the estimator.
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Statistical notation:
� Parameter denoted by a Greek letter

� Estimator & estimate by the same Greek letter with
”hat”.

Incidence rate:

� true unknown rate: λ

� estimator: λ̂ = R = D/Y , empirical rate.
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Statistical notation (cont’d)
Rate ratio:

� true rate ratio ρ = λ1/λ0 between exposed and
unexposed,

� estimator: ρ̂ = RR = R1/R0,
ratio between the empirical rates.

Mean of any variable X

� true mean: μ, expectation

� estimator: μ̂ = X̄, sample mean.
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3.2 Statistical testing
Question: Are the observed data
– summarized by an estimate and its SE –
consistent with a given value of the parameter?

Such a given value is often represented in the form a null
hypothesis (H0), which is a statement on the true value of the
parameter before study.

In comparative problems typically a conservative assumption,
e.g.

� ”no difference in outcome btw the groups”,

� ”true rate ratio ρ = 1”.
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Purpose of statistical testing
� Evaluation of consistency or disagreement of observed

data with H0

� Checking whether or not the observed difference can
reasonably be explained by chance.

NB. These aims are not so ambitious.
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Test statistic
� Function of observed data and null hypothesis value,

� Sampling distribution of it under H0 is known, at least
approximately.

Common form of test statistic:

Z =
O − E

S

in which . . .
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Test statistic (cont’d)
O = some ”observed” statistic,

E = ”expected value” of O under H0,

S = SE or standard deviation of O under H0.

� Evaluates the size of the ”signal” O − E against the size
of the ”noise” S.

� Under H0 the sampling distribution of this statistic is
(with sufficient amount of data) close to the standard
Gaussian.
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Example 2: OC & breast ca. (cont’d)
Null hypothesis:

OC use has no effect on breast ca. risk ⇔ true rate
difference δ = λ1 − λ0 equals 0.

O = Observed rate difference

δ̂ = RD = 217− 187 = 30 per 105 y.

E = Expected rate difference = 0, if H0 true.

S = Standard error of RD:

SE(RD) =

√
2172

204
+

1872

240
= 19.4 per 105 y.
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Example 2: OC & breast ca. (cont’d)

Test statistic Z = (O − E)/S, its observed value:

Zobs =
30− 0

19.4
= 1.55

What does this mean?

How do we proceed?

Inference 141/ 1

Questions about the test statistic
� How does the observed value Zobs locate itself in the

sampling distribution of Z?

� How common or how rare it is to
obtain Zobs under H0?

� What is the probability of getting Z larger than observed
Zobs if H0 were true.

The latter probability is the
one-tailed observed significance level or P -value against
alternative ρ > 1.
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Two-tailed P value
= probability for test statistic Z being more extreme than

the absolute value of Zobs.

� Considers deviations from H0 in either direction.

� Is usually preferred to one-tailed P .
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Example 2 (cont’d)
Distribution of test statistic under H0 and graphical derivation
of P -value

Right tail
P = 0.06

Left tail
P = 0.06

−4 −2 0 2 41.55−1.55

One-tailed P = 0.06, two-tailed P = 0.12
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Ex. 1: Lung ca. & asbestos (cont’d)
H0: Mortality from lung cancer is not elevated in asbestos

workers, i.e. true rate ratio ρ = λ1/λ0 equals 1.

Results:

O = 24 observed cases of lung ca. deaths.

E = 7 expected cases based on age-specific rates in general
population.

SMR =
D

E
=

24

7
= 3.4
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Ex. 1: Lung ca. and asbestos (cont’d)

Observed value of test statistic Z:

Zobs =
24− 7√

7
= 6.43

Under H0 the sampling distribution of Z is again
approximately standard Gaussian.

What is the P -value?
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Ex. 1: Lung ca. and asbestos (cont’d)

Tables of standard Gaussian distribution give:

Under H0 the probability of getting values of Z larger
than the actually observed value 6.43 is < 0.001.

Computer programs show:

This upper tail P -value is actually 6.4× 10−11 –
extremely small!

Two-tailed P = 1.28× 10−10 (2 × one-tailed)

What does this mean?
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Great!?

So what?
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P -value
� Synonym for “observed significance level”.

� Measures the evidence against H0:

• The smaller the p value, the stronger the evidence
against H0.

• Yet, a large p as such does not provide supporting
evidence for H0.

� Operationally: the probability of getting a statistic at
least as extreme as the observed, given that H0 is true

� However, it is not ”the probability that
H0 is true”!
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3.4 Interpretation of P -values
� No mechanical rules of inference

� Rough guidelines
� “large” value (p > 0.1): consistent with H0 but not

necessarily supporting it,
� “small” value (p < 0.01): indicates evidence against H0

� “intermediate” value (p ≈ 0.05): weak evidence against
H0

� Division of p-values into ”significant” or ”non-significant”
by cut-off 0.05:
– To be avoided!
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Interpretation of P -values (cont’d)
In judging the results, take also into account:

� size of study,

� study design: random sampling, randomization or neither,

� what is a medically relevant deviation of parameter from
the H0 value (e.g. minimally important elevation of true
rate ratio from 1),

� Consistency with independent empirical studies and other
relevant information & knowledge.

Never base conclusions on a P -value only!
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3.5 Confidence interval (CI)
� Range of conceivable values of parameter between lower

and upper confidence limits.

� Specified at certain confidence level, commonly 95% (also
90 % and 99% used).

� The limits of CI are statistics, random variables with
sampling distribution, such that

the probability that the random interval covers the true
parameter value equals the confidence level (e.g. 95%).
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Confidence interval (cont’d)
The latter is the long-term property of the procedure for
calculating CI under hypothetical “repeated sampling”.

Yet, the obtained CI from data at hand either covers or does
not cover the parameter of interest.

(N.B. As with P values the accuracy of nominal confidence
level depends on lack of bias and on validity of some statistical
assumptions.)
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Long-term behaviour of CI

Variability of 95%
CI under
hypothetical
repetitions of similar
study, when true
rate ratio is RR.

