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Comparing measurement methods

General questions:

I Are results systematically different?

I Can one method safely be replaced by another?

I What is the size of measurement errors?

I Different centres use different methods of
measurement: How can we convert from one
method to another?

I How precise is the conversion?
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Two methods for measuring fat content in
human milk:
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Two methods — one measurement by each

How large is the difference between a measurement
with method 1 and one with method 2 on a
(randomly chosen) person?

Di = y2i − y1i, D̄, s.d.(D)

“Limits of agreement:”

D̄ ± 2× s.d.(D)

95% prediction interval for the difference between a
measurement by method 1 and one by method 2.
[1, 2]
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Limits of agreement: Interpretation

I If a new patient is measured once with each of
the two methods, the difference between the
two values will with 95% probability be within
the limits of agreement.

I This is a prediction interval for a (future)
difference.

I Requires a clinical input:
Are the limits of agreement sufficiently narrow
to make the use of either of the methods
clinically acceptable?

I Is it relevant to test if the mean is 0?

Comparing two methods with one measurement on each 4/ 90



Limits of agreement: Test?

Testing whether the difference is 0 is a bad idea:

I If the study is sufficiently small this will be
accepted even if the difference is important.

I If the study is sufficiently large this will be
rejected even if the difference is clinically
irrelevant.
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Limits of agreement:

1 2 3 4 5 6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

( Trig + Gerber ) / 2

Tr
ig

 −
 G

er
be

r ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−0.17

−0.00

0.17 Plot
differences
(Di) versus
averages
(Ai).

Comparing two methods with one measurement on each 6/ 90



Model in “Limits of agreement”

Methods m = 1, . . . ,M , applied to i = 1, . . . , I
individuals:

ymi = αm + µi + emi

emi ∼ N (0, σ2m) measurement error

I Two-way analysis of variance model, with
unequal variances in columns.

I Different variances are not identifiable without
replicate measurements for M = 2 because the
variances cannot be separated.
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Limits of agreement:

Usually interpreted as the likely difference between
two future measurements, one with each method:

ŷ2 − y1 = D̂ = α2 − α1 ± 1.96 s.d.(D)

Normally we use 2 instead of 1.96.

Neither are formally correct if we take the model
seriously:

I Use a t-quantile with I − 1 d.f.

I Estimation s.d. of α2 − α1 is σ/
√
I.

So we should use t0.95 ×
√

(I + 1)/I instead.
This is 2.08 for I = 30 and less than 2 if I > 85.
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Limits of agreement:

Limits of agreement can be converted to a
prediction interval for y2 given y1, by solving for y2:

y2 − y1 = α2 − α1 ± 2 s.d.(D)

which gives:

ŷ2|1 = ŷ2|y1 = α2 − α1 + y1 ± 2 s.d.(D)

Models 9/ 90
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Structure of practicals

This tutorial is both theoretical and practical, i.e.
the aim is to convey a basic understanding of the
problems in method comparison studies, but also to
convey practical skills in handling the statistical
analysis.

I R for data manipulation and graphics.

I So we assume familiarity with R.

I Occasionally BUGS for estimation in non-linear
variance component models.

I BUGS is hidden inside an R-function.
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How it works

Example data sets are included in the MethComp

package.

Functions in MethComp are based on a data frame
with a particular structure; a Meth object:

meth — method (factor)
item — item, person, individual, sample (factor)
repl — replicate (if present) (factor)

y — the actual measurement (numerical)

Once converted to Meth, just use summary, plot
etc.
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How it looks:

> subset(ox,as.integer(item)<3) > subset(to.wide(ox),as.integer(item)<3)
meth item repl y Note:

1 CO 1 1 78.0 Replicate measurements are taken as separate items!
2 CO 1 2 76.4 item repl id CO pulse
3 CO 1 3 77.2 1 1 1 1.1 78.0 71
4 CO 2 1 68.7 2 1 2 1.2 76.4 72
5 CO 2 2 67.6 3 1 3 1.3 77.2 73
6 CO 2 3 68.3 4 2 1 2.1 68.7 68
184 pulse 1 1 71.0 5 2 2 2.2 67.6 67
185 pulse 1 2 72.0 6 2 3 2.3 68.3 68
186 pulse 1 3 73.0
187 pulse 2 1 68.0
188 pulse 2 2 67.0
189 pulse 2 3 68.0
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Getting your own data into R

