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1 Introduction

This document is related to the Deming function in the package MethComp and contains the
derivation of the maximum likelihood estimates related to the Deming regression model. It
is based on the book 'Models in regression and related topics’ (chapter three), from 1969
by Peter Sprent, but with more detailed calculations included.

2 Deming regression

The mathematical model n = o + 3¢ describes a linear relationship between two variables &
and 7. Observations z and y of two variables are usually desribed by a regression of y on z
where x is assumed to be observed without error (or, equivantly using the conditional
distribution of y given x). In linear regression with observations subject to additive
random variation on both x and y and observed values for individuals (z;,v;),i = 1,...,n,
a model may be written

Xy = éz + €xi,

Yi = i + ey = a+ BE + ey,

where e,; and e,, denotes the random part of the model. This is known as a functional
relationship because the &;’s are assumed to be fixed parameters, as oppposed to a
structural relationship where some distribution for the &;’s is assumed. In the following it is
assumed that the e,;s are iid with e,; ~ N(0,0?), and that the e,;s are iid with
eyi ~ N(0,A\a?), for some A > 0. Furthermore e,; is assumed to be independent of e,;.

The aim of this document is to derive the maximum likelihood estimates for «, 3, &; and
o? in the functional model stated above.

3 The likelihood function

The likelihood function fi, s znyiws.m (@ 8,1, 2, .., &ny 02) denoted [ is

ﬁ 2m0?) exp( (z: — f’) ) (2720?) % exp (—(y" _203;2552')2)

=1

and the loglikelihood, denoted L, is

L = Z —% log (2#02) — —(332-2— &) — %log (27T/\02) — (i — o — 5&)*

: o2 2\ o2
=1

i= 1 61 ZL _ﬁ’fz
= —glOg (47.‘.2) _glog ()\0,4) o Z 1(21;-2 ) Z 1( 2)\0-02 ) '

It follows that the likelihood function is not bounded from above when o? goes to 0, so in
the following it is assumed that o2 > 0.
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4 Solving for ¢;

Differentiation of L with respect to &; gives

202 2\o?

2 - 2 (-DREset Ihe -

(z; — &) L By — a— ﬁfi).

o2 A\o2

Setting g—é equal to zero yields

oL 0 = ¢ otz + Bo?y; — Pac? Ar + By — )
o6 L Ao + (3202 B A+

So to estimate &;, estimates for § and a are needed. Therefore focus is turned to the
derivation of &.

5 Solving for «

Differentiation of L with respect to a gives

oL ﬁ( > i (i ﬂl—ﬁ&))
da  Oa 202

Zz 1( 04_552)

o2

and putting ‘g—g equal to zero yields
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Now one can use (1) to dispense with &;

n

o = =3 (- 08)

i=1

L At By — o)

1=

B 1 & Ax; + By; 6204
- E;(yi_ﬁ P> +)\+62>

1=

3 1 - Az; + By
“(“Mﬁ?) - E;(y"_ﬁ A+52)

1=

(i
1 & B A+ 3
o = — i 3
n < Y A+32 A
1 n
= ﬁ : (yz - xzﬁ)
=1
= §-78
Hence the estimate for o becomes )
a=19y—71z0.

6 Solving for

Differentiation of L with respect to (3 gives

2)\o? o2

o o
Setting g—g equal to zero yields

oL .
75 =0 2 m—a=-86)6=0,

i=1

oL 9 <_ D iy —a— 5&‘)2) _ il —a— B8
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and using (1)

n

0 = > (1i—a— B8

=1

n

B Az + By — )\ Az + By — )
= Z(yi_a_ﬁ )\_|_62 ) )\‘i‘ﬁQ ’

i=1
This implies that

n

0 = > (5 - )+ 5% = B — (5 — ) (A + Bl — )

i=1

= Z Nai(y; — ) + B2 Az (y; — o) — X*xF — B Axi(y; — o) +

i=1

D By — a)® + BNy — @)® = BPAi(y; — o) — B (y; — )’
=1

n

_ —52>‘<iz:;xiyi> _ﬁ)\2<2$?> +)\2<i2:;$iyz’>

=1

+62)\a<ixi> + ﬁ)x(i(yi — a>2) — )\2a<il‘i).

Dividing with A and using the fact that a = 3y. — 7.3 it is seen that

n

0 — _52<iz:;xiyi> —ﬁz\(iﬁ) +/\<§xiyi> + B2(3. —fﬁ)(Zﬂ)

= =B ww) - (X 2?) A ww) + 85 ( X w)

=1 =1 =1 =1
n

gz w) +A( 3 0) + 8(X 5.7

=1 =1 =1
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Splitting up the sums even more gives

3

0 = () ~oa( L) A+ #9 (Lw) ~ w0 o)
1=1 i=1 i=1 i=1 i=1

() +5(S50%) # (30w -25( Swm) -2o(om)

i=1 i=1 i=1

w2( S ) . (L) + 45 Yo

1=

Finally the terms are sorted and collected according to powers of (3:

ﬁ3<zn:f.2 — . Zn:$l>
i=1 =1
i=1 i=1 =1 i=1
+8 (ny —AY 2> -2 +>@.in>
i=1 i=1 i=1 i=1 i=1