0.55 0.60 0.65 0.70 0.75 0.80 0.85

●

●

●

●

●

●

●

In the long run 95% of these intervals would cover the true
value but 5% would not.
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Example 2: OC & breast ca (cont’d)
Observed rate difference RD = 30 per 105 y.

Standard error SE(RD) = 19.4 per 105 y.

Limits of the 95% approximate CI (per 105 y):

� lower: 30− 1.96× 19.4 = −8,

� upper: 30 + 1.96× 19.4 = 68

For 90% level, use 1.645 instead of 1.960.
For 99% level, 2.58 is the multiplier.
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Interpretation of obtained CI
Frequentist school of statistics: no probability interpretation!
(In contrast to Bayesian school).

Single CI is viewed by frequentists as a range of conceivable
values of the unknown parameter with which the observed
estimate is fairly consistent, taking into account ”probable”
random error.

� narrow CI → precise estimation
→ small statistical uncertainty about parameter.

� wide CI → imprecise estimation
→ great uncertainty.
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Interpretation of CI (cont’d)
CI gives more quantitative information on the parameter and
on statistical uncertainty about its value than P value.

In particular, interpretation of ”non-significant” results, i.e.
large P values:

� narrow CI about H0 value:
→ results give support to H0.

� wide CI about H0 value:
→ results inconclusive.

The latter is more commonly encountered.
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CI and P -value

95 % CIs of rate
difference δ and P
values for
H0 : δ = 0 in
different studies.
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p = 0.001

p = 0.002

p = 0.453

p = 0.468

Similar P -values but different interpretation!
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3.6 Recommendations
ICMJE. Uniform Requirements for Manuscripts submitted to
Biomedical Journals. http://www.icmje.org/

Extracts from section Statistics:

� When possible, quantify findings and present them with
appropriate indicators of measurement error or uncertainty
(such as confidence intervals).

� Avoid relying solely on statistical hypothesis testing, such
as the use of p values, which fails to convey important
quantitative information.
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Recommendations (cont’d)
Sterne and Davey Smith: Sifting the evidence – what’s wrong
with significance tests? BMJ 2001; 322: 226-231.

Suggested guidelines for the reporting of results of statistical
analyses in medical journals

1. The description of differences as
statistically significant is not acceptable.

2. Confidence intervals (CI) for the main results should
always be included, but 90% rather than 95% levels
should be used.
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Recommendations in BMJ (cont’d)
CIs should not be used as a surrogate means of examining
significance at the conventional 5% level.

Interpretation of CIs should focus on the implications
(clinical importance) of the range of values in the
interval.

5. In observational studies it should be remembered that
considerations of confounding and bias are at least as
important as the issues discussed in this paper.
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Analysis
Analysis of Epidemiological Data

Esa Läärä & Bendix Carstensen

Nordic Summerschool of Cancer Epidemiology
15–26 August 2011
Copenhagen
http://BendixCarstensen.com/NSCE

4 CRUDE ANALYSIS
4.1 Single incidence rate

4.2 Rate ratio in cohort study

4.3 Rate ratio in case-control study

4.4 Rate difference in cohort study

4.5 Analysis of proportions

4.6 Extensions and remarks
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4.1 Single incidence rate
Parameter of interest:

λ = true rate in target population

Estimator: λ̂ = R, the empirical rate in a ”representative
sample” from the population.

R =
D

Y
=

no. of cases

person-time

Model: D is Poisson with expectation λY .

Standard error of rate: SE(R) = R/
√
D.
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Single rate (cont’d)
Simple approximate 95% CI:

[R− EM, R + EM]

where
EM = 1.96× SE(R)

is the 95% error margin.

Problem: When D ≤ 4, lower limit ≤ 0!
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Single rate (cont’d)
More accurate approximation of CI by using the log-rate
ln(R), where ln = natural logarithm.
Standard error for log-rate:

SE[ln(R)] =
1√
D

From this we get the 95% error factor (EF)

EF = exp{1.96× SE[ln(R)]}

where exp means exponential function or antilog (inverse of
the natural logarithm).
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Single rate (cont’d)
From these items we get 95% CI for λ:

[R/EF, R× EF].

These limits are always > 0 whenever D ≥ 1.

(When D = 0, use the ”exact” Poisson limits)

N.B.: If the 90% level is desired, then 1.960 substituted by
1.645. For the 99% level the multiplier is 2.576.
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Example 4 (cont’d)
The observed incidence of breast cancer in Finnish men aged
65-69 y in 1991 was 33 per 106 y based on 3 cases.

Standard error of the rate and the log-rate are

SE(R) = 33×
√
1/3 = 19 per 106 y

SE[ln(R)] =
√
1/3 = 0.577

The 95% error margin:

EM = 1.96× 19 = 37 per 106 y.
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Example 4 (cont’d)
For the true rate λ an approximate 95% CI on the original
scale:

33± 37 = [−4, 70] per 106 y.

Negative lower limit – illogical!

A better approximate CI obtained on the log-rate scale via the
95% error factor

EF = exp(1.96× 0.577) = 3.1

from which the confidence limits (both > 0):

[33/3.1, 33× 3.1] = [11, 102] per 106 y.

Analysis 168/ 1



4.2 Rate ratio in cohort study
Question: What is the relative risk of cancer in the exposed as
compared to the unexposed?