Take a look in “The R Primer” by Claus Ekstrøm,
or:

If your data are not too large, the simplest is to edit
your data in Excel or some other spreadsheet to
look like this:

item repl id CO pulse
1 1 1.1 78.0 71
1 2 1.2 76.4 72
1 3 1.3 77.2 73
2 1 2.1 68.7 68
2 2 2.2 67.6 67
2 3 2.3 68.3 68

The first line is variable names; the following lines
are data.
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Analysis options in this course

I Scatter plots.

I Bland-Altman plots ((y2 − y1) vs. (y1 + y2)/2)

I Limits of Agreement (LoA).

I Models with constant bias.

I Models with linear bias.

I Conversion formulae between methods (single
replicates)

I Transformation of measurements.

I Plots of conversion equations.

I Reporting of variance components.
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Requirements

I R for data manipulation and graphics.
I Keep a script of what you did:

I Use the built-in editor in R
I the nerds can use ESS
I or you can download R-Studio.

I You need the packages:
I MethComp
I R2WinBUGS
I coda
I BRugs
I Epi - Version 1.10 !!!
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Functions in the MethComp package

5 broad categories of functions in MethComp:

I Graphical — exploring data.

I Data manipulation — reshaping and changing.

I Simulation — generating datasets or replacing
variables.

I Analysis functions — fitting models to data.

I Reporting functions — displaying results from
analyses.

Overview of these in the Practicals.
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Does it work?

library(MethComp)
library(help=MethComp) # Do you have version 1.10??
data(ox)
ox <- Meth(ox)
summary(ox)
plot(ox)
BA.plot(ox)
BA.est(ox)
( AR.ox <- AltReg(ox,linked=TRUE,trace=TRUE) )
MCmcmc(ox,code.only=TRUE)
MC.ox <- MCmcmc(ox,n.iter=100)
MethComp(MC.ox)
plot(MC.ox)
trace.MCmcmc(MC.ox)
post.MCmcmc(MC.ox)
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Limits of agreement — assumptions

I The difference between methods is constant

I The variances of the methods (and hence of
the difference) is constant.

Check this by:

I Regress differences on averages.

I Regress absolute residuals from this on the
averages.
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Glucose measurements
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Glucose measurements
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Regress difference on average

Di = a+ bAi + ei, var(ei) = σ2D
If b is different from 0, we could use this equation to
derive LoA:

a+ bAi ± 2σD

or convert to prediction as for LoA:

y2|1 = y1 + a+ bAi ≈ y1 + a+ by1 = a+ (1 + b)y1

Exchanging methods would give:

y1|2 =− a+ (1− b)y1

instead of: y1|2 =
−a

1 + b
+

1

1 + b
y1
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Variable limits of agreement
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Improving the regression of D on A

y2i − y1i = a+ b(y1i + y2i)/2 + ei

y2i(1− b/2) = a+ (1 + b/2)y1i + ei

y2i =
a

1− b/2
+

1 + b/2

1− b/2
y1i +

1

1− b/2
ei

y1i =
−a

1 + b/2
+

1− b/2
1 + b/2

y2i +
1

1 + b/2
ei

This is what comes out of the functions
DA.reg and BA.plot
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Variable limits of agreement
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Conversion equation with prediction limits
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Prediction intervals

I Prediction s.e. for y1|2 is σ/(1− b/2)

I Prediction s.e. for y1|2 is σ/(1 + b/2)

I The slope of the prediction line is the ratio of
the prediction s.e.s.

I Hence prediction limits can be used both ways:
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Conversion equation with prediction limits
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Why does this work?

The general model for the data is:

y1i = α1 + β1µi + e1i, e1i ∼ N (0, σ21)

y2i = α2 + β2µi + e2i, e2i ∼ N (0, σ22)

I Work out the prediction of y1 given an
observation of y2 in terms of these parameters.

