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...now input from preface

Preface

The first three words of the title of this book are meant literally. It has a particular emphasis on
data-representation and -manipulation. Which also means that it is presented in terms of computer code
for all analyses—in this case using R.

In order to analyze and report results from a multistate set-up you must have a proper overview of the
raw data. That is provided by the Lexis machinery from the Epi package.

The other main focus is the outcome(s) of statistical analysis, i.e. the quantities that are desirable to
derive from the data base, and how best to convey these to the audience.

The probability and statistical considerations in between the two are technicalities of lesser primary
interest. But they are of crucial importance in getting the analysis right, and they should take the
structure of the data into account. And hence they are carefully explained in relation to the structure of
the basic data.

This is transmitted by worked examples that explain the rationale of analyses as well as the practical
details from definition to final reporting.

Methodologically, the main focus will be on parametric models for intensity rates, as these are not only
biologically credible but also the simplest approach to derivation of the quantities of interest.

...now input from intro

intro



Chapter 1

Introduction

1.1 A simple multistate example

In figure 1.1 is an example where persons with diabetes (DM, diabetes mellitus) in Denmark have been
followed from date of diagnosis of DM for initiation of insulin treatment and death in the period
1996-2009. Persons begin their follow-up either as persons with diabetes not on insulin (state DM) or as
persons with DM currently treated with insulin (Ins).

DM —> Ins

Dead Dead(Ins)

Figure 1.1: Simple multistate model for beginning of insulin use and death among diabetes
patients. ../graph/intro-box1

Those beginning without insulin can move to the insulin state some time during their follow-up. From
either state persons can die; we keep track of whether persons were on insulin or not at the time of death
by having two different death states. Some persons are still alive (in DM or in Ins) when follow-up is
ended; we say that the follow-up of these persons is censored alive.

In figure 1.2 the model has been annotated with numbers derived from the database, showing:

e The total sojourn time (time spent) in state DM is 45,885.5 years
e The total sojourn time (time spent) in state Ins is 8,387.8 years

e 9,899 persons started the follow-up in the state DM, that is as persons with diabetes not using
insulin. Out of these



Introduction

1.1 A simple multistate example

DM 1é29; Ins
45,885.5 (36.9) g 8.387.8
9.899 6.157 97 1.340

2048 451
(44.6) (53.8)

v v

Dead Dead(Ins)
0 2,048 0 451

Figure 1.2: Multistate model for beginning of insulin use and death among diabetes patients.
The number in the center of each box is the total follow-up time. The numbers at the bottom
of each state are the number of persons beginning, resp. ending their follow-up in the state.

The numbers on the arrows are the number of transitions and in brackets the transition rates

per 1000 person-years. ../graph/intro-box2

— 2,048 died without ever using insulin—corresponding to a mortality rate of
2,048/45,885.5PY = 44.6 per 1000 PY.

— 1,694 went on to use insulin—corresponding to a rate of beginning insulin of
1,694/45,885.5PY = 36.9 per 1000 PY.

— 6,157 reached end of follow-up (2009-31-12) alive while not using insulin

e 97 persons were already using insulin at the inclusion in the study

e There were 97 + 1.694 = 1791 ever on insulin. Out of these

— 451 died on insulin—corresponding to a mortality rate of 451/8,387.8PY = 53.8 per 1000 PY.
— 1,340 reached end of follow-up (2009-31-12) alive while using insulin

e The mortality rates among persons on insulin is almost 20% higher than among those not on insulin
(53.8 vs. 44.6 per 1000 PY).

The data base from which these numbers were derived is merely a set of dates for each person (some of
which may be missing), namely:

e date of entry to the study

e date of first insulin use (which may be before or at the date of entry)

e date of death
e date of end of follow-up

So we see that we from information on 4 dates for each person can determine quite a number of
characteristics of the follow-up of the DM population studied.

The information needed for a multistate model for each person is a set of pairs of (date in, date out,
state); the date the person is first, respectively last seen in the state. We will also need to know the date
where the person is last seen alive (the censoring data).In most practical clinical settings, the dates and
corresponding states will also be the way data on persons are initially recorded.

intro



4 1.2 Quantities of interest in multistate models PMM

1.1.1 Time scales

When modeling transition rates we may be interested in the effect of time-scales such as age and disease
duration, which will require that the origins of these are recorded too, i.e. dates of birth, disease onset etc.

In general it is advisable to keep dates of all relevant events, it will facilitate calculation of other
time-related quantities such as age and disease duration at given dates.

1.1.2 Transient and absorbing states

Two types of states are normally distinguished: transient and absorbing. Transient states are states from
which it is possible to exit, absorbing states are states from which it is impossible to exit, typically death.
In figure 1.2, the states DM and Ins are transient states, while Dead and Dead (Ins) are absorbing states.

1.2 Quantities of interest in multistate models
From the follow-up for the persons through the multiple states we can answer questions in three realms,
quantities that all will be functions of one or more time scales:

rates, measured in time~!; this is the same scale as the observed data

e What are the mortality rates among persons on insulin and among persons not on insulin?
e What is the rate of beginning insulin treatment?

e How do the two mortality rates compare (rate-ratio or rate difference)?
probabilities, dimensionless, but requires an origin:

e As a function of time since some origin:

— What is the survival of diabetes patients since diagnosis (ignoring use of insulin)?
— What is the survival of diabetes patients since start of insulin?
— What is the cumulative risk of beginning insulin since the diagnosis of DM.

— What is the probability of ever visiting the insulin state?

Note that the origin may be defined arbitrarily; we could ask for conditional survival given
survival to some fixed time point. This is also sometimes called landmarking.

e As a function of some time ¢:

— What is the probability that a person who is in state A at time ¢ is in state B at a later
time ¢, for some fixed ¢, (> t).
An example would be asking what the probability of survival till, say, 5 years (t,) after
diagnosis is, given that you already survived 1, 2,...years (t) after diagnosis

times, measured in units of time, requiring an interval (origin and endpoint)

e What is the expected lifetime after diagnosis of diabetes

e What is the expected lifetime spent without insulin?

e What is the expected lifetime spent using insulin?

e How much lifetime is lost between persons not on insulin and persons currently on insulin.

e How much time will a person spend in, say, state A, between times ¢, and t,. This is
sometimes called the sojourn time in state A.

Mathematically speaking, the first group (the rates) is at the same level as the basic observations—we
observe data in the form of events and risk time, interpret able as rates (events per time, with dimension
time~1). The second group (probabilities) are (transformations of the) integrals of the rates w.r.t. time, so
of dimension timextime™', i.e. dimensionless. The third group of measures are integrals of the
probabilities w.r.t. time, so of dimension time.

intro



Introduction 1.3 Traditional approaches to rates 5

In practice we will also want to know how these quantities vary by age, sex calendar time etc. One way
of doing this is modeling the rates as functions of these covariates. Note that so far we have not said
anything about estimation of the rates, let alone the other quantities mentioned.

The rest of this book will show how to handle and analyze multistate data, in order to be able to answer
questions as those above—after posing them in a precise (that is, answerable) form. Thus, as in most
realms of statistics and data analysis it is not about what questions you would like to answer, but about
the questions that are possible to answer from the available data. Listing the questions that are possible to
answer tends to fool you to think that these are the only relevant ones. We shall however also touch on
questions that cannot be answered in this framework.

The basis for answering the questions will be knowledge of the transition rates. So we should estimate
them from data as accurately as possible. In real applications we will of course allow rates to depend on
sex, age at diagnosis, current age etc., and thus let the derived measures depend on these factors as well.

1.3 Traditional approaches to rates

The prevailing approach to modeling of multistate event history data is via semi-parametric (some call it
non-parametric) models for the transition rates. Which in most practical instances boils down to fitting
Cox-models for transition rates, and using some variant of the Aalen-Johansen estimator to compute state
occupancy probabilities.

Even if these are models for the rates, in practice only estimates of cumulative risk or survival are
derived together with hazard ratios, but hardly ever are actual rates presented, see e.g. [7]. This is largely
a consequence of the model structure that does not allow extraction of the baseline hazard—some may
formulate it by saying that the hazard is not part of the model at all.

Royston & Lambert [10] and Crowther & Lambert [4] have reasonably argued that a more natural and
biologically plausible model for transition rates would be a model that assumes some smooth shape of the
rates as function of time.

Both of these approaches mainly use one timescale to describe occurrence rates, presumably because it
is a requirement for the Aalen-Johansen machinery and its cousins to work. Incidentally this has also had
the consequence that most example datasets only provide information of one time scale of interest. But in
most practical applications the single time scale seems to be an over-simplification; I would personally have
a hard time convincing my diabetes clinical colleagues that mortality among diabetes patients depend only
on current age and not on diabetes duration, or vice versa. They would likely also maintain that age at
diagnosis influence the mortality rates [5].

1.4 Components of multistate models

The machinery chosen for estimation of rates is alien to the discussion of what measures are of interest in
description of the multistate model. It is therefore useful to separate the different components of modeling
and reporting of measures of interest.

e model specification: what are the states of interest and relevant transitions between them.

e rate specification: what are the relevant covariates in the models for the rates, particularly what
time scales to include in the description of the rates.

e specification of measures of interest: rates, rate-ratios, survival, cumulative risks, sojourn times,
lifetime lost.

e practical derivation of the desired quantities from the estimated rates.

The first two points are prerequisites for constructing a data frame representing the follow-up through
the multiple states, a so-called Lexis object.

The last point is in principle just an application of standard probability theory for stochastic processes
using the estimated transition rates as building blocks to construct the quantities of interest. This is
occasionally termed the “plug in” approach; estimates of the rates are plugged into the formulae linking the
rates to the quantity of interest.

There are statistical methods around that do not rely on estimating rates.

intro



6 1.5 Terminology PMM

1.5 Terminology

In the survival, multistate and demographic modeling literature there is a plethora of overlapping terms
that mean the same, and also instances of the same term used about different concepts. Here are some
groups of synonyms, the first one mentioned in each group being the one (mainly) used in this book.

cumulative intensity, integrated intensity, cumulative rate. Note that this is neither a probability nor a
rate. Dimensionless.

cumulative risk, probability, risk; a probability. Dimensionless.

event, outcome—indicator of transition to a new state; the variable assumes only a finite number of
values (namely the names of states to which transitions are considered events). Sometimes it is a
count, occasionally restricted to 0, 1.

follow-up, history, observation, outcome, response—a bivariate structure consisting of (event indicator,
risk time).

interaction, non-proportional hazards, see below under “time scale interaction”.

rate, intensity, transition intensity, hazard, hazard rate, occurrence rate, mortality rate, morbidity rate,

incidence density. Measured in units of time™!.

rate ratio, hazard ratio. Ratio of two rates. Sometimes wrongly termed relative risk or risk ratio.
Dimensionless.

risk ratio, relative risk. Ratio of two probabilities. Dimensionless.

risk time, time, exposure time, follow-up time, exposure: time since a person entered
observation—measured in units of time. It is always the difference between two points on a(ny) time
scale. Measured in units of time.

sojourn time, time spent in a state, state time, expected life time in a state. Measured in units of time.
state probability, state occupancy probability Dimensionless.

time scale, time. Measured in units of time since some origin (such as date of birth and diagnosis,
1900-1-1, ...) Measured in units of time, an origin is however required.

time scale interaction, non-proportional hazards, violation of proportionality assumption, interaction
between a time scale and some other variable(s).

transition probability dimensionless, a probability.

...now input from probs
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Chapter 2

Probability models for multiple states

This section requires a basic knowledge of matrix algebra.

There is a large mathematical theory about multistate models for transitions as shown in figure 1.1,
though mostly for models with constant transition rates—Markov models. In the biomedical literature the
term “Markov model” is frequently used as a term for just any multistate models. Here we stick to the
more formal definition of a Markov model.

2.1 Markov models

A Markov! model is a multistate model where the transition probabilities only depend on the current
state, not on the history of the person and neither on how long time a person has been in a given state.
This implies that the transition rates are constant over time. Probabilists call this a homogeneous Markov
model or time-homogeneous Markov model.

If you can leave a state, the state is called a transient state, if you cannot, it is called an absorbing state.
Absorbing states would normally be states like “Dead” or “Dead from cancer”, but if we were only interested
in whether a person had a diagnosis of cardiovascular disease (CVD) and we had no interest in what
happened after that, we might define “CVD” as an absorbing state, meaning “CVD and whatever follows”.

2.1.1 Transition matrix

For a multistate model we can define the transition matrix (really a matrix with functions as entries).
Rows and columns are both labeled by the possible states. The entry in row labeled A and column labeled
B is the probability of being in state A at time s and in state B at time ¢, more precisely:

Pip(s,t) = P{state B at time ¢ | state A at time s}

Loosely speaking, the probability of moving from A to B sometime between s and ¢, but note there is no
requirement only to consider moves directly from A to B. In a time-homogeneous Markov model Pyg(s, t)
only depend on s and ¢ through ¢ — s.

For the simple model shown in figure 1.1 the transition matrix would (at first glance) be a 4 x 4 matrix
(we are omitting the dependence of s and ¢ for notational convenience):

L After the Russian mathematician Andrey Andreyevich Markov (1856-1922)

7



8 2.1 Markov models PMM
to DM Ins
from DM Ins Dead Dead(Ins)
DM 1-ppr—ppop DDI PDD 0
Ins 0 1-pmp 0 PID
Dead 0 0 1 0
Dead(Ins) 0 0 0 1 Dead Dead(Ins)

where the rows represent states from which transitions occur and the columns represent states to which

transitions occur.

This transition matrix has a 0 entry for the transition DM — Dead(Ins) which actually can occur in a
given interval of time, namely by first DM — Ins and then Ins — Dead(Ins). But if the time interval is

sufficiently small the matrix above may be a decent approximation, because the probability of two

transitions in a single very small interval will be ignorably small.

If we assume a Markov model, where the transition rates are constant over time, the transition

probabilities would only depend on the difference between the two times, ¢t — s. If we take the rates shown
in figure 1.2 as constant, the one-month transition probabilities will be very close to the rates multiplied by
1/12 year, so the one-month transition matrix will be (using: 0.0369/12=0.003076; 0.0446/12=0.003719;

0.0538/12=0.004481, adjusting the diagonal so that the row sums of the matrix are 1):

to
from DM Ins Dead Dead (Ins)
DM 0.993205 0.003076 0.003719 0
Ins 0 0.995519 0 0.004481
Dead 0 0 1 0
Dead(Ins) 0 0 0 1

This matrix tells that for a person with diabetes without insulin use after one month the probability of
being in the same state is 99.32%, and the probability of being on insulin is 0.31% and the probability of

being dead is 0.37%.

During the next month, the 99.32% of persons in the DM state will move to states Dead and Ins with
probabilities 0.31% and 0.37%, and the 0.31% in Ins at the end of the first month will move to Dead (Ins)

with probability 0.45%.

These operations can be recognized as matrix multiplications, where we start with the vector of state

occupancy probabilities at the beginning of the first month as a 1 x 4 matrix:

> (p0 <- c(DM=1, Ins=0, Dead=0, "Dead(Ins)"=0))

DM Ins Dead Dead(Ins)
1 0 0 0

This just means that everyone is in the state DM at time 0. Formally it is the probability distribution of

states at time 0, the sum of entries in such vectors will always be 1.

The transition matrix is defined by the transition probabilities and the probabilities of remaining in a

state as 1 minus the sum of the probabilities of leaving the state:

Tm <- matrix(0, 4, 4)

rownames (Tm) <- colnames(Tm) <- names (p0)
Tm["DM","Ins"] <- 0.003076

Tm["DM", "Dead"] <- 0.003719
Tm['"Ins","Dead(Ins)"] <- 0.004481
diag(Tm) <- 1 - apply(Tm, 1, sum)

Tm

VVVVYVVYyV
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DM Ins Dead Dead(Ins)
DM 0.993205 0.003076 0.003719 0.000000
Ins 0.000000 0.995519 0.000000 0.004481
Dead 0.000000 0.000000 1.000000 0.000000

Dead(Ins) 0.000000 0.000000 0.000000 1.000000

CODE EXPLAINED: Tm is first defined as a 4 by 4 matrix of 0s, and assigned the state names both for row
and columns. The transition probabilities are then assigned to the relevant entries in Tm. Finally apply is
used so compute the row sums of Tm, and the diagonal is then filled filled with 1 minus the row-sums, so
that row-sums of the resuting matrix Tm are all 1.

2.1.2 Using the transition matrix

We can now compute the state occupancy probabilities after one month by matrix multiplication—this is
when you should consult your knowledge of how to compute the matrix product of the 1 x 4 matrix p0O
with the 4 x 4 matrix Tm to form the vector (really a 1 x 4 matrix) of probabilities of being in each of the
four states after one month. In R matrix multiplication is %*Y%:

> (p1 <- pO 7*7 Tm)
DM Ins Dead Dead(Ins)
[1,] 0.993205 0.003076 0.003719 0

These are the probabilities of being in each of the states after one month, assuming you start in state DM.
You will recognize p1 as the first row of Tm.

The handy thing is that we can compute the state occupancy probabilities after two, three etc. months
the same way:

> (p2 <- pl }*) Tm)

DM Ins Dead Dead (Ins)
[1,1 0.9864562 0.006117315 0.007412729 1.378356e-05
> (p3 <- p2 }*) Tm)

DM Ins Dead Dead (Ins)
[1,]1 0.9797532 0.009124243 0.01108136 4.119524e-05

We can see that after two months there is a positive, albeit small, probability of being dead after initiating
insulin. That was not the case after one month, which is not quite true, it was merely a consequence of the
assumption that two transitions do not occur during a single one month period.

If we want the probabilities at 60 months (=5 years) we can use a loop:

> px <- p0
> for(m in 1:60) px <- px %), Tm
> px

DM Ins Dead Dead(Ins)
[1,] 0.6642535 0.1323121 0.1837588 0.0196756

Here we see that the 5-year transition probability from DM to Dead(Ins) is about 2% and from DM to Dead
about 18%.

The 1-month transition probabilities are very well approximated by the rates multiplied by the length of
the interval, e.g. A, but formally the probability of remaining in the DM state for a duration of ¢ is
exp(—(A + p)f), the probability of being in the state Dead after a period of ¢ is
A/ (A + 1) x (1 —exp(—(A+ p)f)) and the probability of being in the state Ins is
/(N4 p) x (1 —exp(—(A+ p)f)). We therefore use these formulae to populate the matrix of 1 month
transition probabilities, starting with the rates:

> lambda <- 1694 / 45885.5

> muD <- 2048 / 45885.5

> mul <- 451 / 8387.8

> SDM <- exp( -(lambda + muD) / 12)

> SIn <- exp( - mul / 12)

> pDI <- lambda / (lambda + muD) * (1-SDM)
> pDD <- muD / (lambda + muD) * (1-SDM)
> pID <- 1 - SIn

probs



10 2.1 Markov models PMM

CODE EXPLAINED: We first compute the rates (per 1 PY) from the numbers in figure 1.2, then the 1
month survival probabilities for the two transient states, and finally the 1 month transition probabilities
from the transient states.

If we use these numbers in the matrix Tm instead we get a slightly different transition matrix:

> Tm["DM","Ins"] <- pDI
> Tm["DM","Dead'"] <- pDD
> Tm["Ins","Dead(Ins)"] <- pID
> diag(Tm) <- 0
> diag(Tm) <- 1 - apply(Tm, 1, sum)
> Tm

DM Ins Dead Dead(Ins)
DM 0.9932271 0.003066068 0.003706793 0.000000000
Ins 0.0000000 0.995529309 0.000000000 0.004470691
Dead 0.0000000 0.000000000 1.000000000 0.000000000

Dead(Ins) 0.0000000 0.000000000 0.000000000 1.000000000

We can then inspect how the state occupancy probabilities at 60 months are influenced by this different
calculation:

> pm <- p0
> for(i in 1:60) pm <- pm 7*}, Tm
> round(cbind(appr = as.vector(px),

+ theor = as.vector(pm),
+ diff = as.vector(pm-px)), 5)
appr  theor diff

[1,] 0.66425 0.66514 0.00089
[2,] 0.13231 0.13201 -0.00030
[3,] 0.18376 0.18327 -0.00049
[4,] 0.01968 0.01958 -0.00010

We see that the difference between the two approaches is negligible; less than 1/1000 on the probability
scale, so for small intervals, or more precisely for small transition probabilities we get a reasonable
approximation.

2.1.3 Multiple transitions in the same time interval

In the above, we have made the formally incorrect assumption that a person cannot within the same
month both move to the Ins state and then further to the Dead (Ins) state. This is most likely a
reasonable approximation for a 1 month interval, but we can empirically investigate how other interval
lengths perform relative to this.

First we do the calculations by 3-month intervals—stored in p3:

> SDM <- exp( -(lambda + muD) / 4)

> SIn <- exp( - mul / 4)

> pDI <- lambda / (lambda + muD) * (1-SDM)
> pDD <- muD / (lambda + muD) * (1-SDM)
> pID <- 1 - SIn

> T3 <- Tm * 0

> T3["DM","Ins"] <- pDI

> T3["DM","Dead"] <- pDD

> T3["Ins","Dead(Ins)"] <- pID

> diag(T3) <- 1 - apply(T3, 1, sum)

> p3 <- pO

> for(i in 1:(5%3)) p3 <- p3 J}*} T3

Then the same by 1-week intervals (1/52 year)—stored in pu:

probs
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> SDM <- exp( -(lambda + muD) / 52)

> SIn <- exp( - mul / 52)

> pDI <- lambda / (lambda + muD) * (1-SDM)
> pDD <- muD / (lambda + muD) * (1-SDM)
> pID <- 1 - SIn

> Tw <- Tm * 0

> Tw["DM","Ins"] <- pDI

> Tw["DM","Dead"] <- pDD

> Tw["Ins","Dead(Ins)"] <- pID

> diag(Tw) <- 1 - apply(Tw, 1, sum)

> pw <- pO0

> for(i in 1:(5*52)) pw <- pw /*J, Tw

Finally we do the same by 1-day intervals (1/365 year)—stored in pd:

> SDM <- exp( -(lambda + muD) / 365)

> SIn <- exp( - mul / 365)

> pDI <- lambda / (lambda + muD) * (1-SDM)
> pDD <- muD / (lambda + muD) * (1-SDM)
> pID <- 1 - SIn

> Td <- Tm * 0

> Td["DM","Ins"] <- pDI

> Td["DM","Dead"] <- pDD

> Td["Ins","Dead(Ins)"] <- pID

> diag(Td) <- 1 - apply(Td, 1, sum)

> pd <- pO

> for(i in 1:(5*365)) pd <- pd }*}, Td

We have now made the calculations using intervals of length 3 and 1 months, 1 week and 1 day. Clearly,
the calculation using 1 day intervals must be the most accurate because the assumption about no two
transitions during 1 day is the least restrictive.

We can now compare the estimated 5-year state probabilities from the different approximations; as well
as the difference to the 1-day approximation:

> five <- cbind("3mon" = as.vector(p3),

+ "lmon'" = as.vector(pm),
+ "week'" = as.vector(pw),
+ "day" = as.vector(pd),
+ "3-d" = as.vector(p3-pd),
+ "m-d" = as.vector (pm-pd),
+ "w-d" = as.vector (pw-pd))

> rownames (five) <- names (p0)
> round(five, 6)

3mon imon week day 3-d m-d w-d
DM 0.736522 0.665142 0.665142 0.665142 0.071380 0.000000 0.0e+00
Ins 0.108193 0.132011 0.131783 0.131725 -0.023532 0.000286 5.8e-05
Dead 0.144202 0.183268 0.183268 0.183268 -0.039066 0.000000 0.0e+00

Dead(Ins) 0.011083 0.019579 0.019806 0.019865 -0.008782 -0.000286 -5.8e-05

So we see that the approximation when using 3 month is really bad, whereas the difference between the
results from using a month, a week or a day as interval are quite small. Inspection of the transition
matrices Tm, Tw and Td would indicate that it is wise to make the intervals so small that we keep transition
probabilities to transient states to 1/1000 or less.

2.1.4 The analytic solution

Of course there is a mathematical solution corresponding to making the intervals smaller and smaller ad
infinitum. This is based on the intensity matrix that has the rates (transition intensities) in the
off-diagonal entries and the diagonal adjusted so that the row-sums are O:

Q <- Tm * O

Q["DM","Ins"] <- lambda
Q["DM", "Dead'] <- muD
Q["Ins","Dead(Ins)"] <- mul
giag(Q) <- -apply(Q, 1, sum)

VVVVyVvyVv
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12 2.1 Markov models PMM

DM Ins Dead Dead(Ins)
DM -0.08155082 0.03691798 0.04463284 0.00000000
Ins 0.00000000 -0.05376857 0.00000000 0.05376857
Dead 0.00000000 0.00000000 0.00000000 0.00000000

Dead(Ins) 0.00000000 0.00000000 0.00000000 0.00000000

The mathematically accurate transition probability matrix for say 5 years is then Exp(Q X 5) years, where
Exp here is the matrix exponential function®?.  Of course it does not make any sense to have a scaled
quantity such as the rates in the matrix @, the entries we put there were really the 1-year integrated
intensities (dimensionless), and the expression () x 5 is the matrix of 5-year integrated intensities. As
always it is important to keep track of the units in which quantities are measured.

Calculation of the matrix exponential is implemented in the function MatrixExp in the msm package. .

The 5-year transition matrix based on 1-day transition probabilities with an assumption of no two
transitions in one day is:

> T5 <- Td
> for(i in 2:(365%5)) T5 <- T5 J}*J, Td
> T5

DM Ins Dead Dead(Ins)
DM 0.6651424 0.1317249 0.1832679 0.01986481
Ins 0.0000000 0.7642634 0.0000000 0.23573664
Dead 0.0000000 0.0000000 1.0000000 0.00000000

Dead(Ins) 0.0000000 0.0000000 0.0000000 1.00000000

CODE EXPLAINED: The transition matrix for a period of two days is merely the matrix product of Td by
itself. For three days we should multiply by Td once more. And for 5 years a total of 365 x 5 times.

The mathematically accurate calculation is:

> library(msm)
> (@5 <- MatrixExp(Q * 5))

DM Ins Dead Dead(Ins)
DM 0.6651424 0.1317152 0.1832679 0.01987451
Ins 0.0000000 0.7642634 0.0000000 0.23573664
Dead 0.0000000 0.0000000 1.0000000 0.00000000
Dead(Ins) 0.0000000 0.0000000 0.0000000 1.00000000
> Q5 - TS5
DM Ins Dead Dead (Ins)
DM -1.44329e-15 -9.702158e-06 1.720846e-15 9.702158e-06
Ins 0.00000e+00 -7.083223e-14 0.000000e+00 7.152612e-14
Dead 0.00000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Dead(Ins) 0.00000e+00 0.000000e+00 0.000000e+00 0.000000e+00

So we see that there is no practically noticeable difference between the two transition matrices.
Finally note that the first row of Q5 is practically identical the 5-year state probabilities computed using
the 1-day transition probabilities:

> cbind(Q = §5[1,], pD = as.vector(pd))

Q pD
DM 0.66514243 0.66514243
Ins 0.13171520 0.13172491
Dead 0.18326785 0.18326785

Dead(Ins) 0.01987451 0.01986481

2For a quadratic matrix A the matrix exponential of A, Exp(A), is defined as the infinite sum
Yoo AJil =T+ A4+ AA/2! + AAA/3 + - -
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2.1.5 States by time

In the loops above we computed the probability of being in each state at a certain time, specifically at 5
years after entry. We can redo the calculations while at the same time collecting the state probabilities and
then plot the state probabilities as a function of time (we make the calculation to 10 years this time):

> pt <- NArray(list(month
+ state
> pt["0",] <- pO
> for(i in 1:120) pt[i+1,] <- pt[i,] %*} Tm
> pt[1:5,]

state
month DM Ins Dead Dead(Ins)
1.0000000 0.000000000 0.000000000 0.000000e+00
0.9932271 0.003066068 0.003706793 0.000000e+00
0.9865001 0.006097663 0.007388481 1.370744e-05
0.9798187 0.009095079 0.011045233 4.096821e-05
0.9731825 0.012058609 0.014677218 8.162949e-05

0:120,
names (p0)))

o

B WN = O

CODE EXPLAINED: pt will be an array of dimension 121 by 4, where the rows refer to the times
0,1,2,...,120 months, and each column represents one of the 4 states. The first row (labeled “0”) is
assigned the initial state distribution (1 in DM, O in the rest), and the remaining are computed from the
previous distribution by multiplying by the transition matrix.

We can now plot these 4 probabilities as functions of time by stacking them—remember at any time after
entry, the sum of these 4 probabilities is 1:

> par(mar=c(3,3,1,2))

> m2p <- mat2pol(pt, perm = c(1,2,4,3), x=0:120 / 12,

+ col = c(cl <- c("forestgreen", '"orange'),

+ adjustcolor(cl[2:1], 0.5)),

+ xaxs = "i", xlab = "Time since DM (years)",

+ yaxs = "i", ylab = "State probability")

> lines(0:120/12, m2p[,3], 1lwd=2)

> mid <- function(x) x[-1] - diff(x)/2

> text(rep(9, 4),

+ mid (m2p[9+12,1),

+ colnames (m2p) [-1],

+ col = gray(c(1,1,0,0)))

> axis(side = 2, at = 0:10 / 10, labels = NA, tcl=-0.3)

> axis(side = 4, at = 0:10 / 10)

> axis(side = 4, at = 0:20 / 20, labels = NA, tcl=-0.3)

> axis(side = 4, at = 0:100/100, labels = NA, tcl=-0.2)

> axis(side = 4, pos = 5, col = "white", at = 0:10 / 10, labels = NA)

> axis(side = 4, pos = 5, col = "white", at = 0:20 / 20, labels = NA, tcl=-0.3)
> axis(side = 4, pos = 5, col = "white", at = 0:100/100, labels = NA, tcl=-0.2)

CODE EXPLAINED: mat2pol (matrix 2 polygons) takes the matrix of state probabilities (pt) as input and
show them as stacked coloured polygons, ordered as indicated by perm=. The lines draws the survival
curve in black (3" column of the m2p; where m2p is the result from met2pol).

Finally, the midpoint of the polygons at 9 years is computed (via the ad-hoc function mid) and the
state names put on the plot.

In this simple instance with constant rates we could have made the calculations using the facility in
MatrixExp to compute the transition matrix from time 0 to a range of times, and then take the first row as
representing the state probabilities of a person beginning in the state DM:

> gm <- MatrixExp(Q, 0:120/12)
> str(qm)
num [1:4, 1:4, 1:1211 1 00001 0000 ...

> gm <- t(qm[1,,])
> str(qm)

num [1:121, 1:4] 1 0.993 0.987 0.98 0.973 ...
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14 2.2 Time varying rates: inhomogeneous Markov model PMM
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Figure 2.1: State probabilities for DM and Ins from a time-homogenaous Markov model. This
s the model shown in figure 1.2 with constant transition rates between states. The green
area 1s the DM state, the orange is the Ins state, and the corresponding pale areas are the two
Dead states as annotated. The vertical extent of each color at a given time represents the
state probability at that time, conditional on being in the DM (green) state at time 0 (which
is the date of DM diagnosis).

Using the scale on the r.h.s. of the plot we can for example see that some 25% of patients
have started insulin during the first 10 years (69 — —44%), and that 31% have died without
using insulin (100 — 69%). Using the white scale located at 5 years, we can see that some
15% started insulin during the first 5 years. . ./graph/probs-stDMIns

CODE EXPLAINED: We supply a 4 x 4 intensity matrix as the first argument to MatrixExp and 121 time
points from 0 to 10 years in 1-month intervals as the second. The results will be a 4 x 4 x 121 array with
each of the 121 slices equal to the transition matrix from time 0 to the corresponding time.

Taking the first row of each of these matrices (qm[1,,]) is the same as pre-multiplying with the state
distribution at time 0, (1,0,0,0). Therefore, the first row of gqm represents the same state probabilities as
pt that we computed using the 1-day approximation above.

2.2 Time varying rates: inhomogeneous Markov model

The calculations above are easy to program because we have the same transition matrix for every month
(i.e. time interval)—it is the same transition matrix every month. This is also the background for the
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applicability of the matrix exponential. If rates were not constant, the matrix exponential machinery would
not work.

But the transition matrix need not be the same for all months, we could have different transition
matrices for each month; as long as all the transition rates are constrained to vary along the same time
scale, we can be sure that all persons in any state at any given time have the same transition rates out of
the state. Or more simply put, we can be sure that the persons in any one state at any one time are
identical w.r.t. transition rates.

A Markov model (or more precisely, a Markov process) with transition intensities varying by time is
called a (time-)inhomogeneous Markov model.

In the example above we would have transition rates to depend in some functional form on time since
entry, in this case time since diagnosis, in other words on duration of diabetes.

A representation of the time-varying transition rates would then have to be in a form of an array of
dimensions statesxstatesxtimes, in the case of 1-month transition probabilities over 5 years of dimension
4 x 4 x 120, and the calculation would change from:

> for(i in 1:120) pt[i+1,] <- pt[i,] 7*J, Tm
to:
> for(i in 1:120) pt[i+1,] <- pt[i,] %*} Tm[,,i]

So the matrix machinery would only change slightly, but there would be considerably more effort defining
Tm; in the Markov case it is a 4 X 4 matrix, in the latter case it is a 4 x 4 x 120 array, requiring knowledge
of the transition probabilities for 120 different intervals. The core assumption here is that all the transition
rates vary along the same time scale; in this example it would be time since DM diagnosis.

2.3  Semi-Markov models

A semi-Markov model is a multistate model where the transition intensity varies by time since entry to
each state.

This type of model will not lend itself to the type of calculations by simple matrix algebra as above.
This is because “time” means different things in different states; in state DM it is time since DM diagnosis,
in state Ins it is time since beginning of insulin therapy. If we in the state Ins refer to time since DM
diagnosis, we will be facing the fact the persons at the same time since DM will have different times since
beginning of insulin therapy and hence different transition rates to Dead. And in the DM state we cannot
refer to time since beginning of insulin therapy.

A calculation where we successively multiply the state probability vector with the current transition
probability matrix rests on the assumption that all persons in any given state at a given time have the same
transition probabilities to other states, so the semi-Markov assumption violates this. Thus the calculation
of state probabilities in semi-Markov models is not possible with the matrix machinery outlined above.

The semi-Markov model is also occasionally called the “clock-back” model—time starts at 0 at each
transition to a new state.

2.4 Multiple time scales for rates

Suppose transition rates out of a state depend on another time scale such as age, as well as time since
entry to the state. If persons have arrived at different ages, the state will at any given age comprise
persons with different time in the state and hence with different transition probabilities. Conversely, at a
given time after entry the state will comprise persons at different ages and hence with different transition
probabilities. So facing the same problems as in the semi-Markov case.