Parameter of interest: true rate ratio

ρ =
λ1

λ0

=
rate among exposed

rate among unexposed

Null hypothesis H0 : ρ = 1: exposure has no effect.
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Rate ratio (cont’d)
Summarized data on outcome from cohort study with
person-time

Exposure to risk factor Cases Person-time
yes D1 Y1

no D0 Y0

total D+ Y+

Empirical rates by exposure group provide
estimates for the true rates:

λ̂1 = R1 =
D1

Y1

, λ̂0 = R0 =
D0

Y0
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Rate ratio (cont’d)
Point estimator of true rate ratio ρ:
empirical rate ratio (RR):

ρ̂ = RR =
λ̂1

λ̂0

=
R1

R0

=
D1/Y1

D0/Y0

=
D1/D0

Y1/Y0

N.B.: The last form is particularly useful
(see next section on case-control studies).
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Rate ratio (cont’d)
Standard error of ln(RR), 95% error factor and
approximate 95% CI for ρ:

SE[ln(RR)] =

√
1

D1

+
1

D0

EF = exp{1.96× SE[ln(RR)]}

CI = [RR/EF, RR× EF].

NB. Random error depends inversely on numbers of cases.
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Example 8: Helsinki Heart Study
In the study (Frick et al. NEJM 1987) over 4000 men were
randomized to daily intake of either

� gemfibrozil (”exposed”, N1 ≈ 2000 ), or

� placebo (”unexposed”, N0 ≈ 2000).

After mean follow-up of 5 y, the numbers of cases of any
cancer in the two groups were

D1 = 31 and D0 = 26.

Rounded person-years were

Y1 ≈ Y0 ≈ 2000× 5 y = 10000 y.
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Example 8 (cont’d)
Incidence rates 3.1 and 2.6 per 1000 y.
Estimate of true rate ratio ρ with SE, etc.

ρ̂ = RR =
3.1/1000 y

2.6/1000 y
= 1.19

SE[ln(RR)] =

√
1

31
+

1

26
= 0.2659

EF = exp(1.96× 0.2659) = 1.68

95 % CI for ρ :
[1.19/1.68, 1.19× 1.68] = [0.7, 2.0]

Two-tailed P = 0.52.

Interpretation?
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4.3 Rate ratio in case-control study
Parameter of interest: ρ = λ1/λ0

— same as in cohort study.

Required case-control design:

� incident cases occurring during a given period in the
source population are collected,

� controls are obtained by incidence density sampling from
those at risk in the source.

� exposure is ascertained in cases and chosen controls.
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Rate ratio in case-control study
Summarized data on outcome:

Exposure Cases Controls
yes D1 C1

no D0 C0

� Can we directly estimate the rates λ0 and λ1 from these?

� What about their ratio?

NO and YES!

� Rates as such are not directly estimable.
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Rate ratio in case-control study
� If controls are representative of the person- years in the

population, their division into exposure groups estimates
the exposure distribution of the person-years:
C1/C0 ≈ Y1/Y0

� Hence, the exposure odds ratio

EOR =
D1/D0

C1/C0

estimates the same quantity than the rate ratio from a
full cohort study

RR =
D1/Y1

D0/Y0

=
D1/D0

Y1/Y0
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Rate ratio in case-control study
Standard error for ln(EOR), 95% error factor
and approximate CI for ρ:

SE[ln(EOR)] =

√
1

D1

+
1

D0

+
1

C1

+
1

C0

EF = exp{1.96× SE[ln(EOR)]}

CI = [EOR/EF,EOR× EF]

NB. Random error again depends inversely on numbers of
cases and controls in the two exposure groups.
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Example 9
Use of mobile phone and brain cancer
(Inskip et al. NEJM 2001; 344: 79-86).

Daily use Cases Controls
≥ 15 min 35 51
no use 637 625

EOR =
35/637

51/625
= 0.67
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Example 9 (cont’d)
Standard error for ln(EOR), 95% error factor and approximate
CI for ρ:

SE[ln(EOR)] =

√
1

35
+

1

637
+

1

51
+

1

625
= 0.2266

EF = exp{1.96× 0.2266} = 1.45

CI = [0.67/1.45, 0.67× 1.45] = [0.43, 1.05]

N.B. model-adjusted estimate (with 95% CI):

EOR = 0.6, [0.3, 1.0].
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4.4 Rate difference in a cohort
Parameter of interest: true rate difference or
”excess rate”

δ = λ1 − λ0

Same data layout as above for cohort study.

Point estimator of δ, the empirical rate difference: δ̂ = RD

RD = R1 −R0 =
D1

Y1

− D0

Y0

Log-transformation is unapplicable here;
original scale is used.
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Rate difference (cont’d)
Standard error of RD, 95% error margin & approximate 95%
CI for δ:

SE(RD) =

√
R2

1

D1

+
R2

0

D0

=

√
R1

Y1

+
R0

Y0

EM = 1.96× SE(RD)

CI = [RD− EM,RD+ EM]

Random error again depends inversely on number of cases.
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Example 8 (cont’d)
In the Helsinki Heart Study the observed rate difference
between the exposed and the unexposed groups was

RD = 3.1− 2.6 = +0.5 per 103 y,

Its standard error

SE(RD) =

√
3.12

31
+

2.62

26
= 0.755 per 103 y

giving an 95% error margin

EM = 1.96× 0.755 = 1.5 per 1000 y.
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Example 8 (cont’d)
95% approximate CI:

0.5± 1.5 = [−1.0, 2.0] per 103 y.

Ranges from negative to positive values.

Logical here, because the rate difference can have either minus
or plus sign.

Interpretation?
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4.5 Analysis of proportions
Suppose we have cohort data with a fixed risk period, i.e. the
follow-up time for all subjects has the same length. Also, no
losses to follow-up (no censoring).

In this setting the risk π of the disease over the risk period is
easily estimated by simple

incidence proportion
(often called ”cumulative incidence” or even ”risk”):
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Analysis of proportions (cont’d)
Incidence proportion:

π̂ = Q =
D

n

=
number of new cases during period

size of population-at-risk at start

Analogously, empirical prevalence (proportion) Pr at a certain
point of time t

Pr =
no. of prevalent cases at t

total population size at t
.
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Analysis of proportions (cont’d)
� Proportions (unlike rates) are dimensionless quantities

ranging from 0 to 1.

� Statistical analysis of proportions based on
Binomial distribution.