I Work out how differences relate to averages in
terms of these parameters.

I Then the prediction is as we just derived it.
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Why is it wrong anyway?

I Introducing linear bias, ymi = αm + βmµi + emi

puts measurements by different methods on
different scales.
Hence it has formally no meaning to form the
differences.

I In the induced model for Di ∼ a+ bAi + ei,
ei and AI are not independent.

I But if β is not too far from 1 it not a big
problem, though.
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Replicate measurements
Fat data; exchangeable replicates:

item repl KL SL
1 1 4.5 4.9
1 2 4.4 5.0
1 3 4.7 4.8
3 1 6.4 6.5
3 2 6.2 6.4
3 3 6.5 6.1

Oximetry data; linked replicates:

item repl CO pulse
1 1 78.0 71
1 2 76.4 72
1 3 77.2 73
2 1 68.7 68
2 2 67.6 67
2 3 68.3 68

Linked or exchangeable replicates!
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Extension of the model:
exchangeable replicates

ymir = αm + µi + cmi + emir

s.d.(cmi) = τm — “matrix”-effect

s.d.(emir) = σm — measurement error

I Replicates within (m, i) are needed to separate
τ and σ.

I Even with replicates, the separate τs are only
estimable if M > 2.

I Still assumes that the difference between
methods is constant.

I Assumes exchangeability of replicates.
Comparing two methods with replicate measurements 31/ 90



Extension of the model:
linked replicates

ymir = αm + µi + air + cmi + emir

s.d.(air) = ω — between replicates

s.d.(cmi) = τm — “matrix”-effect

s.d.(emir) = σm — measurement error

I Still assumes that the difference between
methods is constant.

I Replicates are linked between methods:
air is common across methods, i.e. the first
replicate on a person is made under similar
conditions for all methods (i.e. at a specific
day or the like).
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Replicate measurements

Three approaches to limits of agreement with
replicate measurements:

1. Take means over replicates within each method
by item stratum.

2. Replicates within item are taken as items.

3. Fit the correct variance components model and
use this as basis for the LoA.
The model is fitted using:
> BA.est( data, linked=TRUE ).
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Oximetry data
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Replicate measurements

I The limits of agreement should still be for
difference between future single measurements.

I Analysis based on the means of replicates is
therefore wrong:

I Model:

ymir = αm + µi + air + cmi + emir

I var(y1jr − y2jr) = τ 21 + τ 22 + σ21 + σ22
— note that the term air − air cancels because
we are referring to the same replicate.
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Wrong or almost right

In the model the correct limits of agreement would
be:

α1 − α2 ± 1.96
√
τ 21 + τ 22 + σ21 + σ22

But if we use means of replicates to form the
differences we have:

d̄i = ȳ1i· − ȳ2i· = α1 − α2 +

∑
r air
R1i

−
∑

r air
R2i

+c1i − c2i +

∑
r e1ir
R1i

−
∑

r e2ir
R2i
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The terms with air are only relevant for linked
replicates in which case R1i = R2i and therefore the
term vanishes. Thus:

var(d̄i) = τ 21+τ 22+σ21/R1i+σ
2
2/R2i < τ 21+τ 22+σ21+σ

2
2

so the limits of agreement calculated based on the
means are much too narrow as prediction limits for
differences between future single measurements.

Comparing two methods with replicate measurements 37/ 90



(Linked) replicates as items

If replicates are taken as items, then the calculated
differences are:

dir = y1ir − y2ir = α1 − α2 + c1i − c2i + e1ir − e2ir

which has variance τ 21 + τ 22 + σ21 + σ22, and so gives
the correct limits of agreement. However, the
differences are not independent:

cov(dir, dis) = τ 21 + τ 22

Negligible if the residual variances are very large
compared to the interaction, variance likely to be
only slightly downwards biased.
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Recommendations

I Fit the correct model, and get the estimates
from that, e.g. by using BA.est.

I If you must use over-simplified methods:

I Use linked replicates as item.