But this type of model is really the most realistic for transition rates; one time scale throughout for all
transition rates from all states is really not a very realistic assumption in real world applications. With the
possible exception of calculation of classical demographic measures using age as the only time scale.

If we want to entertain this type of models (or semi-Markov models) for transition rates and compute
state probabilities we must resort to simulation: Begin with one person in the initial state, simulate a time
and state of transition using the rates out of the initial state. Then, for the time and the state the persons
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arrived in, simulate the next transition etc. That gives transition times and -states for this person. If this
is repeated for, say, 1000 persons, we will have a simulated dataset where we know who is in what state at
any time, and the relevant probabilities can then be computed as the empirical fractions of the initial 1000
persons known to be in each state at a given time.

This machinery is frequently referred to as micro-simulation; we will return to this in chapter ?7.

2.5 Summary of rate models for transitions

We have four levels of complexity in models for transition intensities; these represent decreasingly strict
assumptions about the transition rates, which translates to increasing complexity in computing state
probabilities. But also to increasing biological credibility of the models.

The naming of the models (except for item 4) comes from probability theory:

1. Homogeneous Markov: All transition rates are constant over time. This allows calculation of
state probabilities using the matrix exponential on the transition intensity matrix. This can be
closely approximated by successive matrix multiplication of the state probability vector by the
transition probability matrix.

2. Inhomogeneous Markov: Transition rates vary over time but all transition rates vary along the
same time scale. This allows calculation of state probabilities by successive multiplication of the
state probability vector by the time-specific transition probability matrices. The use of the matrix
exponential is not possible.

3. Semi Markov: Transition rates from different states vary by time since entry to the state, so along
different time scales in different states. This makes calculations of state probabilities using
transition probability matrices impossible. In fact a transition matrix is not even well-defined
because transitions from a given state is different between the persons in the state—they may have
arrived in the state at different times.

4. Multiple timescales: Transition rates depend on more than one time scale, such as current age
and current duration of diabetes. It is by far the most realistic in practical settings, but it requires
micro-simulation to compute state probabilities for a given initial state configuration.

The first (homogeneous Markov) model is rarely used, except for exploratory analyses to give a broad
overview of the magnitude of transition rates, as for example the ones given on the arrows in figure 1.2.

The second (inhomogeneous Markov) model is by far the the most used in practice because it allows
calculations of state probabilities using non-parametric models for the time effects. This is the realm of the
Kaplan-Meier and Aalen-Johansen estimators of state proabilities. The drawback of the non-parametric
estimators is that you hardly ever get to see estimated rates. Some will even claim that the rates are not
part of these models. But the main problem is that the estimated probabilities refer to the study
population at hand—hardly ever generalizable.

It is only for the two cases of Markov models (types 1 and 2) that the general probability theory for
Markov models is applicable in practise, for the last two the general theory using the transition matrices
does not apply. When dealing with the more realistic types of models (types 3 and 4), parametric models
for the transition intensities with timescales as covariates are preferable, particularly because this type of
model facilitates micro-simulation of data. The concept of micro-simulation is covered in chapter 7.

...now input from likelihood

likelihood



Chapter 3

Multistate likelihood: rates

When fitting statistical models to observed data, the standard procedure is to use maximum likelihood,
which means that we find the values of model parameters that maximizes the probability of the observed
data. Therefore we must be able to compute the probability of observing a given set of follow-up data from
a multistate model as a function of the model parameters. This is what is derived in this chapter.

But you will not find a full exposition of the theory of maximum likelihood here. It suffices to know that
the likelihood machinery allows calculation of uncertainty of parameters based on the likelihood function
alone, so we need to establish the likelihood for multistate observations, in order to come up with
parameters and associated uncertainties.

Outcome data from a multistate model consists of risk time in each state and the (type of) event (if
any) at the end of this, often several observations per person. Normally a number of covariates will be
available for each of these observations, including one or more time scales.

In practice the available data for a person is a sequence of dates: date of entry to the study, dates of
each event, and date of end of study—often date of death will be both an event time as well as end of
study time. If date of birth is available we will also have age available as a covariate; similarly for other
dates: date of diagnosis will allow calculation of the disease duration, etc.

The point here is that we observe transition rates as a bivariate observation of time at risk and no. of
events (0 or 1) of each possible type.

3.1 Survival model

The simplest multistate model is a survival model with states Alive and Dead and one possible transition;
that from Alive to Dead. From this model we can estimate 1) the mortality rate (typically as a function of
age or time since entry), 2) as a transformation of the integral of this, the survival function and 3) as the
integral of the survival, the expected lifetime.

So even in the simplest possible case we have all three types of derived measures mentioned in section
available.

The basic observation for each person is the (empirical) rate in the form (d,y), where d is the event
count (0 or 1) and y is the risk time, i.e. the time the person has been at risk of dying. Some formulate
this as the survival time 7" and the indicator § of whether the person died or was censored at time T

In order to derive the probability of this as a function of the occurrence rate we need a precise definition
of a theoretical mortality rate. This is defined as the probability of death in small interval, relative to the
length of the interval (h). The rate is often called A (the Greek letter “lambda”):

A(t) = P{death in (¢,t + h] | alive at t} /h

Formally, the rate is the limit of this quantity as h — 0.

3.1.1 Likelihood for a single rate

To derive the likelihood we must compute the probability of an observation from a single person as a
function of the rate. Suppose a person is alive from time ¢. (entry) to ¢, (exit) and that the person’s status
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18 3.1 Survival model PMM

at t; is d, where d = 0 means alive and d = 1 means dead. If we choose, say, two time points, ¢1,t2 between
t. and t,, standard use of conditional probability (formally, repeated use of Bayes’ formula) gives

P{d at t, | entry at t.} =P{survive (t.,t;]]| alive at t.} x
P{survive (t1,ts] | alive at ¢1} x
P{survive (t2,t,]| alive at ¢3} x
P{d at t, | alive just before t,} (3.1)

By choosing more intermediate time points we can make the intervals arbitrarily small, so we just need to
derive the probability of surviving a small piece of time, as a function of the mortality rate.

For a start assume that the mortality is constant over time A(t) = A. From the definition of a rate we
have (conditional on being alive at t):

P{death during (¢,t + h]} = Ah (3.2)
= P{survive ({,t +h]} =1 — Ah

where the approximation gets better the smaller h is. Suppose we have survival for a time span y =t, — ¢,
and that this is subdivided in N intervals, each of length h = y/N, then the survival probability for the
entire span from t. to t, is the product of probabilities of surviving each of the small intervals, conditional
on being alive at the beginning of each interval:

A\ Y
P{survive t, to t,} ~ (1 — A\h)N = (1 - ]\?)

From mathematics it is known that (1 + z/n)™ — exp(x) as n — oo (some define exp(x) this way). So if we
divide the time span y in successively smaller pieces we will have that N — oo, and hence that:

N

P{survive t. to t,} ~ <1 - ?\?) — exp(—Ay), N — o0 (3.3)
Therefore the contribution to the likelihood from a person observed for a time span of length y is
exp(—Ay), and the contribution to the log-likelihood is therefore —\y.

If we observe a person dying at the end of the last interval, the contribution to the likelihood from the
last interval will be the probability surviving till just before the end of the interval, multiplied by the
probability of dying in the last tiny instant (of length €) of the interval (the last term in (3.1)). This
probability is by (3.2) Ae¢, and hence the log-likelihood contribution from this last instant is
log(Ae) = log()) + log(e).

The total likelihood for one person is the product of all these terms from the follow-up intervals (i) for
the person; and the log-likelihood (¢) is therefore:

() = =AY Jwi+ D dilog(N) + D dilog(e)
=2 (dilog() = M) + > _ dilog(e)

i

where y; is observation time (risk time or person-years) in the % interval and d; the death indicator (0/1)
for the 7" interval (which is 0 for all intervals, except possibly for the last). We want to estimate A, so
terms that does not involve A can be ignored—such as the last term. Very convenient, we then do not have
to decide precisely how small € is.

Thus we have established that the contribution to the log-likelihood from a single person’s follow-up is
the sum of a number of terms of the form d;log(A\) — Ay; where d; is the event indicator (0/1) and y; the
length of the i*" interval.

If we subdivide the follow-up of a person across several records, each representing y; of follow-up, and
keep track of the deaths in each interval, d; (which is 0 for all intervals, except possibly for the last if the
person dies), then each record (d;,y;) will represent a contribution to the log-likelihood. This will be
exploited in the practical modeling of rates.

By the assumption that the rate A is constant over time, the log-likelihood contribution from a person
with d deaths (0 or 1) at the end of a follow-up period of y is dlog(A) — Ay. But once we have subdivided
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follow-up we do not need the assumption of a constant rate across the intervals, we can allow separate
rates (\;s) in different intervals, relaxing the assumption to only constant rates within each of the very
small intervals. These rates can of course not be estimated based on the observation from a single person.
A model for the \;s must be specified in terms of covariates associated with each interval. Among these
will normally be the value of one or more time scales at the beginning of each interval.

3.1.2 Poisson likelihood

The Poisson distribution with mean p is a distribution on the non-negative integers (x = 0,1,2,3,...),
where:
T exp(—
P{X =z} = “Iip'(“)
Thus, the log-likelihood from observation of a Poisson variate  with mean p is zlog(n) — p — log(z!). The
last term does not depend on the parameter y so it can be omitted when maximizing the log-likelihood
over values of p.

Changing the notation, the log-likelihood contribution from a Poisson-variate d with mean Ay is
dlog(Ay) — Ay = dlog(\) — Ay + dlog(y), which is the same as the likelihood for d events during y follow-up
time with rate A, except for the term dlog(y). But this term does not depend on the parameter A and
therefore can be ignored when maximizing the log-likelihood.

This means that maximum-likelihood estimation for observations from follow up, (d,y), can be done
using a function that can maximize the likelihood for independent, Poisson variables. We just need to
pretend that the ds are independent Poisson variates with means Ay.

In R we have the functions glm and gam to do this, depending on how we will model the covariate effects.

3.1.3 Implications for analysis

The derivation in equation 3.1 (page 18) has the implication that we can split the follow-up for a person in
many small intervals and use a model that assigns different (albeit constant) rates to each interval. The
intervals just need to be sufficiently small to entertain the assumption of a constant rate within each
interval as reasonable. The log-likelihood for a person’s follow-up will then be the sum of the log-likelihood
contributions from each interval (record in the dataset).

3.1.3.1 Time as covariate

If we keep track of the value of the time scales (e.g. calendar time or age) at the beginning of each interval
we can compute the value of other time scales at the beginning of each interval. These values can then be
used as covariates in parametric models estimating the effect of different time scales on the rates. Note
that we are not necessarily assigning a separate parameter to each interval, we will normally use the time
scales as quantitative (metric) variables with a smoothly varying effect on the rates.

This is called time-varying rates; it corresponds to the time inhomogeneous Markov models mentioned
in chapter 2, p. 16. If time since state entry is used as covariate, we have a semi-Markov model, if more
time scales are used we have a model with multiple time scales, which, formally speaking is not a Markov
model.

3.1.3.2 Likelihood, not model

It is important to note that the central feature we use is that the likelihood from a single person is a
product of terms; there is no assumption about the contributions being independent. It is the product form
of (3.1) that makes the likelihood for one person look like the likelihood for many independent Poisson
variates (the d;s).

There is namely not a one-to-one correspondence between likelihoods and models; here we have two
different models:

1. the model for follow-up of a person assuming constant rate in each of a sequence of small intervals;
outcome data for interval ¢ is (d;, y;), parameter is A;.

2. the model for independent Poisson variates; outcome data for interval ¢ is d;, parameter is \;y;.
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20 3.2 Multistate model PMM

The (log-)likelihood from both these models is the same. Since practical estimation only uses the likelihood
and not the model, we can fit the follow-up model by telling the program that we have independent
Poisson variates d; with mean \;y;—even if they are neither Poisson nor independent.

The offset Since the mean parameter in the Poisson-model corresponding the rate model is A;y;, then
if we use the logarithm as link function, the model for the linear predictor will be

log(A\;y;) = log(\;) + log(y;). Therefore, if we want a linear model for log()\;), we must accommodate the
term log(y;) as a separate term in the linear predictor with a fixed regression coefficient of 1, a so-called
offset.

This is the background for the phrase normally seen in description of analysis of rates: ... we fitted a
Poisson model for the number of deaths with the log of the person years as offset...” or something similar.
Some even write that they assumed the number of deaths to be Poisson-distributed. But they are just
fitting a model for piecewise constant rates by maximum likelihood; the Poisson machinery is purely a
computational technicality.

If the occurrence rate is constant, then the observed survival times will follow an exponential
distribution, so occasionally the machinery will be described as “exponential model”, “piecewise exponential
model” or “model with exponentil life times”, but it is still the same machinery.

Note that the offset is closely linked to the log-link, so if we instead want a model with identity link the
risk time (y) must be accommodated differently. We shall return to this in section ??.

Identity link model If we want to fit an additive model for the rates, we still need to specify a
model for the link if the mean, but with identity link we are facing the specification of a linear function of
Aiyi, which is not so straight forward as for the logarithmic link.

There are a number of work-arounds that will alleviate this; they are described in the chapter on
additive rate models, 7?7 on page ?7.

3.1.3.3 Real Poisson data

A theorem in probability theory states that the number of events (deaths) observed over a fized period of
time will be Poisson-distributed, if we at each death replace the dead person with an identical living
person, and include this person in the follow up.

So it is actually possible to get Poisson-distributed counts in follow-up studies, but the study logistics
will be complicated The scenario is somewhat more realistic if we consider testing life-time of light-bulbs
and not people.

3.2 Multistate model

3.2.1 One transition

For a possible transition from state A to state B, say, the likelihood conditional on being in state A and

available for transition to B depends on the rate-parameter A for the transition as well as on the observed

data, which for a single person is (d,y), the number of transitions d (0 or 1) and the risk time, y, spent in A.
The rate parameter for the transition A to B is defined as:

() = }lllg}) P{A — B during (¢,£+ h]|in A at t} /A

For convenience we will leave out the subscript AB for A in the following.

If the rate is assumed constant over time (A(t) = ), then the log-likelihood contribution from (d,y) is
dlog()\) — Ay, where d is the sum of the d;s and y the sum of the y;s. As noted above, this is also the
log-likelihood from a Poisson variate d with mean \y.

3.2.1.1 Time varying rates

If the rate is allowed to vary by time, we can accommodate this by subdividing the observation (d,y) in
several small intervals each with a separate (dt, y:) where > d; = d and > y» = y—mnote that all the d;s

likelihood



Multistate likelihood: rates 3.2 Multistate model 21

from one person will be 0 except possibly the last one which will be 1 if a transition occurs, so the sum is
just the last d; from each person.

This subdivision of data allows us to make the less restrictive assumption that the rate is only constant
in each of the small intervals, and the log-likelihood can be expressed as ), (dt log(A:) — )\tyt). This is
because the likelihood contribution from interval ¢ is the conditional probability of the observation (dy, y)
given that the person is alive and at risk of transition to B at the beginning of the interval. So the total
likelihood for a person is a product of conditional probabilities, one for each small interval the person lives
through.

3.2.1.2 Time as covariate (when)

In the context of time-varying rates t is a covariate; a variable upon which the the outcome, the rate A,
depends. By that token, \; could be modeled as a smooth function of ¢, we do not necessarily need a
separate rate parameter for each ¢, we can use ¢ as a quantitative (metric) variate. Note that ¢ has not been
specified as age or calendar time or disease duration; it could be any of these.

In fact it could be all three of them, in the sense that A could be a smooth function of all of these three;
the data requirement is just that they be evaluated at the beginning of each of the small intervals. This is
referred to as models with multiple time scales.

In this context time () refers to when a person is at risk, where “when” could refer to more than one
time scale.

3.2.1.3 Time as response (how long)

We saw above that the log-likelihood contribution from one person is the same as the log-likelihood
contribution from a set of independent Poisson variates d; with mean A;y;. Therefore practical modeling of
the transition rate A — B can proceed as if observations were independent Poisson variates. This is
straightforward with the usual glm machinery in R, once the split (subdivided) records (d;,y;) are
generated; in this context (d¢,y;) is the response (outcome). Thus the risk time y; is part of the response,
often referred to as risk time or person years.

In this context time (y) refers to how long a person is at risk, where “how long” will be the same on any
time scale.

3.2.2 Competing risks

If more than one type of event can occur, we have what is called competing risks—several risks compete for
the exit from the current state.

Specifically, suppose that in addition to the transition A — B a transition from A to some other state C
were also possible, with rate parameter p where:

Hac = }llirr%)P{A — C during (¢,t+ h]|in A at t} /h
—

Let the observation of this transition be k; € (0,1), say, so formally we have the observation (dy, kt, y¢)
where at most one of d; and k; are 1—events are mutually exclusive; they are “competing”. Note that the
yts (the risk time) are identical for the A — B and A — C transitions—it is the time the person is at risk (in
state A) of any of the two transitions.

In the derivation of the likelihood for a single rate the likelihood contribution from surviving an interval
of length h, say, was exp(—Ah); but in this case the person has to escape both the rate A — B and A — C,
so the likelihood contribution will be exp(—(A + u)h). If we observe a transition to B (d; = 1, k; = 0) we
will have a final contribution of Ae and if a transition to C (d; = 0, k; = 1) a contribution of pe. The
log-likelihood contribution from the observation of (d;, k, y¢) is therefore:

(Om) = —(+ wwe+ dilog(Ae) + ke log(ue) (3.4)
= (dilog(N) = Ayr) + (K¢ log(p) — pye) + (di + ki) log(e)
where we can disregard the term (d; + k;) log(e) that does not depend on the parameters A and p.
This is precisely the same as the sum of contributions from each of the transitions as if they each were

the only possible transition. This means that we can model the transitions separately, but we will be forced
to assume that A and p are specified without common parameters.
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22 3.2 Multistate model PMM

3.2.2.1 Stacked data for joint likelihood

If the models for two transition rates do have common parameters we can still construct the log-likelihood
contributions from each transition separately. And since the total log-likelihood is a sum of the two, we can
treat all of the contributions as contributions from independent Poisson variates in a joint model—as
described above in section 3.2.2 on competing risks. But in order to get a representation of all the
likelihood contributions each record of follow-up time must appear twice; one time with the transition to B
as event (the d;) and one time with the transition to C as event (the k;).

In practice this is done by “stacking” the data sets relating to each of the transitions from A: take d; and
the y; as variables D and Y, along with a variable Tr with value A2B, and put this dataset head-to-foot with
a dataset with k; and the y; as variables D and Y, along with the variable Tr with value A2C. Other
covariates of interest will be carried over as well, and the values will thus appear twice in the stacked
dataset. In the resulting dataset each interval for a person contributes two records in the calculation of the
log-likelihood, one for (d;,y:) and one for (k;,y;)—with the same y; component and the same set of
covariates.

Any parameter specified in a model using the resulting stacked data set will be common for the two
transitions. But if an interaction with the Tr variable is specified, then we will have a parameter value for
each level of Tr. Thus the stacked dataset allows models where parameters are common for the two rates,
but also, via interactions with the Tr variable, effects which differ between the two sets of rates.

Note however that the stacked dataset is a representation of the components of the log-likelihood, not of
the follow-up.

If more than two transitions from A are possible the same setup applies, with one contribution for each
type of possible transition from the state.

3.2.2.2 A small illustration of stacking data

Suppose we have 3 persons in state A, at risk for events B and C, one seeing event B, one seeing event C and
one seeing neither (censored alive). The representation of the follow up would be, with ptime being the
risk time and x and z being some covariates:

id event ptime X z
1 1 B 12.3 5.23 170
2 2 C 8.7 0.52 1757
3 3 cens 14.1 4.22 3803

The dataset for analysis of the rates of B would be:

id d y X z
1 1112.3 5.23 170
2 20 8.7 0.52 1757
3 30 14.1 4.22 3803

Using (d,y) as the data (outcome) and the rate Ag as parameter, each record in this dataset would
correspond to a log-likelihood contribution for a model for the rate of B occurrence, dlog(Ag) — Agy.
The analysis dataset for analysis of the rates of C would be:

id d y X z
1 10 12.3 5.23 170
2 21 8.7 0.52 1757
3 30 14.1 4.22 3803

Each record in this dataset corresponds to a log-likelihood contribution for a model for the rate of C
occurrence, dlog(Ac) — Acy. The only difference between the two analysis datasets is the coding of d, the
event indicator; in the first case it is the indicator of an B outcome, in the second it is the indicator of a C
outcome.

If we were to model occurrence rates of B and C together, with, say, identical effects of x on the two
transition rates, but different effect of z on the two rates, we would need to combine the two datasets, in
order to get all contributions to the likelihood as in equation (3.4)

likelihood



Multistate likelihood: rates 3.2 Multistate model 23

id d y X z TIr
1 1112.3 5.23 170 A->B
2 20 8.7 0.52 1757 A->B
3 30 14.1 4.22 3803 A->B
4 10 12.3 5.23 170 A->C
5 21 8.7 0.52 1757 A->C
6 30 14.1 4.22 3803 A->C
or equivalently:

id d y X z TIr
1 1112.3 5.23 170 A->B
4 10 12.3 5.23 170 A->C
2 20 8.7 0.52 1757 A->B
5 21 8.7 0.52 1757 A->C
3 30 14.1 4.22 3803 A->B
6 30 14.1 4.22 3803 A->C

Note that we have added the variable Tr indicating which type of transition each record refers to; for
persons with an event of either type the two records differ on the event indicator d, but for the person that
sees no event, the two records are identical, except for the Tr. We see that in the stacked dataset there is
at most one of the d that is 1 within each person.

A model with identical x effect on both rates would just have x as a main effect, while different effects of
z for the two transitions would require an interaction between z and Tr.

In the Epi package there is a function stack.Lexis that does this type of data expansion for rate data
represented as Lexis objects, see section ?77.

However, it is not very realistic to encounter two different transition out of a single state that share
parameter values. For example, an assumption that the male/female mortality rate-ratio were the same for
death from cancer and from cardiovascular disease is not very likely to be of any practical relevance.

3.2.3 Multiple transitions

If we have two completely separate transitions A — ¢ and B — E, say, then the likelihood contribution from
the two transitions would be completely independent, and the log-likelihood from the two transitions would
just be the sum of the two separate likelihoods from each of the transitions.

Now, suppose it was possible to make a further transition from C to D. The likelihood contribution for
this from a person would be the conditional probability of transition to D, given that the person were
available in C for a C — D transition. So by Bayes’ theorem the likelihood for A — C and C — D would be
the probability of the first (A — C) multiplied by the conditional probability of the second (C — D) given
that the first (A — C) had occurred.

In this case, some persons would contribute two terms to the likelihood and two data records (d = 1, y,)
and (d, yc), other persons would contribute only one (d = 0,y,), where y, and y¢ are risk times contributed
in states A and C respectively. But again, the likelihood contribution from a single persons would be a
product of terms, each one looking like a Poisson likelihood term.

3.2.4 Total log-likelihood for a multistate model

We have seen that the log-likelihood for all transitions in the multistate model is the sum of the separate
log-likelihoods for each of the transitions, where we treat each transition as if it were the only possible
transition from the origin state.

This implies that for states from which transition to more than one other state is possible, the same risk
time will be represented multiple times, one for each possible transition. It will also imply that the sum of
risk time over all records will be larger that the total risk time in the study.

The Lexis machinery (chapter 4) represents follow-up, not log-likelihood contributions, so if more than
one transition from a given state is modeled in the same model, the Lexis representation cannot be used
to evaluate the log-likelihood.

In principle we can set up one large model for all transitions where we have the possibility of having
common parameters between different transitions.
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Alternatively we could model each transition rate separately if we assumed that no two transitions had
common parameters. The latter will only require a subset of the Lexis representation to construct the
log-likelihood. Actually, we can model several transitions jointy from records in a Lexis object provided
only that no two transitions are from the same state.

...now input from datarep

datarep



Chapter 4

Lexis: data representation and analysis
of rates

In chapter 2 on probability models we looked at a simple multistate model for mortality and insulin use
among diabetes patients. This chapter illustrates how to construct a Lexis object to represent and
manipulate the multistate information, and gives some examples of analysis of transition rates using the
Poisson likelihood derived in chapter 3

The key to understanding the purpose of the Lexis machinery is the likelihood of a rate as derived in
chapter 3 on multistate likelihood. In particular the formula 3.1 on page 18, which tells us that we can
split the follow-up in many small pieces and analytically treat event indicators (0/1) in these as if they
were independent Poisson variates, and still arrive at the correct likelihood.

In Lexis objects (data frames) we represent person follow-up with one record per interval lived, along
with information about the interval:

e the position of the beginning of the interval on each time scale of interest (age, calendar time,
disease duration, ...)

e the time spent in the interval (length of interval)
e the state in which the time is spent
e the state to which the person moves next (if any)

e the current status of the person with respect to other covariates of interest, such as sex, marital
status, blood pressure or other clinical variables, drug exposure etc.

This chapter shows how to manipulate information on follow-up and covariates into a Lexis object that
allows splitting in many small intervals suitable for statistical analysis of transition rates.

...now input from DMlate

4.1 Using the Lexis function

The following example is illustrating the basic set-up of follow-up data as a Lexis! object for multistate
data with multiple time scales, allowing simple summarizing, graphics and analysis. A Lexis object is just
a data frame where each record represents an interval of follow-up, with some extra variables and
attributes that define features of the follow-up. Lexis objects allow definition of multistate models with
multiple states, and different ways of looking at these.

!Named after the German demographer and economist Wilhelm Lexis (17 July 1837 — 24 August 1914),
who in his book “Einleitung in die Theorie der Bevolkerungsstatistik” [Introduction to the theory of popula-
tion statistics] (1875) devised a diagram showing follow-up of persons on multiple time scales. The diagram
is nowadays called a Lexis diagram, even if it is usually drawn in a slightly different manner than that Lexis
used in his book.
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26 4.1 Using the Lexis function PMM

Ultimately the Lexis representation is going to be used for modeling of rates, so a few simple modeling
examples are included in this section too.

4.1.1 Defining a Lexis object

First we define the total follow-up for all persons in DMlate; persons enter the follow-up at date of
diabetes, dodm?, and end follow up at date of exit, dox. A person who ends his follow-up as dead has a
non-missing dodth. The dates are all coded in units of years (365.25 days) with 1970-01-01 represented as
1970.000; for example, 1996.5 represents 2"9 July 1996.

> data(DMlate)

> dmL <- Lexis(entry = list(Per = dodm,

+ Age = dodm - dobth,

+ DMdur = 0 ),

+ exit = list(Per = dox),

+ exit.status = factor(!is.na(dodth),

+ labels = c("DM", "Dead'")),
+ data = DMlate)

NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 4 rows with duration of follow up < tol

CODE EXPLAINED: The Lexis function defines time-scales of follow-up at the time of study entry on
each time scale, in this case the time scales Per—calendar time (“Period”), Age—current age and
DMdur—duration of diabetes. The variables are given in a named list, the names will be the names of the
time scales, which will appear as new variables in the resulting data frame.

The follow-up time (risk time) is defined via the time of exit on one of the time scales; exit is also a
named list, but only one element is required since risk time is the same measured on any time scale, in
this case we use Per=dox, so the risk time is computed as dox — dodm.

Finally we must define the exit status, this should be a factor—the standard way of representation of
a variable that only takes a finite no. of values. Here we use the indicator of a valid death date as variable
and turn it into a factor with levels DM and Dead. The expression !is.na(dodth) returns a logical, and
for logicals, FALSE<TRUE, so if !is.na(dodth) is FALSE (meaning date of death is missing) the
exit.status will be DM, if it is TRUE it will be Dead, because DM is mentioned before Dead in labels=.

The 4 dropped persons are persons with date of diabetes equal to date of death.

We can summarize the follow-up as defined in the Lexis object dmL in tabular form:

> summary (dmL)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 7497 2499 9996 2499 54273.27 9996

CODE EXPLAINED: summary (really summary.Lexis because dmL is a Lexis object) gives an overview of
the follow-up from entry to death or censoring. We see that 9,996 persons contribute some 54,000
person-years, and 2499 deaths.

4.1.2 Printing a Lexis object

The result from Lexis is a data frame of class Lexis, basically the original data frame, DMlate, amended
with the time scales and some extra variables (with prefix lex.):

> dmL[1:5,1:10]

2The DM/dm used in the code refers to “diabetes mellitus” which in turn refer to the symptoms of the disease,
from the Greek diabainein, meaning “to pass through”, describing the copious urination, and mellitus, from
the Latin meaning “sweetened with honey”, referring to sugar in the urine.
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lex.id Per Age DMdur lex.dur lex.Cst lex.Xst sex dobth dodm
1 1998.92 58.66 0 11.08 DM DM F 1940.256 1998.917
2 2003.31 64.09 0 6.69 DM DM M 1939.218 2003.309
3 2004.55 86.25 0 5.45 DM DM F 1918.301 2004.552
4 2009.26 44.04 0 0.74 DM DM F 1965.225 2009.261
5 2008.65 75.78 0 1.34 DM DM M 1932.877 2008.653

CODE EXPLAINED: When the name of a Lexis object is given, R will invoke the function print.Lexis if
it exists (and it does exist) otherwise the print.default function. print.Lexis function will print the
columns of the Lexis object in order with id and the time scales first, followed by the state indicators.
Time scales and lex.dur rounded to 2 decimals, and other variables rounded to 3 decimals. This latter
behaviour can be changed by calling print.Lexis directly, see 7print.Lexis.

We list only the first five rows and the first 10 columns of dmL; this is sufficient for illustration.

The function Lexis has added variables with the three defined time scales Per, Age and DMdur; they
represent the value of the time scale at the beginning of the follow-up interval of length lex.dur. lex.Cst
(Current state) is the state in which the follow-up takes place, whereas lex.Xst (eXit state) is the next
state the person occupies after lex.dur time in lex.Cst. If lex.Xst is the same as lex.Cst it means
that the person is censored in the state; no transition is recorded. lex.id is the person identifier, if not
explicitly set (via the id= argument) when calling Lexis it will be a simple consecutive numbering of the
records in the input data.

Thus, each record in the Lexis object represents follow-up for a period of lex.dur in the state
recorded in lex.Cst, starting at calendar time Per in age Age and diabetes duration DMdur, after which
the person continues in the state recorded in lex.Xst.

The default behaviour of Lexis is to assume the each record in the data represents the follow-up of one
person, but a person may enter with multiple records, for example if the person has been emigrated for a
period. In this case the argument id should be used, but Lexis provides no check of consistency between
records with the same id.

4.2 Modeling mortality
4.2.1 Effect of age at diagnosis

We can model mortality as a function of Age, it will be a model with the age at entry (diagnosis of
diabetes) as explanatory variable, assuming that mortality is constant over the follow-up. This is not very
realistic, but the only possibility with this dataset. A Poisson model can be fitted (using the Lexis
features of dmL):

> library(mgcv)

> m0 <- gam.Lexis(dmL, ~ s(Age))

mgcv: :gam Poisson analysis of Lexis object dmL with log link:
Rates for the transition:

DM->Dead

CODE EXPLAINED: gam.Lexis fits a rate model (Poisson likelihood) where the mortality is assumed
constant during follow-up of each person (i.e. the follow-up represented in each record of dmL), but where
the magnitude of this constant mortality is determined by smooth function of Age, which in dmL is the age
at diagnosis of diabetes). This is because dmL is a data frame with only one record per person, each
record representing the entire follow-up of the person. So not a very interesting model.

The default for gam.Lexis is to model all transitions to any absorbing state, but in this case there is
only one absorbing state, namely Dead, and only one transition to it, namely DM—Dead. In full detail we
would have written:

> m0 <- gam.Lexis(dmL, ~ s(Age), from = "DM", to = "Dead")

Further, gam.Lexis is merely a wrapper for gam; in this case the call of gam.Lexis is tantamount to:
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> gam(cbind(lex.Xst Jinj, "Dead" & lex.Xst != lex.Cst,

+ lex.dur) ~ s(Age),

+ family = poisreg,

+ data = subset(dmL, lex.Cst Jinj, "DM"))

Note the logical clause lex.Xst != lex.Cst which is necessary when handling transitions to transient

states. So gam.Lexis makes life a bit easier.
The family poisreg uses the likelihood derived for follow-up data in chapter 3; it is an improvement of
the poisson family that would have provided the same fit by:

> gam((lex.Xst 7inj, "Dead" & lex.Xst != lex.Cst) ~ s(Age),

+ offset = log(lex.dur),
+ family = poisson,
+ data = subset(dmL, lex.Cst }inj, "DM'"))

A similar wrapper, glm.Lexis, exists for glm.

4.2.2 Splitting follow up for analysis by current age

It is of considerably more interest to quantify how the current age (also called attained age) determines the
mortality. In order to do this we must split the follow-up in intervals so small that we can safely assume
that mortality rate is constant within each interval and then use the current age for the interval. This done
by either splitLexis from the Epi package or splitMulti from the popEpi package—the latter slightly
faster and with a simpler syntax:

> library(popEpi)

> options("popEpi.datatable" = FALSE)

> system.time(dmS <- splitLexis(dmL, breaks = seq(0, 120, 0.25),
+ time.scale = "Age"))

user system elapsed
2.32 0.30 2.63

> system.time(dmS <- splitMulti(dmL, Age = seq(0, 120, 0.25)))

user system elapsed
1.47 0.26 1.61

> summary (dmL)

Transitions:
To

From DM Dead Records: Events: Risk time: Persons:

DM 7497 2499 9996 2499 54273.27 9996

> summary (dmS)

Transitions:
To

From DM Dead Records: Events: Risk time: Persons:

DM 224557 2499 227056 2499 54273.27 9996

> (who <- subset(dmL, lex.Xst == "Dead")[4,'lex.id'])

[1] 24

> subset(dmL, lex.id == who)[,1:10]

lex.id Per Age DMdur lex.dur lex.Cst lex.Xst sex dobth dodm
24 1996.89 63.16 0 1.43 DM Dead M 1933.723 1996.886

> subset(dmS, lex.id == who)[,1:10]

lex.id Per Age DMdur lex.dur lex.Cst lex.Xst sex dobth dodm
24 1996.89 63.16 0.00 0.09 DM DM M 1933.723 1996.886
24 1996.97 63.25 0.09 0.25 DM DM M 1933.723 1996.886
24 1997.22 63.50 0.34 0.25 DM DM M 1933.723 1996.886
24 1997.47 63.75 0.59 0.25 DM DM M 1933.723 1996.886
24 1997.72 64.00 0.84 0.25 DM DM M 1933.723 1996.886
24 1997.97 64.25 1.09 0.25 DM DM M 1933.723 1996.886
24 1998.22 64.50 1.34 0.09 DM Dead M 1933.723 1996.886
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cODE EXPLAINED: We split the follow-up in 3-month intervals (0.25 years) with splitLexis and
splitMulti, showing the time difference using system.time, but with the same result, except that
splitMulti returns a data.table, unless told to not to by setting the option popEpi.datatable to
FALSE. So dmS is of class data.frame in this case.