� Standard error for single incidence proportion (similarly
for prevalence):

SE(Q) =

√
Q(1−Q)

n
= Q×

√
(1−Q)

D

Depends also inversely on D!
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Analysis of proportions (cont’d)
The formulae to analyse and compare incidence proportions or
prevalences broadly analogous to those for rates.

� differences of proportions treated on original scale by
error margin.

� analysis of ratios based on log-proportions & error factors.

� details of standard error formulas different from those of
rates.
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4.6 Extensions and remarks
1. All these methods are directly extended to crude analyses

of polychotomous exposure variables when each exposure
category is separately compared to unexposed.

2. Evaluation of possible monotonic trend in the parameter
over increasing levels of exposure: estimation of
regression slope.

3. Theoretical rates and risks estimated by standardized or
cumulative rates or by life-table methods (e.g.
Kaplan-Meier):
→ use appropriate standard errors of these estimators
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Extensions (cont’d)
4. CI calculations here are based on simple approximate

formulas (Wald statistics):
� accurate when numbers of cases are large
� for small numbers, other methods may be preferred

(e.g. ”exact” or likelihood ratio-based)

5. Crude analysis insufficient in observational studies:
control of confounding needed. (more of this in next
chapter)
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Stratified analysis
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5 STRATIFIED ANALYSIS
5.1 Shortcomings of crude analysis

5.2 Effect modification

5.3 Confounding

5.4 Steps of stratified analysis

5.5 Estimation of rate ratio

5.6 Mantel-Haenszel estimators

5.7 Matched case-control study
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5.1 Shortcomings of crude analysis
Crude analysis is misleading, if

� the rate ratio for the risk factor of interest is not constant
but varies by other determinants of the disease

= heterogeneity of comparative parameter
or effect modification

� the exposure groups are not comparable w.r.t. other
determinants of disease

= bias in comparison or confounding
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Remedies
Simple approach for remedy:

� Stratification of data by potentially modifying and/or
confounding factor(s) & use of adjusted estimators

Conceptually simpler but technically more demanding
approach:

� Regression modelling
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5.2 Effect modification
Example 10: True incidence rates (per 105 y) of lung cancer
by occupational asbestos exposure and smoking in a certain
population

Asbestos Smokers Non-smokers
exposed 600 60
unexposed 120 12

Rate ratio 5 5
Rate difference 480 48

Is the effect of asbestos exposure the same or different in
smokers than in non-smokers?
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Effect modification (cont’d)
Depends how the effect is measured.

� Rate ratio: constant or homogenous

� Rate difference: heterogenous. The value of rate
difference is modified by smoking.

Smoking is thus an effect modifier of asbestos exposure on the
absolute scale but not on the relative scale of comparison.
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Effect modification (cont’d)
Example 11: Incidence of CHD (per 103 y)
by risk factor E and age.

Factor E Young Old
exposed 4 9
unexposed 1 6
rate ratio 4 1.5
rate difference 3 3

� Rate ratio modified by age.

� Rate difference not modified.
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Effect modification (cont’d)
� Perfect homogeneity is rare

� Usually both comparative parameters are more or less
heterogenous across categories of other determinants of
disease.

� Implications to analysis and presentation?
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Example 12
Age-specific CHD mortality rates (per 104 y) and numbers of
cases (D) among British male doctors by cigarette smoking,
rate differences (RD) and rate ratios (RR) (Doll and Hill,
1966).

Smokers Non-smokers

Age (y) rate (D) rate (D) RD RR

35-44 6.1 (32) 1.1 (2) 5 5.7
45-54 24 (104) 11 (12) 13 2.1
55-64 72 (206) 49 (28) 23 1.5
65-74 147 (186) 108 (28) 39 1.4
75-84 192 (102) 212 (31) -20 0.9

Total 44 (630) 26 (101) 18 1.7
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Example 12 (cont’d)
Both comparative parameters appear heterogenous:

� RD increases by age (at least up to 75 y),

� RR decreases by age

No single-parameter (common rate ratio or rate difference)
comparison captures adequately the joint pattern of rates.
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Evaluation of modification
Modification or its absence

� inherent property of the phenomenon;
cannot be removed or ”adjusted” for,

� needs careful evaluation.

Problems: Stratum-specific numbers have a
large random error

� estimates of effect parameters variable even if no ”true”
modification present,

� essential modification may remain undetected.
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Evaluation of modification (cont’d)
� statistical tests for heterogeneity insensitive and rarely

helpful

Tempting to assume:
”no essential modification”,

+ simpler analysis and result presentation,

− misleading if essential modification present.
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5.3 Confounding
Example 13: Observational clinical study with comparison of
success of treatment between two types of operation for
treating renal calculi:
— OS = open surgery (invasive)
— PN = percutaneous nephrolithotomy (non-invasive)

Operation
succesful

Treatment Pts Cases % %-diff.
OS 350 273 78
PN 350 290 83 +5

PN appears more succesful than OS?
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Example 13 (cont’d)
Results stratified by initial diameter size of the stone:

Operation
succesful

Size Treatment Pts Cases % %-diff.

< 2 cm: OS 87 81 93
PN 270 235 87 −6

≥ 2 cm: OS 263 192 73
PN 80 55 69 −4

OS seems more succesful in both subgroups.

Is there a paradox here?
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Example 13 (cont’d)
Solution to the paradox:

� Treatment groups are not comparable w.r.t. initial size.

� Size of the stone (SS) is a confounder of the association
between operation type and success ⇒ SS is

1. an independent determinant of outcome (success), based
on external knowledge,

2. statistically associated with operation type in the study
population,

3. not causally affected by operation type.
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Example 13 (cont’d)
� Instance of “confounding by indication”:

– patient status affects choice of treatment,
⇒ bias in comparing treatments.

� This bias is best avoided in planning:
– randomized allocation of treatment.
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Example 14
Association between grey hair and cancer incidence in a cohort
study.

