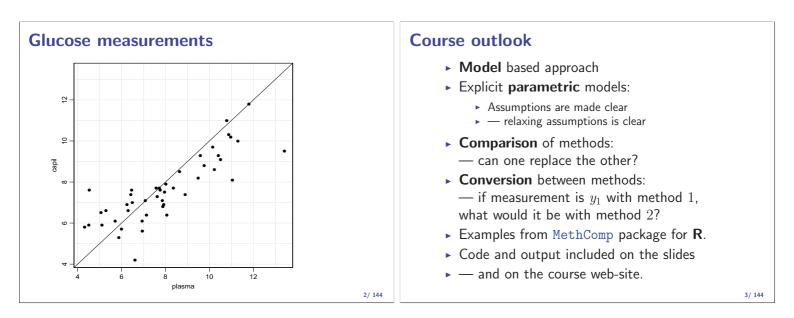
Statistical Analysis of Method Comparison Studies

Bendix Carstensen Steno Diabetes Center,

Gentofte, Denmark & Department of Biostatistics, University of Copenhagen bxc@steno.dk http://BendixCarstensen.com

Haukeland University Hospital, Bergen, Norway 19–20 March 2014


http://BendixCarstensen.com/MethComp/Courses/Bergen.2014

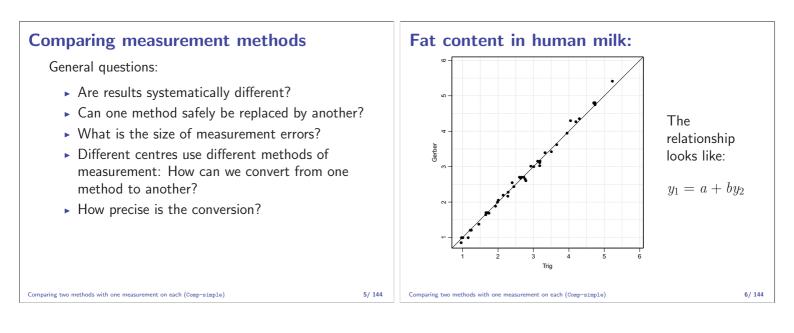
What this is about

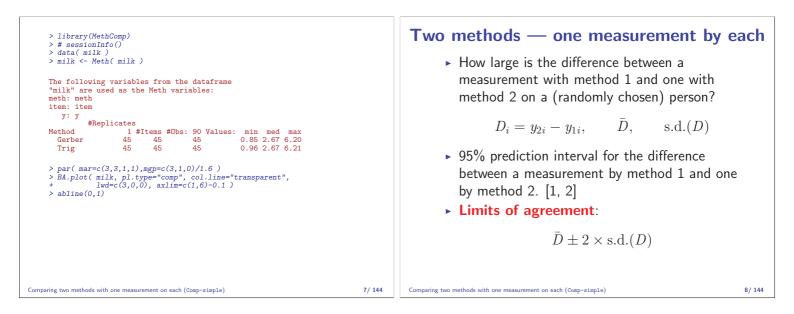
 Two (laboratory) methods for measuring the same clinical quantity.

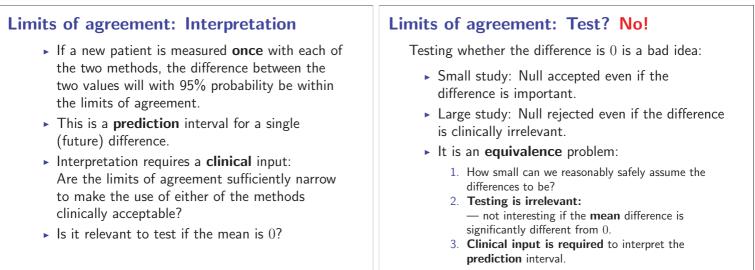
1/144

- Persons are measured with both methods.
- Scaled measurements (continuous).
- Errors in both variables.

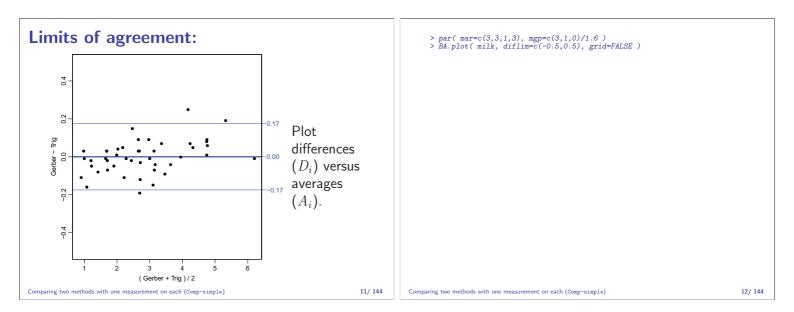
Order of topics 19-20 March


- Wednesday 19th
 - One measurement by each method
 - Computing
 - Linear bias between methods
 - Variable SD
 - Practical milk, plvol
 - Replicate measurements, exchangeable / linked
 - Practical fat, sbp2
 - Repeatability, reproducibility
 - Coefficient of variation
- Thursday 20th
 - Replicate measurements and linear bias
 - ▶ Practical ox 1-8
 - Converting between methods
 - MCMC methods for estimation of variance components
 - Practical ox 9–


Comparing two methods with one measurement on each


Bendix Carstensen

SAoMCS 19-20 March 2014 Haukeland University Hospital, Bergen, Norway http://BendixCarstensen.com/MethComp/Courses/Bergen.2014


(Comp-simple)

Comparing two methods with one measurement on each (Comp-simple)

Model behind "Limits of agreement"

• Methods $m = 1, \ldots, M$, applied to $i = 1, \ldots, I$ individuals:

> $y_{mi} = \alpha_m + \mu_i + e_{mi}$ $e_{mi} \sim \mathcal{N}(0, \sigma_m^2)$ measurement error

- Two-way analysis of variance model, with different variances in columns.
- Different variances are not identifiable without replicate measurements for M = 2.

The variances σ_m are based on the distance of the obs to the mean across methods, but they are always numerically identical with only 2 methods.

13/ 144

Models

Limits of agreement:

Usually interpreted as the likely difference between two future measurements, one with each method:

$$\widehat{y_2 - y_1} = \hat{D} = \alpha_2 - \alpha_1 \pm 2 \operatorname{s.d.}(D)$$

• Convert to prediction interval for y_2 given y_1 :

$$\hat{y}_{2|1} = \hat{y}_2 | y_1 = \alpha_2 - \alpha_1 + y_1 \pm 2 \,\mathrm{s.d.}(D)$$

Formally, we should replace:

$$2 \rightarrow t_{0.975}^{(I-1)} \sqrt{1 + 1/I}$$

which equals 2 for I=85 and 1.96 for $I=\infty$

Spurious correlation?

Model

Model

Different variances induce correlation between D_i and $A_i = (y_{1i} + y_{2i})/2$, if the variances of y_{1i} and y_{2i} are ζ_1^2 and ζ_2^2 respectively:

$$\operatorname{cov}(D_i, A_i) = \frac{1}{2}(\zeta_2^2 - \zeta_1^2) \neq 0 \quad \text{if } \zeta_1 \neq \zeta_2$$

In correlation terms:

 $\rho(D,A) = \frac{1}{2} \left(\frac{\zeta_2^2 - \zeta_1^2}{\zeta_1^2 + \zeta_2^2} \right)$

i.e. the correlation depends on whether the difference between the variances is large relative to the sizes of the two.

15/ 144

... not really...

The variances we were using were the marginal variances of y_1 and y_2 :

$$y_{mi} = \alpha_m + \mu_i + e_{mi}$$

 $\operatorname{var}(y_m) = \operatorname{var}(\mu_i) + \sigma_m^2$

and hence the correlation expression is:

$$\rho(D, A) = \frac{1}{2} \left(\frac{\zeta_2^2 - \zeta_1^2}{\zeta_1^2 + \zeta_2^2} \right) = \frac{1}{2} \left(\frac{\sigma_2^2 - \sigma_1^2}{2 \operatorname{var}(\mu_i) + \sigma_1^2 + \sigma_2^2} \right)$$

Hence only relevant if $var(\mu_i)$ is small relative to σ_1^2 and σ_2^2 .

Not likely in practise — the μ s are normally chosen to be widely spread, so $var(\mu_i) \gg \sigma_1^2, \sigma_2^2$ Model

Introduction to computing

Bendix Carstensen

SAoMCS 19-20 March 2014 Haukeland University Hospital, Bergen, Norway http://BendixCarstensen.com/MethComp/Courses/Bergen.2014

(Intro-comp)

Course structure

Introduction to computing (Intro-comp)

The course is both theoretical and practical, i.e. the aim is to convey a basic understanding of the problems in method comparison studies, but also to convey practical skills in handling the statistical analysis.

- **R** for data manipulation and graphics.
- Occasionally BUGS (JAGS) for estimation in non-linear variance component models.