The summary shows that the number of deaths and amount of follow-up is the same in dmS as in dmL,
but dmS has about 23 times as many records.

We extract the lex.id for a person—here the 4" person (who has lex.id 24) that ends follow-up in
Dead, and show the person’s records in the two datasets.

We see that person 24 in the split dataset dmS only have one transition to Dead as in dmL, and also that the
sum of the lex.dur is the same in the two datasets. But the values for Per, Age and DMdur vary between
records, the values of these refer to the time scale values at the beginning of each of the intervals.
Therefore, if we model mortality by Age using dmS we will be modeling the effect of Age at the beginning of
each of these small intervals, so effectively modeling the effect of current age:

> ml <- gam.Lexis(dmS, ~ s(Age))

mgcv::gam Poisson analysis of Lexis object dmS with log link:
Rates for the transition:

DM->Dead

The only difference between m0 and m1 is the dataset used; using dmL assumes the mortality constant over
the entire follow-up for each person using the age at entry to the study as variable, using dmS we assume
mortality constant only in 3-month intervals using the age at the beginning of each interval as explanatory
variable.

Thus the first model (m0) is showing mortality as function of age at diagnosis (assuming that mortality
does not depend on current age or disease duration), the latter (m1) shows mortality as function of current
age (assuming that mortality does not depend on age at onset or disease duration).

We can compare the two estimated age-effects models by making predictions for ages 30 through 90, say,
from both models. Strictly speaking the graph is nonsense, one of the curves has x-axis as age at entry, the
other z-axis as current age; the deception lies in the sloppiness of using the word “age” without further
specification.

> nd <- data.frame(Age = 30:90)

> matshade (nd$Age, cbind(ci.pred(m0, nd),

+ ci.pred(ml, nd)) * 100,

+ plot = TRUE,

+ xlab = "Age", ylab = "Mortality per 100 PY",

+ col = c('green', 'orange'), lwd = 2, log = "y")

> axis(side = 1, at = seq(65,75,5), labels = NA, pos = 5, tcl = 0.3)
> axis(side = 1, at = seq(65,75,1), labels = NA, pos = 5, tcl = 0.2)
> axis(side = 1, at = seq(65,75,5), labels = NA, pos = 5, tcl = -0.3)
> axis(side = 1, at = seq(65,75,1), labels = NA, pos = 5, tcl = -0.2)

CODE EXPLAINED: nd is a data frame with values of the explanatory variable(s) in the model(s), in this
case only Age. ci.pred computes the predicted mortality rates from the models, cbind puts the columns
side-by-side and finally matshade plots these with shaded confidence intervals, green for the model with
age at diagnosis, and orange for the model with current age. The log="y" argument makes the y-axis
logarithmic.

The axis statements each draw a horizontal axis without labels, at ages 65 to 75 years, located at
y =5 (pos=5). The tcl argument determines the size and direction of the tick marks; default value is
—0.5, here we use £0.2 and +0.3

Both estimates of mortality show an exponentially increasing mortality (straight lines when using a
log-scale), almost parallel. The orange curve shows the effect of current age, i.e. each of the many 3-month
interval for a person has its own mortality, whereas the green curve refer to the age at entry (age at
diabetes diagnosis) where the entire follow-up for a person has the same mortality. As seen from the small
axis in the middle of the display, the curves are offset horizontally about 4 years. The average follow-up
time (lex.dur) in the two data sets in the intervals where death occur are:
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Figure 4.1: Two models for mortality in DM patients. The green curve is based on estimates
from data with one record per person (in which case Age represents age at DM diagnosis),
the orange on data with 3-month intervals of follow-up (which means that Age represents
current age). ../graph/DMlate-mort0

> with(subset(dmL, lex.Xst=="Dead"), mean(lex.dur))
[1] 4.12682

> with(subset (dmS, lex.Xst=="Dead"), mean(lex.dur))

[1] 0.1180175

We see that the difference of these means is about 4 years; so the age at onset is on average 4 years earlier
than the left endpoint of the intervals representing current age. This is what is reflected in the horizontal
distance of 4 years between the two curves. This is formally an inaccurate statement, there is nothing in
the code that restricts the two curves to be parallel, they just happen to be so approximately.

The purpose of this example is to show that the modeling of rates as function of current age (or any
other time scale) requires data subdivided so finely that the assumption of constant rates in the intervals is
reasonable, but also that the left endpoint should be a reasonable representation of the age at risk
(specifically the value of the time scale). These are credible assumptions for 3 month intervals, but hardly
for intervals of 4 years or more.

Note that this is an analysis that targets the rates so this analysis does not have a counterpart in the
Cox-model, that bypasses the baseline hazard (rate) and only yields hazard ratios (rate ratios).
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4.3 Survival analysis

The analyses presented in figure 4.1 shows the mortality as a function of age at diagnosis respectively
current age. We might instead postulate that the mortality primarily depends on time since diagnosis of
diabetes. All persons in our dataset are at risk from time 0 on this time scale, which is certainly not the
case for the age as time scale.

With a common origin of time it makes sense to ask for the survival probabilities, the probability that a
person with diabetes survives, say, 5 years from diagnosis. We can fit a model describing the mortality as a
function of time since diagnosis using the time-split dataset dmS; the modeling looks very similar to the
model with age as time scale:
> m2 <- gam.Lexis(dmS, ~ s(DMdur))
mgcv::gam Poisson analysis of Lexis object dmS with log link:

Rates for the transition:

DM->Dead
cobkE EXPLAINED: The dataset dmS was split along the age-scale in intervals of 0.25 years, but the other
time scales were calculated at these split times as well, see p. 28. Therefore we can just use the split
times on the DMdur scale from in split dataset dmS when modeling the effect of diabetes duration.

And as for the mortality as function of age we can show the mortality as a function of time since diagnosis:

> nd <- data.frame(DMdur = seq(0, 15, 0.2))
> matshade (nd$DMdur, ci.pred(m2, nd) * 100,

+ plot TRUE,

+ Iwd = 2,

+ ylim = 0:1%10,

+ xaxs = "i",

+ yaxs = ”i”,

+ xlab = "Time since DM diagnosis (years)",
+ ylab = "Mortality per 100 PY")

CODE EXPLAINED: The data frame nd contains the times for DMdur where we want the mortality
evaluated, used as 2"4 argument to ci.pred to get the predicted rates with confidence intervals.

We are not using a log-scale for the rates because we will be using the cumulative rates, that is the
integral—the area under the curve from 0 up to a given time (since diagnosis). By the same token we also
show the origins of the axes at exactly 0 (xaxs="i" and yaxs="1i"); this way the area shown in the plot
corresponds to the cumulative rate.

We see from figure 4.2 that the mortality declines from time of diagnosis for the first 2 years, and only then
start to increase slightly. The figure shows how the mortality looks as a function of time since diagnosis,
but we wanted to see the survival, the probability of being alive at time ¢ after diagnosis. The survival
function is related to the mortality rate by:

S(t) = exp (7 /Otu(s) ds)

where p(s) is the function in figure 4.2. Since the survival is a closed form function of the mortality rate, so
is the (approximate) confidence intervals for the survival a function of the standard error of the estimated
(log-)mortality, albeit a complicated one. This is conveniently wrapped in the function ci.surv which
takes a model and a prediction data frame as arguments, assuming the records in the prediction frame
correspond to equidistant times at which we want the survival probability computed:

> matshade (nd$DMdur, ci.surv(m2, nd, intl = 0.2),

+ plot = TRUE,

+ lwd = 2,

+ xaxs = "i",

+ yaxs = "j n’

+ xlab = "Time since DM diagnosis (years)",
+ ylab = "Survival probabiliy")

> lines(survfit (Surv(dmL$lex.dur,

+ dmL$lex.Xst == "Dead") ~ 1),

+ col = "red")
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Figure 4.2: Mortality of Danish diabetes patients as a function of diabetes duration.
../graph/DMlate-mort2

CODE EXPLAINED: The function ci.surv takes the estimated mortalities from the model m2 at the points

given in the data frame nd. Since the calculation of the survival requires numerical integration we must

also supply the length of the intervals between points in nd, this is in the argument intl. ci.surv then

computes the survival function at the points given in the second argument (called ctr.mat), and returns

a 3-column matrix with estimated survival as the first column, and the confidence limits as the next two.
For comparison we also show the Kaplan-Meier curve derived by survfit.

From figure 4.3 we see that there is no practical difference between the two approaches to computing the
survival function; the traditional Kaplan-Meier approach has some notches at the far end of the curve that
are not biologically credible. But it is only the parametric approach that produces an estimate of the
mortality function as in figure 4.2.

4.4 Multiple states: cutting follow-up

When splitting the follow-up we use a set of predefined (deterministic) points on a time scale, see page 28.
A different type of subdividing the follow-up is cutting at times of (random) events. This will typically be
at the time a person moves to a new state, such as “Insulin treated”.

Note the terminology we have introduced here: Splitting is reserved for division of follow-up at
pre-determined points on a time-scale (typically many breaks); cutting is reserved for division of follow-up
at time of some intermediate event, typically constituting a transition to a new state.

These two endeavours are handled by different functions, splitting by splitLexis or splitMulti (the
latter from the popEpi package), cutting by cutLexis and its cousins mcutLexis and rcutLexis.

4.4.1 Cutting follow-up at one intermediate event

To accommodate the beginning of insulin therapy, which starts at doins, follow-up must be cut in two for
persons that begin insulin therapy, one piece before (that is, not on insulin) and one after (that is,
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Figure 4.3: Parametric and non-parametric survival curves. For clarity the y-axis does
not start in 0. The smooth black curve and the shaded confidence interval are based on a
parametric model for the mortality rates; the ragged red curve with broken lines as confidence
interval is the Kaplan-Meier estimator of the survival function. ../graph/DMlate-DMsurv

currently on insulin, or more precisely, ever on insulin). This is done by the function cutLexis:

> dmL <- sortLexis(dmL)
> dmI <- cutLexis(dmL,

+ cut = dmL$doins,
+ timescale = "Per",

+ new.state = "Ins",

+ new.scale = "tfIns",

+ split.states = TRUE,

+ precursor.states = '"DM")

CODE EXPLAINED: The cut argument is a vector of transition times (possibly with missing values) of
length equal to nrow(dmL)—in this case a column in dmL, but it need not be. The timescale argument
indicates which of the time scales the values of the cut argument refer to. new.state is the name of the
state the person transitions to, and new.scale is the name of the time scale defined as time since entry to
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the new state. split.states=TRUE indicates that the Dead state should be subdivided according to
whether the entry to Dead is from state Ins or state DM.

Finally, precursor.states names those states that will be overridden by the new state; if a person
that begins insulin previously ended in DM (that is, censored in DM), the person should now end in Ins
(that is, still censored, but now in Ins), so DM is a precursor state. If a person previously ended in Dead
the person should still end as dead after beginning insulin, so Dead is not a precursor state. The default
value for precursor.states is transient (dmL), the set of transient states—in this case only DM. It is
rarely relevant to use anything but the default, so this argument is usually omitted.

> summary(dmI, timeScales = TRUE)

Transitions:
To
From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 6157 1694 2048 0 9899 3742 45885.49 9899
Ins 0 1340 0 451 1791 451 8387 .77 1791
Sum 6157 3034 2048 451 11690 4193 54273.27 9996
Timescales:
Per Age DMdur tflIns

nn nn mn "Insll

CODE EXPLAINED: We see from the summary that the total number of persons and deaths is the same in
dmI as in dmL. But the number of records is larger.

Asking for the time scales in dmI shows the four time scale variables, and that tfIns is defined as time
since entry to the Ins state, whereas none of the other time scales are defined as time since entry

We can illustrate the result of cutting time by listing records from a few selected persons both from dmL
and dmI. We select one person for each combination of missing/non-missing of dodth and doins

(who <- c(

subset (dmL, !is.na(dodth) & !is.na(doins))[1,"lex.id"],
subset (dmL, is.na(dodth) & !is.na(doins))[1,"lex.id"],
subset (dmL, !is.na(dodth) & is.na(doins))[1,"lex.id"],
subset (dmL, is.na(dodth) & is.na(doins))[1,"lex.id"]))

[1] 28 15 6 1
> subset(dmL, lex.id 7in}, who)[,c(1:7,13)]

+ 4+ + +V

lex.id Per Age DMdur lex.dur lex.Cst lex.Xst doins
1 1998.92 58.66 0 11.08 DM DM NA
6 2007.89 80.02 0 2.04 DM Dead NA
15 2002.55 58.13 0 7.45 DM DM 2005.354
28 1998.52 73.72 0 9.68 DM Dead 2007.221
> subset(dmI, lex.id /in), who)[,1:8]
lex.id Per Age DMdur tflIns lex.dur lex.Cst  lex.Xst
1 1998.92 58.66 0.0 NA  11.08 DM DM
6 2007.89 80.02 0.0 NA 2.04 DM Dead
15 2002.55 58.13 0.0 NA 2.80 DM Ins
15 2005.35 60.93 2.8 0 4.64 Ins Ins
28 1998.52 73.72 0.0 NA 8.70 DM Ins
28 2007.22 82.43 8.7 0 0.98 Ins Dead(Ins)

CODE EXPLAINED: We select one person (the first, by “[1,”) among those who have or have not a valid
date of death, respectively date of insulin, and list the relevant variables for the four chosen persons from
dmL and dmI.

Persons 1 and 6 do not have a date of insulin so they have one record each in both data sets, with lex.Cst
equal to DM. Persons 15 and 28 both have a doins, so their follow-up is cut in two pieces at doins. Person
15 remains in state Ins (is censored there), while person 28 dies. So cutLexis keeps track of the absorbing
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states (in this case Dead), and makes sure that transitions to absorbing states are maintained, as is the case
for person 28.

Note that the total lex.dur is the same within persons in the two data sets, but in the data frame dmI
persons 15 and 28 spend their time in two different states, as indicated in lex.Cst.

The time scale tfIns (time from Insulin) is NA for the records representing follow up in state DM, and 0
for the new records—at the beginning of insulin the time since insulin is of course 0, but the variable tfIns
is now defined as a time scale and will therefore be properly updated when we split follow-up.

4.4.1.1 Graphical representation of states and transitions

Lexis version A graphical version of the summary is provided by the boxes.Lexis function, that
shows each state as a box and each transition as an arrow, optionally annotated by the summaries:

> boxes(dmI, boxpos = list(x = c¢(15,85,15,85),
+ y = c(85,85,15,15)),
+ scale.R = 1000,
+ show.BE = TRUE)
DM (13;29;) Ins
45,885.5 : > 8,387.8
9,899 6,157 97 1,340
2,048 451
(44.6) (53.8)

v v

Dead Dead(Ins)
0 2,048 0 451

Figure 4.4: Multistate model for beginning of insulin use and death among diabetes patients.
The number in the center of each box is the total follow-up time. The numbers at the bottom
of each box are the number of persons beginning, resp. ending their follow-up in the state.
The numbers on the arrows are the number of transitions and in brackets the transition rates
per 1000 person-years. ../graph/DMlate-box3

CODE EXPLAINED: The boxes derives the states from the Lexis object dmI, the argument boxpos places
the boxes in a coordinate system that ranges from 0 to 100 in both directions; the x and y are the
coordinates of the center of the boxes. scale.R scales the rates that are printed along the transition
arrows, in this case to rates per 1000 PY. show.BE prints the number of persons that begin resp. end
their follow-up in each state.

The resulting plot is the same as the one in the introduction in chapter 1.

cohorttools version There is a function in the cohorttools package that automatically puts the
states in an order attempting to avoid crossing arrows. It gives access to a lot of features from the
graphviz program devised for drawing of graphs:
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> library(cohorttools)

> kk <- boxesLx(dmI, layout = "dot",

+ rankdir = "LR", # Left to Right

+ show.gr = FALSE,

+ scale.Y = 100,

+ show.persons = TRUE,

+ prop.penwidth = TRUE)

> gv2image (kk, file = "../graph/DMlate-gvboxes", type = '"pdf")

Ins st | Dead(Ins)
(5.38)
L

604 83.88

y 97 — 1340 0 — 451
DM

2048

458.85 (4.46) Dead
9899 — 6157 ™

0 —~ 2048

Figure 4.5: graphviz version of multiple states graph. The prop.penwidth makes the widths
of the arrows porportional to the log-rates. ../graph/DMlate-gvboxes

The funny filename of the graph is chosen to comply with those automatically generated by Sweave for
the other graphs in this book.

The beauty of the result of boxesLx can be debated, but graphviz has a lot of possible parameters
available that can be accessed from boxesLx, see 7boxesLx for links etc.

4.4.2 Cutting follow-up at multiple intermediate events

When multiple intermediate events can occur, A and B, say, it will matter which order you cut your
follow-up; if the time sequence for a person is B then A, and we cut data first at occurrence of A and then at
B, we might accidentally override the state A by B. Handling this is really clumsy; the solution is basically
to cut in order of occurrence of the events for each person, but it will involve a lot of subsetting, cutting
and stacking.

Therefore, there is a function mcutLexis that does this properly and keeps track of the history; here we
cut at the date of beginning insulin therapy (doins) and date of starting oral anti-diabetic drugs
(dooad)—note that we are starting all over again from the dmL object with no cuts:

> dmI0 <- mcutLexis(dmL,

+ wh = c("dooad", "doins'),
+ timescale = "Per",

+ new.states = c("0OAD", "Ins"),

+ new.scales c("t.0AD", "t.Ins"),

+ ties.resolve 1/365.25)

NOTE: Precursor states set to DM
NOTE: 15 records with tied events times resolved (adding 0.002737851 random uniform),
so results are only reproducible if the random number seed was set.

CODE EXPLAINED: mcutLexis assumes that the times of the transitions are stored as variables in dmL,
named in the argument wh—so a bit more restrictive data requirements than for cutLexis. mcutLexis
requires that there is at most one record per person per state. Thus transition to a state (lex.Xst) can
occur at most once for each person.

The names of the new states assumed at the times given in the variables named by wh are given in the
argument new.states. There is also the possibility of defining new time scales defined as time since entry
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into each of the two states, via the new.scales. Finally, where the two dates dooad and doins are
identical, a decision must be made as to which occurred first. If you do not resolve that by hand prior to
calling mcutLexis, ties.resolve=TRUE will add a bit of random noise to the identical dates so ties are
broken. If ties.resolve=FALSE, the function will fail if any two transition dates for a person are
recorded as equal.

To see what happens with mcutLexis we can list the result for two select persons:

> whl <- subset(dmI0O, lex.Cst == "QAD-Ins")$lex.id[1]
> wh2 <- subset(dmIO, lex.Cst == "Ins-0AD")$lex.id[1]
> who <- c(wh1l, wh2)

> subset (dmI0, lex.id }inj, who)[,1:9]

lex.id Per Age DMdur t.0AD t.Ins lex.dur lex.Cst lex.Xst
18 1996.75 61.72 0.00 NA NA 1.17 DM 0AD
18 1997.92 62.89 1.17 0.00 NA 8.08 OAD OAD-Ims
18 2005.99 70.97 9.25 8.08 0.00 4.00 0AD-Ins OAD-Ins
38 2008.37 63.93 0.00 NA NA 0.09 DM Ins
38 2008.46 64.02 0.09 NA 0.00 0.21 Ins Ins-0AD
38 2008.67 64.24 0.31 0.00 0.21 1.33 Ins-0AD Dead

CODE EXPLAINED: First we extract the ids of persons who has been in states Ins-0AD, or 0AD-Ins, and
take the first of each of these. We then print the records from the cut data frame dmI0 for these persons.
Note the new time scales (t.0AD and t.0AD); they are NA until the state is assumed, at which point they
are 0, the time since, say, 0AD at the time of beginning 0AD.

> summary (dmL)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 7497 2499 9996 2499 54273.27 9996

> dmI0 <- Relevel(dmIO, c("DM",'"Ins",'"Ins-OAD",
+ "0AD", "0AD-Ins", "Dead"))
> summary (dmI0O)

Transitions:
To

From DM 1Ins Ins-0AD OAD OAD-Ins Dead Records: Events: Risk time: Persons:
DM 2830 688 0 2958 0 1056 7532 4702 22920.27 7532
Ins 0 462 171 0 0 152 785 323 3883.07 785
Ins-0AD 0 0 137 0 0 34 171 34 715.24 171
0AD 0 0 0 3327 1006 992 5325 1998 22965.25 5325
0AD-Ins 0 0 0 0 741 265 1006 265 3789.45 1006
Sum 2830 1150 308 6285 1747 2499 14819 7322 54273.27 9996

CODE EXPLAINED: When comparing to dmL we see that the number of records in dmI0 is some 50% larger
because of the extra records for persons that see an intermediate event.

The ordering of states in the resulting Lexis object depends on the dataset, so you will often want to
reorder states “by hand”, using Relevel in order to get a meaningful ordering of states in the summary.

From the summary we see that mcutLexis generates not only states 0AD and Ins, but also the states
0AD-Ins and Ins-0AD according to the order in which states were visited. There is an argument to
mcutlLexis, seq.states=FALSE that will cause the two latter states to be merged to the state Ins+0AD
(ordering of state names is alphabetic).

When there are many states are in the model, a graphical representation is particularly important; here
we show the multistate data with and without distinguishing between the sequence of 0AD and Ins:
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> par(mfrow = c(2,1))
> boxes(dmIO,

+ boxpos = list(x = c¢(15,50,85,50,85,50),
+ y = ¢(50,90,70,15,30,50)),
+ scale.R = 1000,

+ show.BE = TRUE)

> boxes (Relevel (dmIO,

+ list("DM","0OAD","Ins+0AD" = c(3,5),"Ins", "Dead"),
+ first = FALSE),

+ boxpos = list(x = ¢(15,50,85,50,50),

+ y = ¢(50,90,50,15,50)),

+ scale.R = 1000,

+ show.BE = TRUE)

CODE EXPLAINED: We reordered the levels of dmI0, and so the ordering of the components of the boxpos
list elements codex and codey will refer to this ordering. The scale.R scales the rates shown on the
arrows and show.BE = TRUE shows the number of persons who begin and end follow-up in each state.

We can also use boxesLx that automatically places boxes and draws non-interfering arrows, but it only
allows arrows in one direction (either horizontal or vertical):

> kk <- boxesLx(dmIO, layout = "dot",
rankdir = "LR", # Left to Right
+ show.gr = FALSE,
+ scale.Y = 100,
+ show.persons = TRUE,
+ prop.penwidth = TRUE)
> gv2image (kk, file="../graph/DMlate-xxboxes", type="pdf")

4.5 Joint model for several transition rates

We can use the Lexis object dmI0 as basis for modeling the 5 different mortality rates, it is however
apparent from figure 4.6 that the transition Ins-0AD — Dead is poorly determined with only 33 transitions
so we will merge the two states Ins-0AD and 0AD-Ins, so we only model the 4 mortality rates in the lower
panel of figure 4.6.

The reason that we can model the 4 mortality rates in one model based on the Lexis data frame dmIO is
that the four rates originate from 4 different states, so the joint likelihood only include each piece of risk
time once—see the section on likelihood for multiple transitions, p. 23.

But first we must split the follow-up in small intervals in order to be able to interpret effects of age and
diabetes duration as current age and current duration. We use 3 month intervals as before:

> sI0 <- splitMulti(Relevel(dmIO,

+ list("Ins+0AD" = c("Ins-0AD", "OAD-Ins"),

+ "Dead" = ”Dead"),

+ first = FALSE),

+ Age = seq(0, 120, 1/4))

> summary (sI0)

Transitions:

To

From DM Ins OAD Ins+0AD Dead Records: Events: Risk time: Persons:
DM 94476 688 2958 0 1056 99178 4702 22920.27 7532
Ins 0 15996 0 171 152 16319 323 3883.07 785
0AD 0 0 95193 1006 992 97191 1998 22965.25 5325
Ins+0AD 0 0 0 18890 299 19189 299 4504.69 1177
Sum 94476 16684 98151 20067 2499 231877 7322 54273.27 9996

CODE EXPLAINED: Before we split the follow-up, we use Relevel to merge the states Ins-0AD and
0AD-Ins to one called Ins+0AD. Note that we redundantly mention Dead in Relevel; it has the effects of
putting Dead as the last level, giving a nicer summary, while the first = FALSE puts the newly created
levels as the last ones.
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Figure 4.6: States and transitions for the DMlate data with and without distinguishing
between the sequence of OAD and Ins. ../graph/DMlate-mbox2

We can model the mortality rates in one model, where we take the rates to be proportional between the
states before death, simply by including lex.Cst as a covariate. Because we still have only one absorbing
state and we model all transitions into this it is particularly simple to specify the model for all mortality
rates taking current age and diabetes duration into account:

> mph <- gam.Lexis(sI0, ~ s(Age) + s(DMdur) + lex.Cst)

Formally we would use:

> system.time (

+ mph <- gam.Lexis(sI0, ~ s(Age) + s(DMdur) + lex.Cst,

+ to = "Dead"))

mgcv::gam Poisson analysis of Lexis object sIO with log link:
Rates for transitioms:

DM->Dead

Ins->Dead

0AD->Dead
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Figure 4.7: graphviz version of the multiple states. The graph is drawn with arrow-widths
proportional to the corresponding rates. ../graph/DMlate-xxboxes

Ins+0AD->Dead

user system elapsed
25.23 2.14  27.40

CODE EXPLAINED: If neither from or to are specified as arguments in gam.Lexis, the default is to model
all transitions into any absorbing state. In this case the only absorbing state is Dead, so the default is to
model all 4 mortality rates together in the same model.

If only to is specified, all rates into the states indicated in to are modeled. If only from is specified, all
rates out of the states indicated in from are modeled.

We model the mortality rates as depending on both age (Age) and duration of diabetes (DMdur), and
also include the factor 1lex.Cst in the model; this will introduce different levels of mortality for the four
different states. But we assume the same (non-linear) shape of effects of age and diabetes duration for all
4 mortality rates; a proportional hazards model, that is.

> summary (mph)

Family: poisson
Link function: log

Formula:
cbind (trt (Lx$lex.Cst, Lx$lex.Xst) %in) trnam, Lx$lex.dur) ~ s(Age) +
s(DMdur) + lex.Cst

Parametric coefficients:
Estimate Std. Error z value Pr(>|zl)

(Intercept) -3.795076  0.040907 -92.774  <2e-16 **x*
lex.CstIns 0.991018 0.088113 11.247 <2e-16 **x
lex.Cst0OAD -0.008453  0.044946 -0.188 0.851

lex.CstIns+0AD 0.659929  0.070357 9.380 <2e-16 **x*
Signif. codes: O '#*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value
s (Age) 1.006 1.011 1987.5 <2e-16 **x*
s(DMdur) 7.523 8.453 136.3 <2e-16 **x

Signif. codes: O 'xxx' 0,001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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R-sq.(adj) = 0.00212 Deviance explained = 9.31Y
UBRE = -0.89139 Scale est. =1 n = 231877

> round(ci.exp(mph, subset = "lex"), 2)
exp(Est.) 2.5% 97.5%

lex.CstlIns 2.69 2.27 3.20
lex.Cst0AD 0.99 0.91 1.08
lex.CstIns+0AD 1.93 1.69 2.22

CODE EXPLAINED: summary gives a summary of the model, including the parameters associated with
lex.Cst, which are the log rate ratios of mortality relative to the DM state. The section on smooth terms
reveals the the effective degrees of freedom (edf) for the Age term is just about 1, meaning that the age
term is almost linear. The p-value is not a test of non-linearity, it is a test of no effect.

ci.exp extracts those parameters with a name where “lex” appear, and exponentiates them, so we get
the mortality rate-ratios relative to the mortality in the DM state.

We see that the persons in 0AD alone do not have a different mortality from those not treated (DM), the
reference level. Those on Ins alone have a mortality RR of 2.7 and those on both a RR of 1.9, significantly
different since the confidence intervals do not overlap.

The model mph is a proportional hazards model since we assume that the 4 mortality rates are
proportional; the mortality rates depend on age and disease duration in the same way: the RR between
persons in any two of the states is assumed to be the same regardless of age and duration of diabetes.

4.5.1 Two time scales

The model mph is a proportional hazards model and we can get an impression of how mortality rates looks
for different combinations of age and duration, by defining a prediction data frame; a dataset with select
values for the covariates in the model mph:

> # traditional approach
> nd <- transform(data.frame(expand.grid(DMdur = c(NA, seq(0, 15, 0.2)),
+ AgeDM = seq(40, 70, 10)),
+ lex.Cst = "DM"),
+ Age = AgeDM + DMdur)
> # tidyverse approach
> nd <- expand.grid(DMdur = c(NA, seq(0, 15, 0.2)),
+ AgeDM = seq(40, 70, 10)) 71>%
+ mutate (lex.Cst = "DM",
+ Age = AgeDM + DMdur)
> head (nd)
DMdur AgeDM lex.Cst Age
1 NA 40 DM NA
2 0.0 40 DM 40.0
3 0.2 40 DM 40.2
4 0.4 40 DM 40.4
5 0.6 40 DM 40.6
6 0.8 40 DM 40.8

> matshade (nd$Age, ci.pred(mph, nd) * 100,

+ plot = TRUE,

+ log = 'ly”

+ lwd = 2,

+ ylim = ¢(0.25, 50),

+ xlab = "Current age (years)',

+ ylab = "Mortality per 100 PY”)

> xa <- seq(40, 70, 10)

> ya <- exp(seq(log(8) log(50),, 4))

> for (i in 1:4)

+ {

+ axis(side = 3, at = 0:3*%5+ xa[i], labels = 0:3%5, pos = yal[i])
+ axis(side = 3, at = 0:15 + xa[i], labels = NA , pos = yal[i],
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+ tcl = -0.3 )
+ }

> matshade (nd$Age,

+ ci.pred (mph,

+ transform(nd, lex.Cst = "Ins")) * 100,

+ lwd = 3,

+ lty - 1122!1)

CODE EXPLAINED: We want a prediction data frame with variables Age and DMdur, but for combinations
of (a few) ages at diagnosis and a range of values of diabetes duration. expand.grid returns a data frame
with all combinations of the arguments, the first argument varying fastest. The model does not have
AgeDM (Age at DM diagnosis) as predictor but rather Age (current age), so this is computed in mutate. WE
have shown the data frame manipulation if two different ways; it gives the same result.

Note we inserted an NA at the beginning of the DMdur values; this is in order to break the predicted line
at each new age at diagnosis; otherwise the curves would have been connected. In general if there is an NA
in either the = or the y coordinate when a vector plotted as a line, then the two points on either side of
the NA will not be connected.

To illustrate the joint effects of age and duration we also included horizontal axes showing the duration
of diabetes for the four curves—xa are the left end points of the axes, ya are the vertical position the axes
used in the pos argument.
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Figure 4.8: Mortality by current age and duration of diabetes for persons in states DM and
Ins. Full lines are for persons in state DM, broken lines for persons in state Ins. There is
one curve for each age at diagnosis: 40, 50, 60 and 70, and an axis indicating the diabetes
duration for each of the four curves.

Note that mortality rates actually decline the first two (well 1.7) years after diagnosis.
../graph/DMlate-age-dur

Figure 4.8 shows the mortality among persons in the DM state as a function of current age and diabetes
duration, for persons diagnosed with DM at ages 40, 50, 60 and 70.
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We see that the mortality is high at time of diagnosis, but decreases during the two first years, and
subsequently increase exponentially by age, with no detectable difference between different ages at
diagnosis. Since there is no interaction between Age, DMdur and lex.Cst, we have a proportional hazards
model; the hazard ratio (mortality rate-ratio) between the 4 states is assumed to be constant on both of
the two time scales.

Note however that the 8 curves in figure 4.8 are not identical even though they look so in this case; they
consist of a duration curve over the span 1-15 years (identical for all 8 curves) but combined by the effect
of current age over the span 40-85. Thus the curves in full lines and broken lines are pairwise proportional.
But the 4 curves in each line type are slightly different; they look deceptively similar because the age-effect
in this case is almost linear.

The initial peak (at duration 0) in mortality is presumably a clinical artifact: some of the newly
diagnosed persons are diagnosed in connection with some other severe disease, such as for example
cardiovascular disease. Therefore there is an over-representation of quite sick people among the newly
diagnosed. They contribute to the initial high mortality, but as this part of the newly diagnosed die out,
the mortality among the remaining reflect the mortality among “normal” diabetes patients.

4.5.2 Proportional hazards?

In normal statistical terms this would simply be called a main-effects model, but “proportional hazards”
has become the standard terminology when analyzing occurrence rates. Which is unfortunate since “test
for non-proportionality” has become a term used for test of interactions with time scales. In this instance a
test of non-proportionality would be to test against a model with interactions between the time scales and
lex.Cst:

> mnph <- gam.Lexis(sIO, ~ s(Age , by = lex.Cst) +
+ s(DMdur, by = lex.Cst) +
+ lex.Cst)

> anova(mnph, mph, test = "Chisq")

We may also use a more elaborate interaction where we have an interaction between age and duration, here
via a non-linear term in the difference, and fitted by glm using natural splines. There are many different
ways of specifying an interaction, but the code to graph the estimated mortality rates will be the same if
the interactions are specified in terms of the original variables (and no special variables are constructed):

> mpph <- glm.Lexis(sI0, ~ Ns(Age , knots = 1:4%20) * lex.Cst +
+ Ns (DMdur, knots c(0,1,5,10)) * lex.Cst +

+ Ns (Age -
+ DMdur, knots = 5:8*10) * lex.Cst +
+ lex.Cst)

stats::glm Poisson analysis of Lexis object sI0 with log link:
Rates for transitioms:

DM->Dead

Ins->Dead

0AD->Dead

Ins+0AD->Dead

But besides the test for interaction we will of course want to know how the interaction looks; in this case
we have estimated 4 different curves for age-effect and 4 different curves for the effect of diabetes duration.
For each state they can of course be combined as in the previous section; the graph is produced by the
same code, only the model is changed:

> clr <- c("forestgreen",'"darkorange")
> matshade (nd$Age, ci.pred(mpph,

+ transform(nd, lex.Cst = "DM")) * 100,
+ plot = TRUE,

+ lOg - uyu,

+ lwd = 2, 1ty = 1, col = clr[1], alpha = 0.10,

+ ylim = c(0.25, 50),

+ xlab = "Current age (years)",

+ ylab = "Mortality per 100 PY")

> xa <- seq(40, 70, 10)
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ya <- exp(seq(log(8), log(50),, 4))
for (i in 1:4)
{
axis(side = 3, at = 0:3*%5+ xa[i], labels = 0:3%5, pos = yal[i])
axis(side = 3, at = 0:15 + xal[i], labels = NA , pos = yali],
tcl = -0.3 )
}
matshade (nd$Age,

ci.pred(mpph,
transform(nd, lex.Cst = "Ins")) * 100,
lwd = 2, 1ty = "22", col = clr[1], alpha = 0.10)
matshade (nd$Age,
ci.pred(mpph,
transform(nd, lex.Cst = "OAD")) * 100,
lwd = 2, 1ty = 1, col = clr[2], alpha = 0.10)
matshade (nd$Age,
ci.pred (mpph,
transform(nd, lex.Cst = "Ins+0AD")) * 100,
lwd = 2, 1ty = "22", col = clr[2], alpha = 0.10)
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Figure 4.9: Mortality by current age and duration of diabetes for persons in all states. Full
lines are for persons in states not including insulin (DM,0AD), dotted lines for persons in Ins
or Ins+0AD. Green line are persons not on OAD, orange for persons on OAD. There is one
curve for of each type and color for each age at diagnosis: 40, 50, 60 and 70, and an azis
indicating the diabetes duration for each of the four curves. ../graph/DMlate-age-dur-int

The model we are using has four transient states, defined by cross-classification of the presence or
absence of insulin and of oral antidiabetic drugs. The mortality rates from different states are shown in
dotted lines if the originating state is an insulin state and full lines if not. And they are colored orange if
the state includes oral antidiabetic drugs and green if not. This is a specific feature for this particular
model: the states correspond to a cross-classification of two factors, and the colours and line types
correspond to the two factors (insulin respectively OAD) that defines the 4 states. On top of this we have
curves for select values of age at diagnosis, but those are clear from the location of the curves.