I If replicates are not linked; make a random
linking.
Note: If this give a substantially different
picture than using the original replicate
numbering as linking key, there might be
something fishy about the data.

Further details, see [3].
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Oximetry data

Linked
replicates used
as items

Mean over
replicates as
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Limits based on
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dashed line
assuming
exchangeable
replicates
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Accuracy of a measurement method

I Repeatability:
The accuracy of the method under exactly
similar circumstances; i.e. the same lab, the
same technician, and the same day.
(Repeatability conditions)

I Reproducibility:
The accuracy of the method under comparable
circumstances, i.e. the same machinery, the
same kit, but possibly different days or
laboratories or technicians.
(Reproducibility conditions)
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Quantification of accuracy

I Upper limit of a 95% confidence interval for
the difference between two measurments.

I Suppose the variance of the measurement is σ2:

var(ymi1 − ymi2) = 2σ2

i.e the standard error is
√

2σ, and a confidnece
interval for the difference:

0± 1.96×
√

2σ = 0± 2.772σ ≈ 2.8σ

I This is called the reproducibility coefficient or
simply the reproducibility. (The number 2.8 is
used as a convenient approximation).

Repeatability and reproducibility 42/ 90



Quantification of accuracy

I Where do we get the σ?

I Repeat measurements on the same item (or
even better) several items.

I The conditions under which the repeat
(replicate) measurements are taken determines
whether we are estimating repeatability or
reproducibility.

I In larger experiments we must consider the
exchangeability of the replicates — i.e. which
replicates are done under (exactly) similar
conditions and which are not.
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Extension with non-constant bias

ymir = αm + βmµi + random effects

There is now a scaling between the methods.

Methods do not measure on the same scale — the
relative scaling is estimated, between method 1 and
2 the scale is β2/β1.

Consequence: Multiplication of all measurements on
one method by a fixed number does not change
results of analysis:

The corresponding β is multiplied by the same
factor as is the variance components for this
method.
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Variance components

Two-way interactions:

ymir = αm + βm(µi + air + cmi) + emir

The random effects cmi and emir have variances
specific for each method.

But air does not depend on m — must be scaled to
each of the methods by the corresponding βm.

Implies that ω = s.d.(air) is irrelevant — the scale
is arbitrary. The relevant quantities are βmω — the
between replicate variation within item as measured
on the mth scale.
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Alternating random effects regression

Carstensen [4] proposed a ridiculously complicated
approach to fit the model

ymir = αm + βmµi + cmi + emir

based in the observation:

I For fixed µ the model is a linear mixed model.

I For fixed (α, β) it is a regression through 0.

This has be improved in [5]
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Alternating random effects regression

Now consider instead the correctly formulated
version of the slightly more general model:

ymir = αm + βm(µi + air + cmi) + emir

Here we observe

I For fixed ζmir = µi + air + cmi the model is a
linear model, with residual variances different
between methods.

I For fixed (α, β) scaled responses y are used:

ymir − αm

βm
= µi + air + cmi + emir/βm
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Estimation algorithm

ymir = αm + βm(µi + air + cmi) + emir

1. Start with ζmir = ȳmi·

2. Estimate (αm, βm).

3. Compute the scaled responses and fit the
random effects model.

4. Use the estimated µis, and BLUPs of air and
cmi to update ζmir.

5. Check convergence in terms of identifiable
parameters.
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The residual variances

I The variance components are estimated in the
model for the scaled response.

I The parameters (αm, βm) are not taken into
account in the calculation of the residual
variance.

I Hence the residual variances must be corrected
post hoc.

I This machinery is implemented in the function
AltReg in the MethComp package.
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> AR.ox <- AltReg(ox,linked=T,trace=T)
AltReg uses 354 obs. out of 354 in the supplied data.

iteration 1 criterion: 1
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR sd. MxI sd. res.sd.

CO 0.911 0.988 1.861 74.419 74.417 1.000 0.974 3.371 3.502 2.292
pulse -1.039 1.014 1.860 74.422 74.419 1.027 1.000 3.460 3.595 3.958
...

iteration 14 criterion: 0.000986339
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR sd. MxI sd. res.sd.