Gray P-years Rate
Age hair Cases ×1000 /1000 y RR

Total yes 66 25 2.64 2.2
no 30 25 1.20

Young yes 6 10 0.60 1.09
no 11 20 0.55

Old yes 60 15 4.0 1.05
no 19 5 3.8

Observed crude association nearly vanishes after controlling for
age.
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Means for control of confounding
Design:

� Randomization

� Restriction

� Matching
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Means for control of confounding (cont’d)
Analysis:

� Stratification

� Regression modelling

Only randomization can remove confounding due to
unmeasured factors.

Other methods provide partial removal, but
residual confounding may remain.
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5.4 Steps of stratified analysis
1. Stratify by levels of the potential confounding/modifying

factor(s)

2. Compute stratum-specific estimates of the effect
parameter (e.g. rate ratio)

3. Evaluate similarity of the stratum-specific estimates by
”eyeballing” or test of heterogeneity.
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Steps of stratified analysis (cont’d)
4. If the parameter is judged to be homogenous enough,

calculate an adjusted summary estimate.

5. If effect modification is judged to be present:
� report stratum-specific estimates & their CIs,
� if desired, calculate an adjusted summmary estimate by

appropriate standardization
(e.g. SMR).

Stratified analysis 210/ 1

5.5 Estimation of rate ratio
� Suppose that true rate ratio ρ is sufficiently homogenous

across strata (no modification), but confounding is
present.

� Crude RR estimator is biased.

� Adjusted summary estimator, controlling for confounding,
must be used.

� These estimators are weighted averages of
stratum-specific estimators.
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Adjusted summary estimators
Different weighting methods:

� maximum likelihood (ML)

� weighted least squares (WLS)

� Mantel-Haenszel (MH) weights

� standardization by external standard population (CMF)

� standardized morbidity ratio (SMR)
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5.6 Mantel-Haenszel estimators
Cohort study, data summary in each stratum k:

Exposure Cases Person-time
yes D1k Y1k

no D0k Y0k

Total D+k Y+k

Stratum-specific rates by exposure group:

R1k =
D1k

Y1k

, R0k =
D0k

Y0k
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Mantel-Haenszel estimators (cont’d)
MH-estimator of the common rate ratio ρ:

RRMH =

K∑
k=1

D1kY0k/Y+k

K∑
k=1

D0kY1k/Y+k

=

K∑
k=1

wkR1k

K∑
k=1

wkR0k

i.e. the ratio of weighted rates between the two groups with
weights wk:

wk =
Y1kY0k

Y+k

=
1

1

Y1k

+
1

Y0k
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Mantel-Haenszel estimators (cont’d)
MH-estimator is thus based on standardised rates in which the
MH-weights define the ”standard population”.

Standard error for ln(RRMH)

SE[ln(RRMH)] =

√√√√√√√√√√
K∑
k=1

D+kY1kY0k

Y 2
+k(

K∑
k=1

D1kY0k

Y+k

)(
K∑
k=1

D0kY1k

Y+k

)

Stratified analysis 215/ 1



Mantel-Haenszel estimators (cont’d)
Error factor (95%) as before:

EF = exp{1.96× SE[ln(RRMH)]}

95 % approximate CI for ρ:

[RRMH/EF, RRMH × EF].
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Example 14 (cont’d)
Grey hair and cancer – K = 2 strata.

Point estimate:

RRMH =
6× 20/(10 + 20) + 60× 5/(15 + 5)

11× 10/(10 + 20) + 19× 15/(15 + 5)
= 1.06

Standard error: SE[ln(RR)] = 0.2337

95% error factor:
EF = exp(1.96× 0.2337) = 1.58

95% CI: [1.06/1.58, 1.06× 1.58] = [0.67, 1.68]
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Mantel-Haenszel estimators (cont’d)
Case-control study:
data summary from each stratum k:

Exposure Cases Controls Total
yes D1k C1k T1k

no D0k C0k T0k

Total D+k C+k T+k

Stratum-specific exposure odds ratio:

EORk =
D1k/D0k

C1k/C0k

=
D1kC0k

D0kC1k

Undefined (+∞) when D0k = 0 or C1k = 0.
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Mantel-Haenszel estimators (cont’d)
Estimator of common rate ratio ρ: Mantel-Haenszel summary
odds ratio:

EORMH =
K∑
k=1

D1kC0k/T+k

/
K∑
k=1

D0kC1k/T+k

� Can also be expressed as a weighted average of
stratum-specific EORs.

� Can be calculated even with zero counts in some strata if
in one stratum both D0k > 0 and C1k > 0.

� Statistically rather efficient also with sparse data.
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Mantel-Haenszel estimators (cont’d)
� Standard error

√
V = SE[ln(EORMH)] is based on

somewhat complicated formula for the estimated variance:

V =

∑
AkPk

2 (
∑

Pk)
2 +

∑
(AkQk +BkPk)

2 (
∑

Pk) (
∑

Qk)
+

∑
BkQk

2 (
∑

Qk)
2

where: Ak = (D1k + C0k)/T+k,

Bk = (D0k + C1k)/T+k,

Pk = D1kC0k/T+k,

Qk = D0kC1k/T+k

for each stratum k = 1, . . . , K.

Stratified analysis 220/ 1

Example 15: Alcohol and oesophageal
cancer

� Tuyns et al 1977, see Breslow & Day 1980,

� 205 incident cases,

� 770 unmatched population controls,

� Risk factor: daily consumption of alcohol.

� Crude summary

Exposure
≥ 80 g/d Cases Controls EOR

yes 96 109 5.64
no 104 666
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Example 15: Stratification by age

Exposure
Age ≥ 80 g/d Cases Controls EOR
25-34 yes 1 9 ∞

no 0 106
35-44 yes 4 26 5.05

no 5 164
45-54 yes 25 29 5.67

no 21 138
55-64 yes 42 27 6.36

no 34 139
65-74 yes 19 18 2.58

no 36 88
75-84 yes 5 0 ∞

no 8 31

NB! Selection of controls – inefficient. Should have employed
stratified sampling by age.
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Example 15 (cont’d)
Effect modification?