...now input from datarep
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4.6 Recurrent multiple intermediate events

In cases of recurrent (for example curable or regressing) disease states we may not be interested in keeping
track of the entire history of visited states of a person, but only care about the current (i.e. latest visited)
state. One example would be kidney disease as assessed by albuminuria, where urine albumin levels < 30
mmol/l is considered normal and levels above 30 and 300 mmol/] are called micro-, respectively
macro-albuminuria (this is not the correct clinical diagnosis, though). In this case we would only be
interested in the state a person is currently in, not the (sequence of) states previously visited.

The construction of Lexis objects that correspond to this type of multistate model is handled by the
function rcutLexis, which besides a Lexis object takes as input times and (names of) states entered at
these times for each person.

This is illustrated in detail in section 4.8, “A real world example” below. The situation where one type of
event is repeatedly observed in the same person is illustrated in chapter 5

4.7 Adding time-varying covariate information

So far we have only been concerned with time-dependent transitions between states, but we will also want
to assess the effect of covariates measured at irregular time points on the transition rates.

When adding time-varying covariate information, we will gain the possibility to assess how the value of
these influence the transition rates between states. But we will lose the possibility of predicting state
probabilities—we shall return to this later.

There are (at least) two substantially different types of added time-varying covariate information:

1. Information obtained at a given date is carried unchanged forward until the next piece of
information becomes available. This is normally called “last observation carried forward” (LOCF).
This will typically be used for clinical measurements taken at different follow-up times, such as
cholesterol, blood pressure etc.

2. Interpolation between adjacent measurements is used to assign covariate values at given times
between the two measurement times.
This will typically be used to construct covariates such as cumulative amounts of drug consumed or
other exposure measurements in pharmaco-epidemiological studies. Since we are doing some sort of
interpolation from the raw data, we can in principle compute the covariate values at any time of
follow-up, so this will also require decisions about the times at which we evaluate the exposure.

4.7.1 Adding clinical measurements: addCov.Lexis

Persons may attend clinical visits or there may be administrative updates performed at (possibly irregular)
times. In that case we would like to amend the follow-up in a Lexis object with values of the most recent
measurements from the clinical visits, but without defining a new state in the model.

One way to do this is to introduce a cut of the follow-up at the date of each clinical visit, in order to add
the clinical variables measured at the visit to records representing follow-up after the clinical visit (until
the next). This is known as last observation carried forward (LOCF). This is also the way that
splitLexis, cutLexis, mcutLexis and rcutLexis operates; when the follow-up in a record is cut in two,
both resulting records will have the same values as for all variables in the original record.

Furthermore, we might want to keep track of the time since the most recent visit. These features are
available in the function addCov.Lexis. This is further detailed in the appendix, section 11.2.1, where the
function is described and contrasted to addDrug.Lexis, and also illustrated in section 4.8 “A real world
example” below in this chapter

4.7.2 Adding drug exposure: addDrug.Lexis

In pharmaco-epidemiology we want to add information on drug exposure to the Lexis object; we want the
current drug exposure status computed at each time represented in the Lexis object. The data on drug
exposure will come from either records of drug purchases (filled prescriptions) or records of issued
prescriptions.
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In both cases we will for each person have date of drug (purchase or prescription), amount of drug and
possibly a prescribed dosage (how much to take per day).

We want the Lexis object amended with the current drug exposure at the beginning of each interval
represented in the Lexis object.

There are a many different ways to define current drug exposure such as: 1) is the person currently on
drug, 2) time since first exposure, 3) cumulative time on the drug or 4) cumulative dose of the drug. The
calculation of these variables for each record is implemented in addDrug.Lexis, with a choice of method
for defining the 4 mentioned variables from the purchase / prescription records.

Unlike adding clinical measurements by addCov.Lexis, the use of addDrug.Lexis must be the last
operation on the Lexis object. This is because addDrug.Lexis computes exposure variables at each time
point in the Lexis object by interpolation. Thus any further subdivision of time using LOCF will generate
time points with the variable values copied from previous time points, and thus not computed by
interpolation as desired.

This aspect is further detailed in the appendix, section 11.2, where the function addDrug.Lexis is
described and contrasted to addCov.Lexis.

...now input from steno2

4.8 Recurrent events and time dependent covariates:
Steno?2 trial

We shall illustrate the facilities of Lexis, rcutLexis, addCov.Lexis and splitMulti using the Steno2
data (read the documentation using 7steno?2).

Briefly, the data is a simulated version of the original Steno 2 data; no persons can be identified; but the
results will be broadly similar to analysis based on the original Steno 2 data. The study randomized T2
diabetes patients with micro-albuminuria to either standard treatment or intensive treatment. Enrollment
were from beginning of 1993 through mid 1994. There were 80 patients in each group; the intensive care
turned out to be superior, so in 2001 it was decided to put all on the intensive care arm. The dataset
steno?2 contains follow-up till the end of 2014.

The dates in steno2 are stored in Date format so we convert all of them to cal.yr format using the
function cal.yr:

> data(steno2)
> steno2 <- cal.yr(steno2)

CODE EXPLAINED: The data frame steno2 has all dates represented as Date variables, so by cal.yr
argument) we convert them all to cal.yr format, so risk time will be counted in years (defined as 365.25
days).

4.8.1 A Lexis object

We then devise a Lexis object with the follow-up from baseline of the study, doBase, to end of follow-up,
doEnd:

> # .

> # to be fixed in the data: a few deaths are a few days after doEnd
> steno2$doEnd <- pmax(steno2$doEnd, steno2$doDth, na.rm = TRUE)

> # .

> L2 <- Lexis(entry = list(per = doBase,

+ age = doBase - doBth),

+ exit = list(per = doEnd),

+ exit.status = factor((!is.na(doDth)) + deathCVD,

+ labels=c("Mic", "D(oth)'", "D(CVD)")),
+ id = id,

+ data = steno2)

NOTE: entry.status has been set to "Mic" for all.
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> summary (L2)

Transitions:
To
From Mic D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 67 55 38 160 93 2421.31 160

cODE EXPLAINED: The dates doBase and doEnd both refer to calendar time, here called per.

We code the exit status 0 for those alive, 1 for those who have a date of death, and 2 for those who also
have an indicator of death from CVD. All included persons start in the Mic state, hence the naming of
the first level of the exit status (where (!is.na(doDth)) + deathCVD is 0).

Note that we need to write (!is.na(doDth)) + deathCVD because “+” has higher precedence then “!”;
that is, + is calculated before “!”. Omitting the outer brackets would give the same result as
! (is.na(doDth) + deathCVD) which would be a logical, FALSE if the expression in brackets is 0,
otherwise TRUE—not what we want. You may want to consult the operator precedence order by ?Syntax.

4.8.2 Definition of intermediate states

We can now cut the follow-up at the occasions where albumin has been measured, that is, dates at which

we consider a transition can take place. Depending on measurements, persons are classified as being in one

of the states normo-albuminuria, micro-albuminuria or macro-albuminuria, in order of severity:

Norm < Mic < Mac. Recall that one of the entry criteria were that the persons should be in the state Mic.
This will not necessarily produce a transition at every date where current state is recorded; persons may

have the same status at a given visit as they had on the previous. But there is no harm done in having a

data representation of a transition from a given state to itself:

> data(st2alb)
> str(st2alb)

'data.frame': 563 obs. of 3 variables:

$ id cnum 1111122222 ...

$ doTr : Date, format: "1993-06-12" "1995-05-13"

$ state: Factor w/ 3 levels "Norm","Mic","Mac": 2121212322 ...

> cut2 <- with(st2alb,
+ data.frame(lex.id = id,
+ cut = cal.yr(doTr),
+ new.state = state))
> head(cut2)
lex.id cut new.state
1 1 1993.444 Mic
2 1 1995.361 Norm
3 1 2000.067 Mic
4 1 2001.984 Norm
5 1 2007.317 Mic
6 2 1993.786 Norm
> L3 <- rcutLexis(L2, cut2, timescale = 'per')
> levels(L3)
[1] HMiCll llNormH llMaCH "D(Oth)" llD(CVD)lI

> L3 <- Relevel(L3, 2:1)
> summary (L3)

Transitions:
To
From Norm Mic Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Norm 90 31 5 14 7 147 57 608.84 69
Mic 72 299 65 27 13 476 177 1383.65 160
Mac 3 20 44 14 18 99 55 428.81 64
Sum 165 350 114 55 38 722 289 2421.31 160
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CODE EXPLAINED: In order to cut the follow-up at the dates in doTr we must transform these dates to
cal.yr format to align them with the dates in L2. And we must devise a data frame with the variable
names lex.id, cut and new.state.

This is generated as cut2, to be used as input to rcutLexis, which cuts the follow up at the dates of
transitions in cut2 and only keeps track of the most recent state occupied.

We finally reorder the levels of L3 with Relevel; note that we only need to care about the first two
levels, the remaining levels will remain in the original order.

From the summary we see there are a few recorded transitions Norm—Mac and vice versa, but on
physiological grounds we will not allow these; we put an artificial visit to the state Mic in between Norm
and Mac:

> set.seed(1952)

> dd <- subset(L3, (lex.Cst == "Mac" & lex.Xst == '"Norm") |

+ (lex.Xst == "Mac" & lex.Cst == '"Norm"))

> cut3 <- data.frame(lex.id = dd$lex.id,

+ cut = dd$per +

+ dd$lex.dur * runif(nrow(dd), 0.1, 0.9),

+ new.state = "Mic")

> cut3
lex.id cut new.state

1 70 2001.789 Mic

2 86 2012.232 Mic

3 130 2001.488 Mic

4 131 2001.032 Mic

5 136 1997.610 Mic

6 136 2000.780 Mic

7 171 1997.057 Mic

8 175 2013.472 Mic

> L4 <- rcutLexis(L3, cut3)

> summary (L4)

Transitions:

To

From Norm Mic Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Norm 90 35 O 13 6 144 54 581.91 66
Mic 72 312 65 30 14 493 181 1437.48 160
Mac 0 22 41 12 18 93 52 401.91 60
Sum 162 369 106 55 38 730 287 2421.31 160

CODE EXPLAINED: We find those records in L3 that represent direct transition between Norm and Mac,
and put them in the data frame dd. We then choose a random time point in the middle 80% of the time
represented in each of these (runif (nrow(dd), 0.1, 0.9) returns nrow(dd) random numbers between
0.1 and 0.9) and use these as the transition times to Mic, and finally these are used as cut points supplied
to rcutlexis.

Note that there are now no direct transitions between Mac and Norm in L4. We show the course for two
select persons that both have 4 transitions (the maximum in the dataset):

> addmargins(table(tt <- with(subset (L4, lex.Cst != lex.Xst),
+ table(lex.id))))

1 2 3 4 Sum

51 60 24 11 146

> who <- names(tt[tt==4])[10:11]
> subset (L4, lex.id Jinj}, who)[,1:6]

lex.id per age lex.dur lex.Cst lex.Xst
143 1993.95 57.11 .05 Mic Mac
143 1994.00 57.17 .35 Mac Mic
143 1996.35 59.52 .07 Mic Norm
143 1999.41 62.58 .07 Norm D(oth)

WNDNDNOWWN O
—
w

159 1994.02 67.50 Mic Mic
159 1994.16 67.63 .66 Mic Norm
159 1996.82 70.29 .37 Norm Mic
159 1999.20 72.67 .32 Mic Mac
159 2006.52 79.99 .99 Mac D(CVD)
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CODE EXPLAINED: First we select the records that represent a transition (i.e. where lex.Cst is different
from lex.Xst), and make a table, tt, of the number of this type of records for each person. A table of
the entries in tt shows that there are 11 persons with 4 transitions, and among these we select the two
last, and print the 6 first variables for these two persons for illustration.

Once we have a Lexis object with all desired transitions we can get a graphical overview of the
transitions between states:

> clr <- c("forestgreen", "orange", '"red", "blue'", gray(0.4))
> boxes (L4, boxpos = list(x = ¢(10,10,10,90,90),

+ y = c( 5,560,95,25,75)),

+ show.BE = '""nz",

+ scale.R = 1000,

+ pos.arr = ¢c(0.25,0.5) [c(2,2,1,1,2,1,1,2,1,1)],
+ col.bg = clr,

+ col.txt = c¢("white", "black")[c(1,2,1,1,1)],

+ col.border = c(clr[1:3], rep("black", 2)),

+ Iwd = 3)

D(CVD)
38

D(oth)
55

Figure 4.10: Transitions between states of albuminuria and death in the Steno2 study. The
numbers in the center of the boxes are the total risk time (person-years), the numbers in
the bottom of the boxes are the number of persons starting (left), resp. ending (right) their
follow-up in each state; note that all persons start in the Mic state. The numbers on the
arrows are the number of transitions and (rates per 1000 PY). ../graph/st2-albbox
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CODE EXPLAINED: When we set show.BE to "nz" we do not have Os printed in the boxes where the
number of persons entering and exiting are printed.

The pos.arr argument determines where on the transition arrows the annotation is located—numbers
between 0 and 1, 0 corresponding to the root of the arrow, and 1 to the tip of the arrow. It is a vector of
length equal to the number of transitions; the ordering of the transitions (arrows) is row-wise among the
non-0, non-diagonal entries in the transition matrix as shown by summary.

The col. arguments set the background, text and border color of the boxes.

4.8.2.1 Defining transition times: interval censoring

We used the recorded test-times as transition times to new levels of micro- or macro-albuminuria. Instead
we might have used the midpoints or some randomly generated time between the two measurements.
Strictly speaking we have interval-censored data; the transition occurred sometime between the two
measurements. We might even have generated several copies of the dataset where we randomly generated
transition times; these could could then be analyzed in parallel and estimates combined in the usual way
for multiple imputation. This type of analysis was done by Bjerg et al. [2].

4.8.3 Adding clinical measurements

When modeling the transition rates between states we may be interested in the effect of measured variables
obtained at clinical visits, visits that are unrelated to state transition times. The follow-up of persons
should then be divided at the time of the clinical visit, and the follow-up time after the visit have the
values of measurements as covariates.

In the Steno2 study, we have also clinical measurements at different visits in the dataset st2clin:

> data(st2clin)
> str(st2clin)

'data.frame': 750 obs. of b5 variables:

id :num 1234567389 10 ...

doV : Date, format: "1993-05-07" "1993-05-05"

alc : num 87.3 66.5 73 61.2 102.7 ...

chol: num 3.9 6.6 5.6 5.2 6 4.8 8.6 5.1 4.2 5.4 ...
crea: num 83 83 68 97 149 55 56 78 123 79 ...

> table(table(st2clin$id))

1 2 3 4 5 6
2 6 23 38 31 60

6 hH P H P

We can add this clinical information to the follow-up by cutting the follow-up at these times using the
addCov.Lexis function. It takes as arguments a Lexis object and a data frame of clinical measurements
classified by person and date. It is required that the data frame with the clinical data set has a lex.id
variable and a variable with the same name as one of the time scales in the Lexis object. The remaining
variables are considered to be clinical measurement values.

> c¢lin <- mutate(st2clin,

+ lex.id = 1id,

+ per = as.numeric(cal.yr(doV))) >

+ select(-id, -doV)

> head(clin[order(clin$lex.id, clin$per),], 8)
alc chol crea lex.id per

1 87.3 3.9 83 1 1993.346

161 68.9 4.2 73 1 1995.478

317 63.7 4.4 63 1 1997.477

466 50.6 3.0 105 1 2001.083

594 74.9 3.2 107 1 2006.715

687 32.8 4.2 171 1 2014.761

2 66.5 6.6 83 2 1993.340

162 54.8 5.7 105 2 1995.487

> str(clin)
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'data.frame': 750 obs. of 5 variables:
$ alc :num 87.3 66.5 73 61.2 102.7 ...
$ chol : num 3.9 6.6 5.6 5.2 6 4.8 8.6 5.1 4.25.4 ...
$ crea : num 83 83 68 97 149 b5 56 78 123 79 ...
$ lex.id: num 1234567 89 10 ...
$ per : num 1993 1993 1993 1993 1993 ...
> L5 <- addCov.Lexis (L4,
+ clin,
+ timescale = 'per’',
+ tfc = 'tsClin')
> summary (L4)
Transitions:
To
From Norm Mic Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Norm 90 35 0 13 6 144 54 581.91 66
Mic 72 312 65 30 14 493 181 1437.48 160
Mac 0 22 41 12 18 93 52 401.91 60
Sum 162 369 106 55 38 730 287 2421.31 160
> summary (L5, timeScales = TRUE)
Transitions:
To
From Norm Mic Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Norm 231 35 0 13 6 285 54 581.91 66
Mic 72 708 65 30 14 889 181 1437.48 160
Mac 0 22 136 12 18 188 52 401.91 60
Sum 303 765 201 55 38 1362 287 2421.31 160
Timescales:
per age tsClin

mnun nn IIXII

CODE EXPLAINED: We use mutate to devise the variables lex.id and per (the timescale for the
measurement times), and select to remove variables that we do not want carried over to the Lexis
object. All other variables than lex.id and the time scale variable will namely be carried over to the
extended Lexis object as clinical variables.

The resulting object, clin, is then used to extend the L4 object using addCov.Lexis.

Note that when the time scales are listed, per and age are listed as "", which means that neither of
them are defined as time since entry into a state. tsClin is marked as "X", which means that it is a
deficient time scale: it is not defined for some follow-up (namely that preceding the the first clinical visit),
and that it is reset at each new clinical visit. But it must be defined a time-scale because it must be
updated at subsequent splitting and cutting.

We see that transitions and risk time are the same in L4 and L5, but that L5 has more records, due to the
cut of follow-up at the clinical visit times.

> (wh.var <- names(L5)[c(4,1:2,25,3,19:23)])

[1] "lex.id" ‘"per" "age" "tsClin" "lex.dur" "lex.Cst" "lex.Xst" "exnam"
[9] "alc" "chol"
> subset (L5, lex.id J,inj}, who)[,wh.var]
lex.id per age tsClin lex.dur lex.Cst lex.Xst exnam alc chol
143 1993.95 57.11 0.01 0.05 Mic Mac exl 69.3 4.6
143 1994.00 57.17 0.06 1.50 Mac Mac exl 69.3 4.6
143 1995.50 58.67 0.00 0.85 Mac Mic ex2 55.2 4.4
143 1996.35 59.52 0.85 1.16 Mic Mic ex2 55.2 4.4
143 1997.51 60.68 0.00 1.91 Mic Norm ex3 73.6 5.4
143 1999.41 62.58 1.91 1.87 Norm Norm ex3 73.6 5.4
143 2001.28 64.45 0.00 1.20 Norm D(oth) ex4 75.5 3.5
159 1994.02 67.50 NA 0.03 Mic Mic <NA> NA NA
159 1994.06 67.53 0.00 0.10 Mic Mic exl 64.0 4.4
159 1994.16 67.63 0.10 1.35 Mic Mic exl 64.0 4.4
159 1995.51 68.98 0.00 1.32 Mic Norm ex2 50.5 5.0
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159 1996.82 70.29 1.32 0.66 Norm Norm ex2 50.5 5.0
159 1997.48 70.95 0.00 1.71 Norm Mic ex3 43.9 3.9
159 1999.20 72.67 1.71 2.40 Mic Mic ex3 43.9 3.9
159 2001.60 75.07 0.00 4.92 Mic Mac ex4 49.8 3.8
159 2006.52 79.99 4.92 0.18 Mac Mac ex4 49.8 3.8
159 2006.69 80.16 0.00 3.82 Mac D(CVD) exb 59.7 3.1

CODE EXPLAINED: We select names of relevant variables in the data frame we want to see, and invoke the
print method for Lexis objects to show the records from two of the persons.

For person 143 the first value of tsClin is not 0, because the earliest clinical measurement is before entry
to the study (albeit only by 19 days (0.052 x 365.25 = 18.993)).

Also, the time scale tsClin has missing values; namely for those pieces of follow-up that are before the
first clinical measurement as is seen for person 159. This is something to be wary of when modeling
rates—if ignored you may accidentally miss some observation time in your analysis.

Finally, for analysis of the transition rates we can split time in smaller intervals; the point of having
tsClin as covariate is that we may use it to model how the effect of the clinical variables changes with the
time since measurement. Therefore it is defined as a time scale by addCov.Lexis:

> options("popEpi.datatable" = FALSE)
> L6 <- splitMulti(L5, per = seq(1980, 2020, 0.5))
> summary (L5)

Transitions:
To
From Norm Mic Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Norm 231 35 0 13 6 285 54 581.91 66
Mic 72 708 65 30 14 889 181 1437.48 160
Mac 0 22 136 12 18 188 52 401.91 60
Sum 303 765 201 55 38 1362 287 2421.31 160

> summary (L6)

Transitions:
To
From Norm Mic Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Norm 1396 35 0 13 6 1450 54 581.91 66
Mic 72 3565 65 30 14 3746 181 1437.48 160
Mac 0 22 945 12 18 997 52 401.91 60
Sum 1468 3622 1010 55 38 6193 287 2421.31 160

CODE EXPLAINED: We use the splitMulti function from the popEpi package, it returns a data.table
instead of a data.frame, unless we set the options popEpi.datatable to FALSE as shown. This will make
the function a bit slower, though.

We see that tsClin behaves like a time scale and is properly expanded by the time-splitting. But it should
not be used as a time scale to split along, because it is not guaranteed that the result is sensible.
...now input from datarep

4.9 Summary of multistate data representation

As we have seen, the raw observations in multistate models are just recordings of dates (times, in general)
where transitions from one state to another occur along with the information of the states from and to
which the transition occur. We assume that the precise time of each transition is known. These are the
basic data items required to construct the relevant dataset(s) for estimation of transition rates.

In the Epi package is implemented the Lexis machinery for representation and manipulation of
multistate date; a complete overview of all relevant functions is given in chapter ?7.

We use the term “cut” for the operation of subdividing follow-up at one time point, typically some sort
of event representing a transition to a new state. We are using the term “split” for the operation of
subdividing follow-up into many small intervals along some time scale.
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4.9.1 Prerequisites and construction of a Lexis object

1. Make sure that all times of interest are recorded as absolute dates; date of birth, date of entry, date
of exit from the study, date of death and date of any intermediate events of interest. This allows
calculation of age, disease duration etc. at any time required.

2. First determine the total follow-up period for each person. As a start set up the total follow-up
(basically starting with entry in some “alive” state and either ending in some absorbing “dead” state
or being censored alive).

The function Lexis [9] will create a data frame with additional structure, called a Lexis object
which allows representation of multistate follow-up on multiple time scales, and provides tools for
manipulation and display of multistate data.

3. Then subdivide the total follow-up according to the state currently occupied. Keep track of how
much time is spent in each state, and which transitions occur.

Tools for subdivision of follow-up in a Lexis object at transition times are cutLexis, mcutLexis
and rcutLexis. Note that there is no dot (“.”) before the “Lexis” in these function names.

(a) cutLexis will cut records representing follow-up at times where an intermediate event occurs;
only one event per person is allowed. For some persons one record will be replaced by two,
representing follow-up pre- and post-event, with different values of the state variables.

There is no requirement that the intermediate event time should be within the observation
window for a person; if the event occurs before the beginning of follow-up for a person, all the
follow-up of the person will be classified in the new state. If the event occurs after the end of
follow-up, no change to the representation of the person’s follow-up is made.

(b) mcutLexis will do the same but for several types of intermediate events, that occur at most
once each for a person, and where we want to keep track of which events has occurred in
which order for each person (the history).

(c) rcutLexis will also cut at multiple events for a person, but it only keeps track of the most
recent event type, and moreover multiple occurrences of event types (transitions) are allowed.
This will typically be in situations where we are modeling different degrees of illness, and
where improvement may occur too.

4. Defining time-dependent variables in a Lexis object is done by addCov.Lexis and addDrug.Lexis.
These functions are S3 methods for Lexis objects, so when calling them you can leave out the
“.Lexis”.

(d) addCov.Lexis will add clinical covariates to follow-up time in Lexis objects, and keep track of
the time since recording of them. This is a bit like cutLexis for the event “most recent clinical
visit”, without recording this as a state, but keeping the time since last visit as a time scale.
The latter will not be a proper timescale, because it is reset to 0 at every clinical visit, so it is
only useful as a covariate, but it will be respected by the time-splitting functions, so properly
updated by the split and cut functions.

(e) addDrug.Lexis will add drug exposure variables to the Lexis object. The object will be cut
at all dates of drug purchase plus dates of computed drug expiration. Records representing
follow-up between these will receive exposure variables.

The added covariates are computed from the exposure records, they refer to the level of
exposure at the beginning of each interval, according to the chosen exposure algorithm.

This has the consequence that time-splitting or -cutting is not meaningful after using
addDrug.Lexis. Splitting and cutting will carry all covariate values forward in time, and this
is not meaningful for the covariates generated by addDrug.Lexis.

This is why the addDrug.Lexis should be changed so that no new cuts are added—data will
normally already be split. A possible exception might be the date of first purchases of each
drug, allowing a more precise assessment of drug allocation effects.
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The resulting Lexis object will have (at least) one record for each state occupied by a person, with
the time at entry to the state defined on all time scales (one variable for each time scale), as well as
a variable with the sojourn time in the state and an indication of the state to which transition occur
at the end of the sojourn.

The Lexis object represents the follow-up through the states, and will be the basis for analysis of
transition rates between states.

5. Since we only ever consider models for a finite number of states, the states are represented by levels
of a factor — the designated way in R to represent a variable that only assumes values in a
pre-specified finite set. The Lexis machinery does allow representation of states as numbers, but it
is discouraged since it makes your code more error-prone and results less readable.

6. The follow-up in Lexis objects can be summarized in tabular form by summary (that is
summary.Lexis), and as a diagram with states as boxes by boxes (boxes.Lexis). Finally, follow-up
on two select time scales can be illustrated in a Lexis diagram by the plot (plot.Lexis) function
for Lexis objects.

7. If we want to model transition rates using smooth functions for the effect of the time scales [6], we
must split the follow-up in intervals so small that an assumption of constant rate within each
interval is a reasonable assumption; this can be done by splitLexis. For most chronic diseases a
reasonable interval length would be 0.5 years.

The functionality of splitLexis is duplicated and expanded (in a faster version, with more intuitive
syntax) by splitMulti from the popEpi package. splitMulti derives its name from the ability to
split follow-up time along multiple time scales simultaneously.

8. The time splitting is not necessary if you model the cumulative rates by smooth functions [10], but
that will effectively restrict you to models with only one time scale in the description of the rates.

4.10 Summary of analysis of transition rates

A Lexis object is a data frame representation of the follow-up of persons through states. This can be
exploited to simplify model specification for transition rates because the likelihood for a specific transition
rate is a sum of terms that correspond to records in the Lexis object.

Joint models for several rates can be specified as well, provided that no two transition rates originate in
the same state. This will be the case for most models of practical interest.

Rate models based on Lexis objects are specified by one of three functions:

e glm.Lexis fits a Poisson model using glm with the poisreg family.

e gam.Lexis fits a Poisson model using gam with the poisreg family; this is a machinery that allows
use of penalized splines for the effect of quantitative variables through the function s ().

e coxph-Lexis fits a Cox model.

The Cox modeling requires that a baseline time scale be specified as a response, i.e. as the l.h.s. of a
formula. For the other two functions only the r.h.s. of a formula can be specified because the baseline time
scale(s) are part of the explanatory variables.

For a complete specification of a multistate model it is necessary to have a model for all of the observed
transitions in the model. The models need not all be different, some groups of transitions may be described
by the same model. Normally the lex.Cst will then be among the covariates, allowing the estimated rates
to depend on the originating state for the model.

At this point we are not going beyond the models for the transition rates; this will be detailed in the
chapters on competing risks (6, p. 92) and and estimation from multistate models (7, p. 107).

...now input from recur
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Chapter 5

Recurrent events

When an event can occur multiple times for an individual, such as bone fracture or more realistically,
hypoglycemia ! in diabetes patients, the event occurrence is said to be recurrent. If the number of times
the event occurs is not vast (no more than 15 per person), the normal way of modeling the events is in a
multistate model with states 0, 1, 2, ...indicating the attained number of occurrences of the event. The
rates of the transitions 0 — 1, 1 — 2, 2 — 3 etc.will typically be modeled with the same effects, but with
an additional parameter for each extra occurrence of a transition to accommodate the effect of the attained
number of recurrences (that is, the current state).

In practical applications, the estimated effect of the currently attained state on the rate of transition to
the next is likely to be increasing by state number because of selection: persons more likely to have many
events will be increasingly over-represented by increasing state (that is, increasing no. of events), and by
that token the rate of the next event will tend to increase by the number of events so far.

This phenomenon can also be regarded as a reflection of an empirical fact, usable for prediction of rates
conditional on the number of attained events. By considering it a true effect we would be assuming that
the sheer number of attained events were a determinant of the rate of the next event.

When a person can have more events during follow-up it is (at least in theory) possible to estimate a
person-specific parameter which is common across the rates in a given model. This can be interpreted as a
person-specific propensity for the event of interest, normally termed “frailty”, and usually taken to be a
multiplicative term on the rate scale.

It will only be possible to estimate a separate (fixed) frailty parameter for each person if all persons
have at least one transition in the model. Which is very rarely the case. Therefore, a frailty distribution is
postulated—note that the particular distribution chosen essentially is a statement about the specific study
population at hand.

By that token, it would be desirable to estimate the shape of the frailty distribution—in many practical
applications it can be suspected that there is a certain fraction of the population that is effectively immune
to the recurrent event, corresponding to a frailty distribution with an atom, for example taken to be at 1.
This would be a mixture model, that could either be specified flexibly using JAGS or some other Bayesian
MCMC machinery or using mixture models like the ones available in the gnlm package.

If we consider multiplicative models for the transition rates we may use a normal distribution for the
(log-)frailty, by including the frailty as an additive term on the log-rates scale. In the literature it has
become the convention to refer to the frailty as the multiplicative term, so the model with a normally
distributed term for the log-rates will be referred to as a model with log-normal frailty distribution.

Thus, if we have possible repeat events for each person we may consider using a random effects model.
And then report some measure of the random effects distribution, for example the median absolute
difference (or ratio) of frailties between two randomly chosen persons, see [8].

It is not possible to separate the frailty effect from the actual effect of number of events conceptually,
but computationally we will normally be able to separate the effects. However, the separation (i.e.the
estimated effects of state) will depend on a particular distributional assumption for the random effects—the
systematic effects of state (attained no. of events) is the “residual” not picked up by the random effects.

'Hypoglycemia is “too low blood sugar”, and can for example occur for diabetes patients if the dosing of
insulin is not properly regulated. It is a potentially lethal condition, hence feared by diabetes patients.
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5.1 Example: Hospitalized hypoglycemia (HH)
First we load the packages needed:

[,1]

"R version 4.2.0 (2022-04-22 ucrt)"
LibPath "C:/util/R/R-4.2.0/library"
Package "Epi"
Version "2.47"

5.1.1 Data set of recurrences

First we load the two datasets, one with one record per person (pp) and one with one record per
hypoglycaemaia event (hh). In the person data set we define sex as a proper factor (as it should always
be—Ilike any other categorical variable):

> # load(file = "~/teach/SPE/MSbook/data/HH.Rda", v = T)

> load(file = "../data/HH.Rda", v = T)

Loading objects:

pPp

hh

> pp$sex <- factor(pp$sex, levels = 1:2, labels = c("M","W"))
> str(pp)

'data.frame': 18314 obs. of 14 variables:

$ dob : num 1954 1972 1968 1935 1951

$id : int 134789 10 11 12 13 ...

$ bmi : num 26 26.1 25.6 23.5 24.8 ...

$ dodm: num 2003 1980 2002 1969 1996 ...

$ doe : num 2007 2006 2006 2009 2008 ...

$ dox : num 2012 2013 2012 2012 2010 ...

$ dod : num NA NA NA NA NA NA NA NA NA NA ...

$ sex : Factor w/ 2 levels "M","W": 1 221121122 ...
$ hba : num 39.9 76 61.7 45.4 42.1 ...

$ alb : num NA NA NA 0.1 NA ...

$ sbp : int 134 160 144 135 135 145 142 115 116 120 ...
$aht : int 1112211211 ...

$11t : int 1112211111 ...

$ smk : Factor w/ 5 levels "Daily smoker",..: 3112111433 ...
> str(hh)

'data.frame': 16194 obs. of 3 variables:

$ id : int 11 11 11 11 11 11 11 16 16 16 ...
$ doh: num 2002 2003 2004 2005 2011 ...
$nh:int 1234567123 ...