How it works		How it looks I	
Example data sets are included in the MethComp package.		<pre>> library(MethComp) > data(ox) > ox <- Meth(ox)</pre>	
<pre>Functions in MethComp are based on a data frame with a particular structure; a Meth object: meth — method (factor) item — item, person, individual, sample (factor) repl — replicate (if present) (factor) y — the actual measurement (numerical) Once converted to a Meth object, just use summary plot etc.</pre>	Τ,	<pre>The following variables from the dataframe "ox" are used as the Meth variables: meth: meth item: item repl: repl y: y #Replicates Method 1 2 3 #Items #Obs: 354 Values: min med max CO 1 4 56 61 177 22.2 78.6 93.5 pulse 1 4 56 61 177 24.0 75.0 94.0 > (subset(ox, as.integer(item)<3))</pre>	
Introduction to computing (Intro-comp)	18/ 144	Introduction to computing (Intro-comp)	19/ 144

<pre>How it looks II meth item repl y 1</pre>		 Analyses in this course Scatter plots. Bland-Altman plots ((y₂ - y₁) vs. (y₁ + y₂)/2) Limits of agreement. Models with constant bias. Models with linear bias. Conversion formulae between methods. Plots of converison equations. Reporting of variance components. Transformation of response. 	
Introduction to computing (Intro-comp) 2	0/144	Introduction to computing (Intro-comp) 21/ 14	4

Data objects im MethComp

- Meth Dataframe in the "long" format, with predefined variable names.
- MethComp Results from an analysis with estimated conversions betweenmethods and (if applicable) variance components. Produced by different functions.
- MCmcmc Results from a MCMC analysis of a model. Can be converted to a MethComp object.

Functions in the MethComp package

5 broad categories of functions in MethComp:

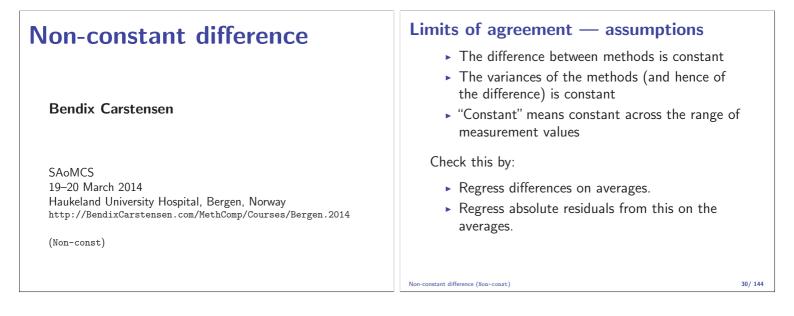
- Data manipulation reshaping and changing data.
- Graphical exploring data.
- Simulation generating datasets or replacing variables.
- Analysis functions fitting models to data.
- Reporting functions displaying the results from analyses.

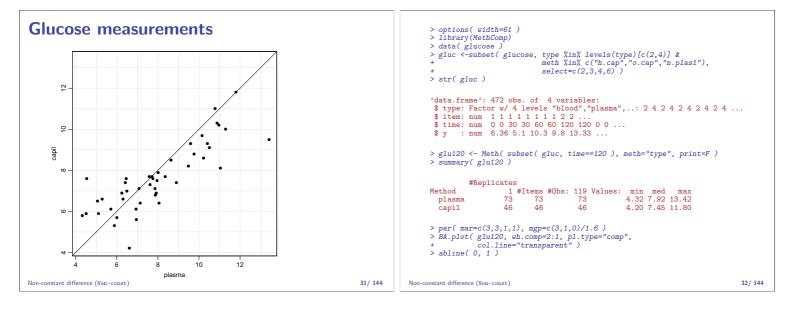
Introduction to computing (Intro-comp)

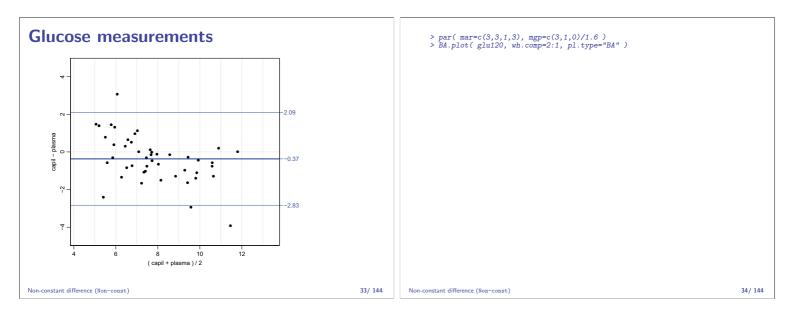
22/ 144

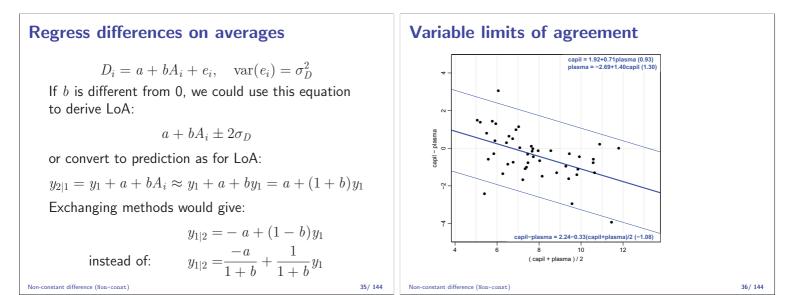
Introduction to computing (Intro-comp)

Data manipulation functions Graphical functions (basic) plot.Meth Plots all methods against all other, ▶ Meth Sets up a Meth object — a dataframe in the "long" format, with predefined variable both as a scatter plot and as a Bland-Altman names. plot. make.repl Generates a repl column in a data BA.plot Makes a Bland-Altman plot of two frame with columns meth, item and y. methods from a data frame with method comparison data, and computes limits of perm.repl Randomly permutes replicates within (method, item) and assigns new replicate agreement. numbers. \blacktriangleright bothlines Adds regression lines of y on x and vice versa to a scatter plot. to.wide/to.long Transforms a data frame in the long form to the wide form and vice versa. Meth.sim Simulates a dataset (a Meth object) from a method comparison experiment. Introduction to computing (Intro-comp) 24/144 Introduction to computing (Intro-comp) 25/144

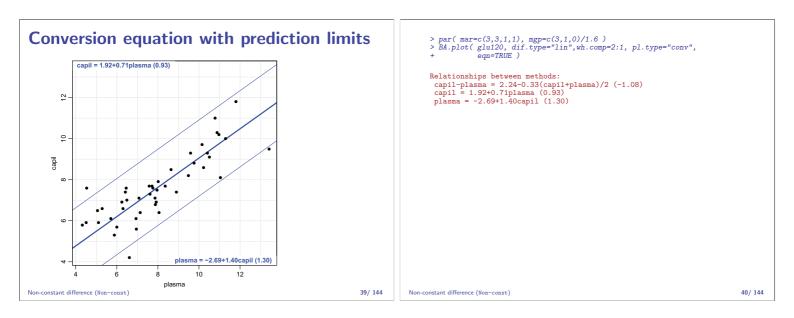

Analysis functions (simple)


- DA.reg, regresses the differences on the averages. Also regresses the absolute residuals on the averages to check whether the variance is constant. Returns a MethComp object.
- BA.est Estimates in the variance components models underlying the concept of limits of agreement, and returns the bias and the variance components. Assumes constant bias between methods. Returns a MethComp object.
- ▶ VC.est The workhorse behind BA.est.
- Deming Performs Deming regression, i.e. regression with errors in both variables.


Analysis functions (general)


- MCmcmc Estimates via BUGS (JAGS) in the general model with non-constant bias.
 Produces an MCmcmc object. WHich can be converted to a MethComp object.
- AltReg Estimates via ad-hoc procedure (alternating regressions) in a model with linear bias between methods. Returns a matrix of estimates with the conversion parameters as well as the variance components. Returns a MethComp object.

Reporting functions		Does it work? I	
 print.MethComp Prints a table of conversion equations based on an estimated model. plot.MethComp Graphs the estimated relationship between methods based on an estimated model. print.MCmcmc Table of conversion equations between methods analyzed. plot.MCmcmc Conversion lines between methods with prediction limits. post.MCmcmc Smoothed posteriors of estimates. trace.MCmcmc Simulation traces from an MCmcmc object. 		<pre>You should get something reasonable out of this: > library(MethComp) > data(ox) > summary(ox) > summary(ox) > plot(ox) BA.plot(ox) AB.est(ox) </pre> (AR.ox < AltReg(ox,linked=TRUE,trace=TRUE)) MCmarc(ox, code.only=TRUE) MC.ox <- MCmarc(ox, n.iter=500) print(MC.ox) plot(MC.ox) plot(MC.ox) post.MCmarc(MC.ox)	
Introduction to computing (Intro-comp)	28/ 144	Introduction to computing (Intro-comp)	29/144



<pre>> par(mar=c(3,3,1,3), mgp=c(3,1,0)/1.6) > BA.plot(glu120, dif.type="lin",wh.comp=2:1, pl.type="BA")</pre>	Using the regression of D on A properly
<pre>> par(mar=c(3,3,1,3), mgp=c(3,1,0)/1.6) > BA.plot(glu120, dif.type="lin",wh.comp=2:1, pl.type="BA", + eqn=TRUE)</pre>	$y_{2i} - y_{1i} = a + b(y_{1i} + y_{2i})/2 + e_i$ $y_{2i}(1 - b/2) = a + (1 + b/2)y_{1i} + e_i$
Relationships between methods: capil-plasma = 2.24-0.33(capil+plasma)/2 (-1.08) capil = 1.92+0.71plasma (0.93) plasma = -2.69+1.40capil (1.30)	$y_{2i} = \frac{a}{1 - b/2} + \frac{1 + b/2}{1 - b/2}y_{1i} + \frac{1}{1 - b/2}e_i$
	$y_{1i} = \frac{-a}{1+b/2} + \frac{1-b/2}{1+b/2}y_{2i} + \frac{1}{1+b/2}e_i$
	Details found in [5] This is what comes out of the functions DA.reg and BA.plot.