� Stratum-specific EORs somewhat variable.

� Random error in some of them apparently great
(especially in the youngest and the oldest age groups)

� Only weak evidence against homogeneity, so assumption
of a common rate ratio seems plausible.
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Example 15 (cont’d)
Confounding?

� Is exposure associated with age in the study population?

� Look at variation in the age-specific prevalences of
exposure among controls.

� Adjustment for age is generally reasonable.

Summary estimator:

EORMH =
1× 106/116 + · · ·+ 5× 31/39

0× 9/116 + · · ·+ 8× 0/39

= 5.16 [3.56, 7.47]
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Esa Läärä & Bendix Carstensen

Nordic Summerschool of Cancer Epidemiology
15–26 August 2011
Copenhagen
http://BendixCarstensen.com/NSCE

6 REGRESSION MODELLING
6.1 Limitations of stratified analysis

6.2 Log-linear model for rates

6.3 Additive model for rates

6.4 Model fitting

6.5 Problems in modelling
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6.1 Limitations of stratified analysis
� Multiple stratification

⇒ many strata with sparse data
⇒ loss of precision

� Continous risk factors must be categorized
⇒ loss of precision

� More than 2 exposure categories:
- Pairwise comparisons give inconsistent results
- Linear trend not easily estimated
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Limitations (cont’d)
� Joint effects of several risk factors

difficult to evaluate

� Matched case-control studies:
difficult to allow for confounders & modifiers not matched
on.

These limitations may be overcome to some extent by
regression modelling.

The key concept here is the statistical model.
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6.2 Log-linear model for rates
Assume that the theoretical rate λ depends on explanatory
variables or regressors X, Z
(& U , V , . . . ) according to a log-linear model

ln{λ(X,Z, . . . )} = α + βX + γZ + . . .

Equivalent expression, multiplicative model:

λ(X,Z, . . . ) = exp{α + βX + γZ + . . . }
= λ0ρ

XτZ · · ·
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Log-linear model (cont’d)
Model parameters

α = ln(λ0) = intercept, log-baseline rate λ0

(i.e. rate when X = Z = · · · = 0)

β = ln(ρ) = slope,
change in ln(λ) for unit change in X,
adjusting for the effect of Z (& U, V, . . . ).

eβ = ρ = rate ratio for unit change in X.

No effect modification w.r.t rate ratios assumed in this model.
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Example 10 (cont’d)
Lung cancer incidence by asbestos exposure and smoking.

Dichotomous explanatory variables coded:

X = asbestos: 1: exposed, 0: unexposed,

Z = smoking: 1: smoker, 0: non-smoker

Log-linear model for theoretical rates

ln{λ(X,Z)} = 2.485 + 1.609X + 2.303Z
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Example 10 (cont’d)
Parameters

α = 2.485 = ln(12), log of baseline rate,

β = 1.609 = ln(5), log of rate ratio ρ = 5 between exposed
and unexposed for asbestos

γ = 2.303 = ln(10), log of rate ratio τ = 10 between
smokers and non-smokers.

Rates for all 4 asbestos/smoking combinations can be
recovered from the above formula.

No extra parameters for effect modification needed.
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Log-linear model (cont’d)
Model with effect modification (two regressors only)

ln{λ(X,Z)} = α + βX + γZ + δXZ,

equivalently

λ(X,Z) = exp{α + βX + γZ + δXZ} = λ0ρ
XτZθXZ

where α is as before, but

β = log-rate ratio ρ for unit change in X
when Z = 0,

γ = log-rate ratio τ for unit change in Z
when X = 0,
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Interaction parameter
δ = ln(θ), interaction parameter, describing
effect modification

For binary X and Z we have

θ = eδ =
λ(1, 1)/λ(0, 1)

λ(1, 0)/λ(0, 0)
,

i.e. the ratio of relative risks associated with X between the
two categories of Z.
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6.3 Additive model for rates
General form with two regressors

λ(X,Z) = α + βX + γZ + δXZ

α = λ(0, 0) is the baseline rate,

β = λ(x+ 1, 0)− λ(x, 0), rate difference for
unit change in X when Z = 0

γ = λ(0, z + 1)− λ(0, z), rate difference for
unit change in Z when X = 0,
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6.3 Additive model (cont’d)
δ = interaction parameter.

For binary X,Z:

δ = [λ(1, 1)− λ(1, 0)]− [λ(0, 1)− λ(0, 0)]

If no effect modification present, δ = 0, and

β = rate difference for unit change in X
for all values of Z

γ = rate difference for unit change in Z
for all values of X,
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Example 10 (cont’d) Additive model

λ(X,Z) = 12 + 48X + 108Z + 432XZ

where

α = 12, baseline rate, i.e. that among those both
unexposed to asbestos and non-smokers,

β = 48 (60− 12), rate difference between asbestos exposed
and unexposed among non-smokers only,
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Example 10 (cont’d)
γ = 108 (= 120− 12), rate difference between smokers and

non-smokers among only those unexposed to asbestos

δ = excess of rate difference between smokers and
non-smokers among those exposed to asbestos:

δ = [600− 120]− [60− 12] = 432.
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6.4 Model fitting
In real life model parameters unknown.
⇒ Must be estimated from data.

General method for model fitting:
– maximum likelihood (ML)

Performed by suitable computer software:
like R, Stata, S-Plus, SAS.
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Model fitting (cont’d)
Output from computer packages will give:

� parameter estimates and SEs,

� goodness-of-fit statistics,

� fitted values,

� residuals,...

May be difficult to interpret!

Model checking & diagnostics:
assessment whether model assumptions seem reasonable and
consistent with data.
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6.5 Problems in modelling
Simple model chosen may be far from the ”truth”.

� possible bias in effect estimation, at least underestimation
of SEs.

Multitude of models fit well to the same data

� which model to choose?

Software easy to use

� easy to fit models blindly,

� possibility of unreasonable results.
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Modelling
Modelling should not substitute but complement crude &
stratified analyses.