The data frame pp only contains follow-up w.r.t. death for the period May 2005 through January 2013:

> summary (pp$dod, na.rm=TRUE)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
2007 2010 2010 2010 2011 2012 17641

The dates in the datasets are in cal.yr format, but we can convert them to human-readable form by
as.Date.cal.yr:

> as.Date.cal.yr(range (pp$doe))

[1] "2005-05-02" "2012-09-05"

> as.Date.cal.yr(range (pp$dox))

[1] "2006-07-12" "2013-01-13"

> as.Date.cal.yr(range(pp$dod, na.rm = TRUE))
[1] "2007-01-06" "2012-01-10"
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The recorded dates of HH span a somewhat longer range back in time, enabling us to assign an absolute
(“lifetime”) number of each recorded hypoglycemia episode:

> as.Date.cal.yr (range (hh$doh))
[1] "1985-02-21" "2013-11-20"

We also explore how the entry and exit dates relate in the pp data frame:

> with(pp, plot(doe, dox, pch = 16, cex = 0.3,

+ xlim = ¢(2005,2013), ylim = c(2005,2013)))

> for (i in 0:6) abline(i, 1, col = "red", 1ty = "24")

> abline(v = 2005 + 0:8 + (31 + 15)/365.25,

+ h = 2005 + 0:8 + (31 + 15)/365.25,

+ col = "forestgreen'", Ity = "24'")

> for(si in 1:2) axis(side = si, at = 2005:2013, labels = NA)

2012

2010

dox
|

2008 7

2006 .-

doe

Figure 5.1: FEntry and exit dates in the hypoglycemia study. Note that the green broken
lines are located at 15" February each year, both for date of entry (doe) and date of exit
(dox ), while the broken red lines represent integer differences between date of exit and entry.

. ./graph/recur-doenex

From figure ?7 it is pretty clear that there is a preference of having the exit date an integer number of
years after the entry date (the red dotted lines). Also, there seems to be preferential values both for entry
and exit dates at approximately 15" February each year (indicated by green dotted lines). This illustrates
how important it is to explore the relationships between dates in the original data. For this data set we do
not have any explanations of the pattern, but it is typical for the effect of some kind of date-rounding.
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5.1.1.1 Removing presumed duplicated HH events
First we provide an overview of how many persons have how many HH events

> nrow(hh) ; tt <- table(hh$id) ; addmargins(table(tt))
[1] 16194
tt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2775 1248 664 335 244 146 108 86 46 58 26 23 14 13 10 11 8 9
19 20 21 22 23 24 25 26 27 28 29 30 32 33 36 39 44 46
6 5 4 3 3 3 2 5 1 1 1 1 2 2 1 1 1 2
49 53 56 63 83 Sum
1 1 1 2 1 5874

CODE EXPLAINED: First we determine the number of rows in hh and then make a table of ids, (tt), with
the number of records for each person. A tabulation of tt then shows how many persons have 1, 2,
..recorded episodes.

HH events occurring too close together can be suspected to be repeat recordings of the same event. Hence,
we want to remove HH episodes too close to the previous one. To this end we first make a histogram of the
time between successive HH episodes for those with at least two recorded:

hh$gap <- c(NA,diff (hh$doh))
dgap <- hh$gap[duplicated(hh$id)] * 365.25
dgap <- dgapldgap < 100]
hist(dgap, col = 1, breaks = 0:100,
main = "", xlab = "Gap lengths (days)")

+ VvV VvVvyv

CODE EXPLAINED: First we compute the successive differences between HH dates using diff. The first
value of this within each person is not relevant—it is the difference to a date from the previous person. So
we will exclude first record for each person. This is achieved by using duplicated that returns the
indicator of records with an earlier value of the variable, in this case id. Finally we restrict to gaps that
are smaller than 100 days, and make a histogram of these.

We see from figure 5.2 that the frequencies of gaps is sinking from 0 through 4 weeks, so there is no clear
data feature to reveal a threshold below which we consider two recordings to be one event. Therefore we
more or less arbitrarily choose 14 days as an arbitrary cut-off for considering two recordings as being one
HH episode:

> wh keep <- which((hh$gap > 13.5/365.25 & duplicated(hh$id)) |
!duplicated (hh$id))
> length (wh.keep)

[1] 14270

Having done this, we must re-number the HH episodes within each individual, i.e. update the nh variable:

> hh <- data.frame( hh[wh.keep,]
%> group_by (id)
%>/ mutate(nh = row_number())
7> select(c(id, doh, nh))
)

+ + + 4+

So hh is now thinned to have only consecutive episodes of HH that are at least 14 days apart.

5.1.2 Constructing a Lexis object

5.1.2.1 Initial Lexis data frame

First we construct a Lexis data frame with follow-up from entry (doe) to exit (dox) and with exit status
dead (Dead) or alive (coded 0.HH as the default is 0 HHs until information on HH is added):
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Figure 5.2: Distribution of within-person gaps between successive HH events; shown in one-
day bins. A person may contribute more than one gap in the histogram, but only persons

with at least two recorded HH dates contribute.
../graph/recur-gaphist

> Lx <- Lexis(data = pp,

+ entry = list(per = doe,

+ age = doe - dob,

+ dur = doe - dodm),

+ exit = list(per = dox),

+ id = id,

+ exit.status = factor(!is.na(dod),

+ labels = c("0.HH","Dead'")))

NOTE: entry.status has been set to "O.HH" for all.
NOTE: Dropping 1 rows with duration of follow up < tol

> summary(Lx, t = T)

Transitions:
To
From 0.HH Dead Records: Events: Risk time: Persons:
O.HH 17640 673 18313 673 73223.02 18313
Timescales:

per age dur
"nn "nn "un
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Once this has been established, we will use rcutLexis to repeatedly cut the follow-up of each person,
however only the first 15 HH occurrences:

> cutHH <- mutate(subset(hh, nh <= 10),
+ lex.id = id,
+ cut = doh,
+ new.state = ifelse(nh < 10,
+ pasteO(nh, ".HH"),
+ "10+HH")) >}
+ select(lex.id, cut, new.state)
> head(cutHH, 15)
lex.id cut new.state
1 11 2002.174 1.HH
2 11 2003.375 2.HH
3 11 2004.269 3.HH
4 11 2004.565 4 .HH
5 11 2011.312 5.HH
6 11 2013.051 6.HH
7 11 2013.522 7 .HH
8 16 2003.414 1.HH
9 16 2003.818 2.HH
10 16 2009.943 3.HH
11 17 1999.275 1.HH
12 19 2013.610 1.HH
13 23 2002.245 1.HH
14 23 2002.319 2.HH
15 23 2008.304 3.HH

> table(cutHH$new.state)

1.HH 10+HH 2.HH 3.HH 4.HH b5.HH 6.HH 7.HH 8.HH 9.HH
5874 160 2826 1605 997 680 481 351 257 200

> system.time (

+ Rx <- rcutLexis(Lx,
+ cut
+ timescale

cutHH,
Hper H) )

user system elapsed
5.96 0.14 6.09

CODE EXPLAINED: In order to cut the follow-up at multiple dates (but not keeping track of the history of
state visits), we need a data frame with the dates of events (in a variable cut, here from hh$doh) and the
names of the states that events induces to (in the variable new.state, here it takes values x.HH, where x
is the number of the hypoglycemic event)—and of course the person id, lex.id.

Using this data frame as argument to rcutLexis we also need to tell what timescale in Lx the values in
variable cut refer to.

Even if several of the transitions occur before follow-up, the number of HHs before start of follow-up
will be correctly counted by rcutLexis.

In the output from summary(Rx) we see the characteristic transition matrix for recurrent events; the only
possible transitions from, say, state 3.HH are 3.HH (censoring in state 3.HH), 4.HH (the next HH event) or
Dead:

> summary (Rx)

Transitions:
To

From O.HH 1.HH 2.HH 3.HH 4.HH 5.HH 6.HH 7.HH 8.HH 9.HH 10+HH Dead Records: Events:
O0.HH 12434 887 0 0 0 0 0 0 0 0 0 335 13656 1222
1.HH 0 2787 568 0 0 0 0 0 0 0 0 141 3496 709
2.HH 0 0 1112 373 0 0 0 0 0 0 0 62 1547 435
3.HH 0 0 0 498 260 0 0 0 0 0 0 a7 805 307
4 _HH 0 0 0 0 275 193 0 0 0 0 0 30 498 223
5.HH 0 0 0 0 0 168 144 0 0 0 0 11 323 155
6.HH 0 0 0 0 0 0 101 105 0 0 0 9 215 114
7.HH 0 0 0 0 0 0 0 68 70 0 0 13 151 83
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8.HH 0 0 0 0 0 0 0 0 a7 55 0 4 106 59

9.HH 0 0 0 0 0 0 0 0 0 23 49 5 7 54

10+HH 0 0 0 0 0 0 0 0 0 0 127 16 143 16

Sum 12434 3674 1680 871 535 361 245 173 117 78 176 673 21017 3377
Transitions:

To

From Risk time: Persons:

0.HH 51936.45 13656

1.HH 11750.50 3496

2.HH 4425.94 1547

3.HH 2010.91 805

4 _HH 1110.91 498

5.HH 628.43 323

6 .HH 383.83 215

7 .HH 236.76 151

8.HH 168.51 106

9.HH 116.50 7

10+HH 454 .30 143

Sum 73223.02 18313

We can illustrate the pattern of the recurrent events with a plot of the states:

> angles <- seq(pi, -pi * 0.8, length.out = 11)
> boxes(Rx, boxpos = list(x = c(cos(angles) * 42 + 50, 50),

+ y = c(sin(angles) * 42 + 50, 50)),
+ show.BE = "nz", cex = 0.9,

+ scale.R = 100,

+ pos.arr = 0.4)

CODE EXPLAINED: The function boxes (really boxes.Lexis) takes a Lexis object as the first argument
and as the second (boxpos) a list with = and y coordinates of the centers of the boxes. The Lexis object
Rx has 12 states, so we must provide 12 coordinate-pairs. In order to place the 11 first states on an
(almost) full circle we compute 11 equidistant angles from 7 to —7 x 7/9; pi is a built-in constant in
R(guess its value). The x and y coordinates of the boxes are then made by cos, resp. sin of these angles,
multiplied by 42 to make a circle of diameter 84, and offset by 50 in both directions in order to center it
in the display of (0,100) in both directions in which boxes operate. Finally, 50 is appended as both = and
y coordinate of the last state (Dead) in the center of the display.

The show.BE puts two numbers at the bottom om each box, showing how many Begin, respectively End
their follow-up in each state. The scale.R scales the Rates on the arrows by a factor 1000, and the
pos.arr positions the number of events and rates on the arrows at 55% from the beginning of the arrow.

From figure 5.3 we see that there are quite a number of persons who enter the study with several previous
instances of HH. We also see that both rates of next hypoglycemia and mortality rates increase by the
number of hypoglycemic events.

5.1.2.2 Time since last HH as time scale

In the more detailed analysis of rates we want to keep track of the time since the most recent hypoglycemic
event, so we define a variable to do this. Some persons enter the study after HH, so we must retrieve the
dates of all HH events, including those that occur before study entry.

> Rx <- left_join(Rx, rename(cutHH, doHH = cut),

+ by = c("lex.id" = "lex.id",

+ "lex.Cst'" = '"new.state"))

> Rx <- factorize(Rx)

> Rx <- Relevel(Rx, c(paste0(0:9,".HH"),"10+HH","Dead"))

> Rx$tfHH <- with(Rx, ifelse(lex.Cst == "O.HH", NA, per - doHH))
> attr(Rx, '"time.scales'") <- c(attr(Rx, "time.scales'"), "tfHH")
> attr(Rx, "time.since" ) <- c(attr(Rx, "time.since" ), "")

> attr(Rx, "breaks') <- c(attr(Rx, '"breaks"), list(tfHH = NULL))
> str(Rx)
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373 3.HH
(8.4) 2,010.9
2.HH | 432 408 R
4,425.9 (12.9)
979 1112 ~a
2HH
568 1,110.9
.8) 238 275
193
i 62 (17.4)
11,750.5 14)
2,609 2,787
141
12) 5.HH
887 628.4
@) 130 168
144
335 (22.9)
0.HH (0.6)
51,936.5 > Dea‘ém
13656 12,434
6.HH

16
(3.5)

94

10+HH
454.3

127

383.8
101

105
(27.4)

7.HH

236.8

\
(23)
13
(4.35) (5.5)
4
(2.4)

9.HH .Ak’/;r

116.5 8.HH (29.6)
22 23 ‘55\ 168.5

(32.6) A7

49
(42.1)

Figure 5.3: Transitions by recurrences of hypoglycemia. The numbers in the middle of the
bozes are the risk time (total sojourn time), at the bottom left the number of persons starting
follow-up in the state, at the bottom right the number of persons ending follow-up in the state.
The numbers on the arrows are the number of transitions and (rates per 100 person-years).

. ./graph/recur-HH-rec-box

Classes 'Lexis' and 'data.frame': 21017 obs. of 23 variables:
$ per : num 2007 2006 2006 2009 2008 ...
$ age : num b2.7 34.5 37.9 74 57 ...
$ dur :num 4.13 26.31 4.21 40.05 11.64 ...
$ lex.dur: num 5.28 6.58 6.1 2.95 2.06 ...
$ lex.Cst: Factor w/ 12 levels "O.HH","1.HH",..: 1 1 11 1561...
$ lex.Xst: Factor w/ 12 levels "O.HH","1.HH",..: 1 1 1 1 1661 ...
$ lex.id : int 1 347 8 9 10 11 11 12 ...
$ dob : num 1954 1972 1968 1935 1951 ...
$ id :int 134789 10 11 11 12 ...
$ bmi : num 26 26.1 25.6 23.5 24.8 ...
$ dodm : num 2003 1980 2002 1969 1996 ...
$ doe : num 2007 2006 2006 2009 2008 ...
$ dox : num 2012 2013 2012 2012 2010 ...
$ dod : num NA NA NA NA NA NA NA NA NA NA ...
$ sex : Factor w/ 2 levels "M","W": 1 221121112 ...
$ hba :num 39.9 76 61.7 45.4 42.1 ...
$ alb :num NA NA NA 0.1 NA ...
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$ sbp : int 134 160 144 135 135 145 142 115 115 116 ...

$ aht tint 1112211221 ...

$ 11t tint 1112211111 ...

$ smk : Factor w/ 5 levels "Daily smoker",..: 3112111443 ...
$ doHH : num NA NA NA NA NA ...

$ tfHH : num NA NA NA NA NA ...

attr(x, "time.scales")= chr [1:4] "per" "age" "dur" "tfHH"
attr(*, "time.since")= chr [1:4] noown ownoun
attr(*, "breaks")=List of 4

..$ per : NULL
..$ age : NULL
..$ dur : NULL
..$ tfHH: NULL

CODE EXPLAINED: In the data frame cutHH we used for cutting follow-up at the dates of HH, we have the
dates of HH in the variable cut, and the state in the variable new.state. We then do a left_join of this
to the Lexis object Rx, matching on the variables lex.Cst / new.state. This way we get the date of the
HH event that is the basis for lex.Cst, since lex.Cst is the state in which follow-up starting at the date
per takes place.

The factorize is necessary in order to make lex.Cst a factor, a propterty that was lost by using
left_join, and the Relevel is then needed because factorize puts levels in standard alphabetical order.
In the data frame created by rcutLexis we have precisely one record for each state defined by no. of
hypoglycemic events, where the number of events seen so far is indicated in lex.Cst. For records
representing follow-up with at least one HH we set the new variable tfHH to time since this event

(per-doHH), and for the state without any HH (0.HH) we set tfHH to NA.

Most importantly however, we declare tfHH as a timescale: a Lexis object has a number of attributes
that are used for manipulation of the object. Among these is time.scales—a character vector with the
names of the variables that represent time scales, time.since—the names of the states that have a time
scale representing the time since entry to a particular state and breaks—a vector of points where the
corresponding time scale is split. These attributes are expanded to include tfHH as a time scale, so that
the variable tfHH will be properly updated when follow-up is split in smaller intervals.

For illustrational purposes we fish out persons that have spent time both in 0.HH and 4.HH, and take the
first of these:

> (whO <- intersect(subset(Rx, lex.Cst == "4.HH")[,"lex.id"],

+ setdiff (subset (Rx, lex.Cst == "3.HH")[,"lex.id"],

+ subset (Rx, lex.Cst == "O.HH")[,"lex.id"]))[1])
[1] 27

> (whl <- intersect(subset(Rx, lex.Cst == "3.HH")[,"lex.id"],

+ subset (Rx, lex.Cst == "0.HH")[,"lex.id"])[1])

[1] 495

> whe <- grep("HH", names(Rx))
> subset(Rx, lex.id Jin), c(wh0, whi1))[,c(1:7,whc)]

lex.id per age dur tfHH lex.dur lex.Cst lex.Xst doHH

27 2006.97 19.62 8.32 6.08 1.69 3.HH 4.HH 2000.887
27 2008.65 21.31 10.01 0.00 2.56 4 .HH 5.HH 2008.655
27 2011.21 23.87 12.57 0.00 0.68 5.HH 5.HH 2011.210
495 2009.38 60.27 2.41 NA 0.21 O0.HH 1.HH NA
495 2009.59 60.47 2.62 0.00 0.40 1.HH 2.HH 2009.592
495 2009.99 60.87 3.01 0.00 0.53 2.HH 3.HH 2009.988
495 2010.52 61.40 3.55 0.00 1.63 3.HH 3.HH 2010.518

CODE EXPLAINED: To illustrate how tfHH is coded, we select ids of a person that has both a 3'¢ and 4!
HH but no recorded follow up in 0.HH, and of a person that has follow-up both in 0.HH and 3.HH. We see
that person 27 begins follow-up in state 3.HH some 6 years after the 3" HH, and that when the 4" occur,
the time scale tfHH is reset to 0. Also we see for person 495, the tfHH is textttNA while follow up is in
state O0.HH.
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Note that even if whc—which includes the column number of the tfHH variable—is mentioned last, it is
anyway printed beside the other three timescale variables. This is because the Lexis object is printed
using the print.Lexis method which puts the lex.id first, then the timescales and finally the other
lex. variables. This is however only in the print, the internal ordering of the variables in the Lexis
object remains the same. If you want variables printed in the order they occur in the data frame, you
must use print.data.frame.

It is seen that person 27 begins follow-up in state 3.HH some 6 years after the 3'4 HH. Also we see that
person 495 begins follow-up in state 0.HH, that is without HH, and hence with a NA value for tfHH, and
that tfHH is reset to 0 at every HH occurrence.

5.1.3 Simple modeling of crude rates

We can summarize the rates of next HH and rates of death by fitting simple models for the rates
(corresponding to the overall rates shown in figure 5.3); for the mortality we also fit a model where 5th HH
is collapsed with the subsequent ones, that is where mortality rates from states 5.HH, 6.HH etc. are
assumed identical.

But all models assume all transitions to be constant; not varying by any of the defined time scales.
Hence we need not split follow-up time in smaller intervals.

We use the facility in glm.Lexis that if to but not from is given, then all transitions to any state in to
are modeled with the same model. And also the facility that if neither of the arguments from or to are
given, then all transitions into any absorbing state (in this case only Dead) are modeled with the same
model.

This does not necessarily mean that we do not distinguish different transitions, we will normally use
lex.Cst as a covariate to provide models where some covariate effects vary between transitions.

We fit the models twice, using two different parametrizations, one without an intercept, which gives the
overall rates as also shown in figure 5.3 (the 0 models), and the other with an intercept, which gives
rate-ratios relative to rates originating from state 0.HH:

> levels(Rx)

[1] "O.HH" '"i.HH" "2.HH" "3.HH" "4 HH" "5.HH" "6.HH" "7.HH" "8.HH" "9.HH"
[11] "10+HH" "Dead"

> mhO<- glm.Lexis(Rx, ~ lex.Cst + 0, to = levels(Rx)[2:11])

stats::glm Poisson analysis of Lexis object Rx with log link:
Rates for transitioms:
.HH->1.HH

.HH->2.HH

.HH->3_.HH

.HH->4 .HH

.HH->5.HH

.HH->6 .HH

.HH->7 .HH

.HH->8.HH

.HH->9_HH

.HH->10+HH

> mh <- glm.Lexis(Rx, ~ lex.Cst , to = levels(Rx)[2:11])

stats::glm Poisson analysis of Lexis object Rx with log link:
Rates for transitioms:
.HH->1_HH

.HH->2.HH

.HH->3_.HH

.HH->4 _HH

.HH->5.HH

.HH->6 .HH

.HH->7 .HH

.HH->8.HH

.HH->9 _HH

.HH->10+HH

md0<- glm.Lexis(Rx, ~ lex.Cst + 0)

OO~ WNH-O

vV OO~NOOIPd WN O
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stats::glm Poisson analysis of Lexis object Rx with log link:
Rates for transitioms:
.HH->Dead

.HH->Dead

.HH->Dead

.HH->Dead

.HH->Dead

.HH->Dead

.HH->Dead

.HH->Dead

.HH->Dead

.HH->Dead
10+HH->Dead

OO~ WN O

> md <- glm.Lexis(Rx, ~ lex.Cst)

stats::glm Poisson analysis of Lexis object Rx with log link:
Rates for transitioms:
.HH->Dead

.HH->Dead

.HH->Dead

.HH->Dead

.HH->Dead

.HH->Dead

.HH->Dead

.HH->Dead

.HH->Dead

.HH->Dead
10+HH->Dead

OO~ WN O

> mdg<- glm.Lexis(Rx, ~ Relevel(lex.Cst,
+ first = FALSE,
+ list("5+" = 6:11)))

stats::glm Poisson analysis of Lexis object Rx with log link:
Rates for transitioms:

0.HH->Dead

1.HH->Dead
2 .HH->Dead
3.HH->Dead
4 ,HH->Dead
5.HH->Dead
6.HH->Dead
7 .HH->Dead
8.HH->Dead
9.HH->Dead
10+HH->Dead

With the models fitted we can test whether it is a reasonable reduction of the mortality models to lump 5"
and subsequent HHs together as far as mortality rates are concerned:

> anova(md, mdg, test = "Chisq")
Analysis of Deviance Table

Model 1: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ lex.Cst
Model 2: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in), trnam, Lx$lex.dur) ~ Relevel(lex.Cst,
first = FALSE, 1list("5+ = 6:11))
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 21006 5560.2
2 21011 55669.7 -5 -9.5219 0.08997 .
Signif. codes: O '#*x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

From the anova we see that there is no compelling evidence against pooling states to 5+ for mortality rates.
We can show the overall rates (per 100 PY) corresponding to the rates shown in figure 5.3

> round(ci.exp(mh0) * 100, 1) # HH incidence rates
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exp(Est.) 2.5% 97.5%
lex.CstO.HH 1.7 1.6 1.8
lex.Cstl.HH 4.8 4.5 5.2
lex.Cst2.HH 8.4 7.6 9.3
lex.Cst3.HH 12.9 11.4 14.6
lex.Cst4.HH 17.4 15.1 20.0
lex.Cstb5.HH 22.9 19.5 27.0
lex.Cst6.HH 27.4 22.6 33.1
lex.Cst7.HH 29.6 23.4 37.4
lex.Cst8.HH 32.6 25.1 42.5
lex.Cst9.HH 42.1 31.8 55.7
> round(ci.exp(md0) * 100, 1) # mortality rates

exp(Est.) 2.5% 97.5%
lex.CstO.HH .6 7
lex.Cstl1.HH
lex.Cst2.HH
lex.Cst3.HH
lex.Cst4.HH
lex.Cst5.HH
lex.Cst6.HH
lex.Cst7.HH
lex.Cst8.HH
lex.Cst9.HH
lex.Cst10+HH
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We recognize the rates as those from figure 7?7, but after modeling we also have confidence limits for the
rates.

In order to show how the rate ratios relative to 0.HH depends on the HH state we make a forest plot of
the RRs:

# only the RRs
rrH <- ci.exp(mh)[-1,]
rrD <- ci.exp(md)[-1,]
rrG <- ci.exp(mdg)[c(2:5,rep(6,6)),]
# groom the parameter labels
rownames (rrD) <- gsub("lex.Cst", "", rownames(rrD))
plotEst(rrD, y = 9:0 - 0.05, col = gray(0.5),
xlog = TRUE, lwd = 3, xlim = c(1,30),
xlab = "RR of death / next HH, relative to rates from state 0.HH (= no HH)'")
linesEst(rrH, y = 9:1 + 0.1, col "blue", lwd = 3)
linesEst (rrG, y = 9:0 - 0.2, col = gray(0.0), 1lwd = 3)
axis(side = 1, at c(1,15,30))
axis(side = 1, at c(2:10,15,20,25), labels = NA)

o

VVVV++VVVYVYVYVYV

From figure 5.4 we see that the rates of HH increase by increasing number of HH episodes, whereas
mortality only do so till about 5.HH, and less so than rates of HH.

This analysis of rates is however rudimentary; the only covariate we use is the state, lex.Cst, rates are
assumed to be constant over time; so we have basically just reproduced the raw rates shown in figure 5.3,
albeit with confidence intervals.

5.1.4 Proper analysis of HH rates

A proper analysis of rates of HH and mortality will include both effects of age, diabetes duration as well as
time since the most recent HH event (tfHH as we defined above). Therefore, proper analysis of rates
requires that follow-up be split in intervals so that we can use the value of the time scales at the beginning
of each interval. Of course we will make the intervals sufficiently small to make the assumption of constant
rates in each interval reasonable.

5.1.4.1 Splitting the follow-up

This can be achieved by splitMulti; in this instance we split follow-up in intervals of 3 months length
along the age-scale. It does not matter much which time scale we use; all time scales are updated by the
splitting machinery:
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1.HH —_—

2.HH
3.HH ‘

4.HH '

5.HH °

6.HH

8.HH

9.HH

10+HH
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RR of death / next HH, relative to rates from state 0.HH (= no HH)

Figure 5.4: Rate-ratios of death and next HH relative to the 0.HH state. The blue bars are
the RRs of next HH event, the black and gray bars are from the two different models for the
mortality rates; the black bars are from the model with identical effect for no. of HHs equal
to & or more. ../graph/recur-RRforest

> Sx <- splitMulti(Rx, age = seq(0, 90, 1/4))
> rbind(nrow(Rx), nrow(Sx))

[,1]
[1,1 21017
[2,] 313771
> whx <- subset(Rx, lex.Cst == "0.HH" & lex.dur > 0.4 & lex.dur < 0.9)$lex.id
> why <- subset(Rx, lex.Cst == "1.HH" & lex.dur > 0.4 & lex.dur < 0.9)$lex.id
> (wh2 <- intersect(whx, why)[1])
[1] 378
> subset(Rx, lex.id JinJ), wh2)[,c(1:8,23)]
lex.id per age dur tfHH lex.dur lex.Cst lex.Xst dob

378 2006.80 53.42 11.32 NA 0.60 O0.HH 1.HH 1953.383
378 2007.40 54.01 11.92 0 0.66 1.HH 2.HH 1953.383
378 2008.06 54.68 12.58 0 0.80 2.HH Dead 1953.383

> subset(Sx, lex.id Jinj), wh2)[,1:9]
lex.id per age dur tfHH lex.dur lex.Cst lex.Xst dob

378 2006.80 53.42 11.32 NA 0.08 O0.HH 0.HH 1953.383
378 2006.88 53.50 11.41 NA 0.25 0.HH 0.HH 1953.383
378 2007.13 53.75 11.66 NA 0.25 0.HH 0.HH 1953.383
378 2007.38 54.00 11.91 NA 0.01 0.HH 1.HH 1953.383
378 2007.40 54.01 11.92 0.00 0.24 1.HH 1.HH 1953.383
378 2007.63 54.25 12.16 0.24 0.25 1.HH 1.HH 1953.383
378 2007.88 54.50 12.41 0.49 0.18 1.HH 2.HH 1953.383
378 2008.06 54.68 12.58 0.00 0.07 2.HH 2.HH 1953.383
378 2008.13 54.75 12.66 0.07 0.25 2.HH 2.HH 1953.383
378 2008.38 55.00 12.91 0.32 0.25 2.HH 2.HH 1953.383
378 2008.63 55.25 13.16 0.57 0.23 2.HH Dead 1953.383
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CODE EXPLAINED: splitMulti subdivides the follow-up time across several records, each representing a
small interval of follow-up, in this case intervals of 6 months age.

For illustration of the data for a single person, we select persons with follow-up in both 0.HH and 1.HH
between 0.4 (to be sure that the split creates more than one interval) and 0.8 (to be sure that the split
does not create too many intervals) — and then just select the first of the intersection of the two sets of
persons.

From the last part of the output we see that the timescale tfHH is reset to 0 at every new HH occurrence,
but also that tfHH is correctly updated at the following points of time-splitting, and is correctly
propagated as NA for the intervals with no preceding HH.

> Sx <- tsNA20(Sx, all = TRUE)
> subset (Sx, lex.id JinJ, wh2)[,1:9]
lex.id per age dur tfHH lex.dur lex.Cst lex.Xst dob

378 2006.80 53.42 11.32 0.00 0.08 0.HH 0.HH 1953.383
378 2006.88 53.50 11.41 0.00 0.25 0.HH 0.HH 1953.383
378 2007.13 53.75 11.66 0.00 0.25 O0.HH 0.HH 1953.383
378 2007.38 54.00 11.91 0.00 0.01 0.HH 1.HH 1953.383
378 2007.40 54.01 11.92 0.00 0.24 1.HH 1.HH 1953.383
378 2007.63 54.25 12.16 0.24 0.25 1.HH 1.HH 1953.383
378 2007.88 54.50 12.41 0.49 0.18 1.HH 2.HH 1953.383
378 2008.06 54.68 12.58 0.00 0.07 2.HH 2.HH 1953.383
378 2008.13 54.75 12.66 0.07 0.25 2.HH 2.HH 1953.383
378 2008.38 55.00 12.91 0.32 0.25 2.HH 2.HH 1953.383
378 2008.63 55.25 13.16 0.57 0.23 2.HH Dead 1953.383

copE EXPLAINED: The function tsNA20 (time scales NA 2 0) changes NAs in time scale variables to 0, to
make modeling with tfHH viable.

In the modeling we need to change the NAs in tfHH to 0 in order to be able to use tfHH as covariate in a
model—records with tfHH equal to NA would be excluded from computations. We distinguish records that
refer to follow up before any HH by the variable lex.Cst, which will be 0.HH before any HH, and 1.HH,
2.HH etc. as more instances of HH occur.

We have to keep this coding in mind when manipulating Sx—for example it would be meaningless to
further split along a(ny) time scale, because the time in 0.HH would not preserve tfHH as 0 as it should.

5.1.5 More realistic models for rates

The relevant variables in models for HH rates will be current age, current duration of diabetes and time
since last HH event. Note that the latter is only defined for persons with at least one HH, therefore the
time scale representing time since most recent HH (tfHH) was initially coded as NA, but for analysis
converted to 0 in order to be included in the modeling.

We define a model where we have a common effect of duration of diabetes (dur) regardless of HH status.

On top of this there will be a separate effect of time since last HH (tfHH) for each level of no. of
previous HHs. This is where the recoding of the NA is important; 0 will both refer to the 0.HH state (at any
time of follow-up), but also to the first intervals in each of the states x.HH for any x. Therefore, a model
must necessarily include state as a factor, otherwise we will impose the restriction on the initial rates in
each x.HH state that they are equal to the rates in the 0.HH state—a completely silly assumption.

Thus, the HH effect for persons in state 1.HH will be the ratio of the rate of the 2" HH relative to the
rate of the 15 HH, as a function of the time since 15* HH. The effect for persons in state 2.HH will be the
rate-ratio of the 3" HH relative to the rate of the 15 HH, as a function of the time since 2" HH.

Alternatively we could show the rate-ratio of the 3'4 HH relative to the rate of the 2" HH, as a function
of the time since 2" HH—the most recent HH.

Note that in both cases, we will be comparing rates at a given time since 2°¢ HH with rates at the same
time since 1%,

Ultimately, we will of course be showing both sets of parameter estimates from the model; the first one
will have the 0.HH state as reference, the second will be comparisons of rates of HH between successive
levels of no. of HH events.
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In addition to this we will have a separate effect of age for each sex, and an effect of diabetes duration
(dur), so the model we will be using can be coded as:

> system.time(
+ mAC <- glm.Lexis(Sx,
+ ~ lex.Cst * Ns(tfHH, knots = ¢(0,1,3,6)) +

+ Ns(dur, knots = c(1:5 * 10)) +
+ sex * Ns(age, knots = c(4:8 * 10)),
+ to = levels(Sx)[2:11],

+ scale = 100))

stats::glm Poisson analysis of Lexis object Sx with log link:

Rates for transitioms:

.HH->1_HH

.HH->2 _HH

.HH->3.HH

.HH->4 _HH

.HH->5_HH

.HH->6.HH

.HH->7 .HH

.HH->8.HH

.HH->9.HH

.HH->10+HH

lex.dur (person-time) scaled by 100
user system elapsed

22.12 0.79 22.92

> round(ci.exp(mAC), 2)

OO~ WN O

-

exp(Est.) 2.5} 97.5%

(Intercept) 1.74 1.58 1.91
lex.Cstl.HH 15.07 12.00 18.92
lex.Cst2.HH 20.07 15.77 25.54
lex.Cst3.HH 20.51 15.43 27.27
lex.Cst4.HH 32.18 24.13 42.93
lex.Cstb5.HH 32.16 23.11 44.75
lex.Cst6.HH 35.39 24.40 51.33
lex.Cst7.HH 49.79 33.75 73.47
lex.Cst8.HH 49.90 31.45 79.18
lex.Cst9.HH 38.60 22.31 66.79
Ns(tfHH, knots = c(0, 1, 3, 6))1 1.23 0.40 3.76
Ns(tfHH, knots = c(0, 1, 3, 6))2 0.23 0.06 0.94
Ns(tfHH, knots = c(0, 1, 3, 6))3 1.09 0.45 2.63
Ns(dur, knots = c(1:5 * 10))1 0.94 0.79 1.13
Ns(dur, knots = c(1:5 * 10))2 1.23 1.05 1.43
Ns(dur, knots = c(1:5 * 10))3 1.20 1.00 1.44
Ns(dur, knots = c(1:5 * 10))4 1.16 1.02 1.33
sexW 0.84 0.74 0.95
Ns(age, knots = c(4:8 * 10))1 1.14 0.89 1.45
Ns(age, knots = c(4:8 * 10))2 0.95 0.75 1.20
Ns(age, knots = c(4:8 * 10))3 1.02 0.85 1.22
Ns(age, knots = c(4:8 * 10))4 1.31 1.04 1.65
lex.Cst1.HH:Ns(tfHH, knots = c(0, 1, 3, 6))1 0.30 0.10 0.95
lex.Cst2.HH:Ns(tfHH, knots = c(0, 1, 3, 6))1 0.19 0.06 0.63
lex.Cst3.HH:Ns(tfHH, knots = c(0, 1, 3, 6))1 0.35 0.11 1.17
lex.Cst4.HH:Ns(tfHH, knots = c(0, 1, 3, 6))1 0.19 0.06 0.65
lex.Cst5.HH:Ns(tfHH, knots = c(0, 1, 3, 6))1 0.54 0.15 1.98
lex.Cst6.HH:Ns(tfHH, knots = c(0, 1, 3, 6))1 0.43 0.11 1.67
lex.Cst7.HH:Ns(tfHH, knots = c(0, 1, 3, 6))1 0.23 0.04 1.22
lex.Cst8.HH:Ns(tfHH, knots = c(0, 1, 3, 6))1 0.42 0.08 2.21
lex.Cst9.HH:Ns(tfHH, knots = c(0, 1, 3, 6))1 1.00 1.00 1.00
lex.Cst1.HH:Ns(tfHH, knots = c(0, 1, 3, 6))2 0.15 0.03 0.69
lex.Cst2.HH:Ns(tfHH, knots = c(0, 1, 3, 6))2 0.22 0.05 1.02
lex.Cst3.HH:Ns(tfHH, knots = c(0, 1, 3, 6))2 0.51 0.11 2.44
lex.Cst4.HH:Ns(tfHH, knots = c(0, 1, 3, 6))2 0.25 0.05 1.23
lex.Cst5.HH:Ns(tfHH, knots = c(0, 1, 3, 6))2 0.41 0.08 2.14
lex.Cst6.HH:Ns(tfHH, knots = c(0, 1, 3, 6))2 0.42 0.08 2.32
lex.Cst7.HH:Ns(tfHH, knots = c(0, 1, 3, 6))2 0.13 0.02 0.85
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lex.Cst8.HH:Ns(tfHH, knots = c(0, 1, 3, 6))2 0.20 0.03 1.40
lex.Cst9.HH:Ns(tfHH, knots = c(0, 1, 3, 6))2 1.00 1.00 1.00
lex.Cst1.HH:Ns(tfHH, knots = c(0, 1, 3, 6))3 0.42 0.17 1.04
lex.Cst2.HH:Ns(tfHH, knots = c(0, 1, 3, 6))3 0.27 0.11 0.67
lex.Cst3.HH:Ns(tfHH, knots = c(0, 1, 3, 6))3 0.29 0.12 0.75
lex.Cst4.HH:Ns(tfHH, knots = c(0, 1, 3, 6))3 0.24 0.09 0.64
lex.Cst5.HH:Ns(tfHH, knots = c(0, 1, 3, 6))3 0.30 0.11 0.82
lex.Cst6.HH:Ns(tfHH, knots = c(0, 1, 3, 6))3 0.39 0.13 1.14
lex.Cst7.HH:Ns(tfHH, knots = c(0, 1, 3, 6))3 0.16 0.04 0.60
lex.Cst8.HH:Ns(tfHH, knots = c(0, 1, 3, 6))3 0.29 0.08 1.09
lex.Cst9.HH:Ns(tfHH, knots = c(0, 1, 3, 6))3 1.00 1.00 1.00
sexW:Ns(age, knots = c(4:8 * 10))1 0.67 0.45 1.01
sexW:Ns(age, knots = c(4:8 * 10))2 1.43 1.00 2.03
sexW:Ns(age, knots = c(4:8 * 10))3 1.43 1.12 1.81
sexW:Ns(age, knots = c(4:8 * 10))4 1.42 1.04 1.93

Note that we set the scale argument to 100, so that the parameters and predictions we get automatically
are rescaled to rates per 100 years (or more precisely, per 100 units of lex.dur).