Non-constant difference (Non-const)

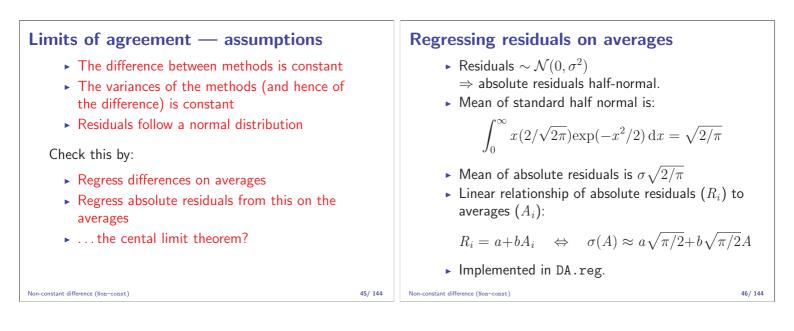
Non-constant difference (Non-const)

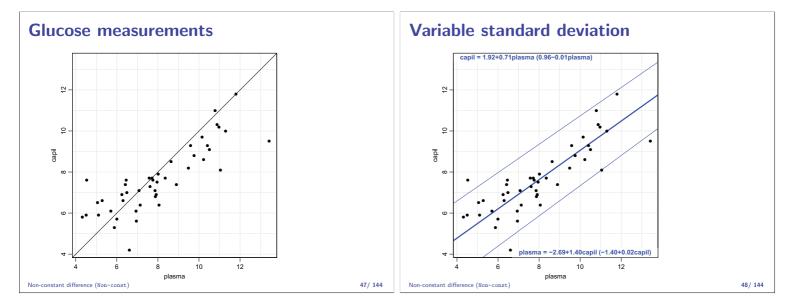
Why does this work?		So why is it wrong anyway?
The general model for the data is:		Conceptually:
$y_{1i} = \alpha_1 + \beta_1 \mu_i + e_{1i}, \qquad e_{1i} \sim \mathcal{N}(0, \sigma_1^2)$		Once the β_m is introduced:
$y_{2i} = \alpha_2 + \beta_2 \mu_i + e_{2i}, \qquad e_{2i} \sim \mathcal{N}(0, \sigma_2^2)$		$y_{mi} = \alpha_m + \beta_m \mu_i + e_{mi}$
 Work out the prediction of y_{2i} given an observation of y_{1i} in terms of the αs and βs. 		measurements by different methods are on different scales.
 Work out how differences relate to averages i terms of αs and βs. 	n	Hence it has formally no meaning to form the differences.
 Use til to work out relationship between the (α, β) and (a, b) 		
► Then the prediction is as we just derived it.		
Non-constant difference (Non-const)	41/ 144	Non-constant difference (Non-const) 42/144

So why is it wrong anyway?

Statistically:

Under the correctly specified model, the induced model for the differences on the averages A_i , these contain the error terms, and so does the residuals.


So the covariate is not independent of the error terms.


Thus the assumptions behind regression are violated.

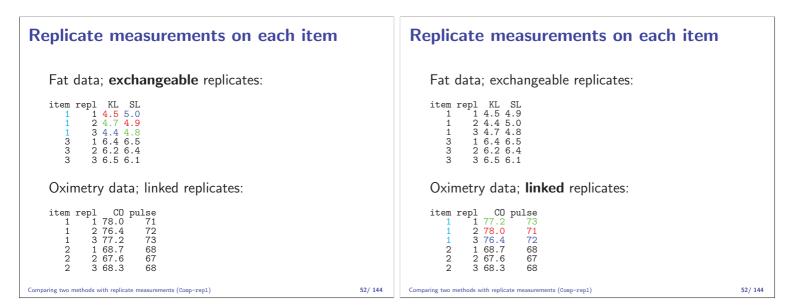
Then why use it?

- With only one observation per (method,item) there is not much else to do.
- ► If the slope linking the two methods (β₁/β₂) is not dramatically different from 1, the violations are not that big.
- Implemented in BA.plot and in DA.reg, which also checks the residuals.

For further details, see [5].

Variable mean and standard deviation

- 2-step procedure:
 - Regress D_i on A_i .
 - Regress R_i (absolute residuals) on A_i
- Can be done using quadratic rather than linear terms, or even splines. (Not in MethComp yet, any takers?)
- Allows very flexible form of the relationships between differences and averages
- \blacktriangleright —and flexible form of the $\rm s.d.$ to the mean.
- ► The relationship D ~ A is easily back-transformed to a relationship y₁ ~ y₂, with prediction intervals.
- Beware: over-modelling!


Non-constant difference (Non-const)

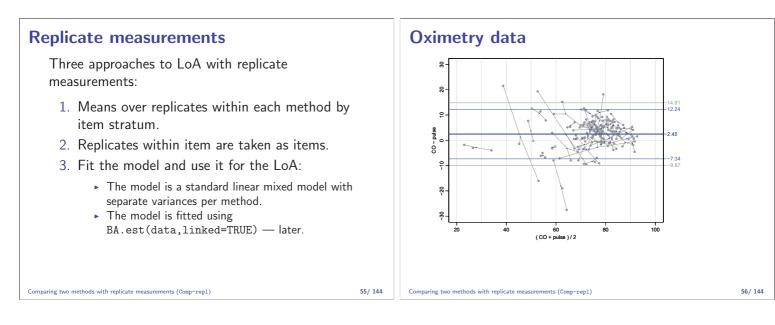
Comparing two methods with replicate measurements

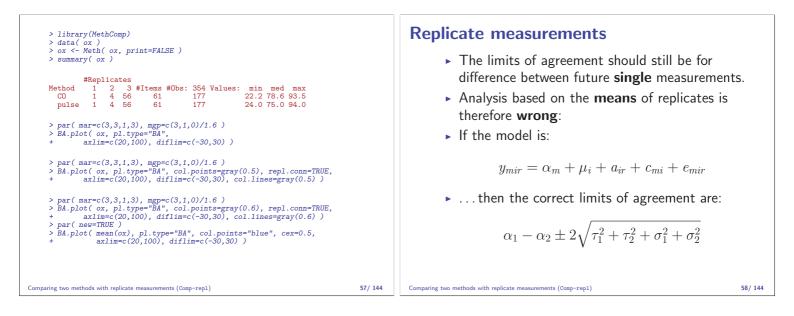
Bendix Carstensen

SAoMCS 19-20 March 2014 Haukeland University Hospital, Bergen, Norway http://BendixCarstensen.com/MethComp/Courses/Bergen.2014

(Comp-repl)

51/144


Extension of the model: exchangeable replicates


 $\begin{array}{lll} y_{mir} &=& \alpha_m + \mu_i + c_{mi} + e_{mir} \\ && \mathrm{s.d.}(c_{mi}) = \tau_m & -- \text{``matrix''-effect} \\ && \mathrm{s.d.}(e_{mir}) = \sigma_m & -- \text{measurement error} \end{array}$

- Replicates within (m, i) is needed to separate τ and σ .
- Even with replicates, the *τ*s are only estimable if M > 2.
- Still assumes that the difference between methods is constant.
- Assumes exchangeability of replicates.

Extension of the model: linked replicates

- Still assumes difference between methods constant.
- Replicates linked between methods:
 a_{ir} is common across methods; first replicate on a person is made under similar conditions for all methods, second too etc.

Wrong or almost right?

Comparing two

- var(y_{1jr} − y_{2jr}) = τ₁² + τ₂² + σ₁² + σ₂²
 note that the term a_{ir} − a_{ir} cancels because we are referring to the same replicate.
- If we are using means of replicates to form the differences we have:

(Linked) replicates as items

 If replicates are taken as items, then the differences are:

$$d_{ir} = y_{1ir} - y_{2ir} = \alpha_1 - \alpha_2 + c_{1i} - c_{2i} + e_{1ir} - e_{2ir}$$

- ▶ which has variance $\tau_1^2 + \tau_2^2 + \sigma_1^2 + \sigma_2^2$, and so gives the correct limits of agreement.
- But the differences are not independent:

$$\operatorname{cov}(d_{ir}, d_{is}) = \tau_1^2 + \tau_2^2$$

 Negligible if the residual variances are very large compared to the interaction, variance likely to be only slightly downwards biased.

Exchangeable replicates as items?

- Exchangeable replicates: not clear how to produce the differences with replicates as items.
- If replicates are paired at random (se the function perm.repl), the variance will still be correct using the model without the i × r interaction term (a_{ir}):

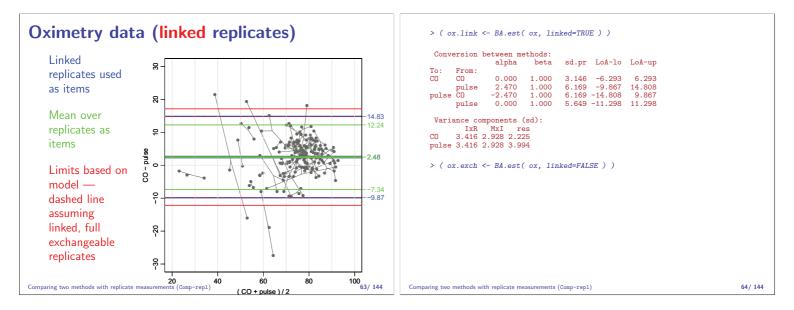
$$\operatorname{var}(y_{1ir} - y_{2is}) = \tau_1^2 + \sigma_1^2 + \tau_2^2 + \sigma_2^2$$