CO -20.548 1.281 1.027 74.419 76.938 1.000 1.063 3.521 2.978 2.055
pulse -17.301 1.205 3.308 72.049 74.419 0.941 1.000 3.313 2.802 4.079
There were 14 warnings (use warnings() to see them)

> round(AR.ox,3)
From

To Intercept: CO pulse Slope: CO pulse IxR sd. MxI sd. res.sd.
CO 0.000 -2.159 1.000 1.063 3.521 2.978 2.055
pulse 2.031 0.000 0.941 1.000 3.313 2.802 4.079
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Your turn:

Start on the practical titled:

“Oximetry: Linked replicates with non-constant
bias”
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Predicting method 2 from method 1

y10r = α1 + β1(µ0 + a0r + c10) + e10r
y20r = α2 + β2(µ0 + a0r + c20) + e20r

⇓

y20r = α2 +
β2
β1

(y10r − α1 − e10r)

+ β2(−c10 + c20) + e20r

The random effects have expectation 0, so:

E(y20|y10) = ŷ20 = α2 +
β2
β1

(y10 − α1)
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y20r = α2 +
β2
β1

(y10r − α1 − e10r)

+ β2(−c10 + c20) + e20r

var(ŷ20|y10) =

(
β2
β1

)2
(β2

1τ
2
1 + σ21) + (β2

2τ
2
2 + σ22)

The slope of the prediction line from method 1 to
method 2 is β2/β1.

The width of the prediction interval is:

2× 2×

√(
β2
β1

)2
(β2

1τ
2
1 + σ21) + (β2

2τ
2
2 + σ22)
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If we do the prediction the other way round (y1|y2)
we get the same relationship i.e. a line with the
inverse slope, β1/β2.

The width of the prediction interval in this direction
is (by permutation of indices):

2× 2×

√
(β2

1τ
2
1 + σ21) +

(
β1
β2

)2
(β2

2τ
2
2 + σ22)

= 2× 2× β1
β2

√(
β2
β1

)2
(β2

1τ
2
1 + σ21) + (β2

2τ
2
2 + σ22)

i.e. if we draw the prediction limits as straight lines
they can be used both ways.
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What happened to the curvature?
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Usually the prediction
limits are curved:

ŷ|x± t0.975 × σ̂
√

1 + x′x

In our prediction we have ignored the last term
(x′x), i.e. effectively assuming that there is no
estimation error on α2|1 and β2|1.
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If variances are not constant
A transformation might help:

> round( ftable( DA.reg(ox) ), 3 )
alpha beta sd.pred beta=1 s.d.=K

From: To:
CO CO 0.000 1.000 NA NA NA

pulse 1.864 0.943 5.979 0.142 0.000
pulse CO -1.977 1.061 6.342 0.142 0.000

pulse 0.000 1.000 NA NA NA

> oxt <- transform( ox, y=log(y/(100-y)) )

> round( ftable( DA.reg(oxt) ), 3 )
alpha beta sd.pred beta=1 s.d.=K

From: To:
CO CO 0.000 1.000 NA NA NA

pulse -0.034 0.900 0.306 0.009 0.246
pulse CO 0.038 1.111 0.340 0.009 0.246

pulse 0.000 1.000 NA NA NA
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Analysis on the transformed scale

> ARoxt <- AltReg( ox, linked=T, trace=T, Transform="pctlogit" )

iteration 1 criterion: 1
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR MxI res

CO 0.003 0.998 0.098 1.151 1.151 1.000 0.994 0.220 0.197 0.161
pulse -0.003 1.003 0.098 1.151 1.151 1.006 1.000 0.222 0.198 0.178

iteration 2 criterion: 0.08547255
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR MxI res

CO -0.024 1.032 0.100 1.151 1.181 1.000 1.013 0.222 0.185 0.158
pulse -0.039 1.019 0.121 1.121 1.151 0.987 1.000 0.220 0.182 0.181

...

iteration 15 criterion: 0.0008526646
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR MxI res