The parameter estimates from the model are not informative per se, we can only report the model
estimates as curves of predicted rates and rate ratios for select values of the covariates.

We show rates of first HH in ages 30 through 80 for men and women in state 0.HH with diabetes
duration 20 years (approximately the median duration at follow-up) and time since HH equal to 0 (this is
the only value that tfHH assumes in state 0.HH, (lex.Cst = 0.HH = tfHH = 0).

Note that since we fix duration of diabetes at 20 years, we are showing cross-sectional rates, not rates as
they evolve for a cohort of persons:

> pra <- data.frame(age = 30:80,
dur = 20,
tfHH = 0,
lex.Cst = factor("0.HH", levels = levels(Sx)),
sex = factor( "M'", levels = levels(Sx$sex)))

matshade (pra$age, cbind(aa <- ci.pred(mAC, pra),
ci.pred(mAC, transform(pra, sex = "W"))),
plot = TRUE, col = c("blue'", '"red"),
log = "y", 1lwd = 3, ylim = c(1,100),
xlab = "Attained age (years)",
ylab = "Rate of first HH (men) per 100 PY")
> abline(h = aa[21,1], 1ty = "42", 1lwd = 2)
> points (50, aal[21,1], pch 16, cex = 1.4, col
> points (50, aal[21,1], pch 1, cex = 1.4, col

+++++V A+t o+ o+

"white")
"blue", Iwd = 3)

We also want to show how the effect of x.HH, so we show the rates of next HH for a 50 year old man for
different levels of HH (lex.Cst):

tHH <- 0:50 / 10
prx <- function(x, sx){

data.frame(age = 50,
dur = 20,
tfHH = tHH,
lex.Cst = factor(pasteO(x,".HH"), levels = levels(Sx)),
sex = factor(sx, levels = levels(Sx$sex)))

}
for(x in 1:9)
{

matshade (prx(x, "M")$tfHH,
# the pmin/pmax is just a dirty trick to allow the c.i.
# shades to be shown - it is a windows graphics driver
# problem.
# pmax (pmin (
zz <- ci.pred(mAC, prx(x, "M")),
# 100), 1),
plot = (x == 1),
log = "y", 1lwd = 3, col = gray(x/12),
ylim = ¢(1,100),
xlab = "Time since latest HH (years)',

++++++++++++FVFEEFFEFVYV
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+ ylab = "Rate of n'th HH (men) per 100 PY")
+ text (0, zz[1,1], paste(x), adj = 1.6)

+ }

> text (0, 100, "HH number'", adj = 0.5)

> abline(h = aa[21,1], 1ty = "42", lwd = 2)
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Figure 5.5: Effects of age (left) and time since last HH (right) at diabetes duration 20 years.
The horizontal dotted lines correspond to the rates for men aged 50 in the left panel, as
tllustrated by the blob.

The rightmost panel in figure 5.5 is a graphical rendering of the interaction between HH level and time
since last HH. The curves have largely the same shape just different levels, so it actually makes sense to
assess whether the interaction really is there by fitting the model without interaction between lex.Cst and
tfHH:

> system.time (
+ mAc <- glm.Lexis(Sx,

+ ~ lex.Cst + Ns(tfHH, knots = ¢(0,1,3,6)) +
+ Ns(dur, knots = c(1:5 * 10)) +
+ sex * Ns(age, knots = c(4:8 * 10)),
+ to = levels(Sx)[2:11],

+ scale = 100))

stats::glm Poisson analysis of Lexis object Sx with log link:

Rates for transitioms:

.HH->1.HH

.HH->2.HH

.HH->3_.HH

.HH->4 .HH

.HH->5.HH

.HH->6.HH

.HH->7 .HH

.HH->8.HH

.HH->9_HH

.HH->10+HH

lex.dur (person-time) scaled by 100
user system elapsed
6.84 0.51 7.36

OCoO~NOOdd WNH-O

-

> anova(mAC, mAc, test = "Chisq")
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Analysis of Deviance Table

Model 1: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ lex.Cst *
Ns(tfHH, knots = c(0, 1, 3, 6)) + Ns(dur, knots = c(1:5 *
10)) + sex * Ns(age, knots = c(4:8 * 10))
Model 2: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ lex.Cst +
Ns(tfHH, knots = c(0, 1, 3, 6)) + Ns(dur, knots = c(1:5 *
10)) + sex * Ns(age, knots = c(4:8 * 10))
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 311758 27848
2 311782 27896 -24 -48.271 0.002336 *x*
Signif. codes: O '#*x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The formal likelihood ratio tests rejects the addititivity hypothesis, confirming an interaction between HH
state and time since most recent HH, on strict testing grounds. But we also see that the deviance to d.f.
ratio is only about 2. We will use this observation as a the basis for reporting from the model with no
interaction between state and time.

The code for predicting from the model is precisely the same as for the interaction model, here in a 2 by
1 layout:

# function to plot age effect
plage <- function() {
matshade (pra$age, aa <<- ci.pred(mAc, pra),
plot = TRUE, col = '"white",
log = "y", 1lwd = 3, ylim = c(1,100),
xlab = "Attained age (years)",
ylab = "Rate of first HH per 100 PY")
abline(h = aa[21,1], 1ty = "42", 1lwd = 2, col = 'gray")
matshade (pra$age, aa, lwd = 3, col = "blue")
matshade (pra$age, ci.pred(mAc, mutate(pra, sex = "W")),
Iwd = 3, col = "red")
points (50, aa[21,1], pch 16, cex = 1.4, col
points (50, aa[21,1], pch 1, cex = 1.4, 1lwd
}
# function to plot duration effects
pldur <- function() {
for(x in 9:1)
{
matshade (prx(x, "M")$tfHH,
dd <<- ci.pred(mAc, prx(x, "M")),
plot = (x == 9),
log = "y", 1lwd = 3, ylim = c¢(1,100), col = gray(x/12),
xlab = "Time since last HH (years)",
ylab = "Rate of next HH (men, aged 50) per 100 PY")
text (0, dd[1,1], paste(x), adj = 1.6)
}

"white")
2, col = "blue")

o
o

text (0, 100, "HH number", adj = 0.2)
abline(h = aa[21,1], 1ty = "42", 1lwd = 2, col = 'gray")
}

V+++++++++++++VVEt+r+rtt+r+rtttrFrttyvy

par (mfrow = c(1, 2), oma = ¢(0,0,0,2.5),

mgp = c(3,1,0) / 1.6, las = 1, bty = "n")
> plage()
> pldur()

+

This will show the rates of first HH for men and women in different ages as well as the absolute rates of
next HH in 50 year old men as a function of time since most recent HH for different numbers of HHs seen
so far. The corresponding curves for women or men in other ages would look precisely the same (by model
assumption) just at a different absolute level, because there is no interaction between tfHH and other
variables.

It is seen (figure 5.6) that the rates of the next HH are very high shortly after a HH episode; there is a
drop by a factor 2.5 over the first two years. Also, the rates of next HH are increasing by number of
previous HH episodes, most pronounced in the beginning where rates for persons with 1, 2 and 3 previous
HH episodes are some 5, 10 and 15 times higher than those of persons with no previous HH episodes.
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5.1.5.1 Choice of reference

Since the time scale t£HH is not defined for persons without HH (and hence coded 0 for these) the
rate-ratio of rate of next HH between person with 1, 2, 3... HH episodes and persons with 0 episodes will
look precisely the same as the right panel in figure 5.6, except for the y-axis, that would have the dotted
lines at a y-value of 1. There is no interaction between tfHH and age and sex, so it is immaterial what
reference for age and sex that was used.

However the confidence limits of the rate-ratios will not be the same, because we will be making a
comparison between rates in state 1.HH, say, and state 0.HH. Here we compute and graph the estimated
RRs relative to persons with 0 prior HH:

# function to plot RR relative to 0.HH
PlRR <- function(yl) {

pr0 <- data.frame(age = 50,
dur = 20,
tfHH = 0,

lex.Cst = factor("0.HH", levels = levels(Sx)),

sex = factor("M", levels = levels(Sx$sex)))

for(x in 9:1)
{
matshade (prx(x, "M")$tfHH,
rr <<- ci.exp(mAc,
list (prx(x, "M"),
prO[,colnames (prx(x, "M"))1)),
plot = (x == 9),
log = "y", 1wd = 3, ylim = yl, col = gray(x/12),
xlab = "Time since last HH (years)",
ylab "RR of next HH for men, aged 50, relative to 0 HH")
text (0, rr[1,1], paste(x), adj = 1.6)
}

text (0, 100, "HH number", adj = 0.2)
abline(h = 1, 1ty = "42", lwd = 2, col = "gray")

+++++++++F++FFFFFFEFF VYV

With the RR function we can now plot the three sets of estimates next to each other:

> par(mfrow=c(1,3), mar = ¢(3,3,0,0), oma = c(0,0,0,0),

+ mgp = ¢(3,1,0) / 1.6, las = 1, bty = "n")
> plage()

> pldur()

> # yl <- (10"par("usr")[3:4]) / aal[21,1]

>yl <- ¢(1,100) / aal[21,1]

> plRR(yl)

The shape of the curves corresponds to a decline in rates of about 3.8 fold during the first two years:

> round(rbind(

+ c(dd[1,1], dd[21,1], dd[1,1] / dd[21,1]),

+ c(rr(1,1], rr[21,1], rr[1,1] / rr[21,1])), 2)
[,11 [,2]1 [,3]

[1,] 20.98 5.48 3.83

[2,] 12.75 3.33 3.83

Moreover, there is a clear increase of rates of next HH by the number of HHs already seen, most
pronounced in the beginning.

We have collected the absolute rates at time 1 in the matrix dd and the rate-ratios at time in rr, and we
see that the rate ratio is equal to the rates divided by the reference rate, but also that the the confidence
intervals for the rr are narrower:

> R <- cbind(rates = dd[1,],
+ "rates/ref" = dd[1,] / aal[21,1],
+ "real RR" = rr[1,])

> rbind (R, "rel. width" = R[3,] / R[2,])
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Figure 5.6: Effects of age, sex and time since last HH from a model with no interaction
between HH number of HH and time since latest HH. The left panel shows the rate of 1°
HH as a function of age for men and women, while the middle panel shows the rate of next
HH for 50 year old men with 1, 2,...previous HH episodes as function of the time since the
most recent HH episode, and the rightmost panel shows the RR of next HH episode between
persons in states x.HH (x = 1,2,...) and persons in state 0.HH.

The horizontal dotted lines correspond to the blob at age 50 for men in the left panel, that is
rates of first HH in 50 year old men. ../graph/recur-R3add

rates rates/ref real RR
Estimate 20.983117 12.746024 12.746024
2.5% 17.795702 10.809855 10.985318
97.5% 24.741434 15.028984 14.788933
rel. width 1.390304 1.390304 1.346245

Heuristically speaking, the confidence intervals for the rate ratios are narrower (lower limit larger, upper
linit smaller) because they do not involve the estimates of the absolute rates, but only the ratios.

5.2 Random effects: frailty

We have seen that the rate of HH occurrence increases by the number of HH episodes seen, and that the
rate decreases by time since the most recent one. These two features are typical of selection by frailty—the
individual propensity to event occurrence: Early after a HH the most frail experience another event, so as
time goes by, the average frailty among those left in a given state drops, causing the rate of events among
those (alive and) still without event to decrease.

A similar effect is seen as the number of HH events increase; among those who have another HH event,
the average frailty is higher than in those who do not, so the more HH events a person has had the more
likely it is that the person has a high frailty, and thus yet another HH event. That is why the rate of the
next HH event increases by the number of HH events already seen.

It would be useful if we could estimate a separate frailty for each person, but this is not possible for
persons without any HH events, and very shaky for persons with only very few events.

So the way to go about this is using a random effects model, where we instead of estimating the frailty
explicitly for each person estimate characteristics of the frailty distribution. With that done, we can then
derive the posterior me(di)an of each person’s frailty.
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It is common to use a normal distribution for the frailty on the linear predictor scale; corresponding to a
log-normal distribution on the rate scale. However, with 18,000 persons of which slightly less than 6,000
see an HH event, the normal distribution is not a credible distribution—those without events would be
expected to have a very small frailty.

The logical thing would be to allow for an atom close to 0 in the distribution of the frailty on the rate
scale, very large and negative on the on the log-rate scale. Almost all persons with no HH events would be
put in that class, we could call it the “immunity” class with a very small rate of first HH. It may very well
be so that not all the persons without observed HH event are effectively immune to HH.

If we knew the underlying rates of first HH (as a function of time, age etc.), we could for each person
without a HH event compute the survival probability for the person’s observed sojourn time in the 0.HH
state, given a frailty of 1. The larger this survival probability is, the more likely it is that the true frailty of
the person is very small (that is numerically large but negative).

The proper formulation of this would be that there is some probability that a person belongs to the
immune class where the frailty is 0, and with the complementary probability belongs to the class of
susceptible where the distribution of frailties is log-normal, say.

Having fitted that sort of model we can for each person compute the posterior probability that the
person belongs to one of the two classes, as well as the posterior mean conditional on being in the
susceptible class. We could illustrate this by showing the posterior probabilities of immunity, as well as the
distribution of frailties among persons with posterior probability of non-immunity larger than 0, 0.1, 0.2
etc.

The main purpose of fitting such a model would be to see how much the frailty between persons could
explain of the effect of number of HHs. But we do not currently have any software that would fit these
models. Except possibly for JAGS that would estimate parameters by MCMC, but with the analysis
dataset Sx with 300,000+ records this is likely to be very time consuming,.

5.2.0.1 Cox-models

We can fit two different Cox models that mimic the Poisson model, by naming one of the time-scales to be
the baseline scale; recall that the Poisson model was specified as:

> mha <- glm.Lexis(Sx,

+ ~ lex.Cst + Ns(tfHH, knots = ¢(0,1,3,6)) +
+ Ns(dur, knots = c(1:5 * 10)) +
+ sex * Ns(age, knots = c(4:8 * 10)),
+ to = levels(Sx)[2:11])

stats::glm Poisson analysis of Lexis object Sx with log link:
Rates for transitioms:
.HH->1.HH

.HH->2.HH

.HH->3_.HH

.HH->4 .HH

.HH->5_HH

.HH->6.HH

.HH->7 .HH

.HH->8_.HH

.HH->9_HH

.HH->10+HH

OO~ WNHFO

When using dur as underlying time scales we will do:

> system.time(
+ cmd <- coxph.Lexis(Sx,

+ dur ~ factor(lex.Cst) +

+ Ns (tfHH, knots = ¢(0,1,3,6)) +
+ sex * Ns(age, knots = c(4:8 * 10)),
+ to = levels(Sx)[2:11]))

survival::coxph analysis of Lexis object Sx:
Rates for transitioms:

0.HH->1.HH

1.HH->2.HH

2.HH->3.HH
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.HH->4 .HH

.HH->5.HH

.HH->6.HH

.HH->7 .HH

.HH->8.HH

.HH->9.HH

.HH->10+HH

aseline timescale: dur
user system elapsed
20.87 0.48 21.36

0O~ O Ww

CODE EXPLAINED: Note that we use factor(lex.Cst) in the model specification; this is to avoid extra
aliased parameters in the coefficients—it returns a factor with only the levels actually assumed. coxph
does not remove non-existing factor levels from the coefficients vector.

But if we want to use age as underlying time scales we must accommodate the fact that we have a model
with separate age-effects for the two sexes. That is normally called a stratified model in Cox-model lingo,
and fitted by adding a strata() function in the model formula:

> system.time(
+ cma <- coxph.Lexis(Sx,
+ age ~ factor(lex.Cst) +

+ Ns(tfHH, knots = ¢(0,1,3,6)) +
+ Ns(dur, knots = c(1:5 * 10)) +
+ strata(sex),

+ to = levels(Sx)[2:11]))

survival::coxph analysis of Lexis object Sx:

Rates for transitioms:

0.HH->1.HH

1.HH->2.HH

2.HH->3.HH

3.HH->4 .HH

4 .HH->5.HH

5.HH->6.HH

6 .HH->7 .HH

7 .HH->8.HH

8.HH->9.HH

9.HH->10+HH

Baseline timescale: age
user system elapsed
10.61 0.40 11.03

We can compare the estimated regression parameters from the two Cox models with those from the
Poisson model where all effects are modeled parametrically. We an extract the regression parameters from
each of the Cox models and compare with the corresponding parameters from the Poisson-model.

Note the two extra rows of NAs to make up for the fact that coxph also produces estimates for factor
levels not in the model:

> # dirty trick to shrink 1st column label so we get nicer prints
> ci.exp <- function(...){ z <- Epi::ci.exp(...)

+ colnames(z)[1] <- " Est"; z }

> round(cbind(

ci.exp(mha, subset = "lex.Cst"),

ci.exp(cmd, subset "lex.Cst"),

ci.exp(cma, subset "lex.Cst")), 2)

Est 2.5% 97.5% Est 2.5} 97.5% Est 2.5% 97.5%
lex.Cstl1.HH 12.75 10.99 14.79 12.69 10.82 14.88 12.94 11.02 15.20
lex.Cst2.HH 18.36 15.71 21.45 18.28 15.47 21.60 18.69 15.81 22.08
lex.Cst3.HH 24.65 20.87 29.13 24.51 20.68 29.05 24.92 21.03 29.53
lex.Cst4.HH 31.06 25.94 37.20 30.89 25.61 37.26 31.16 25.80 37.64
lex.Cstb.HH 36.02 29.60 43.84 36.17 29.62 44.18 36.95 30.20 45.22
lex.Cst6.HH 39.63 31.79 49.39 39.68 31.52 49.95 39.74 31.53 50.09
lex.Cst7.HH 42.34 32.76 54.74 43.79 33.76 56.79 43.13 32.87 56.59
lex.Cst8.HH 45.65 34.32 60.73 45.52 33.97 60.99 45.57 33.96 61.14
lex.Cst9.HH 51.63 38.25 69.68 52.97 39.17 71.62 52.61 38.87 71.20

+ + +
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> round(cbind(

+ ci.exp(mha, subset = "tfHH"),
+ ci.exp(cmd, subset = "tfHH"),
+ ci.exp(cma, subset = "tfHH")), 2)
Est 2.5% 97.5Y Est 2.5% 97.5Y% Est 2.5% 97.5%
Ns(tfHH, knots = c(0, 1, 3, 6))1 0.33 0.28 0.38 0.33 0.28 0.38 0.32 0.28 0.38
Ns(tfHH, knots = c(0, 1, 3, 6))2 0.06 0.05 0.08 0.06 0.05 0.09 0.06 0.05 0.08
Ns(tfHH, knots = c(0, 1, 3, 6))3 0.36 0.31 0.41 0.36 0.31 0.41 0.36 0.31 0.41
> round(cbind(
+ ci.exp(mha, subset = '"dur"),
+ ci.exp(cma, subset = '"dur")), 2)
Est 2.5% 97.5% Est 2.5% 97.5%
Ns(dur, knots = c(1:5 * 10))1 0.96 0.80 1.15 1.00 0.82 1.22
Ns(dur, knots = c(1:5 * 10))2 1.23 1.06 1.43 1.20 1.02 1.40
Ns(dur, knots = c(1:5 * 10))3 1.21 1.01 1.45 1.21 1.00 1.45
Ns(dur, knots = c(1:5 * 10))4 1.17 1.03 1.33 1.16 1.02 1.33
> round(cbind(
+ ci.exp(mha, subset = c("age","sex")),
+ ci.exp(cmd, subset = c("age",'"sex"))), 2)
Est 2.5% 97.5% Est 2.5% 97.5%
Ns(age, knots = c(4:8 * 10))1 1.14 0.90 1.46 1.14 0.88 1.49
Ns(age, knots = c(4:8 * 10))2 0.95 0.75 1.20 0.94 0.73 1.21
Ns(age, knots = c(4:8 * 10))3 1.02 0.86 1.22 1.02 0.85 1.22
Ns(age, knots = c(4:8 * 10))4 1.32 1.05 1.66 1.31 1.03 1.66
sexW:Ns(age, knots = c(4:8 * 10))1 0.68 0.45 1.01 0.68 0.45 1.03
sexW:Ns(age, knots = c(4:8 * 10))2 1.43 1.01 2.04 1.40 0.96 2.05
sexW:Ns(age, knots = c(4:8 * 10))3 1.42 1.12 1.80 1.43 1.12 1.84
sexW:Ns(age, knots = c(4:8 * 10))4 1.42 1.05 1.94 1.45 1.07 1.97
sexW 0.84 0.74 0.9 0.83 0.74 0.95
sexW:Ns(age, knots = c(4:8 * 10))1 0.68 0.45 1.01 0.68 0.45 1.03
sexW:Ns(age, knots = c(4:8 * 10))2 1.43 1.01 2.04 1.40 0.96 2.05
sexW:Ns(age, knots = c(4:8 * 10))3 1.42 1.12 1.80 1.43 1.12 1.84
sexW:Ns(age, knots = c(4:8 * 10))4 1.42 1.05 1.94 1.45 1.07 1.97

> # important to clean up so we call Epi::ci.exp by default
> rm(ci.exp)

CODE EXPLAINED: To get a nicer print we redefine ci.exp as a local copy that just has a slightly
different name for the first column. At the end we remove the local copy, so that future calls of ci.exp
will (again) be calls of Epi::ci.exp.

We see that we get almost identical parameter estimates, whether we use age (age) or duration (dur) as
baseline time scale. The Cox-model does however not provide estimates of the effect of the baseline
timescale, as we get from the Poisson model, so the last two comparisons are only with one of the Cox
models.

5.2.0.2 Cox or Poisson model(s)?

So it seems that we could get the estimates of all time scales if we just fit two Cox models with different
underlying time scales. But the prerequisite for this is that we from regression parameters in the Cox
model can estimate the effect of the timescale(s) that is not the baseline—that is from the linear predictor.
This will only be possible if we have fitted the Cox models to a split dataset (Sx in this case). But if we
already have a finely split dataset we might as well fit the Poisson model in the first place and get
estimates of the effects of both time scales in one go.

The real reason to set up the Cox models here is that there is a simple machinery to incorporate random
effects in Cox models via the coxme package.
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5.2.0.3 coxme: Cox model with mixed effects

The rate models we operated can be expanded with an extra random effect term in the linear predictor:

log(A\pt) = npt + Ay, Ay ~ N(0,0%)
where we assume the Ays to be independent, so the o is the between-persons standard deviation of the
log-rates. Formally this is a 2-level model; first level is the specification of the random effects (the A,s —
marginal) and the second level is the specification of the rates conditional on the random effects.

We want to see how the effect of no. of HHs will change by introduction of a random person-effect, and
currently the simplest way to do this is to use the coxme function from the package of the same name.

We can now fit the mixed effects Cox-models corresponding to the two Cox-models and inspect the
random effects and the parameter estimates.

rdur <- coxme (Surv(dur,
dur + lex.dur,
lex.Xst 7inj, levels(Sx)[2:11] &
lex.Xst != lex.Cst)
~ factor(lex.Cst) +
Ns (tfHH, knots =
sex * Ns(age, knots =
(1 | lex.id),
data = subset(Sx, lex.Cst /inj), levels(Sx)[1:10]))

c(0,1,3,6)) +

>
+
+
+
+
+
+ c(4:8%10)) +
+

+

> summary (rdur)

Cox mixed-effects model fit by maximum likelihood
Data: subset(Sx, lex.Cst %in’% levels(Sx)[1:10])
events, n = 2700, 311808
Iterations= 9 76
Fitted

-17186.6

NULL Integrated
Log-likelihood -19278.55 -17683.02

Chisq df p
Integrated loglik 3191.06 22.00 0
Penalized loglik 4183.90 506.27 0

AIC BIC
147.06 3017.24

3
3171.35 183.83

Model: Surv(dur, dur + lex.dur, lex.Xst %in}, levels(Sx)[2:11] & lex.Xst != lex.Cst) ~ factor (]
Fixed coefficients

coef  exp(coef)  se(coef) z P
factor(lex.Cst)1.HH 2.28887083 9.86379351 0.07815933 29.28 0.0000
factor(lex.Cst)2.HH 2.64561203 14.09206722 0.08183166 32.33 0.0000
factor(lex.Cst)3.HH 2.93592249 18.83887371 0.08799412 33.36 0.0000
factor(lex.Cst)4.HH 3.15814402 23.52689003 0.09575695 32.98 0.0000
factor(lex.Cst)5.HH 3.31363874 27.48495428 0.10499416 31.56 0.0000
factor(lex.Cst)6.HH 3.39389894 29.78184382 0.11843776 28.66 0.0000
factor(lex.Cst)7.HH 3.48552078 32.63942058 0.13774713 25.30 0.0000
factor(lex.Cst)8.HH 3.48705669 32.68959046 0.15429226 22.60 0.0000
factor(lex.Cst)9.HH 3.65616606 38.71263615 0.16379351 22.32 0.0000
Ns(tfHH, knots = c(0, 1, 3, 6))1  -0.88565274 0.41244487 0.07907967 -11.20 0.0000
Ns(tfHH, knots = c(0, 1, 3, 6))2 -2.33707000 0.09661029 0.13685038 -17.08 0.0000
Ns(tfHH, knots = c(0, 1, 3, 6))3 -0.83513836 0.43381445 0.06845402 -12.20 0.0000
sexW -0.18975302 0.82716340 0.06377963 -2.98 0.0029
Ns(age, knots = c(4:8 * 10))1 0.12858617 1.13721942 0.12858876 1.00 0.3200
Ns(age, knots = c(4:8 * 10))2 -0.05022957 0.95101108 0.12717992 -0.39 0.6900
Ns(age, knots = c(4:8 * 10))3 0.01660617 1.01674482 0.09677114 0.17 0.8600
Ns(age, knots = c(4:8 * 10))4 0.28447054 1.32905816 0.12725513 2.24 0.0250
sexW:Ns(age, knots = c(4:8 * 10))1 -0.38016556 0.68374820 0.21225148 -1.79 0.0730
sexW:Ns(age, knots = c(4:8 * 10))2 0.32702490 1.38683600 0.19005297 1.72 0.0850
sexW:Ns(age, knots = c(4:8 * 10))3 0.39799401 1.48883511 0.12962200 3.07 0.0021
sexW:Ns(age, knots = c(4:8 * 10))4 0.40297340 1.49626708 0.16912908 2.38 0.0170
Random effects
Group Variable §Std Dev  Variance

lex.id Intercept 0.4454154 0.1983949
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> sqrt(VarCorr (rdur)$lex.id)
Intercept

0.4454154

> sd(ranef (rdur)$lex.id)

[1] 0.07265774

CODE EXPLAINED: The syntax for coxme is almost the same as for coxph, except that coxme allows
random effects terms in the model formula, such as (1 | lex.id). This means a random intercept for
each person (lex.id).

We do not have a coxme.Lexis that does all the hard work of getting data from a Lexis object; so we
must do the subsetting and event-definition by hand:

We are modeling the occurrence rates of next HH, so we restict data to be only those at risk of HH,
that is subset to records with lex.Cst equal to levels 0.HH through 9.HH (levels 1 though 10).

And we only want events to be where lex.Xst is among the levels 1.HH through 10+HH (2 through 11),
but since the dataset is split, we should only count records where we have a transition, that is where
lex.Xst is different from lex.Cst.

We see that the estimated standard deviation of the random effects is 0.445— this is the standard deviation
of the random effects that are assumed to be normal variates on the log-rate scale. We can interpret this as
the between-person variation of frailties—a population characteristic specific for this population.

This implies that the difference between the random effect terms for two randomly chosen persons is
normally distributed with standard deviation of V2 x 0.445; so the absolute difference follows a half-normal
distribution. The median in a half-normal is the 75% quantile of the normal distribution, hence the median
absolute difference between two randomly chosen persons is ([8]:

> qnorm(0.75) * sqrt(2) * sqrt(VarCorr(rdur)$lex.id)
Intercept
0.4248696

This means that the median rate-ratio (the one > 1) of HH-occurrence between two randomly chosen
persons is:

> exp(qnorm(0.75) * sqrt(2) * sqrt(VarCorr(rdur)$lex.id))
Intercept
1.529391

We might instead argue that the relevant quantity to base our reporting on was the empirical standard
deviation of the posterior random effects:

> exp(qnorm(0.75) * sqrt(2) * sd(ranef(rdur)$lex.id))
[1] 1.071764

This would imply that the median absolute rate ratio (that is the one > 1) between two randomly chosen
persons were only 1.07.

Either way, the between-person sd of the frailties is a population characteristic, so refers to the specific
study population at hand; it is not a residual error we may expect to find in other study populations.
Moreover, the calculations assume that the (prior) distribution of the log-frailties is normal which is
certainly not the case for the posterior as we shall see.

5.2.0.4 The other Cox model

We can also fit the other Cox-model, with age as time scale

> rage <- coxme (Surv(age,

+ age + lex.dur,

+ lex.Xst JinJ) levels(Sx)[2:11] &

+ lex.Xst != lex.Cst)

+ ~ factor(lex.Cst) +

+ Ns (tfHH, knots = ¢(0,1,3,6)) +

+ Ns (dur, knots = c(1:5 * 10)) +

+ strata(sex) +

+ (1 | lex.id),

+ data = subset (Sx, lex.Cst }inj, levels(Sx)[1:10]))
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> summary (rage)

Cox mixed-effects model fit by maximum likelihood
Data: subset(Sx, lex.Cst %in’% levels(Sx)[1:10])
events, n = 2700, 311808
Iterations= 9 76

NULL Integrated Fitted

Log-likelihood -17108.89 -15551.62 -15073.11

Chisq df p AIC BIC
Integrated loglik 3114.53 17.0 0 3080.53 2980.21
Penalized loglik 4071.54 484.5 0 3102.55 243.54

Model: Surv(age, age + lex.dur, lex.Xst %inj, levels(Sx)[2:11] & lex.Xst != lex.Cst) ~ factor (]
Fixed coefficients

coef  exp(coef)  se(coef) z P
factor(lex.Cst)1.HH 2.31661310 10.14126865 0.07836545 29.56 0.000
factor(lex.Cst)2.HH 2.67640375 14.53273589 0.08176804 32.73 0.000
factor(lex.Cst)3.HH 2.95847831 19.26862859 0.08815713 33.56 0.000
factor(lex.Cst)4.HH 3.17150031 23.84322978 0.09614066 32.99 0.000
factor(lex.Cst)5.HH 3.33747931 28.14808470 0.10561616 31.60 0.000
factor(lex.Cst)6.HH 3.40173383 30.01609783 0.11898842 28.59 0.000
factor(lex.Cst)7.HH 3.48643072 32.66913391 0.13954876 24.98 0.000
factor(lex.Cst)8.HH 3.50219111 33.18809120 0.15510610 22.58 0.000
factor(lex.Cst)9.HH 3.66393387 39.01451936 0.16494355 22.21 0.000
Ns(tfHH, knots = c(0, 1, 3, 6))1 -0.90041888 0.40639939 0.07903074 -11.39 0.000
Ns(tfHH, knots = c(0, 1, 3, 6))2 -2.39192310 0.09145364 0.13772059 -17.37 0.000
Ns(tfHH, knots = c(0, 1, 3, 6))3 -0.84148005 0.43107204 0.06848138 -12.29 0.000
Ns(dur, knots = c(1:5 * 10))1 0.01377948 1.01387486 0.09809459 0.14 0.890
Ns(dur, knots = c(1:5 * 10))2 0.19432355 1.21448917 0.08295019 2.34 0.019
Ns(dur, knots = c(1:5 * 10))3 0.20475620 1.22722583 0.09499085 2.16 0.031
Ns(dur, knots = c(1:5 * 10))4 0.16836010 1.18336266 0.06971433 2.41 0.016

Random effects
Group Variable Std Dev  Variance
lex.id Intercept 0.4376666 0.1915521

> sqrt(c(VarCorr(rage)$lex.id, VarCorr(rdur)$lex.id))

Intercept Intercept
0.4376666 0.4454154

> c(sd(ranef (rage)$lex.id), sd(ranef (rdur)$lex.id))
[1] 0.07012529 0.07265774

So the random variation between persons is very similar in the two models, as is the discrepancy between
the estimated sd and the empirical sd of the individual posterior random effects. The discrepancy between
the estimated sd and and the empirical sd of the posterior random effects is partly attributable to the fact
that the sd is a really bad summary of a distribution that is so far from symmetry as this one is.