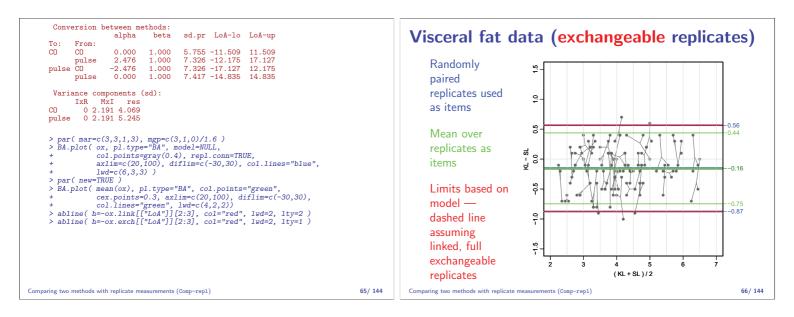
 Differences will be positively correlated within item:

$$\operatorname{cov}(y_{1ir} - y_{2is}, y_{1it} - y_{2iu}) = \tau_1^2 + \tau_2^2$$

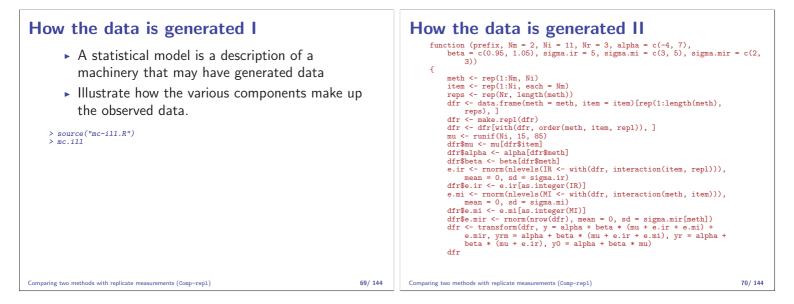
- slight underestimate of the true variance.

```
Comparing two methods with replicate measurements (Comp-repl)
```

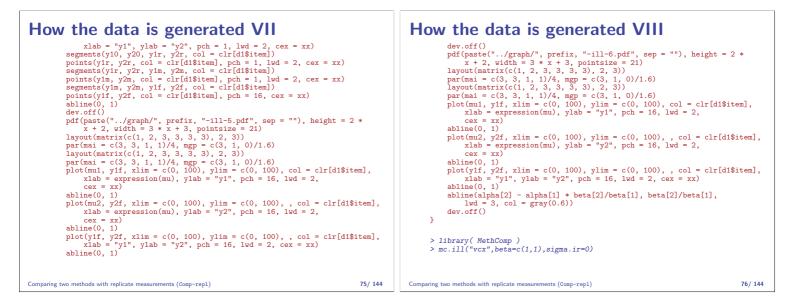

Recommendations

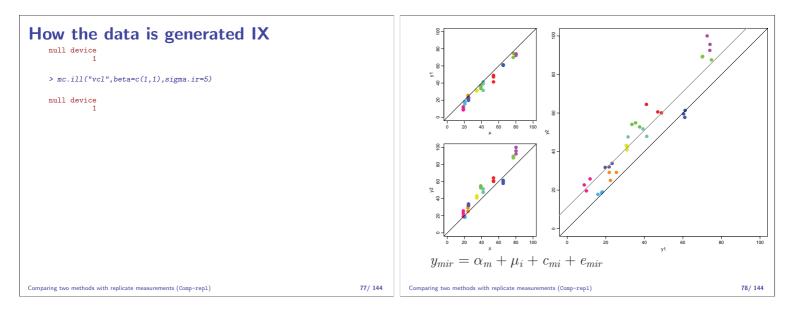

- Fit the correct model, and get the estimates from that, e.g. by using BA.est.
- If you must use over-simplified methods:
 - Use linked replicates as item.
 - If replicates are not linked; make a random linking.
 - Note: If this give a substantially different picture than using the original replicate numbering as linking key, there might be something fishy about the data.

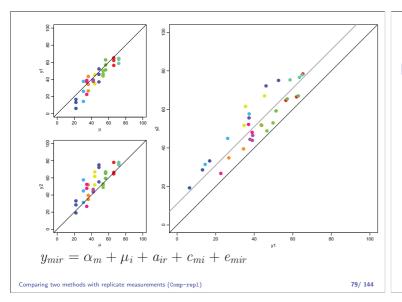
Further details, see [6].


 $Comparing \ {\tt two \ methods \ with \ replicate \ measurements \ ({\tt Comp-repl})}$

62/144




> data(fat)		
> vis <- Meth(fat, 2, 1, 3, 5)	Conversion between methods:	
	alpha beta sd.pr LoA-lo LoA-up	
The following variables from the dataframe	To: From:	
"fat" are used as the Meth variables:	KL KL 0.000 1.000 0.273 -0.545 0.545	
	SL -0.155 1.000 0.364 -0.883 0.573	
meth: Obs	SL KL 0.155 1.000 0.364 -0.573 0.883	
item: Id	SL = 0.000 + 0.000 + 0.490 + 0.490	
repl: Rep	SL 0.000 1.000 0.245 -0.490 0.490	
y: Vic		
#Replicates	Variance components (sd):	
Method 3 #Items #Obs: 258 Values: min med max	IXR MXI res	
KL 43 43 129 2.0 3.9 6.5	KL 0 0.181 0.193	
SL 43 43 129 2.3 4.1 6.7	SL 0 0.181 0.173	
Conversion between methods: alpha beta sd.pr LoA-lo LoA-up	<pre>> BA.plot(vis, pl.type="BA", model=NULL, + col.points=gray(0.4), repl.conn=TRUE, + axlim=c(2,7), diflim=c(-3,3)/2, col.lines="blue", + lwd=c(6,3,3))</pre>	
To: From:	> par(new=TRUE)	
KL KL 0.000 1.000 0.264 -0.528 0.528	> BA.plot(mean(vis), pl.type="BA", col.points="green",	
SL -0.155 1.000 0.360 -0.874 0.564	+ $(ex.points=0.3, axlim=c(2,7), diflim=c(-3,3)/2,$	
SL KL 0.155 1.000 0.360 -0.564 0.874	+ $col.lines="green", lwd=c(4,2,2))$	
SL 0.000 1.000 0.235 -0.471 0.471	<pre>> abline(h=-vis.link[["LoA"]][2:3], col="red", lwd=2, lty=2)</pre>	
	<pre>> abline(h = vis.ink[["LoA"]][2:3], col="red", lwd=2, lty=2) > abline(h = vis.exch[["LoA"]][2:3], col="red", lwd=2, lty=1)</pre>	
Variance components (sd):	> abline(n= vis.exch[[Low]][2.0], Col- led , iwd-2, iby-1)	
IxR MxI res		
KI. 0.048 0.183 0.187		
SL 0.048 0.183 0.166		
aparing two methods with replicate measurements (Comp-repl)	67/144 Comparing two methods with replicate measurements (Comp-repl)	68/144



How the data is generated III	How the data is generated IV
<pre>d1 <- subset(dfr, meth == 1) d2 <- subset(dfr, meth == 2) mu1 <- d1%mu y10 <- d1%y0 y1r <- d1%yr y1f <- d1%yr mu2 <- d2%mu y20 <- d2%yr y2f <- d2%yr y2f <- d2%yr x <- 4 x <- 1.7 clr <- rainbow(Ni) pdf(paste("/graph/", prefix, "-ill-1.pdf", sep = ""), height = 2 * x + 2, width = 3 * x + 3, pointsize = 21) layout(matrix(c(1, 2, 3, 3, 3, 3, 2, 2, 3)) par(mai = c(3, 3, 1, 1)/4, mgp = c(3, 1, 0)/1.6) plot(mu1, y10, xlim = c(0, 100), ylim = c(0, 100), xlab = expression(mu), ylab = "y1", pch = 16, cex = xx, col = clr[d1%tem]) abline(0, 1) plot(mu2, y20, xlim = c(0, 100), ylim = c(0, 100), xlab = expression(mu), ylab = "y2", pch = 16, cex = xx, col = clr[d1%tem]) abline(0, 1) plot(y10, y20, xlim = c(0, 100), ylim = c(0, 100), xlab = "y1",</pre>	<pre>ylab = "y2", pch = 16, cex = xx, col = clr[d1\$item]) abline(0, 1) dev.off() pdf(paste("/graph/", prefix, "-ill-2.pdf", sep = ""), height = 2 * x + 2, width = 3 * x + 3, pointsize = 21) layout(matrix(c(1, 2, 3, 3, 3, 3), 2, 3)) par(mai = c(3, 3, 1, 1)/4, mgp = c(3, 1, 0)/1.6) plot(mu1, y10, xlim = c(0, 100), ylim = c(0, 100), col = clr[d1\$item], xlab = expression(mu), ylab = "y1", pch = 1, lwd = 2, cer = xx) segments(mu1, y10, mu1, yir, col = grey(0.7)) points(mu1, yir, col = clr[d1\$item], pch = 16, cex = xx) abline(0, 1) plot(mu2, y20, xlim = c(0, 100), ylim = c(0, 100), , col = clr[d1\$item], xlab = expression(mu), ylab = "y2", pch = 1, lwd = 2, cex = xx) segments(mu2, y20, mu2, y2r, col = grey(0.7)) points(mu2, y20, mu2, y2r, col = grey(0.7)) points(mu2, y20, xlim = c(0, 100), ylim = c(0, 100), , col = clr[d1\$item], xlab = "y1", ylab = "y2", pch = 1, lwd = 2, cex = xx) abline(0, 1) plot(yl0, y20, xlim = c(0, 100), ylim = c(0, 100), , col = clr[d1\$item], xlab = "y1", ylab = "y2", pch = 1, lwd = 2, cex = xx) segments(y10, y20, ylr, y2r, col = clr[d1\$item]) points(y1r, y2r, col = clr[d1\$item], pch = 16, cex = xx) abline(0, 1) dev.off() pdf(paste("/graph/", prefix, "-ill-3.pdf", sep = ""), height = 2 *</pre>
Comparing two methods with replicate measurements (Comp-repl) 71/ 144	Comparing two methods with replicate measurements (Comp-rep1) 72/144

<pre>How the data is generated V x + 2, width = 3 * x + 3, pointsize = 21; layout(matrix(c(1, 2, 3, 3, 3, 3), 2, 3); par(mai = c(3, 3, 1, 1)/4, mgp = c(3, 1, 0)/1.6; plot(mu1, y10, xlim = c(0, 100), ylim = c(0, 100), col = clr[d1\$item],</pre>	<pre>How the data is generated VI dev.off() pdf(paste("/graph/", prefix, "-ill-4.pdf", sep = ""), height = 2 *</pre>
Comparing two methods with replicate measurements (Comp-rep1) 73/ 144	Comparing two methods with replicate measurements (Comp-rep1) 74/144

Accuracy of a measurement method

same technician, and the same day.