CO -0.528 1.506 0.082 1.151 1.314 1.000 1.105 0.232 0.160 0.143
pulse -0.516 1.362 0.144 1.003 1.151 0.905 1.000 0.210 0.145 0.191
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Analysis on the transformed scale

> ARoxt <- AltReg( ox, linked=T, trace=T, Transform="pctlogit" )

AltReg converged after 15 iterations
Last convergence criterion was 0.0008526646

> ARoxt
Note: Response transformed by: log p/(100 - p)

Conversion between methods:
alpha beta sd

To: From:
CO CO 0.000 1.000 0.202

pulse 0.042 1.105 0.341
pulse CO -0.038 0.905 0.309

pulse 0.000 1.000 0.271

Variance components (sd):
s.d.

Method IxR MxI res
CO 0.232 0.160 0.143
pulse 0.210 0.145 0.191
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Backtransformation for plotting

prpulse <- seq(20,100,1)
lprpulse <- log( prpulse / (100-prpulse) )
lprCO <- ARoxt["CO",2] + ARoxt["CO",4]*lprpulse
lprCOlo <- ARoxt["CO",2] + ARoxt["CO",4]*lprpulse -

2*sd.CO.pred
lprCOhi <- ARoxt["CO",2] + ARoxt["CO",4]*lprpulse +

2*sd.CO.pred
prCO <- 100/(1+exp(-cbind( lprCO, lprCOlo, lprCOhi )))
prCO[nrow(prCO),] <- 100

But this is not necessary; it is implemented in plot.MethComp:

plot( ARoxt, pl.type="conv" )
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Transformation to a Bland-Altman plot
Just convert to the differences versus the averages:

prpulse <- cbind( prpulse, prpulse, prpulse )
with( to.wide(ox),

plot( (CO+pulse)/2, CO-pulse, pch=16,
ylim=c(-40,40), xlim=c(20,100),
xaxs="i", yaxs="i" ) )

abline( h=-4:4*10, v=2:10*10, col=gray(0.8) )
matlines( (prCO+prpulse)/2, prCO-prpulse, lwd=c(3,1,1),

col="blue", lty=1 )

But this is not necessary; it is implemented in plot.MethComp:

plot( ARoxt, pl.type="BA" )
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Implementation in BUGS

ymir = αm + βm(µi + air + cmi) + emir

Non-linear hierarchical model:
Implement in BUGS.

I The model is symmetrical in methods.

I Mean is overparametrized.

I Choose a prior (and hence posterior!) for the
µs with finite support.

I Keeps the chains nicely in place.

This is the philosophy in the function MCmcmc.
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Results from fitting the model

The posterior dist’n of (αm, βm, µi) is singular.

But the relevant translation quantities are
identifiable:

α2|1 = α2 − α1β2/β1

β2|1 = β2/β1

So are the variance components.

Posterior medians used to devise prediction
equations with limits.
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The MethComp package for R

Implemented model:

ymir = αm + βm(µi + air + cmi) + emir

I Replicates required.
I R2WinBUGS, BRugs or JAGS is required.
I Dataframe with variables
meth, item, repl and y (a Meth object)

I The function MCmcmc writes a BUGS-program,
initial values and data to files.

I Runs BUGS and sucks results back in to R, and
gives a nice overview of the conversion
equations.

Implementation in BUGS 69/ 90



Example output: Oximetry

> summary( ox )
#Replicates

Method 1 2 3 #Items #Obs: 354 Values: min med max
CO 1 4 56 61 177 22.2 78.6 93.5
pulse 1 4 56 61 177 24.0 75.0 94.0

>
> MCox <- MCmcmc( ox, linked=TRUE, n.iter=2000 )
Loading required package: coda
Loading required package: lattice
Loading required package: R2WinBUGS
Loading required package: BRugs
Welcome to BRugs running on OpenBUGS version 3.0.3

Comparison of 2 methods, using 354 measurements
on 61 items, with up to 3 replicate measurements,
(replicate values are in the set: 1 2 3 )
( 2 * 61 * 3 = 366 ):