5.2.0.5 Individual random effects

We also inspect if the estimated random effects (“posterior” person effects) are similar between the two
models

> table(names (rage$frail$lex.id) == names(rdur$frail$lex.id))

TRUE
18215

> range(c(rdur$frail$lex.id, rage$frail$lex.id))
[1] -0.2336867 1.1589616

> ## plot(rage$frail$lex.id,

> ## rdur$frail$lex. id,

> ## pch = 16, cex = 0.4,

> ## xlim = ¢(-0.25, 1.2), ylim = c(-0.25, 1.2),
> ## xlab = "log-frailty using age as timescale',
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> ## ylab = "log-frailty using duration as timescale')
> ## abline(0, 1, 1ty = 3)

> ## abline(h = 0, v = 0, 1ty = 3)

>

> plot(exp(rage$frail$lex.id),

+ exp (rdur$frail$lex.id),

+ pch = 16, cex = 0.5, log = "xy",

+ xlim = exp(c(-0.25, 1.2)), ylim = exp(c(-0.25, 1.2)),
+ xlab = "Frailty using age as timescale",

+ ylab = "Frailty using duration as timescale")

> abline(0, 1, 1ty = 3)

> abline(h = 1, v = 1, 1ty = 3)
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Figure 5.7: FEstimated frailties (on the log-rate-scale) for the Coz-models with duration re-
spectively age as baseline limescale.
../graph/recur-frail

From figure 5.7 we see that quite a number of the random effects are below 0, so we would like to see how
the posterior frailties relate to the number of events for each person:

> tt <- with(subset(Sx, lex.Cst JinJ, levels(Sx)[1:10]),

+ table(lex.id, lex.Cst != lex.Xst & lex.Xst != "Dead"))I[,2]
> table(tt)
tt
0 1 2 3 4 5 6 7 8 9
16401 1289 342 92 47 21 9 10 2 2
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> table(names(tt) == names (rdur$frail$lex.id))
TRUE
18215
> exp(c(-0.25,1.2))
[1] 0.7788008 3.3201169
> axpt <- ¢(0.8,seq(1, 3, 0.5))
> frails <-
+ function(frails, mod)
+{
+ plot(jitter(tt, a = 0.35),
+ frails,
+ pch = 16, cex = 0.5,
+ xlab = "Total no. HH events'", xaxt ="n",
+ ylab = "Frailty (log-rate scale)", ylim = c(-0.25, 1.2))
+ abline(h = 0, 1ty = 3)
+ axis(side = 1, at = 0:9, labels = 0:9,
+ col = "white", col.lab = "black'")
+ axis(side = 2, at = -2:12/10, labels = NA, tcl = -0.3)
+ axis(side=4, at = log(axpt), labels = axpt)
+ text (0, 1.2, mod, adj = c(0, 1))
+ }
> par(mfrow=c(1,2), mar=c(3,3,1,3), mgp=c(3,1,0)/1.6, las = 1, bty = "n")
> frails(rdur$frail$lex.id, "Duration baseline model')
> frails(rage$frail$lex.id, "Age baseline model')
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Figure 5.8: Posterior frailties (log-rate scale) for the two Cox-models, plotted against the
number of HH events for each person. Baseline timescales are dur (left) resp. age (right).

../graph/recur-frail-ev

We see that the two mixed effects Cox-models give essentially the same fit; they are both cousins of the
Poisson-model, with the same time-scales as covariates, the difference is only which one we have profiled
out when forming the Cox-model. So these are not models using different timescales; all three time scales
(age, diabetes duration and time since last HH) are in all three models. The Cox models just hide one of

the time scales.
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5.2.1 RR by no. of HH

From figure 5.8 we see that the average frailty increases by the total number of HH events seen, so by the
frailty arguments above we will expect that the fixed effect estimates of the no. of HH events to be
somewhat diluted by inclusion of person-specific random effects.

Since the two Cox-models with different baseline time scale give substantially the same fit, we only
report these measures from the Cox-model model with diabetes duration as baseline time scale.

When we want the RRs relative to state 0.HH the RR depends on the time since latest HH, here we
choose 2 years as reference point. The facility to estimate the effect of the difference between two
prediction frames in ci.exp is not implemented for coxme objects, so we will do the contrast matrix coding
by hand; fortunately it only involves the lex.Cst and tfHH variables:

> t2 <- Ns(rep(2,9), knots = c(0, 1, 3, 6))
> t0 <- Ns(rep(0,9), knots = c(0, 1, 3, 6))
> Cd <- diag(9)

> C0 <-Cd * 0

> (CM <- cbind(Cd,t2) - cbind(CO,t0))

1 2 3

[1,] 100000000 0.1190646 0.5676795 -0.3422997
[2,] 010000000 0.1190646 0.5676795 -0.3422997
[3,J001000000 0.1190646 0.5676795 -0.3422997
[4,] 000100000 0.1190646 0.5676795 -0.3422997
[65,] 000010000 0.1190646 0.5676795 -0.3422997
[6,] 000001000 0.1190646 0.5676795 -0.3422997
[7,J]000000100 0.1190646 0.5676795 -0.3422997
[6,] 000000010 0.1190646 0.5676795 -0.3422997
[9,J 00000000 10.1190646 0.5676795 -0.3422997

We can then compute and plot the RRs relative to 0.HH

> round(ci.exp(rdur, subset = c("Cst","tfHH")), 2)
exp(Est.) 2.5% 97.5%

factor(lex.Cst)1.HH 9.86 8.46 11.50
factor(lex.Cst)2.HH 14.09 12.00 16.54
factor(lex.Cst)3.HH 18.84 15.85 22.38
factor(lex.Cst)4.HH 23.53 19.50 28.38
factor(lex.Cst)5.HH 27.48 22.37 33.76
factor(lex.Cst)6.HH 29.78 23.61 37.56
factor(lex.Cst)7.HH 32.64 24.92 42.76
factor(lex.Cst)8.HH 32.69 24.16 44.23
factor(lex.Cst)9.HH 38.71 28.08 53.37
Ns(tfHH, knots = c(0, 1, 3, 6))1 0.41 0.35 0.48
Ns(tfHH, knots = c(0, 1, 3, 6))2 0.10 0.07 0.13

Ns(tfHH, knots c(0, 1, 3, 6))3 0.43 0.38 0.50

c("Cst","tfHH"), ctr.mat = CM)
c("Cst","tfHH")), 2)

exp(Est.) 2.5% 97.5%

> rrr <- ci.exp(rdur, subset
> round(ci.exp(mAc , subset

lex.Cstl1.HH 12.75 10.99 14.79
lex.Cst2.HH 18.36 15.71 21.45
lex.Cst3.HH 24.65 20.87 29.13
lex.Cst4.HH 31.06 25.94 37.20
lex.Cst5.HH 36.02 29.60 43.84
lex.Cst6.HH 39.63 31.79 49.39
lex.Cst7.HH 42.34 32.76 54.74
lex.Cst8.HH 45.65 34.32 60.73
lex.Cst9.HH 51.63 38.24 69.70
Ns(tfHH, knots = c(0, 1, 3, 6))1 0.33 0.28 0.38
Ns(tfHH, knots = c(0, 1, 3, 6))2 0.06 0.05 0.08
Ns(tfHH, knots = c(0, 1, 3, 6))3 0.36 0.31 0.41

> ccc <- ci.exp(mAc , subset = c("Cst","tfHH"), ctr.mat = CM)
> rownames (rrr) <- paste0(1:9, ".HH")
> round(cbind(rrr, ccc), 3)
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exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
3

1.HH 3.135 2.735 .593 3.331 2.913 3.809
2.HH 4.479 3.864 5.192 4.799 4.152 5.546
3.HH 5.987 5.085 7.050 6.444 5.497 7.554

4 .HH 7.477 6.241 8.959 8.119 6.820 9.665
5.HH 8.735 7.128 10.704 9.414 7.749 11.437
6.HH 9.465 7.519 11.915 10.357 8.324 12.887
7.HH 10.373 7.889 13.640 11.067 8.538 14.346
8.HH 10.389 7.670 14.073 11.932 8.964 15.883
9.HH 12.303 8.906 16.997 13.493 9.982 18.240

> plotEst(rrr,

+ xlog = TRUE, lwd = 3, xlim = c¢(1,20),

+ xlab = "Hazard ratio of next HH (at 2 years) vs. no HH")
> axis(side = 1, at = 1:2)

> linesEst(ccc, 1lwd = 3, y = 9:1 - 0.2, col = "gray")
> abline(v=1)

5.2.1.1 RRs between successive states

It would also be of interest to see the ratio of hazards of next HH versus that in the previous state. This
would be rates from state n.HH versus rates from the state n-1.HH, for n from 1 to 9. This amounts to a
contrast matrix relating to the lex.Cst parameters

> M <- diag(9)[-9,]
> (RM <- (col(M) - row(M) == 1) - M)

(,1] [,2] [,3] [,4] [,5] [,6] [,7]1 [,8] [,9]

[1,] -1 1 0 0 0 0 0 0 0
[2,] o -1 1 0 0 0 0 0 0
[3,] 0 o -1 1 0 0 0 0 0
[4,] 0 0 0 -1 1 0 0 0 0
[5,] 0 0 0 0 -1 1 0 0 0
[6,] 0 0 0 0 0 -1 1 0 0
(7,1 0 0 0 0 0 o -1 1 0
[8,] 0 0 0 0 0 0 o -1 1

While this is constant over time for n > 1 by the very structure of the model (no interaction between
lex.Cst and other variables), the RR between between 1.HH and 0.HH depends on time since 1°* HH,
because tfHH is 0 for any record with lex.Cst equal to 0.HH, so we omit this:

> ci.exp(rdur, subset = "Cst")

exp(Est.) 2.5% 97 .5%
factor(lex.Cst)1.HH 9.863794 8.462811 11.49670
factor(lex.Cst)2.HH 14.092067 12.003820 16.54360
factor(lex.Cst)3.HH 18.838874 15.854561 22.38493
factor(lex.Cst)4.HH 23.526890 19.500963 28.38396
factor(lex.Cst)5.HH 27.484954 22.372980 33.76496
factor(lex.Cst)6.HH 29.781844 23.612240 37.56349
factor(lex.Cst)7.HH 32.639421 24.916778 42.75560
factor(lex.Cst)8.HH 32.689590 24.158817 44.23268
factor(lex.Cst)9.HH 38.712636 28.082221 53.36715

> ci.exp(cmd , subset = "Cst")

exp(Est.) 2.5% 97.5%
factor(lex.Cst)1.HH 12.68617 10.81829 14.87656
factor(lex.Cst)2.HH 18.27919 15.46970 21.59893
factor(lex.Cst)3.HH 24.51320 20.68414 29.05109
factor(lex.Cst)4.HH 30.89188 25.61215 37.25998
factor(lex.Cst)5.HH 36.17100 29.61616 44.17662
factor(lex.Cst)6.HH 39.67913 31.52301 49.94554
factor(lex.Cst)7.HH 43.78903 33.76462 56.78961
factor(lex.Cst)8.HH 45.52099 33.97474 60.99122
factor(lex.Cst)9.HH 52.96816 39.17351 71.62050

> ci.exp(rdur, subset = "Cst'", ctr.mat = RM)
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exp(Est.) 2.5% 97.5%
[1,]1 1.428666 1.2471014 1.636665
[2,]1 1.336842 1.1343411 1.575494
[3,] 1.248848 1.0291594 1.515432
[4,] 1.168236 0.9323518 1.463798
[5,1] 1.083569 0.8325148 1.410331
[6,] 1.095950 0.7981266 1.504908
[7,1 1.001537 0.6922460 1.449018
[8, 1.184250 0.7896019 1.776145
> CCC <- ci.exp(cmd , subset = "Cst", ctr.mat = RM)
> RRR <- ci.exp(rdur, subset = "Cst", ctr.mat = RM)
> rownames (RRR) <- paste0(2:9," vs. ", 1:8)
> round(cbind (RRR, CCC), 3)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%

2vs. 1 1.429 1.247 1.637 1.441 1.260 1.647
3 vs. 2 1.337 1.134 1.575 1.341 1.143 1.574
4 vs. 3 1.249 1.029 1.515 1.260 1.048 1.515
5vs. 4 1.168 0.932 1.464 1.171 0.946 1.449
6 vs. 5 1.084 0.833 1.410 1.097 0.855 1.407
7 vs. 6 1.096 0.798 1.505 1.104 0.826 1.475
8 vs. 7 1.002 0.692 1.449 1.040 0.737 1.467
9 vs. 8 1.184 0.790 1.776 1.164 0.778 1.739

For comparison we re-plot the RRs versus 0.HH to get a complete overview:

par (mfrow=c(1,2))
#
par (xaxt = "n")
plotEst(rrr,
xlog = TRUE, 1wd = 3, xlim = ¢(0.5,20),

xlab = paste("Hazard ratio of next HH (at 2 years):",
"current vs. no HH (0.HH)"))
par(xaxt = "s'")
axis(side = 1, at = ¢(0.5,1:10,15), labels = NA)
axis(side = 1, at = ¢(0.5,1,2,5,10,20),
labels = c("0.5",paste(c(1,2,5,10,20))))

3, y=9:1-0.2, col = "gray")
3)

linesEst(ccc, lwd
abline(v = 1, 1ty
#
par(xaxt = "n")
plotEst (rbind (NA,RRR),

xlog = TRUE, 1wd = 3, xlim = ¢(0.5,20),

xlab = "Hazard ratio of next HH: current vs. previous HH")
par(xaxt = "s")
axis(side = 1, at

c(0.5,1:10,15), labels = NA)
axis(side = 1, at c(0.5,1,2,5,10,20),

labels c("0.5",paste(c(1,2,5,10,20))))
linesEst (rbind (NA,CCC), 1wd = 3, y = 9:1 - 0.2, col = "gray")
abline(v = 1, 1ty = 3)

VV+VVV++VVVVVYVEHVVYVYVY+ S+ 4+ VYV VY

From figure 7?7 we see there is only a very slight dilution of the effect of no. HHs by introducing a frailty
term, but also that regardless of model, there is an increase in rates of next HH up to about 5 HHs, after
which the rate of next HH does not increase by further HH occurrences.

So even if there is some variation between individuals in their frailties it does not explain much of the
variation between HH states. The coxme model uses an assumption of normally distributed frailties (on the
log-rate scale) which is not an obvious choice when we have a large fraction of the population who see no
HH, and therefore might be considered immune (and so should have a frailty of 1).

before
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1.HH ——

2.HH —— 2vs. 1 ——

3.HH —— 3vs. 2 ——

4.HH —_— 4vs. 3 ——

5.HH —_—— 5vs. 4 —_—

6.HH —— 6vs. 5 —

7.HH —_—— 7vs. 6 —_—

8.HH —— 8vs. 7 ——

9.HH —— 9vs. 8 ——
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Hazard ratio of next HH (at 2 years): current vs. no HH (0.HH) Hazard ratio of next HH: current vs. previous HH

Figure 5.9: Hazard ratios of next HH event relative to the rate of the first event, respectively
previous event. Left panels: The hazard ratio of next HH event relative to the rate of the
first event, computed at 2 years after last HH event (tfHH = 2). Right panel: Ratio of rate
of next HH versus rate of previous rate.

The black estimates are from the mixed-effects Coxr model with random person-effect, while
the gray estimates are from the usual Cox model; both with diabetes duration as baseline
timescale, and separate age-effects for the two sexes. ../graph/recur-cmp-dur

5.3 Unknown history of events before entry

In some instances the number of events seen before entry to the study is not known, so a proper analysis is
not possible. In most practical circumstances, all event dates will not be known; only a time-limited set of
events will be known.

It is presumably quite common that only events after entry instead, so there will be a larger variation
in rates between persons, but the frailty /selection effects within persons will have similar characteristics. In
particular, the state without any recorded events will be contaminated with follow-up time after event(s).

As an example we look at the example pretending that HH events before entry were not known:

> summary(Lx, t = T)

Transitions:
To
From 0.HH Dead Records: Events: Risk time: Persons:
O0.HH 17640 673 18313 673 73223.02 18313
Timescales:

per age dur
nn "nn "un

> summary (hh)

id doh nh
Min. : 11 Min. 11985 Min. 1.000
1st Qu.: 5580 1st Qu.:2000 1st Qu.: 1.000
Median :11548 Median :2004 Median : 2.000
Mean :11492 Mean :2004 Mean : 3.535
3rd Qu.:17192 3rd Qu.:2009 3rd Qu.: 4.000
Max. 123268 Max. :2014 Max. :54.000

In order to mimic the absence of events prior to study entry we extract the entry times of persons from Lx
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> hhx <- left_join(rename(hh, lex.id = id),

+ subset (Lx, select = c(lex.id, per)))
> hhx <- data.frame( subset(hhx, per < doh)

+ %>) group_by(lex.id)

+ %>% mutate(nh = row_number())
+ %> select(c(lex.id, doh, nh))
+ )

> str(hh)

'data.frame': 14270 obs. of 3 variables:
$ id : int 11 11 11 11 11 11 11 16 16 16 ...

$ doh: num 2002 2003 2004 2005 2011 ...

$nh : int 1234567123 ...

> str(hhx)

'data.frame': 4142 obs. of 3 variables:

$ lex.id: int 11 11 11 19 27 27 27 27 27 27 ...
$ doh : num 2011 2013 2014 2014 2009 ...

$ nh :int 1231123456 ...

So we see there is a substantial number of event occurring before entry; the number of events we count is
not quite the same because the limit of 10 now refers to the number of events after entry and not the total
number of events recorded.

> cutHHx <- mutate(subset (hhx, nh <= 10),

cut = doh,
new.state = ifelse(nh < 10,

+

+
+ pasteO(nh, ".HH"),
+ "10+HH")) J>7
+ select(lex.id, cut, new.state)
> system.time(
+ Rxx <- rcutLexis(Lx,
+ cut = cutHHx,
+ timescale = '"per"))
user system elapsed
6.05 0.17 6.22
> summary (Rx)
Transitions:
To
From O.HH 1.HH 2.HH 3.HH 4.HH 5.HH 6.HH 7.HH 8.HH 9.HH 10+HH Dead Records: Events:
O.HH 12434 887 0 0 0 0 0 0 0 0 0 335 13656 1222
1.HH 0 2787 568 0 0 0 0 0 0 0 0 141 3496 709
2.HH 0 0 1112 373 0 0 0 0 0 0 0 62 1547 435
3.HH 0 0 0 498 260 0 0 0 0 0 0 47 805 307
4 _HH 0 0 0 275 193 0 0 0 0 0 30 498 223
5.HH 0 0 0 0 0 168 144 0 0 0 0 11 323 155
6.HH 0 0 0 0 0 0 101 105 0 0 0 9 215 114
7 .HH 0 0 0 0 0 0 0 68 70 0 0 13 151 83
8.HH 0 0 0 0 0 0 0 0 47 b5 0 4 106 59
9.HH 0 0 0 0 0 0 0 0 0 23 49 5 7 54
10+HH 0 0 0 0 0 0 0 0 0 0 127 16 143 16
Sum 12434 3674 1680 871 535 361 245 173 117 78 176 673 21017 3377
Transitions:
To
From Risk time: Persons:
0.HH 51936.45 13656
1.HH 11750.50 3496
2.HH 4425 .94 1547
3.HH 2010.91 805
4 . HH 1110.91 498
5.HH 628.43 323
6.HH 383.83 215
7.HH 236.76 151
8.HH 168.51 106
9.HH 116.50 7
10+HH 454,30 143
Sum 73223.02 18313
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> summary (Rxx)
Transitions:
To
From O.HH 1.HH 2.HH 3.HH 4.HH 5.HH 6.HH 7.HH 8.HH 9.HH 10+HH Dead Records: Events:
O.HH 15894 1869 0 0 0 0 0 0 0 0 0 550 18313 2419
1.HH 0 1219 574 0 0 0 0 0 0 0 0 76 1869 650
2.HH 0 0 328 218 0 0 0 0 0 0 0 28 574 246
3.HH 0 0 94 117 0 0 0 0 0 0 7 218 124
4 .HH 0 0 0 0 48 62 0 0 0 0 0 7 117 69
5.HH 0 0 0 0 0 23 37 0 0 0 0 2 62 39
6.HH 0 0 0 0 0 0 14 22 0 0 0 1 37 23
7 .HH 0 0 0 0 0 0 0 9 11 0 0 2 22 13
8.HH 0 0 0 0 0 0 0 0 1 10 0 0 11 10
9.HH 0 0 0 0 0 0 0 0 0 4 6 0 10 6
10+HH 0 0 0 0 0 0 0 0 0 0 6 0 6 0
Sum 15894 3088 902 312 165 85 51 31 12 14 12 673 21239 3599
Transitions:
To
From Risk time: Persons:
0.HH 68335.16 18313
1.HH 3628.12 1869
2.HH 813.85 574
3.HH 238.43 218
4 .HH 96.20 117
5.HH 47.39 62
6 .HH 31.04 37
7 .HH 15.23 22
8.HH 4.68 11
9.HH 3.40 10
10+HH 9.51 6
Sum 73223.02 18313

We see that the amount of risk time and number of deaths is the same; we have more events in total, but
the events are more concentrated in the early states.

5.3.1 Comparison with the full data

We can compare the results of analyzing this dataset withe those of the “real” one above, we need to define
tfHH as a time scale, where we only are concerned about time since events that occur after entry. It is
basically the same code as above, but with the new definition of the recurrence numbers and -dates:

++++++VVVVVVVVVVVVYV++VYV

# join with the cut dates
Rxx <- left_join(Rxx, rename(cutHHx, doHH = cut),
by = c("lex.id" = "lex.id",
"lex.Cst" = "new.state"))
# make lex.Cst a factor, and reorder levels
Rxx <- factorize (Rxx)
Rxx <- Relevel(Rxx, c(paste0(0:9,".HH"),"10+HH", "Dead"))
# define new timescale
Rxx$tfHH <- with(Rxx, ifelse(lex.Cst == "0.HH", NA, per - doHH))
attr (Rxx, '"time.scales'") <- c(attr(Rxx, "time.scales"), "tfHH")
attr (Rxx, '"time.since'" ) <- c(attr(Rxx, "time.since" ), "'")
attr (Rxx, '"breaks") <- c(attr(Rxx, '"breaks"), list(tfHH = NULL))
# split follow-up and convert NAs to 0
Sxx <- splitMulti(Rxx, age = seq(0, 90, 1/4))
Sxx <- tsNA20(Sxx, all = TRUE)
# then fit the model
system. time (
mAcx <- glm.Lexis(Sxx,
~ lex.Cst + Ns(tfHH, knots = ¢(0,1,3,6)) +

Ns(dur, knots c(1:5 * 10)) +
sex * Ns(age, knots c(4:8 * 10)),
levels(Sxx)[2:11],
100))

to
scale
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stats::glm Poisson analysis of Lexis object Sxx with log link:

Rates for transitioms:

.HH->1.HH

.HH->2 _HH

.HH->3.HH

.HH->4 .HH

.HH->5_HH

.HH->6.HH

.HH->7 .HH

.HH->8.HH

.HH->9.HH

.HH->10+HH

lex.dur (person-time) scaled by 100
user system elapsed
6.72 0.80 7.54

OO~ WN O

-

We now have a fitted model of exactly the same structure and naming of covariates as the previous one,

but fitted to a Lexis object with a different definition of the recurrent event. The events will be the same

but with a differing numbering, all with an identical or smaller number. Since we in both cases use 10 as

the cut-off number, the data frame only counting after study entry will have some more events in total.
Therefore we can plot the parameter estimates using the same function as before:

# function to plot age effect
plage <- function(mAc) {
matshade (pra$age, aa <<- ci.pred(mAc, pra),
plot = TRUE, col = '"white",
log = "y", 1lwd = 3, ylim = c(1,350),
xlab = "Attained age (years)',
ylab = "Rate of first HH per 100 PY")
abline(h = aa[21,1], 1ty = "42", 1lwd = 2, col = 'gray")
matshade (pra$age, aa, lwd = 3, col = "blue")
matshade (pra$age, ci.pred(mAc, mutate(pra, sex = "W")),
Iwd = 3, col = "red")
points (50, aal[21,1], pch 16, cex 1.4, col
points (50, aa[21,1], pch 1, cex = 1.4, 1lwd
}

"white")
2, col = "blue")

# function to plot duration effects
pldur <- function(mAc) {
for(x in 9:1)
{
matshade (prx(x, "M")$tfHH,
dd <<- ci.pred(mAc, prx(x, "M")),
plot = (x == 9),
log = "y", 1wd = 3, ylim = c(1,350), col = gray(x/12),
xlab = "Time since last HH (years)",
ylab = "Rate of next HH (men, aged 50) per 100 PY")
text (0, dd[1,1], paste(x), adj = 1.6)
}
text (0, 350, "HH number", adj = 0.2)
abline(h = aa[21,1], 1ty = "42", 1lwd = 2, col = "gray")
}

+++++++F+++F+F++FVVEFEFFFEFFEFFFEFF VY

We can then use the functions to plot the two different sets of estimates together.

par(mfcol = c(2, 2), oma = ¢(0,0,0,2.5),
mgp = ¢(3,1,0) / 1.6, las = 1, bty = "n")
plage (mAc)
pldur (mAc)
plage (mAcx)
pldur (mAcx)

VVVyV+ YV

From figure 5.10 we see that the age-effects are aprroximately the same, but the effects of HH number
are somewhat larger in the follow-up only data set. This is because the events in this are assigned a smaller
number, and since the number of event increases the rate of next event, the absoute effect of event number
must be larger.
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Figure 5.10: Estimates from two different definitions of recurrence number. The left
panels are using all available data, including information of HH events prior to start of
follow-up, the right panels are counting only HH events ocurring after strat of follow-up.
../graph/recur-ageHHaddx

This is a demonstration that the way event counts are defined from original data may have a profound
influence on the estiamted recurrence rates. Unless there is certainty that no events have occurred before
start of follow-up, results may be strongly dependent on how recurrent events are numbered.

5.4 Summary of recurrent events

When the same event can occur multiple times for the same person, this should be addressed by defining
different states corresponding to the number of recurrent events encountered. The current number of
events should be included as a covariate in order to accomodate the effects of increasing number of events.
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Since the same person may see several events, it is possible to introduce a dependency structure in the
models by adding random effects. Here we have shown how this is accomodated in a Cox model using
coxme, and how the random effects model dilutes the effects of the event number.

In some instances of recurrent events there may be a (large) fraction of the population that is effectively
immune to having an event. This implies that if a random effects is introduced, then it shoudl have an
allowance for an atom in 0 on the rate scale (—oo on the log-rate scale), ideally some compound model
with a binomial model for the probability of being in the immune class.

In probability terms a model is formulated in terms of susceptibility:

P{susceptible} x P{next event | susceptible}

where the first terms is a binomial model and the latter a rate model possibly with some random effect
allowance.
...now input from comprisk
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Chapter 6
Competing risks in practice

Suppose that persons in a given state, ’alive’, say, are subject to a number of different causes of deaths,
‘causel’, ’cause2’ etc. Causes of death are required to be exhaustive and mutually exclusive. Exhaustive
means that any person will eventually died from one if the causes; exclusive means that you can only die
from from one cause. In situations where the causes are not causes of death but other events, it is implicit
that we only consider the first occurrence of an event from the state ’alive’, and ignore what occurs after.

So a competing risk set-up is a special multistate model; one with a singe initial state, and a finite
number of absorbing states that can be reached directly from the initial state. By that token the three
levels of quantities of interest will also be of relevance here (depending, of course, on the subject matter):
1) cause-specific rates 2) cumulative risks for each cause and 3) expected life time and life time lost to each
cause.

The likelihood for observations from a competing risk scenario is a function of the cause-specific
transition rates, and is product of the likelihoods that would emerge if we considered each cause the only
one. Thus analysis is in principle straight forward; just estimate a model for each of the cause-specific
rates. These will together form a complete model for the competing risks problem. Note that it is not
because the types of event (causes of death) are independent, but because the log-likelihood is a sum with
each term depending only on one of the cause-specific rates, see (3.4), p. 21.

If the cause-specific rates are all we want to assess then we will be done.

But often we would like also to have estimates of the cumulative risks, that is the probability of dying
from a specific cause before a given time as function of time. Each of these cumulative risks are functions
of all cause-specific rates. Specifically, if the cause-specific rates are \;(¢),j = 1,2,..., then the cumulative
risk of death from cause ¢ before time y, R.(t) is (where S(u) is the survival function):

Ru(t) = /0 S () du
:/Ot)\c(u)exp(—/ou;)\j(s)ds) du
/Ot)\c(u)exp(;/ou)\j(s)ds) du
_ /Ot Alwyexp (=37 4(9)) du

A;(s) is the cumulative rate (integrated intensity) for the j™ cause of death.

Even if we from the modeling of the As have standard errors of log(\.) the standard errors of R.s will be
analytically intractable from these.

The only viable way to get confidence intervals for the cumulative risks, R, is by simulation. This is
implemented through calculation of simulated rates A(t) by sampling from the posterior distribution of the
parameters in the models for log(A(s)), and computing the integrals numerically for each simulated sample.

The simulation approach also allows calculation of confidence intervals for sums of the cumulative risks,
Ry (t) + Ra(t) for example, which will be needed if we want to show stacked cumulative risks.

Finally, simulation will also allow calculation of standard errors of sojourn times in each of the states
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‘alive’ and ’causel’, 'cause2’, etc. While the latter two may not be of direct interest, then differences
between such sojourn times between different groups can be interpreted as years of life lost to each cause
between groups.

6.1 Example data

As an illustrative data example we use the (fake) diabetes register data; we set up the Lexis object, cut the
follow-up time at dates of OAD, resp Ins. There is a considerable fraction of persons who are put on
medication immediately at diagnosis a who claim their medication during the first one or two months, so
we disregard the first two months of follow up to get a more realistic picture of beginning of medication
among persons initially without medication. This is done by moving the date of DM diagnosis 2 months,
which also has the effect of increasing the number of persons beginning their follow-up on OAD or insulin.

> library(Epi)

> library(popEpi)

> data(DMlate)

> DMlate$dodm <- DMlate$dodm + 2/12

> Ldm <- Lexis(entry = list(per = dodm,

+ age = dodm - dobth,

+ tfd = 0),

+ exit = list(per = dox ),

+ exit.status = factor(!is.na(dodth), labels = c('"DM", "Dead'") ),
+ data = DMlate)

NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 284 rows with duration of follow up < tol

The 284 rows dropped are persons in the original data that end follow-up less than 2 months after date of
diabetes (dodm).

> summary (Ldm)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 7383 2333 9716 2333 52633.05 9716

We can cut the follow-up at the dates of beginning OAD (dooad and insulin (doins:

> set.seed(1952)
> Mdm <- mcutLexis(Ldm,

+ wh = c('dooad', 'doins'),
+ new.states = c('0AD', 'Ins'),

+ precursor = 'DM',

+ seq.states = FALSE,

+ ties = TRUE)

NOTE: 14 records with tied events times resolved (adding 0.01 random uniform),
so results are only reproducible if the random number seed was set.

> summary (Mdm)

Transitions:
To

From DM Dead O0AD Ins Ins+0OAD Records: Events: Risk time: Persons:
DM 2775 925 2044 234 0 5978 3203 21817.05 5978
0AD 0 968 3271 0 952 5191 1920 22498.35 5191
Ins 0 141 0 461 126 728 267 3821.08 728
Ins+0AD 0 299 0 0 876 1175 299 4496.57 1175
Sum 2775 2333 5315 695 1954 13072 5689 52633.05 9716

CODE EXPLAINED: mcutLexis cuts the follow-up at multiple event times keeping track of the persons’
history, but requires that each type of event occurs at most once, see 4.4.2 on pages 36 ff.

Also requires that no two events occur at the same time; if that is so arbitrary (small) random
quantities are added to the times in order to break the tie.
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In order to model the cause-specific rates by duration we initially split the the follow-up by duration of
diabetes in intervals of 1/48 year (about 1 week) for the two first months and after that in intervals of 1
month (= 1/12 year), creating a Lexis object for a competing risks situation with three possible event

types:

> Sdm <- splitMulti(factorize(subset(Mdm, lex.Cst == "DM")),
+ tfd = c(seq( 0, 2/12, 1/48),
+ seq(3/12, 100, 1/12)))
> summary (Sdm)
Transitions:
To
From DM Dead O0AD Ins Records: Events: Risk time: Persons:
DM 295344 925 2044 234 298547 3203 21817.05 5978

CODE EXPLAINED: We subset the Mdm to the follow-up in state DM in order to have a proper competing
risks set-up. We need to use the factorize in order to restrict the levels of lex.Cst and lex.Xst to
those actually present in data set. The summary (Sdm) shows that this cuts the number of persons and
risk time substantially—compare to summary (Mdm), or see figure ?7,

In order to be able to model the effect of duration at early durations we split the early follow-up finely
along the diabetes duration (tfd, time from diagnosis).

We can illustrate the follow-up in the full data set and in the data set restricted to those at risk in the DM
state:

> par(mfrow = c(1,2))
> boxes (Mdm,

+ boxpos = list(x = c(18, 50, 18, 82, 82),
+ y = c(85, 50, 15, 85, 15)),
+ scale.R = 100,

+ show.BE = TRUE)

> boxes (Sdm,

+ boxpos = list(x = c(18, 50, 18, 82),

+ y = c(85, 50, 15, 85)),

+ scale.R = 100,

+ show.BE = 'nz' )

The following is concerned with analysis of the follow-up shown in the right panel of figure 6.1.

6.2 Models for rates

Now that we have set up a dataset with three competing events, we can model the cause-specific rates
separately by time from diagnosis as the only underlying time scale. Note that we only need to specify the
to= argument because there is only one possible from for each to (incidentally the same for all to states),
namely DM.

We can use either gam models with penalized smoothing, where we only set an initial upper bound for
the degrees of effective degrees of freedom used:

> mD <- gam.Lexis(Sdm, ~ s(tfd, k = 6), to = 'Dead')
> m0 <- gam.Lexis(Sdm, ~ s(tfd, k = 6), to = '0AD' )
> mI <- gam.Lexis(Sdm, ~ s(tfd, k = 6), to = 'Ins' )

It turns out that this automated approach also requires some grooming in order to render credible
estimates, so in this context we refrain from that. The code is given above, but not run; it is left as an
exercise to the reader to try out this set of model, varying the k to see what happens.