(**Repeata**bility conditions)

laboratories or technicians.

(**Reproduci**bility conditions)

The accuracy of the method under exactly similar circumstances; i.e. the same lab, the

The accuracy of the method under comparable

circumstances, i.e. the same machinery, the same kit, but possibly different days or

Repeatability and reproducibility

Bendix Carstensen

SAoMCS 19-20 March 2014 Haukeland University Hospital, Bergen, Norway http://BendixCarstensen.com/MethComp/Courses/Bergen.2014

(Repro)

Quantification of accuracy

- Upper limit of a 95% confidence interval for the difference between two measurements.
- Suppose the variance of the measurement is σ^2 :

$$\operatorname{var}(y_{mi1} - y_{mi2}) = 2\sigma$$

— standard error of difference: $\sqrt{2}\sigma$

► Confidence interval for the difference:

 $0 \pm 1.96 \times \sqrt{2}\sigma = 0 \pm 2.772\sigma \approx \pm 2.8\sigma$

 This is called the reproducibility coefficient or simply the **reproducibility**.
 (2.8 is used as a convenient approximation).

Repeatability and reproducibility

(ISO 5625)

Repeatability:

Reproducibility:

Quantification of accuracy

- Where do we get the σ ?
- Repeat measurements on the same item.
- The conditions under which the repeat (replicate) measurements are taken determines whether we are estimating repeatability or reproducibility.
- In larger experiments we must consider the exchangeability of the replicates — i.e. which replicates are done under (exactly) similar conditions and which are not.

Coefficient of variation

Repeatability and reproducibility

- Defined as s.d. relative to mean: $CV = \sigma/\mu$
- \blacktriangleright Measurements with varying mean and ${\rm s.d.}$ may still have constant ${\rm CV}.$
- Assumption of s.d. proportional to µ across the range of y, s.d.(y) = CVµ(y)
 implies that measurements are positive.
- LoA could be:

$$\mu \pm 2 \mathrm{CV} \mu$$

- But what if CV > 0.5 lower bound < 0?
- Immaterial "2" depends on the degree of confidence chosen anyway.

80/144

Repeatability and reproducibility

Coefficient of variation

• σ proportional to μ

A common misconception

noise ratio"). [7]¹

variation is another model.

log-transformed data)

model on a transformed scale,

focusing on the variance (of the

- ► ⇒ confidence intervals should be multiplicative: $\mu \stackrel{\times}{\div} erf$ for some error-factor.
- Specifically:

$$\mathrm{d.}(\log(Y)) \approx \sigma \times \left. \frac{\mathrm{dlog}(y)}{\mathrm{d}y} \right|_{y=\mu} = \sigma/\mu = \mathrm{CV}$$

 ...so using CV is just doing analysis on the log-scale.

There are other approaches that might also be used (e.g., coefficients of variation, item response theory, or the "signal to

The authors seem to think that coefficient of

▶ It is not a different model — just the same

¹Guidelines for Reporting Reliability and Agreement Studies (GRRAS)

Coefficient of variation

- CV small: CV is the same as the s.d. of the log-transformed data.
- CV large: CV is not same as the s.d. of the log-transformed data.
- ... but it is the log-transformed analysis that is meaningful.
- Empirical question if this gives a better model.

Repeatability and reproducibility

Repeatability and reproducibility

 \mathbf{S}

84/144

86/144

Linear bias between methods

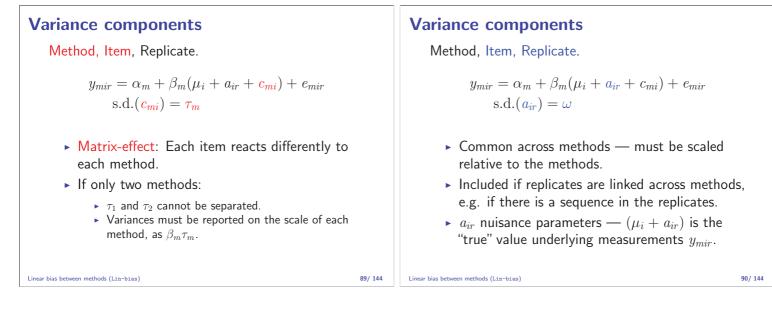
Bendix Carstensen

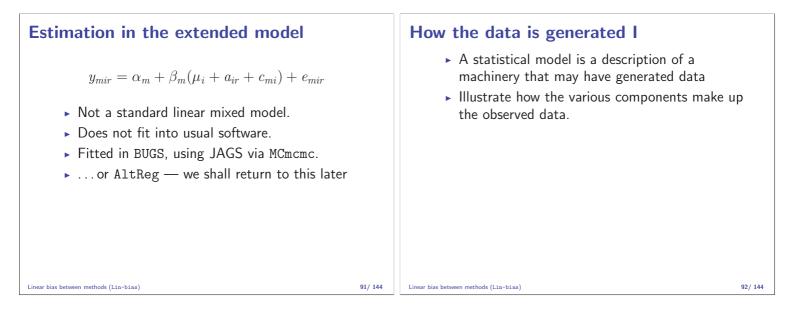
SAoMCS 19-20 March 2014 Haukeland University Hospital, Bergen, Norway http://BendixCarstensen.com/MethComp/Courses/Bergen.2014

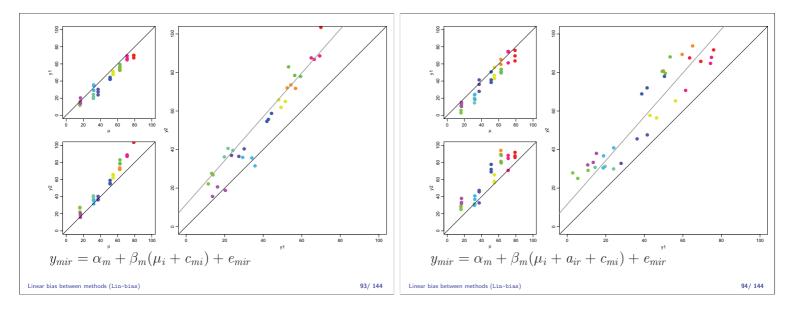
(Lin-bias)

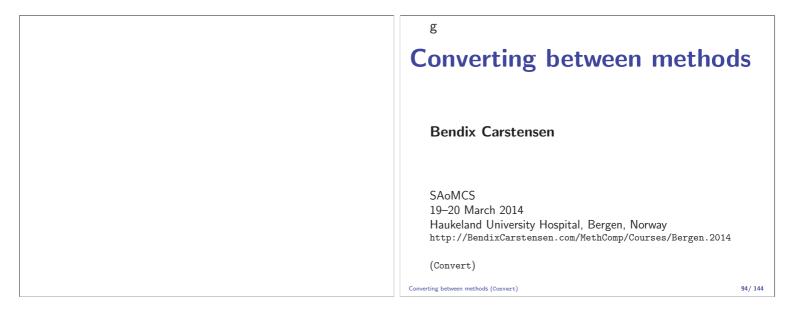
Repeatability and reproducibility

Extension with non-constant bias


 $y_{mir} = \alpha_m + \beta_m \mu_i + random$ effects


- There is now a **scaling** between the methods.
- Methods do not measure on the same scale the relative scaling is **estimated**, between method 1 and 2 the scale is β₂/β₁.
- Consequence: Multiplication of all measurements on one method by a fixed number does not change results of analysis:
 - The α s & β s are multiplied by the same factor
 - \blacktriangleright as is the ${\rm s.d.s}$ of the variance components for this method.


Variance components


 $y_{mir} = \alpha_m + \beta_m(\mu_i + a_{ir} + c_{mi}) + e_{mir}$

- ► The random effects c_{mi} and e_{mir} have variances specific for each method.
- ► Variance of a_{ir} does not depend on m reporting scaled to each of the methods by the corresponding β_m .
- Implies that $\omega = s.d.(a_{ir})$ is irrelevant — the scale is arbitrary.
- Relevant quantities are β_mω
 the between replicate variation within item as measured on the mth scale.