No. items with measurements on each method:
#Replicates

Method 1 2 3 #Items #Obs: 354 Values: min med max
CO 1 4 56 61 177 22.2 78.6 93.5
pulse 1 4 56 61 177 24.0 75.0 94.0
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Simulation run of a model with
- method by item and item by replicate interaction:
- using 4 chains run for 2000 iterations
(of which 1000 are burn-in),

- monitoring all values of the chain:
- giving a posterior sample of 4000 observations.

model is syntactically correct
data loaded
model compiled
Initializing chain 1: initial values loaded but this or another chain contain uninitialized variables
Initializing chain 2: initial values loaded but this or another chain contain uninitialized variables
Initializing chain 3: initial values loaded but this or another chain contain uninitialized variables
Initializing chain 4: initial values loaded but this or another chain contain uninitialized variables
initial values generated, model initialized
Sampling has been started ...
1000 updates took 38 s
deviance set
monitor set for variable ’alpha’
monitor set for variable ’beta’
monitor set for variable ’sigma.mi’
monitor set for variable ’sigma.ir’
monitor set for variable ’sigma.res’
monitor set for variable ’deviance’
1000 updates took 46 s
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> MCox

Conversion between methods:
alpha beta sd

To: From:
CO CO 0.000 1.000 1.740

pulse -9.342 1.159 5.328
pulse CO 8.061 0.863 4.508

pulse 0.000 1.000 6.115
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Variance components (sd):
s.d.

Method IxR MxI res
CO 3.878 3.122 1.230
pulse 3.222 2.757 4.324

Variance components with 95 % cred.int.:
method CO pulse
qnt 50% 2.5% 97.5% 50% 2.5% 97.5%

SD
IxR 3.878 3.053 4.533 3.222 2.426 3.930
MxI 3.122 2.193 9.764 2.757 1.915 5.902
res 1.230 0.143 2.639 4.324 3.709 5.019
tot 5.220 4.507 10.645 6.135 5.457 7.849
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Mean parameters with 95 % cred.int.:
50% 2.5% 97.5% P(>0/1)

alpha[pulse.CO] 8.057 -2.457 29.884 0.969
alpha[CO.pulse] -9.346 -49.949 2.476 0.031
beta[pulse.CO] 0.863 0.604 0.997 0.024
beta[CO.pulse] 1.159 1.003 1.657 0.976

Note that intercepts in conversion formulae are adjusted to get
conversion formulae that represent the same line both ways,
and hence the median interceps in the posterior do not agree
exactly with those given in the conversion formulae.
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I Example

I Random rater vs. fixed methods

I Statistical modelling
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Example: depression ratings

Doctor
Patient A B C D E
1 8 9 5 8 8
2 0 0 1 2 1
3 4 5 5 5 3
4 5 8 7 8 5
5 3 3 1 8 2
6 8 9 9 9 1

“Doctor doctor! Am I depressed?”

Getting second opinions ... and third ... and fourth
...Inter-rater agreement 76/ 90



Example: depression ratings

Research question

How well will two doctors agree on the diagnosis?

In this example we use humans as “measurement
methods” or raters.

However, we are not interested in making
statements about specific raters.
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Fixed versus random effects

Definition: Factors can either be fixed or random.

I A factor is fixed when the levels (e.g. raters)
under study are the only levels of interest.

I A factor is random when the levels under study
are a random sample from a larger population
of raters and the goal of the study is to make a
statement regarding the larger population.

Raters can be defined as fixed or random factors:

I If the raters themselves are of interest (you
want to use them again) then use fixed model.

I If raters are randomly chosen of possible pool
of raters (you do not have specific raters in
mind) then use the random model.Inter-rater agreement 78/ 90



Fixed versus random effects
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Modelling: exchangeable replicates

The model for fixed methods is:

ymir = αm + µi + cmi + emir

s.d.(cmi) = τm — “matrix”-effect

s.d.(emir) = σm — measurement error

I Replicates within (m, i) are needed to separate
τ and σ.

I Even with replicates, the separate τs are only
estimable if M > 2.

I Assumes that the difference between methods
is constant.

I Assumes exchangeability of replicates.