Adequate training and experience required.

Ask help from professional statistician!
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Conclusion
Analysis of Epidemiological Data

Esa Läärä & Bendix Carstensen

Nordic Summerschool of Cancer Epidemiology
15–26 August 2011
Copenhagen
http://BendixCarstensen.com/NSCE

7 CONCLUDING REMARKS
Epidemiologic study is a

Measurement excercise

Object: some parameter of interest, like

� incidence rate

� relative risk

� difference in prevalences

Result: Estimate of the parameter.
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Estimation and its errors
Like errors in measurement, estimation of parameter is prone
to error:

estimate = true parameter value

+ systematic error (bias)

+ random error

Conclusion 243/ 1

Sources of bias
� confounding, non-comparability,

� measurement error, misclassification,

� non-response, loss to follow-up,

� sampling, selection

� other
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Sources of random error
� biological variation between and within individuals in

population

� measurement variation

� sampling (random or not)

� allocation of exposure (randomized or not)
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Random sampling
� relevant in descriptive studies

� estimation of parameters of occurrence of given health
outcomes in a target population

� target population well-defined, finite, restricted by time
and space

� representativeness of study population (sample) important
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Randomization
� relevant in causal studies

� estimation of comparative parameters of effect of an
exposure factor on given health outcomes

� abstract (infinite) target population

� comparability of exposure groups important

� study population usually a convenience sample from
available source population
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Controlled randomness
If controlled randomness (random sampling or randomization)
is employed as appropriate

⇒ parameter estimate has a well defined
sampling distribution

This forms the basic tool used in statistical inference
concerning the value of the parameter

� point estimation

� statistical testing, P -value

� confidence interval
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Controlled randomness (cont’d)
Question: How often controlled randomness actually employed
in epidemiology?

Answer: Rarely!

“In most epidemiologic studies, randomization and random
sampling play little or no role in the assembly of study
cohorts.”
(Greenland S. Epidemiology 1990; 1: 421-9)
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Implications
“. . . probabilistic interpretations of conventional statistics are
rarely justified . . . such interpretations may encourage
misinterpretation of nonrandomized studies.”

“. . . the continuing application of tests of significance to such
non-randomized investigations is inappropriate” (Greenland
1990)

“Confidence intervals should be relegated to a small part of
both the results and discussion section as an indication, but no
more, of the possible influence of chance imbalance on the
result.” (Brennan & Croft. BMJ 1994; 309: 727-30)
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Recommendations
Possible remedies for these problems

� de-emphasize inferential statistics in favor of pure data
decriptors: graphs and tables,

� adopt statistical techniques based on more realistic
probability models than those in common use,

� subject the results of these to influence and sensitivity
analysis.

(Greenland 1990)

Interpretation of obtained values of inferential statistics – not
mechanical!
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Recommendations (cont’d)
� “The ability to judge the potential role of chance without

the aid of complicated statistics is valuable.

� . . . when confronted with the results from small numbers,
and experienced researcher should be able quickly to
judge whether statistics are worth calculating at all.

� . . . judgment, that the sample size is sufficient and the
observed result so great that chance may be dismissed,
can and should be made when one is ”confident” that the
decision is obvious.” (Jolley, Lancet 1993; 342: 27-29)
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Conclusion
“In presenting and discussing the results of an observational
study the greatest emphasis should be placed on bias and
confounding.” (Brennan and Croft 1994)

Motto (Campbell & Machin 1983):

STATISTICS is about
COMMON SENSE and

GOOD DESIGN!
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Cancer in diabetes patients:
Basing a wrong conclusion on a
wrong or on a correct analyses.

Bendix Carstensen

Nordic Summerschool of Cancer Epidemiology
3–5 February 2012
Virrat, Finland
http://BendixCarstensen.com/NSCE

Diabetes and Cancer
Persons with diabetes have long been known to have increased
incidence rates and mortality rates from cancer [?, ?, ?]:

� Pancreas

� Liver

� Colon / Rectum

� Corpus uteri

� Lung

� Kidney

� . . .
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Diabetologia, September 2009:
� Risk of malignancies in patients with diabetes treated with

human insulin or insulin analogues: a cohort study. L. G.
Hemkens, U. Grouven, R. Bender, C. Günster, S. Gutschmidt, G. W.
Selke, and P. T. Sawicki, Diabetologia, 52:1732–1744, Sep 2009.

� Insulin glargine use and short-term incidence of
malignancies-a population-based follow-up study in Sweden.
J. M. Jonasson, R. Ljung, M. Talbäck, B. Haglund, S.
Gudbjörnsdottir, and G. Steineck, Diabetologia, 52:1745–1754, Sep
2009.

� Use of insulin glargine and cancer incidence in Scotland: a
study from the Scottish Diabetes Research Network
Epidemiology Group. H. M. Colhoun and the SDRN
Epidemiology Group, Diabetologia, 52:1755–1765, Sep 2009.

� The influence of glucose-lowering therapies on cancer risk in
type 2 diabetes. C. J. Currie, C. D. Poole, and E. A. Gale,
Diabetologia, 52:1766–1777, Sep 2009.

� Does diabetes therapy influence the risk of cancer? U. Smith
and E. A. Gale, Diabetologia, 52:1699–1708, Sep 2009.

Cancer in diabetes patients:, Basing a wrong conclusion on a wrong or on a correct analyses. 255/ 1

Hemkens et al. [?]
� Data: Insurance database from Germany

� Entry: Newly started treatment for DM

� Exposure:
Monotherapy (4 classes) throughout follow-up

� Initial dose
� Cumulative dose over the entire follow-up

� Outcome: All cancers

� Model: Cox (time since treatment start?)
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Problems (Hemkens et al.
� Assumes that those who go on to combination therapy

are irrelevant, i.e. all effects are instantaneous.

� The time on monotherapy before combination therapy is
discarded:

We defined four study groups according to the
treatment received: human insulin, aspart, lispro
and glargine. Eligible participants were those
exposed to only one of these agents during
follow-up.