Predicting method 2 from method 1

$$y_{10r} = \alpha_{1} + \beta_{1}(\mu_{0} + a_{0r} + c_{10}) + e_{10r}$$

$$y_{20r} = \alpha_{2} + \beta_{2}(\mu_{0} + a_{0r} + c_{20}) + e_{20r}$$

$$\downarrow$$

$$y_{20r} = \alpha_{2} + \frac{\beta_{2}}{\beta_{1}}(y_{10r} - \alpha_{1} - e_{10r})$$

$$+ \beta_{2}(-c_{10} + c_{20}) + e_{20r}$$
The random effects have expectation 0, so:

$$E(y_{20}|y_{10}) = \hat{y}_{20} = \alpha_{2} + \frac{\beta_{2}}{\beta_{1}}(y_{10} - \alpha_{1})$$
Enverting between method (ferener)
$$y_{20r} = \alpha_{2} + \frac{\beta_{2}}{\beta_{1}}(y_{10} - \alpha_{1})$$

$$\beta_{2|1} = \frac{\tilde{\beta}_{2}}{\tilde{\beta}_{1}}$$

$$\beta_{2|1} = \frac{\tilde{\beta}_{2}}{\tilde{\beta}_{1}}$$

$$y_{20r} = \alpha_2 + \frac{\beta_2}{\beta_1} (y_{10r} - \alpha_1 - e_{10r}) + \beta_2 (-c_{10} + c_{20}) + e_{20r} \operatorname{var}(\hat{y}_{20}|y_{10}) = \left(\frac{\beta_2}{\beta_1}\right)^2 (\beta_1^2 \tau_1^2 + \sigma_1^2) + (\beta_2^2 \tau_2^2 + \sigma_2^2)$$

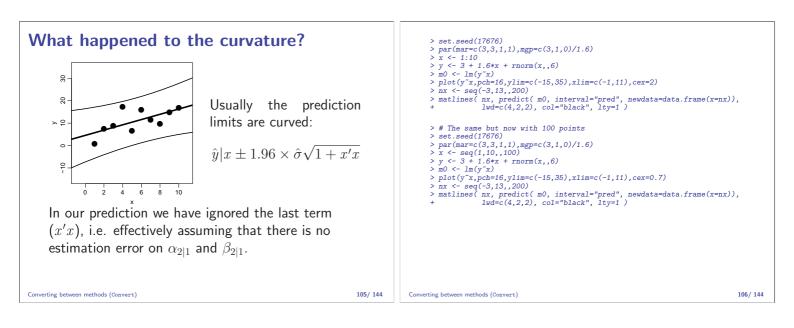
The prediction s.d. is:

$$\sigma_{2|1} = \sqrt{\left(\frac{\beta_2}{\beta_1}\right)^2 (\beta_1^2 \tau_1^2 + \sigma_1^2) + (\beta_2^2 \tau_2^2 + \sigma_2^2)}$$

If we do the prediction the other way round $(y_1|y_2)$ we get the same relationship i.e. a line with the inverse slope, β_1/β_2 .

The width of the prediction interval in this direction is (by permutation of indices):

$$\sigma_{1|2} = \sqrt{\left(\beta_1^2 \tau_1^2 + \sigma_1^2\right) + \left(\frac{\beta_1}{\beta_2}\right)^2 \left(\beta_2^2 \tau_2^2 + \sigma_2^2\right)}$$
$$= \frac{\beta_1}{\beta_2} \sqrt{\left(\frac{\beta_2}{\beta_1}\right)^2 \left(\beta_1^2 \tau_1^2 + \sigma_1^2\right) + \left(\beta_2^2 \tau_2^2 + \sigma_2^2\right)} = \frac{\beta_1}{\beta_2} \sigma_{2|1}$$


i.e. if we draw the prediction limits as straight lines they can be used both ways.

Converting between methods (Convert)

$ \begin{array}{c} 9 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$		<pre>> options(width=61) > library(MethComp) > data(ox) > ox <- Meth(ox) The following variables from the dataframe "ox" are used as the Meth variables: meth: meth item: item repl: repl y: y #Replicates Method 1 2 3 #Items #Obs: 354 Values: min med max C0 1 4 56 61 177 22.2 78.6 93.5 pulse 1 4 56 61 177 24.0 75.0 94.0 > system.time(MCox <- MCmcmc(ox, IxR=TRUE))</pre>	
Converting between methods (Convert)	99/ 144	Converting between methods (Convert)	100/144

<pre>Comparison of 2 methods, using 354 measurements on 61 items, with up to 3 replicate measurements, (replicate values are in the set: 1 2 3) (2 * 61 * 3 = 366): No. items with measurements on each method: #Replicates Method 1 2 3 #Items #Obs: 354 Values: min med max CO 1 4 56 61 177 22.2 78.6 93.5 pulse 1 4 56 61 177 24.0 75.0 94.0 Simulation run of a model with method by item and item by replicate interaction: using 4 chains run for 2000 iterations (of which 1000 are burn-in), monitoring all values of the chain: giving a posterior sample of 4000 observations. Initialization and burn-in: Compiling model graph Resolving undeclared variables Allocating nodes Graph Size: 2868 Initializing model Sampling: user system elapsed 13.94 0.07 14.45</pre>	<pre>> (Mox <- MethComp(MCox)) Conversion between methods:</pre>	
Converting between methods (Convert) 101/	44 Converting between methods (Convert)	102/144

<pre>Relationships between methods: CO-pulse = -10.52+0.18(Cd+pulse)/2 (4.92) CO = -11.53+1.19pulse (5.39) pulse = 9.67+0.84CO (4.52) > segments(50, Mox\$Conv["CO", "pulse", "alpha"] +</pre>		<pre>+ Mox\$Conv["pulse", "CO", "sd.pr"]*2 + 1, 60, + paste("Length:", formatC(Mox\$Conv["pulse", "CO", "sd.pr"], +</pre>	
Converting between methods (Convert) 10	03/ 144	Converting between methods (Convert)	104/144

Comparing to a gold standard

 \blacktriangleright The prediction ${\rm s.d.}$ is:

$$\sigma_{2|1} = \sqrt{\left(\frac{\beta_2}{\beta_1}\right)^2 (\beta_1^2 \tau_1^2 + \sigma_1^2) + (\beta_2^2 \tau_2^2 + \sigma_2^2)}$$

- If method 1 is the gold standard (no error), *i.e.* **assumed**: $\tau_1 = \sigma_1 = 0$
- Estimate relationship by regressing y₂ on y₁, deriving τ₂ and σ₂ — standard linear regresssion.
- Prediction of y₁
 (what would the gold standard give?):
- Limits for $y_2|y_1$, but used the other way.

Converting between methods (Convert)

Implementation in BUGS/JAGS

Bendix Carstensen

SAoMCS 19-20 March 2014 Haukeland University Hospital, Bergen, Norway http://BendixCarstensen.com/MethComp/Courses/Bergen.2014

(BUGS-impl)

Implementation in BUGS

$$y_{mir} = \alpha_m + \beta_m(\mu_i + a_{ir} + c_{mi}) + e_{mir}$$

Non-linear hierarchical model:

- The model is *symmetrical* in methods.
- Mean is overparametrized.
- Choose a prior (and hence posterior!) for the µs with finite support.
- Keeps the chains nicely in place.

This is the philosophy in the function ${\tt MCmcmc.}$

Results from fitting the model

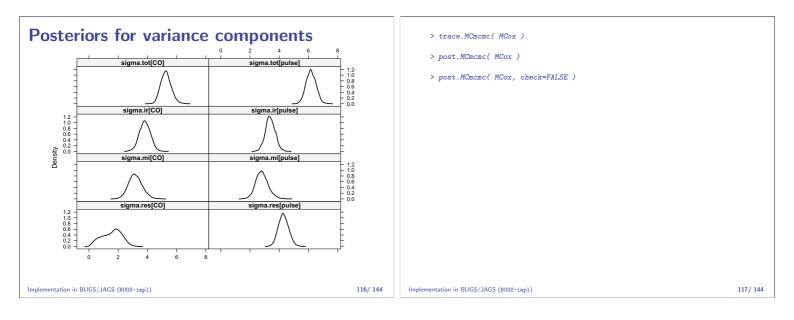
The posterior dist'n of (α_m,β_m,μ_i) is singular.

But the relevant translation quantities **are** identifiable:

$$\alpha_{2|1} = \alpha_2 - \alpha_1 \beta_2 / \beta_1$$

$$\beta_{2|1} = \beta_2 / \beta_1$$

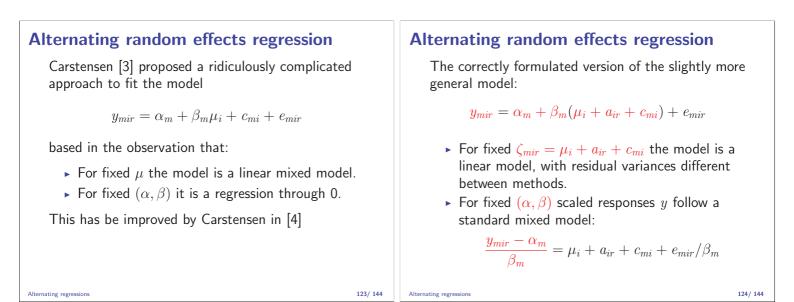
— so are the variance components.


Posterior medians used to devise prediction equations with limits.