If no replicates then disregard the cmi’s.
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Modelling: exchangeable replicates

The model for random methods/raters is:

ymir = bm + µi + cmi + emir

s.d.(bm) = ξ — variation among raters

s.d.(cmi) = τm — “matrix”-effect

s.d.(emir) = σm — measurement error

I Replicates within (m, i) are needed to separate
τ and σ.

I Even with replicates, the separate τs are only
estimable if M > 2.

I Note: average difference is 0!
I Assumes exchangeability of replicates.

If no replicates then disregard the cmi’s.Inter-rater agreement 81/ 90



Model for replicate measurements

Same approach as before: Fit the correct variance
components model and use this as the basis for LoA.

I Extremely flexible.
I Can even be used to analyze the situation

where every rater not necessarily has scored
every item.

Exchangeable replicates are not uncommon, e.g.,

I Experts scoring/extracting information from
images

I Measurements taken on couples/twins.

Linked replicates do not make sense, when it is
arbitrary which person is partner 1 or partner 2.
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Replicate measurements

The limits of agreement / prediction interval for two
random raters scoring a new future observation is

0± 1.96
√

2ξ2︸︷︷︸
Extra variation

+τ 21 + τ 22 + σ21 + σ22

However, since we are considering the prediction
interval for two random raters we use the average
variance components in the formula

0± 1.96

√
2(ξ2 + τ̄ 2 + σ̄2)

Note that the expected difference is zero since we
have no fixed order of the raters.
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Example: Stress scoring of dogs

10 judges scoring stress indicators from 10 dogs.

> dogdata <- Meth(item=1, y=2:11, data=dogs)
> BA.est(dogdata, random.raters=TRUE, linked=FALSE)

Variance components (sd):
IxR MxI M res

j1 0 18.145 14.11 20.948
j10 0 8.122 14.11 12.736
j2 0 0.009 14.11 11.350
j3 0 0.004 14.11 9.524
j4 0 0.004 14.11 9.614
j5 0 8.924 14.11 12.588
j6 0 18.534 14.11 21.135
j7 0 0.023 14.11 11.991
j8 0 0.004 14.11 9.384
j9 0 0.003 14.11 9.789
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Example: Stress scoring of dogs

10 judges scoring stress indicators from 10 dogs.

> res <- BA.est(dogdata, random.raters=TRUE,
+ linked=FALSE)
> res$LoA

Mean Lower Upper SD
Rand. rater - rater 0 -61.02451 61.02451 30.51225
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Linked replicates

For linked replicates, extend the model as before:

ymir = bm + µi + air + cmi + emir

s.d.(bm) = ξ — variation among raters

s.d.(air) = ω — between replicates

s.d.(cmi) = τm — “matrix”-effect

s.d.(emir) = σm — measurement error

The variation between replicates, ω, does not enter
the limits-of-agreement since the LoA’s are for a
single new future observation (ie., the same
replicate from one item/individual for both raters).

0± 1.96

√
2(ξ2 + τ̄ 2 + σ̄2)
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Linked replicates

> dogdata <- Meth(item=1, y=2:11, data=dogs)
> BA.est(dogdata, random.raters=TRUE)

Variance components (sd):
IxR MxI M res

j1 6.466 18.754 13.994 21.672
j10 6.466 8.163 13.994 10.454
j2 6.466 3.213 13.994 10.439
j3 6.466 0.011 13.994 5.718
j4 6.466 0.033 13.994 11.716
j5 6.466 8.817 13.994 10.449
j6 6.466 19.205 13.994 21.770
j7 6.466 4.732 13.994 10.523
j8 6.466 0.009 13.994 5.701
j9 6.466 0.026 13.994 11.441
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Linked replicates

> res2 <- BA.est(dogdata, random.raters=TRUE)
> res2$LoA

Mean Lower Upper SD
Rand. rater - rater 0 -60.47317 60.47317 30.23658
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Random raters

I Fit the correct variance component model
where variation among raters is considered a
random effect

I Since each rater can have his/her individual
variance we need to average the individual
variance components

I Extract the relevant variance components and
compute the limits-of-agreement
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