+A (Z Ty — Y. Z SBZ> )
i=1 i=1
Since
o > Tr-T.y ;=0
¢ Yy LT — Y Ty — 2> YT A2Y 0 yT. = —SPD,,
o > A kY yr =23y + AT Y o = SSD, — ASSD,,
b Z?:l TilYi — Y- 21:1 z; = SPDyy
it is clear that the derivation of # comes down to solve
—3?SPD,, + B(SSD, — ASSD,.) + ASPD,,, = 0. (2)
For SPD,, # 0 this implies that

—(SSD, — ASSD,,) & +/(SSD,, — ASSD,,)? — 4(—SPD,, )ASPD,,,
—2SPD,,

6 =

SSD, — ASSD, & |/(SSD, — ASSD, )2 + 4ASPD?,
2SPD,, |
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Since SSD, — ASSD,, < \/(SSDy — ASSD, )% + 4ASPD?, there is always a positive and a

negative solution to (2). The desired solution should always have the same sign as SPD,,,
hence the solution with the positive numerator is selected. Therefore

SSD, — ASSD, + 1/(SSD, — ASSD,)? + 4\SPD?,
2SPD,, '

B =

7 Solving for & - again

With estimates for 5 and « it is now possible to estimate &; using (1):

éc‘ _ >\$i+ﬁ(yi—d)
’ A+52

8 Solving for o?

Differentiation of L with respect to o2 gives

oL 9, (@ — xi;)? i (i — o= B&)?
ﬁ — w(_glog()\oA)_Zz—l(x xZ) _Zz_l(y «Q ﬁ£)>

202 2\o?
—no? Y (w—xi)® | YL (v — a = BE)?

ot 204 2 o4

=2xno? + A0 (x — @) 4+ Y (v — o — 5&)?
2 o ’

and setting % equal to zero yields

o A (@i = &) D00 (g — a — B&)?
2\n ’

To get a central estimate of o2 one must divide by n — 2 instead of 2n since there are n 4 2
parameters to be estimated, namely &1, &, ..., &,, @ and 5. Hence the degrees of freedom
are 2n — (n + 2) = n — 2. Therefore

52 — AD 0 (@ — 51)2 + >y — o — 651)2
B 2\(n — 2) '
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9 Summing up

& = y—3f
_ SSD, — ASSD, + \/ (SSD, — ASSD,)2 + 4ASPD?,
F = 2SPD,,
o = AN (@ — &) + 300 (ys — 6 — B&)?
2\ (n — 2)
é' . )\352 + B(yz - d)

These formula are implemented in the Deming function in the MethComp package.
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10 The Deming function

Deming <-
function( x, y, vr=sdr~2, sdr=sqrt(vr), boot=FALSE, alpha=0.05 )

if ( missing( vr ) & missing( sdr ) ) var.ratio <- 1
else var.ratio <- vr
vn <- c( deparse( substitute( x ) ),

deparse( substitute( y ) ) )
alfa <- alpha
dfr <- data.frame( x=x, y=y )
dfr <- dfr([complete.cases(dfr),]
x <- dfr$x
y <- dfr$y
n <- nrow( dfr )
SSDy <- var( y )*(n-1)
SSDx <- var( x )*(n-1)
SPDxy <- cov( x, y )*(n-1)
beta <- ( SSDy - var.ratioxSSDx +

sqrt( ( SSDy - var.ratio*SSDx )~2 +
4xvar.ratio*SPDxy~2 ) ) / ( 2xSPDxy)
alpha <- mean( y ) - mean( x ) * beta
ksi <- ( var.ratio*x + beta*(y-alpha) )/(var.ratio+beta2)
sigma.x <- ( var.ratio*sum( (x-ksi)"2 ) +
sum( (y-alpha-beta*ksi)"2 ) ) /
# The ML-estiamtes requires 2*n at this point bu we do not think we have that
# many observations so we stick to (n-2). Any corroboation from litterature?
( (n-2)*var.ratio )

sigma.y <- var.ratio*sigma.x
sigma.x <- sqrt( sigma.x )
sigma.y <- sqrt( sigma.y )

if ( !boot ){

res <- c( alpha, beta, sigma.x, sigma.y )

names( res ) <- c( "alpha", "beta", "sigma.x", "sigma.y" )
res

}

else{

if( is.numeric( boot ) ) N <- boot else N <- 1000
res <- matrix( NA, N, 4 )
for( i in 1:N )

{

wh <- sample( 1:n, n, replace=TRUE )
res[i,] <- Deming( x[wh], y[wh], vr=var.ratio, boot=FALSE )

ests <- cbind( c(alpha,beta,sigma.x, sigma.y),
se <- sqrt( diag( cov( res ) ) ),

t( apply( res, 2, quantile, probs=c(0.5,alfa/2,1-alfa/2 ) ) )
rownames( ests ) <- c( "Intercept", "Slope", paste( "sigma", vn, sep="." ) )
colnames( ests )<- c("Estimate", "S.e.(boot)", colnames(ests)[3:5] )
ests
}

}

)