107/144

Implemented model: $y_{mir} = lpha_m + eta_m (\mu_i + a_{ir} + c_{mi}) + e_{mir}$		<pre>> options(width=61) > library(MethComp) > data(ox) > ox <- Meth(ox) The following variables from the dataframe "ox" are used as the Meth variables:</pre>	
 Replicates required in data. JAGS (or R2WinBUGS or BRUGS) is required. Dataframe with variables meth, item, repl and y (a Meth object) The function MCmcmc writes a BUGS-program, initial values and data to files. Runs JAGS and sucks results back in to R, and gives a nice overview of the conversion equations. 		<pre>""""""""""""""""""""""""""""""""""""</pre>	
Implementation in BUGS/JAGS (BUGS-impl)	110/ 144	Implementation in BUGS/JAGS (BUGS-impl)	111/ 144

<pre>Comparison of 2 methods, using 354 measurements on 61 items, with up to 3 replicate measurements, (replicate values are in the set: 1 2 3) (2 * 61 * 3 = 366): No. items with measurements on each method: #Replicates Method 1 2 3 #Items #Obs: 354 Values: min med max C0 1 4 56 61 177 22.2 78.6 93.5 pulse 1 4 56 61 177 24.0 75.0 94.0 Simulation run of a model with - method by item and item by replicate interaction: using 4 chains run for 10000 iterations (of which 5000 are burn-in), monitoring every 5 values of the chain: - giving a posterior sample of 4000 observations. Initialization and burn-in: Compiling model graph Resolving undeclared variables Allocating nodes Graph Size: 2868</pre>		<pre>> MCox Conversion between methods:</pre>	
Initializing model		tot 5.260 4.632 6.037 6.169 5.541 6.841	
Sampling: user system elapsed 69.49 0.09 69.93		Mean parameters with 95 % cred.int.: 50% 2.5% 97.5% P(>0/1) alpha[pulse.CO] 6.144 -2.900 13.632 0.918 alpha[CO.pulse] -6.928 -17.274 2.921 0.082	
plementation in BUGS/JAGS (BUGS-impl)	112/ 144	Implementation in BUGS/JAGS (BUGS-impl)	113/ 144


beta[pulse.CD] 0.886 0.788 1.003 0.028 beta[CO.pulse] 1.129 0.997 1.270 0.972		Traces of the chains
<pre>Note that intercepts in conversion formulae are adjusted to get conversion formulae that represent the same line both ways, and hence the median interceps in the posterior do not agree exactly with those given in the conversion formulae.</pre> > MethComp(MCox) Conversion between methods:		haces of the chains
Implementation in BUGS/JAGS (BUGS-impl)	114/ 144	Implementation in BUGS/JAGS (BUGS-impl) 115/ 144

<pre>> data(sbp) > sbp <- Meth(sbp) The following variables from the dataframe "sbp" are used as the Meth variables: meth: meth item: item repl: repl y: y</pre>		Comparison of 3 methods, using 765 measurements on 85 items, with up to 3 replicate measurements, (replicate values are in the set: 1 2 3) (3 * 85 * 3 = 765): No. items with measurements on each method: #Replicates Method 3 #Items #Obs: 765 Values: min med max J 85 85 255 74 120 228 R 85 85 255 77 135 228 Simulation run of a model with - method by item and item by replicate interaction: - using 4 chains run for 10000 iterations (of which 5000 are burn-in), - monitoring every 5 values of the chain: - giving a posterior sample of 4000 observations. Initialization and burn-in: Compiling model graph Resolving undeclared variables Allocating nodes Graph Size: 5982 Initializing model Sampling:	
mplementation in BUGS/JAGS (BUGS-impl) 11	18/ 144	Implementation in BUGS/JAGS (BUGS-impl)	119/ 144

user system elapsed 179.57 0.22 180.22		SD IxR 5.992 5.379 6.719 5.935 5.331 6.650 4.804 4.082	5.698
		MxI 0.316 0.009 0.840 0.184 0.025 0.635 17.860 15.163 2	21.274
> MCbp		res 1.482 0.765 2.023 1.658 1.016 2.125 8.923 8.011 1	
> hop		tot 6.191 5.573 6.897 6.176 5.570 6.866 20.551 18.270 2	23.607
Conversion between methods:		Mean parameters with 95 % cred.int.:	
alpha beta sd.pr in(t-f) sl(t-f) sd(t-f)		50% 2.5% 97.5% P(>0/1)	
To: From:		alpha[R.J] 1.132 -0.209 2.332 0.952	
J J 0.000 1.000 2.173 0.000 0.000 2.173		alpha[S.J] 40.477 27.049 53.826 1.000	
R -1.143 1.010 2.293 -1.137 0.010 2.282		alpha[J.R] -1.143 -2.375 0.209 0.048	
S -50.444 1.246 24.899 -44.929 0.219 22.176		alpha[S.R] 39.561 25.983 52.959 1.000	
R J 1.132 0.990 2.271 1.137 -0.010 2.282		alpha[J.S] -50.474 -76.857 -30.134 0.000	
R 0.000 1.000 2.374 0.000 0.000 2.374		alpha[R.S] -48.852 -74.837 -28.416 0.000	
S -48.832 1.234 24.689 -43.720 0.209 22.104		beta[R.J] 0.990 0.981 1.001 0.033	
S J 40.501 0.803 20.008 44.929 -0.219 22.196		beta[S.J] 0.803 0.699 0.905 0.000	
R 39.577 0.810 20.019 43.720 -0.209 22.114		beta[J.R] 1.010 0.999 1.019 0.967	
S 0.000 1.000 28.242 0.000 0.000 28.242		beta[S.R] 0.810 0.706 0.913 0.000	
		beta[J.S] 1.246 1.105 1.430 1.000	
Variance components (sd): s.d.		beta[R.S] 1.234 1.095 1.415 1.000	
Method IxR MxI res		Note that intercepts in conversion formulae are adjusted to get	
J 5.992 0.316 1.482		conversion formulae that represent the same line both ways,	
R 5.935 0.184 1.658		and hence the median interceps in the posterior do not agree	
S 4.804 17.860 8.923		exactly with those given in the conversion formulae.	
Variance components with 95 % cred.int.: method J R S		> MethComp(MCbp)	
	5% 97.5%		
qnt 50% 2.5% 97.5% 50% 2.5% 97.5% 50% 2.5	0% 91.0%		
nentation in BUGS/JAGS (BUGS-impl)	120/144	Implementation in BUGS/JAGS (BUGS-impl)	121/

To: From J J R S	alpha n: 0.000 -1.143 -50.444	beta 1.000 1.010 1.246	2.173 2.293	in(t-f) 0.000 -1.137 -44.929	sl(t-f) 0.000 0.010 0.219	2.173 2.282	Alternating regressions
R J R S S R S S	1.132 0.000 -48.832 40.501 39.577 0.000	0.990 1.000 1.234 0.803 0.810 1.000	2.271 2.374	1.137 0.000 -43.720 44.929 43.720 0.000	-0.010 0.000 0.209 -0.219 -0.209 0.000	2.282 2.374 22.104 22.196 22.114	Bendix Carstensen
s Method J R	ce component .d. IXR MXI 5.992 0.316 5.935 0.186 4.804 17.860	res 1.482 1.658					SAoMCS 19-20 March 2014 Haukeland University Hospital, Bergen, Norway http://BendixCarstensen.com/MethComp/Courses/Bergen.2014 (Alt-reg)

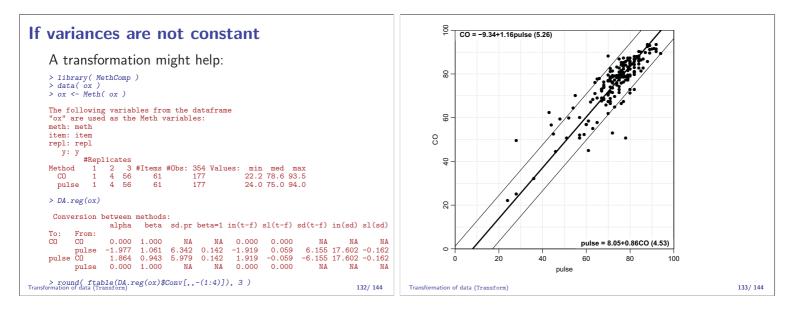
Estimation algorithm

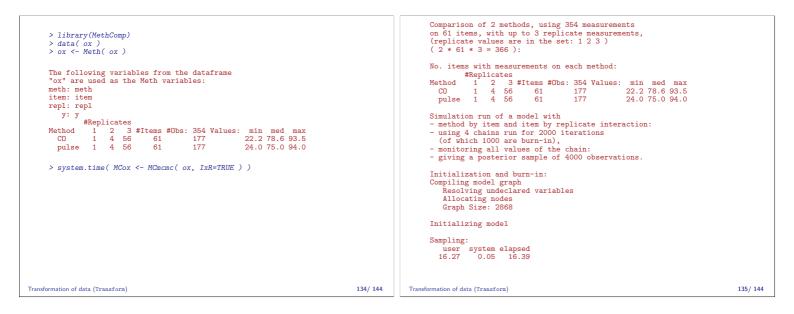
$$y_{mir} = \alpha_m + \beta_m(\mu_i + a_{ir} + c_{mi}) + e_{mir}$$

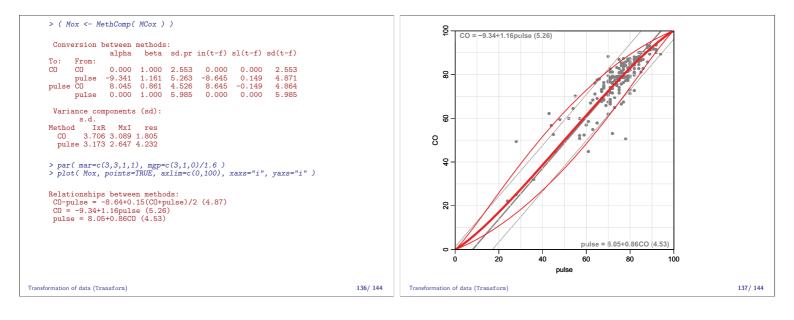
- 1. Start with $\zeta_{mir} = \bar{y}_{mi}$.
- 2. Estimate (α_m, β_m) .