� . . . thus all cancer rates are too small

� . . . and not necessarily with the same amount

� Conditioning on the future
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The gray part of the follow-up time is discarded based on
knowledge of the future exit from the groups.
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Currie et al. [?]
� Data: THIN database

(clinical records from GPs)

� “Cohort” of OAD initiators.

� Time-varying exposure,
i.e. follow-up classified by current (maximal?) treatment:

� Metformin
� SU
� Met+SU
� Insulins: Human basal / Human biphasic / Glargine /

other Analog
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Currie et al. [?]
� Model: Cox (time since treatment start)

� Persons censored at therapy change:

Cohort membership was terminated by progression
to a record of the primary or secondary outcomes of
interest, right censoring at the final observation of
the database, transfer out of the practice, or
treatment switching.

� Censoring is not independent of the disease outcome
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Yang et.al [?]
Associations of Hyperglycemia and Insulin Usage With the Risk of
Cancer in Type 2 Diabetes: The Hong Kong Diabetes Registry.
Yang et al: Diabetes, vol. 59, May 2010, pp. 1254 ff.

� Data: DM register of Hong Kong

� Cohort based on any exposure in entire follow-period.

� Additional matching of insulin users to non-users.

� Insulin vs. non-insulin: RR = 0.18 !

� Strong bias because of mis-allocation and exclusion of
risk time.

� Immortal time bias
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Danish study [?]
Cancer occurrence in Danish diabetic patients: duration and
insulin effects. B. Carstensen, D. R. Witte, and S. Friis. Diabetologia,
e-pub ahead of print, Nov 2011.

� Describe cancer incidence rates among diabetes patients
in Denmark.

� and how rates vary relative to the non-DM population
with:

� duration of diabetes
� duration of insulin use

� for all types of cancer

� and for specific sites of cancer
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Follow-up of the Danish population
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Follow-up of the Danish population
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Follow-up in the population
Persons are followed 1 Jan 1995 to:

event: first primary cancer of a given type

censoring: � diagnosis of any other primary cancer
� death
� 31 Dec 2009
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Tabulation & analysis
Follow-up time (person-years) and events (cancer diagnosis)
were classified by:

� sex

� current age in 1-year classes

� current date in 1-year classes

� date of birth in 1-year classes

� state of follow-up: Well / DM / DM/Ins

� duration of DM in 6 month classes

� duration of insulin use in 6 month classes

Poisson analysis using class midpoints as continuous variables.
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How the data looks — events

Diabetes duration Insulin duration
Well DM DM/Ins Well DM DM/Ins

0 319088 4331 255 319088 17927 781
1 0 2703 196 0 0 407
2 0 2322 222 0 0 329
3 0 1917 238 0 0 248
4 0 1714 210 0 0 181
5 0 1356 211 0 0 133
6 0 1023 216 0 0 132
7 0 828 231 0 0 85
8 0 633 169 0 0 61
9 0 479 180 0 0 46

10 0 297 131 0 0 22
11 0 194 120 0 0 17
12 0 100 62 0 0 11
13 0 30 15 0 0 3
Sum 319088 17927 2456 319088 17927 2456
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Model for cancer incidence rates

rate =f(age)× g(date of FU)× h(date of birth)

×t(DM-duration)

×s(Ins-duration)

Functions t and s give the combined effects of:

� duration / cumulative dose
(slowly increasing/decreasing from time 0)

� allocation (jump at time 0) & common risk factors
(confounding by indication)

There is no way to separate these two effects.
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Modelling in R

m1 <- glm( D ~ Ns(ax,knots=a.kn) +
detrend( Ns(px,knots=p.kn), px ) +
Ns(cx,knots=c.kn) +
state +
Ns( DMDur,knots=d.kn) +
Ns(InsDur,knots=d.kn) +
offset( log(y) ),
family = poisson,
data = subset(data,sex==sx) )
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Interpretation
Findings are consistent with:

� Common risk factors for DM and cancer
(obesity, lack of physical exc., eating habits . . . )

� More intense surveillance for cancer following DM
diagnosis

� Reverse causation: Undiagnosed cancers lead to DM
diagnosis

� Effect of insulin in either direction:
A cumulative effect of insulin increasing cancer risk cannot be

excluded even if RR decrease by insulin duration for most

cancer sites — there is a strong mortality selection.
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Methodological points for FU-studies
� Follow all persons till death or exit from study

— never censor persons due to status change, model
effect of the status change.

� Only classify follow-up (risk time, events) by currently
known features:
Do not condition on the future.

� Multiple time scales necessary (age, calendar time,
duration)
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Morale:
� Always draw all your boxes.

� Define what they mean.

� When do persons enter.

� When do they exit:
� as events
� as censorings (is this independent of the event process?)

� What is counted as events; what is not.
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Avoid confounding
Confounding of the

� exposure effect on

� the outcome

arises when:

� the confounder is associated with the exposure

� the confounder is associated with the outcome

Sometimes the former can be fixed, but rarely the latter
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Avoid confounding
How do you fix the association between a confounder, such as

� age at diagnosis, exposure, . . .

� sex

and the exposure, such as:

� IUD

� congenital malformation

� childhood cancer

. . . you make sure that the confounder distribution is the same
among exposed and non-exposed!

⇒ Match your cohort study.
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Avoid confounding
What if you cannot fix the confounder distribution?

� Control for the confounder

� Include it in a model

which will allow you to

� Model the exposure effect

� Test for interaction

� . . .
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Avoid the “clinical trial” thinking
When you match the control group it is no more
representative for the un-exposed.

Analyses based only on the control group are meaningless,
such as a Kaplan-Meier curve. . .

. . . only comparisons are relevant.

The precision of the estimates from the control group is
smaller that it would have been if you had taken the entire
group
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Don’t think it’s a clinical trial
Instead of

Match, Waste, Compare
you should

Use all, Analyze, Report!
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