Alternating regressions

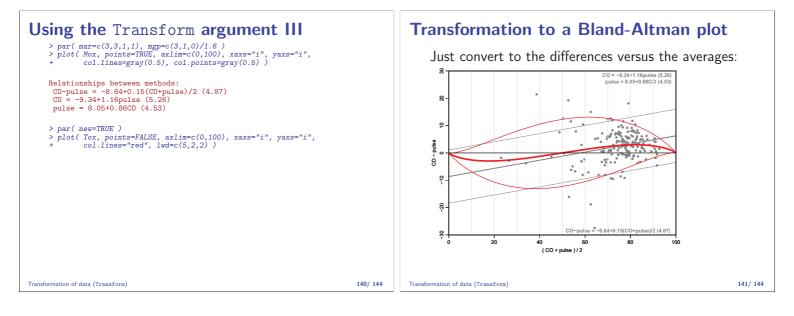
- 3. Compute the scaled responses and fit the random effects model.
- 4. Use the estimated μ_i s, and BLUPs of a_{ir} and c_{mi} to update ζ_{mir} .
- 5. Check convergence in terms of identifiable parameters.


The residual variances


- The variance components are estimated in the model for the scaled response.
- ► The estimation of parameters (\$\alpha_m\$, \$\beta_m\$)\$ are not taken into account in the calculation of the residual variance d.f.
- Hence the residual variances must be corrected post hoc.
- This machinery is implemented in the function AltReg in the MethComp package.


<pre>> options(width=100) > library(MethComp) > data(ox) > ox <- Meth(ox)</pre>		iteration 1 criterion: 1 alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR MxI res CO 0.911 0.988 1.861 74.419 74.417 1.000 0.974 3.371 3.502 2.292 pulse -1.039 1.014 1.860 74.422 74.419 1.027 1.000 3.460 3.595 3.958
The following variables from the dataframe "ox" are used as the Meth variables: meth: meth item: item		iteration 2 criterion: 0.07508045 alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR MxI res CO -0.714 1.011 1.255 74.419 74.956 1.00 0.99 3.399 3.311 2.251 pulse -2.006 1.022 3.020 73.878 74.419 1.01 1.00 3.433 3.344 3.981
repl: repl y: y #Replicates Method 1 2 3 #Items #Obs: 354 Values: min med max C0 1 4 56 61 177 22.2 78.6 93.5		iteration 3 criterion: 0.0594666 alpha beta sigma Intercept: CO pulse Slope: CO pulse IXR MxI res CO -2.363 1.035 1.215 74.419 75.433 1.000 1.005 3.425 3.173 2.211 pulse -2.971 1.030 3.082 73.412 74.419 0.995 1.000 3.407 3.156 4.002 iteration 4 criterion: 0.04281372
<pre>pulse 1 4 56 61 177 24.0 75.0 94.0 > system.time(AR.ox <- AltReg(ox, linked=T, trace=T))</pre>		alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR MxI res CO -4.019 1.058 1.177 74.419 75.831 1.000 1.019 3.447 3.084 2.175 pulse -3.963 1.039 3.139 73.034 74.419 0.982 1.000 3.384 3.027 4.021 iteration 5 criterion: 0.02856943
		alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR MxI res CO -5.668 1.081 1.143 74.419 76.145 1.000 1.03 3.466 3.031 2.145 pulse -5.009 1.049 3.186 72.744 74.419 0.971 1.00 3.365 2.943 4.036
		iteration 6 criterion: 0.01820552 alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR MxI res CO -7.307 1.103 1.113 74.419 76.382 1.000 1.039 3.482 3.003 2.121 pulse -6.124 1.062 3.223 72.530 74.419 0.962 1.000 3.351 2.890 4.048
Alternating regressions	127/ 144	Alternating regressions 128/144

		pulse -14.211 1.165 3.303 72.079 74.419 0.942 1.000 3.315 2.807 4	.07
iteration 7 criterion: 0.01140264			
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR	MxI res	iteration 13 criterion: 0.001381194	
CD -8.936 1.126 1.09 74.419 76.556 1.000 1.046 3.493 2		alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR MxI	re
pulse -7.314 1.076 3.25 72.377 74.419 0.956 1.000 3.340 2	858 4 057	C0 -18.834 1.258 1.030 74.419 76.924 1.000 1.062 3.520 2.978 2	
		pulse -15.736 1.185 3.306 72.061 74.419 0.941 1.000 3.314 2.804 4	
iteration 8 criterion: 0.007169339			
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR	MyT ro	iteration 14 criterion: 0.0009863462	
CD -10.562 1.148 1.071 74.419 76.680 1.000 1.051 3.502			
		alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR MxI	
pulse -8.576 1.092 3.269 72.269 74.419 0.951 1.000 3.331	2.837 4.06	C0 -20.548 1.281 1.027 74.419 76.938 1.000 1.063 3.521 2.978 2	
		pulse -17.301 1.205 3.308 72.049 74.419 0.941 1.000 3.313 2.802 4	.07
iteration 9 criterion: 0.005074459			
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR		AltReg converged after 14 iterations	
CD -12.190 1.169 1.057 74.419 76.768 1.000 1.055 3.508	2.980 2.07	Last convergence criterion was 0.0009863462	
pulse -9.904 1.109 3.282 72.193 74.419 0.948 1.000 3.325	2.824 4.06	user system elapsed	
-		12.71 0.03 12.78	
iteration 10 criterion: 0.003705422			
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR	MxI re		
C0 -13.826 1.191 1.047 74.419 76.830 1.000 1.058 3.513		> AR.ox	
pulse -11.290 1.126 3.292 72.140 74.419 0.945 1.000 3.321			
puise 11.230 1.120 3.232 12.140 14.413 0.345 1.000 3.321	2.010 4.07		
iteration 11 criterion: 0.002686236			
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR	MxI re		
C0 -15,476 1,213 1,039 74,419 76,873 1,000 1,06 3,516			
pulse -12.727 1.145 3.298 72.104 74.419 0.944 1.00 3.318			
puise 12.127 1.145 5.256 12.104 14.415 0.544 1.00 5.516	2.010 4.07		
iteration 12 criterion: 0.001930191			
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR	Mrr T mo		
CD -17.144 1.236 1.034 74.419 76.903 1.000 1.061 3.518	2.910 2.00		
	100/144	Alternation	
Alternating regressions	129/ 144	Alternating regressions 130/14	*


Conversion between methods: alpha beta sd.pr in(t-f) sl(t-f) sd(t-f) To: From:	Transformation of data
Variance components (sd): s.d. Method IxR MxI res CO 3.521 2.978 2.055 pulse 3.313 2.802 4.079	Bendix Carstensen
	SAoMCS 19-20 March 2014 Haukeland University Hospital, Bergen, Norway http://BendixCarstensen.com/MethComp/Courses/Bergen.2014 (Transform)
Alternating regressions	131/ 144

Using the Transform argument I		Using the Transform argument II	
<pre>> system.time(MCox <- MCmcmc(ox, IxR=TRUE, Transform="pctlogit")) Comparison of 2 methods, using 354 measurements on 61 items, with up to 3 replicate measurements, (replicate values are in the set: 1 2 3) (2 * 61 * 3 = 366): No. items with measurements on each method: #Replicates Method 1 2 3 #Items #Obs: 354 Values: min med max C0 1 4 56 61 177 -1.254049 1.300981 2.666159 pulse 1 4 56 61 177 -1.152680 1.098612 2.751535 Simulation run of a model with - method by item and item by replicate interaction: - using 4 chains run for 2000 iterations (of which 1000 are burn-in), - monitoring all values of the chain: - giving a posterior sample of 4000 observations. Initialization and burn-in: Compiling model graph Resolving undeclared variables Allocating nodes Graph Size: 2869</pre>		<pre>Initializing model Sampling: user system elapsed 16.12 0.00 16.19 > (Tox <- MethComp(MCox)) Note: Response transformed by: function (p) log(p/(100 - p)) Conversion between methods:</pre>	
Transformation of data (Transform)	138/ 144	Transformation of data (Transform) 139/	144

<pre>> par(mar=c(3,3,1,1), mgp=c(3,1,0)/1.6) > plot(Mox, pl.type="BA", points=TRUE, axlim=c(0,100), diflim=c(-30,30) +</pre>	,	Measur The St JM Bla Statisti measur	man and JM Bland. rement in medicine: The analysis of method comparison studies. <i>atistician</i> , 32:307–317, 1983. and and DG Altman. cal methods for assessing agreement between two methods of clinical ement. i:307–310, 1986.	
<pre>> abline(h=0) > par(mar=c(3,3,1,1), mgp=c(3,1,0)/1.6) > plot(Mox, pl.type="BA", points=TRUE, axlim=c(0,100), diflim=c(-30,30) + xaxs="i", yaxs="i", col.lines=gray(0.5), col.points=gray(0.5))</pre>	,	Biostat B. Cars	ring and predicting between several methods of measurement. <i>istics</i> , 5(3):399–413, Jul 2004. stensen. ring Clinical Measurement Methods: A practical guide.	
<pre>Relationships between methods: C0-pulse = -8.64+0.15(C0+pulse)/2 (4.87) C0 = -9.34+1.16pulse (5.26) pulse = 8.05+0.86C0 (4.53) > abline(h=0) > par(new=TRUE) > plot(Tox, pl.type="BA", points=FALSE, axlim=c(0,100), diflim=c(-30,30, + xaxs="i", yaxs="i", col.lines="red", lwd=c(5,2,2)) > abline(h=0)</pre>),	B. Cars Compa Stat M B Cars Statisti replicat		1
Transformation of data (Transform)	42/ 144	Transformation of data (Transform)	143/ 144