A bit more brutal approach is to use natural spline (restricted cubic splines) with a predefined set of
knots — here we explicitly use 7 knots corresponding to 7 degrees for freedom for the tfd term—that is
each model uses a total of 7 parameters

> kn <- ¢(0,0.2,0.5,1,3,7,10)
> mD <- glm.Lexis(Sdm, ~ Ns(tfd, knots = kn), to = 'Dead')
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DM 2131 Ins DM 213‘1 ns
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Figure 6.1: The transitions in the multistate model with and without follow-up extended
after beginning of first drug exposure. Follow-up begins two months after the recorded date of
diagnosis of diabetes. Rates in brackets are per 100 PY. In the rightmost panel only persons
in the DM state contribute person-years—all follow-up after exit from the DM state is discarded;
a characteristic of a competing risks situation. ../graph/crisk-boxes54

stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition:
DM->Dead

> m0 <- glm.Lexis(Sdm, ~ Ns(tfd, knots = kn), to = 'OAD' )

stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition:
DM->0AD

> mI <- glm.Lexis(Sdm, ~ Ns(tfd, knots = kn), to = 'Ins' )

stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition:
DM->Ins

With these models fitted we can compute the rates, cumulative rates and risks and sojourn times in
different states using the usual formulae—basically integrating the rates. First we compute the rates in
intervals of length 1/100 years. Note that these models only have time since diagnosis as covariates, so in
that sense they are similar to Nelson-Aalen estimates, albeit in a biologically more meaningful guise, and
they provide estimates on the rate scale, not on the scale of the cumulative rates.

The points where we compute the predicted rates are midpoints of intervals of length 1/100 year. These
points are unrelated to the follow-up intervals in which we split the data for analysis—those were 1 month
intervals (1/12 year), here we use 1/100 year (about 3.7 days) throughout:

> int <- 1/100

> nd <- data.frame(tfd = seq(0, 14, int))

> rownames (nd) <- nd$tfd

> str(nd)

'data.frame': 1401 obs. of 1 variable:

$ tfd: num O 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...

With this we can show the rates as a function of the time since diagnosis:

> par(mfrow = c(1,2))

> matshade (nd$tfd, cbind(ci.pred(mD, nd),

+ ci.pred(mI, nd),

+ ci.pred(m0, nd))*1000,
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ylim = ¢(1,300), yaxt = "n", xlim = c(0,10),
ylab = "Rates per 1000 PY",
xlab = "Time since DM diagnosis (years)",

col = c("black","red","blue"), log = "y", lwd = 3,
plot = TRUE)
axis(side = 2, at = 1ll<-outer(c(1,2,5),-2:3,function(x,y) x*107y),
labels = formatC(1l,digits = 4), las = 1)
axis(side = 2, at = 1ll<-outer(c(1.5,2:9),-2:3,function(x,y) x*107y),
labels = NA, tcl = -0.3)
text (0, 2.5%0.7°c(1,2,0),
c(”Dead”, "Tns n’ IIUADH)’
col = c("black","red","blue'"), adj = 0)
matshade (nd$tfd, cbind(ci.pred(mD, nd),
ci.pred(mI, nd),
ci.pred(m0, nd))*1000,

ylim = ¢(0,300), yaxs = "i", xlim = c(0,10),
ylab = "Rates per 1000 PY",
xlab = "Time since DM diagnosis (years)",

col = c("black","red","blue"), 1lwd = 3, plot = TRUE)
axis(side = 2, at = 1:9 * 50,
labels = NA, tcl = -0.3)
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Figure 6.2: Fstimated rates of OAD, Ins and Dead from the DM state. FEstimales are from glm
models fitted to data split in 1 month intervals (1/12 year, that is), using natural splines.

The y-axis is linear in the rates and starts exactly at 0, so allowing visualization of the
integrals as areas under the curves. ../graph/crisk-rates

Note that the graphs in figures ?? (logarithmic y-scale) and 6.2 are not normally shown in analyses of
competing risks; the competing cause-specific rates are hardly ever shown. I suspect that this is largely
because they are often modeled by a Cox model and so are buried in the model.
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6.3 Cumulative rates and risks

For the calculation of the cumulative rates and state probabilities, we need just the rates without Cls:

> # utility to compute midpoints in a vector x

> mp <- function(x) x[-1] - diff(x) / 2

> # rates at midpoints

> 1D <- mp(ci.pred(mD, nd)[,1])

> 1I <- mp(ci.pred(mI, nd)[,1])

> 10 <- mp(ci.pred(m0, nd)[,1])

> # cumulative rates at right border of the intervals

> LD <- cumsum(1D) * int

> LI <- cumsum(1I) * int

> LO <- cumsum(10) * int

> # but when integrating to get the cumulative risks we use the average
> # of the survival function at the two endpoints (adding 1 as the first)
> Sv <- ¢(1, exp(- LD - LI - LO))

> rD <- ¢(0, cumsum(1lD * mp(Sv)) * int)

> rl <- c(0, cumsum(1I * mp(Sv)) * int)

> r0 <- c(0, cumsum(10 * mp(Sv)) * int)

Now we have the cumulative risks for the three causes and the survival, computed at the end of each of the
intervals, at any time point the sum of the 3 cumulative risks and the survival should be 1:

> summary(Sv + rD + rI +r0)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1 1 1 1 1 1

> oo <- options(digits = 20)
> cbind (summary(Sv + rD + rI + r0))

[,1]
Min. 1.0000000000000000000
1st Qu. 1.0000003131293013769
Median 1.0000003337919416424
Mean 1.0000003247574191789
3rd Qu. 1.0000003432689923422
Max. 1.0000003488362141368

> options(oo0)

We can then plot the 3 cumulative risk functions together:

> zz <- mat2pol(cbind(rD, rI, r0, Sv), x = nd$tfd,

+ x1lim = ¢(0,10), xaxs = "i", yaxs = "i", las = 1,
+ xlab = "Time since DM diagnosis (years)",

+ ylab = "Probability",

+ col = c(gray(0.3),"red", "blue", "forestgreen"))

> mm <- t(apply(zz, 1, mp))
> text (9, mm[900,], c("Dead","Ins","OAD","DM"), col = "white")
> box(col = "white'",lwd = 3)

6.4 Confidence intervals for cumulative risks

We want confidence intervals for each of the 4 cumulative risks, but we may also be interested in confidence
intervals for sums of any subset of the cumulative risks, corresponding to the borders between the colors in
figure 6.3. If we only had two competing risks (and hence three states) the latter would not be an issue,
because the sum of any two cumulative risks will be 1 minus the cumulative risk of the remainder, so we
could get away with the confidence intervals for the single cumulative risks. This is the reason we have
chosen an example with 3 competing risks and not just 2; we then have 4 probabilities to sum in different
order.

A short look at the formulae for cumulative risks will reveal that analytic approximation to the standard
error of these probabilities (or some transform of them) is not really a viable way to go. Particularly if we
also want confidence intervals of sums of the state probabilities as those shown in stacked plots.
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Figure 6.3: Probabilities of being in the 4 different states as a function of time since diag-
nosis. Note that OAD means that OAD was initiated first, and similarly for Ins. We are not
concerned about what occur after these events. Dead means dead without being on any drug.
../graph/crisk-stack

So in practice, if we want confidence intervals not only for the state probabilities, but also for any sum
of subsets of them we would want a large number of simulated copies of the cumulative risks, each copy of
the same structure as the one we just extracted from the model.

Moreover, we might also want confidence intervals for sojourn times (i.e. time spent) in each state up to
a given time, which would come almost for free from the simulation approach.

This means that we must devise a method to make predictions from the estimated model, but where we
instead of the estimated model parameters use a sample from the posterior distribution of the estimated
parameters. The posterior distribution of the parameters is taken to be multivariate normal with mean
equal to the vector of parameter estimates and variance-covariance matrix equal to the estimated
variance-covariance matrix of the parameters (the Hessian).

The simulation is taking place at the parameter level and the transformation to survival and cumulative
risks is simply a function applied to every simulated set of parameters.

This simulation scheme is sometimes called the parametric bootstrap.

6.5 Joint models for several transitions

We have implicitly been assuming that the transition rates are modeled separately. If some transitions are
modeled jointly—for example assuming that the rates of 0AD and Ins are proportional as functions of time
since entry, using one model—we are in trouble, because we then need one sample from the posterior
generating two predictions, one for each of the transitions modeled together. Moreover the model will have
to be a model fitted to a stack.Lexis object (see p. 22), so a little more complicated to work with.

A simple way to program this would be to reset the seed to the same value before simulating with
different values of nd, this is what is intended to be implemented, but is not yet. This is mainly the
complication of having different prediction frames for different risks in this case.

However, this is not a very urgent need, since the situation where you want common parameters for
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different rates out of a common state is quite rare. Try to come up with an example like: We assumed that
for persons in state A the effect of covariate Z was the same for the rates of B and C.

6.6 Simulation based confidence intervals

...has been implemented in the function ci.Crisk (confidence intervals for Cumulative risks) in the Epi
package. The confidence intervals for the cause-specific rates are easily derived from the models using
ci.pred, but confidence intervals for the cumulative risks and the sojourn times are from a practical point
of view analytically intractable, hence a function to do this by simulation (parametric bootstrap).

We can now run the function using the model objects for the three competing events, using a common
prediction data frame, nd for the rates:

> system.time (

+ res <- ci.Crisk(1list(0OAD = m0,

+ Ins = mI,

+ Dead = mD),

+ nd = data.frame(tfd = seq(0, 10, 0.01)),
+ nB = 500,

+ perm = 4:1))

NOTE: Times are assumed to be in the column tfd at equal distances of 0.01
user system elapsed
11.39 0.35 11.75

> str(res)

List of 4
$ Crisk: num [1:1001, 1:4, 1:3] 1 0.992 0.984 0.977 0.97 ...

..- attr(*, "dimnames")=List of 3
..$ tfd : chr [1:1001] "O" "0.01" "0.02" "0.03"
..$ cause: chr [1:4] "Surv" "QAD" "Ins" '"Dead"

.. ..8 : chr [1:3] "50%" "2.5%" "97.5%"

$ Srisk: num [1:1001, 1:3, 1:3] 0 0.000609 0.001211 0.001803 0.002389 ...

..- attr(*, "dimnames")=List of 3
..$ tfd : chr [1:1001] "O" "0.01" "0.02" "0.03" ...
..$ cause: chr [1:3] "Dead" "Dead+Ins" '"Dead+Ins+0AD"

.. ..3 : chr [1:3] "50%" "2.5%" "97.5%"

$ Stime: num [1:1001, 1:4, 1:3] 0 0.00996 0.01983 0.02964 0.03937 ...

..— attr(*, "dimnames")=List of 3
..$ tfd : chr [1:1001] "O"™ "0.01"™ "0.02" "0.03"
..$ cause: chr [1:4] "Surv" "OAD" "Ins" "Dead"

.08 : chr [1:3] "50%" "2.5%" "97.5%"

$ time : num [1:1001] 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...
- attr(*x, "int")= num 0.01

CODE EXPLAINED: ci.Crisk requires as input a list of fitted models for the cause-specific rates (first
argument), and a data frame of prediction points which will be used for all models in the list. nB gives the
number of simulated replicates of the rates.

The result is a list with 4 elements, three 3-way arrays and a vector of times associate with each row of
the matrices.

One of slots in the returned object will refer to sums of probabilities of causes (stacked probabilities),
the perm argument governs in what order the sum is formed. perm must have one more component than
the list in the first argument; the first will refer to the survival. Thus in this case we will have the
components Dead, Dead+Ins and Dead+Ins+0AD.

As we see, the returned object (res) is a list of length 4, the first three elements are 3-way arrays, and the
last a vector of times. The three first components of res are:

e Crisk Cumulative risks for each state
e Srisk Stacked cumulative risks across states

e Stime Sojourn time for each state, truncated at each point of the time dimension, hence the first
slice in the time-dimension is uniformly 0.
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The first dimension of each is time starting with 0, and named corresponding to endpoints of intervals of
length int. The second dimension is states (or combinations thereof). The last dimension of the arrays is
the type of statistic; 50% the median of the samples, and the confidence intervals as defined by the the
alpha argument to ci.Crisk.

The argument perm governs in which order the state probabilities are stacked in the Srisk element of
the returned list, the default is the Surv (survival, probability of being in initial state) followed by states in
the order given in the list of models in the first argument to ci.Crisk.

6.6.1 Keeping the bootstrap samples

If we want the bootstrap samples for other calculations we can ask the function to return the bootstrap
samples of the rates by using the argument sim.res=’rates’ (defaults to ’none’):

> # prediction data frame
> prfr <- data.frame(tfd = seq(0.01, 10, 0.01) - 0.01/2)
> system.time(

+ rsm <- ci.Crisk(1ist(0OAD = m0O,
+ Ins = mI,
+ Dead = mD),
+ nd = prfr,
+ nB = 2000,
+ sim.res = 'rates'))

NOTE: Times are assumed to be in the column tfd at equal distances of 0.01
user system elapsed
0.31 0.00 0.31

> str(rsm)

num [1:1000, 1:3, 1:2000] 0.603 0.563 0.525 0.49 0.458 ...
- attr(*, "dimnames")=List of 3
..$ time: chr [1:1000] "0.005" "0.015" "0.025" "0.035"
..$ mod : chr [1:3] "OAD" "Ins" '"Dead"
..$ sim : chr [1:2000] '"1m" mQm n3n ngn
- attr(*, "int")= num 0.01

- attr(*, "time")= num [1:1000] 0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 ...

These are 2000 (parametric) bootstrap samples of the rates evaluated at the 1000 midpoints of intervals of
length 1/100 year between 0 and 10 years of diabetes duration.
Alternatively we can get the bootstrap samples of the cumulative risks by setting sim.res=’crisk’:

> system.time (

+ csm <- ci.Crisk(1ist(0OAD = m0O,
+ Ins = mI,
+ Dead = mD),
+ nd = prfr,
+ nB = 2000,
+ sim.res = 'crisk'))

NOTE: Times are assumed to be in the column tfd at equal distances of 0.01
user system elapsed
21.47 0.28 21.76

> str(csm)

num [1:1000, 1:4, 1:2000] 1 0.991 0.983 0.976 0.969 ...
- attr(*, "dimnames")=List of 3

..$ tfd : chr [1:1000] "0.005" "0.015" "0.025" "0.035"
..$ cause: chr [1:4] "Surv" "QAD" "Ins" "Dead"

..$ sim : chr [1:2000] "1 mom n3n ngn

- attr(*, "int")= num 0.01

This is the bootstrap samples of cumulative risks evaluated at the 1001 endpoints of the 1000 intervals, and
also includes the survival probability in the first slot of the 1%* dimension of rsm.
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6.6.2 Rates

In figure 6.2 we showed the rates with confidence intervals from the model. But in rsm we have 2000
(parametric) bootstrap samples of the occurrence rates, so we can derive the bootstrap medians and the
bootstrap c.i. We use the function Epi:::mnqt to compute the model estimate and the mean, median and
quantiles of the simulated values.

> Epi:::mnqt
function (x, alpha = 0.05)
{
c(quantile(x, probs = c(0.5, alpha/2, 1 - alpha/2), na.rm = TRUE))

<bytecode: 0x000001fe50cObef0>
<environment: namespace:Epi>

> Brates <- aperm(apply(rsm, 1:2, Epi:::mnqt), c(2,3,1))
> str(Brates)
num [1:1000, 1:3, 1:3] 0.596 0.553 0.513 0.476 0.442 ...
- attr(*, "dimnames")=List of 3

..$ time: chr [1:1000] "0.005" "0.015" "0.025" "0.035"

..$ mod : chr [1:3] "OAD" "Ins" "Dead"
.8 : chr [1:3] "50%" "2.5%" "97.5%"

Then we can plot the bootstrap estimates on top of the estimates based on the normal approximation to
the distribution of the parameters. They are (not surprisingly) in close agreement since they are both
based on an assumption of normality of the parameters on the log-rate scale:

matshade (nd$tfd, cbind(ci.pred(mD, nd),
ci.pred(mI, nd),
ci.pred(m0, nd))*1000,
ylim = ¢(1,500), yaxt = '"n",
ylab = "Rates per 1000 PY",

xlab = "Time since DM diagnosis (years)",
col = c("black","red","blue"), log = "y", lwd = 3, plot = TRUE)
matlines (as.numeric(dimnames (Brates)[[1]]),
cbind(Brates/[, "Dead",],
Brates[,"Ins" ,],
Brates[,"0AD" ,])*1000,
col = c("white","black","black"), 1ty = 3, lwd=c(3,1,1))
axis(side = 2, at = 11 <- outer(c(1,2,5), -2:3, function(x,y) x * 107y),
labels = formatC(1l,digits = 4), las = 1)
axis(side = 2, at = 11 <- outer(c(1.5,2:9),-2:3, function(x,y) x * 107y),
labels = NA, tcl = -0.3)
text (0, 2.5%0.7°c(1,2,0),
c(”Dead”, "Tns n, HDADH)’
col = c("black","red","blue'"), adj = 0)

++VHEVHFVE+FEVFF A+ YV

6.6.3 Cumulative risks

In the Crisk component of res we have the cumulative risks as functions of of time, with bootstrap
confidence intervals, so we can immediately plot the three cumulative risks:

> matshade (res$time,

+ cbind(res$Crisk[, "Dead",],

+ res$Crisk[,"0AD" ,],

+ res$Crisk[,"Ins" ,]1), plot = TRUE,
+ xlim = c(0,10), xaxs = "i", yaxs = "i", las = 1,
+ xlab = "Time since DM diagnosis (years)",
+ ylab = "Cumulative probability",

+ col = c("black",'"blue","red"))

> text(8, 0.3 + ¢(1,2,0)/25,

+ c(”Dead”,”DAD”,"Ins”),

+ col = c("black","blue","red"), adj = 0)
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Figure 6.4: Estimated rates (log-scale) from the DM state. FEstimates are from glm models
with natural splines fitted to data split in 1 month intervals (1/12 year, that is). The white
dotted curves are the bootstrap medians, black dotted curves are the bootstrap 95% c.i.s.

../graph/crisk-rates-ci

6.6.4 Stacked cumulative risks

With the single cumulative risks we have a confidence interval for each cumulative risk, but if we want to
show the stacked probabilities we must deliver the confidence intervals for the relevant sum of cumulative
risks (state probabilities). These are in the Srisk component of res. We can use these to show the stacked
cumulative probabilities with confidence intervals:

zz <- mat2pol (res$Crisk[,c("Dead","Ins","0AD","Surv"),"50%"],
X = res$time,
xlim = ¢(0,10), xaxs = "i", yaxs = "i", las = 1,
xlab = "Time since DM diagnosis (years)",
ylab = "Probability",
col = c("black","red","blue","forestgreen") )

mm <- t(apply(zz, 1, mp))
text (9, mm["9",], c("Dead","Ins","OAD","DM"), col = "white" )
matshade (res$time,
cbind (res$Srisk[, "Dead",],
res$Sriskl[, "Dead+Ins",],
res$Sriskl[, "Dead+Ins+0AD",]),
col = 'transparent', col.shade = "white", alpha = 0.4)

+ 4+ ++VVVH++++V

cobE EXPLAINED: The stacked probabilities are plotted as stacked polygons using mat2pol (matrix to
polygon), where the input required is the single components from the Crisk component. Then we can
add the confidence intervals by using matshade with the components of the Srisk component to add
white semi-transparent confidence intervals, while asking for a fully transparent curve.
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Figure 6.5: Cumulative risks for the three types of events, with 95% bootstrap-based confidence
intervals as shades. ../graph/crisk-crates

6.6.5 Sojourn times

From the Stime component of the res we can derive the estimated time spent in each state during the
first, say, 1, 2, 5 or 10 years:

> ftable(round(res$Stime[paste(c(1,3,5,10)),,1, 2), row.vars = 2)

tfd 1 3 5 10
50% 2.5% 97.5%, 50% 2.5% 97.5% 50% 2.5% 97.5% 50% 2.5% 97.5%
cause
Surv 0.87 0.86 0.87 2.28 2.25 2.31 3.39 3.33 3.44 5.29 5.17 5.40
0AD 0.09 0.08 0.09 0.48 0.45 0.50 1.06 1.02 1.11 3.04 2.93 3.16
Ins 0.02 0.02 0.02 0.08 0.07 0.09 0.15 0.13 0.17 0.35 0.30 0.40
Dead 0.02 0.02 0.03 0.16 0.15 0.18 0.40 0.37 0.43 1.33 1.24 1.41

CODE EXPLAINED: The first dimension of the component Stime is the time, and the names of this are the
endpoints of the intervals in the time scale (time since diagnosis). Thus if want the ones referring to
specific times, we must supply these as a character vector, if we index by a numerical vector we would be
referring to the sequence numbers. Hence the paste().

So we see that the expected life lived without pharmaceutical treatment during the first 10 years after DM
diagnosis is 5.29 years with a 95% CI of (5.17; 5.4) and during the first 5 years 3.39 (3.33; 3.44) The
quantity OAD is the years spent after OAD medication, regardless of subsequent insulin medication or
death, and similarly for Ins and Dead.

6.7 Aalen-Johansen approach

Another estimator of the cumulative risk is the Aalen-Johansen estimator, which is a so-called
non-parametric estimator of the cumulative risks or more precisely the state probabilities.
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Figure 6.6: Probabilities of being in the 4 different states as a function of time since diag-
nosis. Note that 04D means that OAD was initiated first, and similarly for Ins. We are not
concerned about what occurs after these events. Dead means dead without being on any drug.
The white shadings around the borders between colored areas represent the 95% confidence
intervals for the (sum of) probabilities. ../graph/crisk-stack-ci

The following is based on the dataset which has one record per person, where the outcome is defined by
a factor; precisely what is present in the Lexis object Rdm, but we must first subset it to those at risk in
the state DM:

> library(survival)
> Rdm <- factorize(subset(Mdm, lex.Cst == "DM"))

In order to use the multistate machinery from the survival package, the initial state must be the first of
the states in the factor lex.Xst—this can be checked by levels:

> levels (Rdm)

[1] ||DMI| llDeadll HOADII HInsll
> aaj <- survfit(Surv(tfd, tfd + lex.dur, lex.Xst) ~ 1,
+ id = lex.id,
+ data = Rdm)
> names (aaj)
[1] "n" "time" "n.risk" "n.event" "n.censor" "pstate"
[7] "poO" "cumhaz" "std.err" "sp0" "logse" "transitions"
[13] "lower" "upper" "conf.type" "conf.int" "states" "type"
[19] "call"

In the Epi package is a wrapper for survfit that uses the features of a Lexis object, so that you only have
to write:

> aaj <- AaJ.Lexis(Rdm, ~ 1, "tfd")
NOTE: Timescale is tfd
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There are 4 columns in each of slots in pstate, lower and upper, representing the states in the order of
the factor lex.Xst, also available in the slot states. Here we only want the 3 last from each, namely the
ones referring to the cumulative risks of Dead, 0AD and Ins. We want estimate, lower, upper for each in
that order:

> aaj$states

[1] ||DM|| IIDeadll "Insll HOAD"

> (wh <- c(2 +0:2 %4, 3+ 0:2 %4, 4+ 0:2 % 4))
[1] 2 610 3 7 11 4 8 12

> aajCr <- with(aaj, cbind(pstate, lower, upper)[,wh])
> colnames (aajCr) <- rep(c("Est","lo","up"), 3)
> colnames (aajCr)[c(1,4,7)] <- aaj$states[-1]
> round (head(aajCr), 4)

Dead lo up Ins lo up 0AD lo up
[1,]1 0e+00 NA NA 0.0003 0.0001 0.0013 0.0018 0.0010 0.0033
[2,] 0e+00 NA NA 0.0007 0.0003 0.0018 0.0030 0.0019 0.0048
[3,] 3e-04 1e-04 0.0013 0.0010 0.0005 0.0022 0.0059 0.0042 0.0081
[4,] 3e-04 1e-04 0.0013 0.0015 0.0008 0.0029 0.0074 0.0055 0.0099
[5,] 3e-04 1e-04 0.0013 0.0023 0.0014 0.0040 0.0082 0.0062 0.0108
[6,] 3e-04 1e-04 0.0013 0.0030 0.0019 0.0048 0.0090 0.0069 0.0118

coDE EXPLAINED: Each of the elements pstate, lower and upper have 4 columns corresponding the the
elements in states, but we only want columns 2, 3 and 4 from each. wh gives the columns in the object
we get from cbinding the elements, in the desired order.

Finally we provide column names for better readability.
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Figure 6.7: Cumulative risks for the three types of events based on parametric models,
compared to the Nelson-Aalen estimator 95% bootstrap-based confidence intervals shown as
shades, Aalen-Johansen estimator in green; we see that the two approaches give very similar
results. ../graph/crisk-cratesx
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> matshade (res$time,

+ cbind(res$Criskl[, "Dead",],

+ res$Crisk/[,"0AD" ,],

+ res$Crisk[,"Ins" ,]), plot = TRUE,

+ xlim = ¢(0,10), xaxs = "i", yaxs = "i", las = 1,
+ xlab = "Time since DM diagnosis (years)",

+ ylab = "Cumulative probability',

+ col = c("black",'"blue","red"))

> matshade(aaj$time, aajCr, col = "forestgreen", 1ty = 1, alpha = 0.1)
> text(8, 0.3 + ¢(1,2,0)/25,

+ c(”Dead”,”Ins”,”UAD”),

+ col = c("black","blue","red"), adj = 0)

From figure 6.7 we see that the general pattern of cumulative risks is the same as from the parametric
model, but with a tendency of estimating the cumulative risks of Ins and 0AD a bit higher than the
parametric model. This is a consequence of early events that are captured differently in the parametric
model, even if we excluded the first two months of observation.

6.8 Interpretation

In the example here we used only time since diagnosis as explanatory variable for the rates. But there is
presumably a substantial effect of age and calendar time as well. So the results shown here are for a
diabetes population with the age-distribution of the Danish, observed over a calendar time as the Danish.
So not necessarily of major interest outside of Denmark.

But we could get results that were more generalizable if we included effects of, say, sex, age and calendar
time in models for the rates too. This could be done with the parametric models as well as with
Cox-models for the cause-specific rates.

That would provide estimates of the multiplicative effects of the covariates on the rates, but only the
parametric approach would make it possible to show the cumulative risks and sojourn times for select
values of the covariates—the only thing required would be a suitably constructed prediction data frame as
nd argument to ci.Crisk.

...now input from simLex
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Chapter 7

Estimation from multistate models

If we set up a multistate model for the follow-up of a cohort of persons, and estimate rate-models for all
transitions, we will in principle have a complete probabilistic description of the model. This means that for
any person (i.e. any set of initial covariate values) in any state at any time we can compute the person’s
probability of being in any state at any future time.

Because it is implicit that any covariate value should be known at any time in the future, this excludes
models where transition rates depend on clinical measurements obtained during follow-up. In practice this
means that only initial clinical measurements can be accommodated. This does not apply to future state
occupancy, because the state occupancy is a part of the probability model.

Unlike the situation for simple survival and competing risks, there is no practically tractable expression
for the state probabilities in a general multistate model for a given person at a given time in a given state.
Let alone for sojourn times and other measures derived from the state probabilities.

State probabilities can instead be estimated as empirical fractions of persons in each state in a simulated
data set based on the model. The drawback is that if we estimate the state probabilities from a simulated
dataset there is no simple way of getting a handle on the uncertainty of the estimates as for example
confidence intervals.

Generating simulated datasets of persons from a multistate model is often termed micro-simulation; this
is because we are simulating the history of individuals and not of populations.

7.1 Simulated multistate objects

When a multistate model has been set up (states and transitions) and models for all transition rates have
been estimated, we have a complete statistical model for the multistate data.

This means that we can generate data in the form of (events, time) from the multistate model, that is
state-histories for a given set of persons beginning follow-up in the defined states.

The requirements for this endeavor are:

e A data set with initial values of state, time scales and other covariates for a set of persons (a cohort).

e A statistical model for each of the possible transitions between states. This is basically a means to
produce transition rates at any future time for all possible transitions out of each state, based on the
status at entry to the state.

e Technical parameters: the position of time points for evaluation of transition rates and the length of
simulation time before censoring.

The (life-)course of each of the initial persons through the states can then be simulated. The simulated
data will be in the same form as the original multistate data; the simLexis function will produce a Lexis
object—a simulated follow-up of the initial cohort.

From the simulated data we can then derive the desired quantities such as state probabilities, expected
sojourn times in states etc.
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7.1.1 Simulation machinery

Inside the simLexis the simulation works as follows. Suppose we have a person in some current state
(either the initial state or newly arrived from a previous one) and that we want to simulate a transition
time and transition type out of the current state.

If there are a number of possible transitions out of the current state, with transition rates
Ai(t),i=1,2,... we simulate a transition time from each, pretending that the specific rate is the rate of
the only possible exit from the current state as follows.

The survival function in this case is S;(t) = e () where A;(t) = fg A(s) ds. Some call the function
S;(t) the net survival, but it really does not refer to any probability of this world.

We then choose independent random uniform variates u; € [0, 1], and solve numerically for ¢;:

Si(ti) =u & —log(u;) = A(t;)

In practice we compute A;(t) at a number of times by numerical integration of the predicted rates, \; and
then find ¢; by linear interpolation, by finding two successive t-values that have A-values on either side of
—log(u).

This way we get a transition time ¢; for each of the states reachable from the current state. We then
pick the smallest of these times and the corresponding state as the time and state for transition out of the
current state. If there is only one possible transition out of the current state we only have one time and
one state to choose between, so much simpler.

This is then repeated in the next state till the person reaches an absorbing state or exceeds the stipulated
censoring time. The result is a dataset that resembles follow-up of the persons through the possible states.

7.1.1.1 Alternative simulation scheme

A time and type of transition can also be simulated by first simulating the transition time, ¢, using the sum
of the intensities, >_; \i(t), and hence survival function S;(t) = e~ 2 4:(). Subsequently we then simulate
the type of event at ¢ as a random draw from the multinomial distribution with probabilities
pi = Xi(t)/ 225 A5(1).

It can be shown that this produces the same joint distribution of events and event times as the one used
in simLexis described above.

7.2 Using simulated multistate data

Once a complete model (states, transitions and models for the transitions) has been set up and a suitably
large cohort of persons have been simulated, we can use the simulated data to derive measures of interest:

e State probabilities can be derived as the fraction of the initial cohort in each state at the time points
of interest

e Sojourn times (in a given set of states between specified time points) can be derived by aggregating
these among the simulated persons

e Probability of ever visiting a given state can be derived by simply enumerating the fraction ever
visiting the state.

Trivial as they may sound, these operations on the simulated cohort are not simple, so special functions are
needed to perform them.

But note that the results depend both on the multistate model and the chosen initial population; the
derived statements will refer to a population of a particular composition (for example a population of
identical individuals).

7.3 A worked example of using simlLexis

7.3.1 Lexis object for the steno2 data frame

The steno2 dataset is a simulated dataset with the same structure and characteristics as the original data
from the 20 year follow-up; it is described a bit more thorough in chapter 4, 77, p. 46.

simLex



Estimation from multistate models 7.3 A worked example of using simLexis 109

First we convert dates to cal.yr to get a natural unit of time (years—365.25 days, that is). Because of
the way data were anonymized, the doEnd is not perfectly aligned to doDth, which we remedy on the fly by
resetting doEnd if a doDth is known. Also, we make Conv (conventional treatment) the first level of the
allocation factor; this will give estimates of intervention effects directly in the standard parametrization:

> data(steno2)
> steno2 <- cal.yr(steno2) 7>}

+ mutate (doEnd = ifelse(!is.na(doDth),

+ doDth,

+ doEnd),

+ allo = relevel(allo, 2))

> str(steno2)

'data.frame': 160 obs. of 14 variables:

$ id :num 1 23456789 10 ...

$ allo : Factor w/ 2 levels "Conv","Int": 2 2 11111222 ...
$ sex : Factor w/ 2 levels "F","M": 2222221222 ...
$ baseCVD : num 0000010000 ...

$ deathCVD: num 0 000100010 ...

$ doBth : 'cal.yr' num 1932 1947 1943 1945 1936 ...

$ doDM : 'cal.yr' num 1991 1982 1983 1977 1986 ...

$ doBase : 'cal.yr' num 1993 1993 1993 1993 1993 ...

$ doCVD1 : 'cal.yr' num 2014 2009 2002 1995 1994 ...

$ doCVD2 : 'cal.yr' num NA 2009 NA 1997 1995 ...

$ doCVD3 : 'cal.yr' num NA 2010 NA 2003 1998 ...

$ doESRD : 'cal.yr' num NalN NaN NaN NaN 1998 ...

$ doEnd : num 2015 2015 2002 2003 1998 ...

$ doDth : 'cal.yr' num NA NA 2002 2003 1998 ...

We then define a Lexis data frame for the entire follow-up time for each person; from entry (doBase, date
of baseline) to exit, doEnd. Note that we name the initial state Mic(roalbuminuria), because all patients in
the Steno2 study had this status at entry—it was one of the inclusion criteria:

> L2 <- Lexis(entry = list(per = doBase,

+ age = doBase - doBth,

+ tfi = 0),

+ exit = list(per = doEnd),

+ exit.status = factor(deathCVD + !is.na(doDth),

+ labels = c("Mic","D(oth)","D(CVD)")),
+ id = id,

+ data = steno2)

NOTE: entry.status has been set to "Mic" for all.

CODE EXPLAINED: We set up a Lexis object with 3 time scales: calendar time, per; current age age and
time from inclusion, tfi.

The coding of exit.status is as follows: deathCVD is 1 if the person died from cardiovascular disease,
otherwise 0. Therefore, the expression deathCVD + !is.na(doDth) is 04+ 0 = 0 if no death occurs,
0+ 1=1if a non-CVD death occur and 1+ 1 =2 if a CVD death occur at the end of the person’s
follow-up. *

> summary (L2)

Transitions:
To
From Mic D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 67 55 38 160 93 2420.91 160

In this set-up we can study the CVD and the non-CVD mortality rates, a classical competing risks
problem, but we also want to see how the mortality rates depend on albuminuria status (lex.Cst) and
treatment allocation (allo).

In order to allocate follow-up (person-time and events) to current albuminuria status we need to know
when persons change status; this is recorded in the data frame st2alb. We will cut the follow-up at each

simLex



110 7.3 A worked example of using simLexis PMM

date of albuminuria measurement allowing the patients to change between states Normoalbuminuria,
Microalbuminuria and Macroalbuminuria at each of these dates, possibly several times per person.

To this we end use the function rcutLexis (recurrent cuts); this function does not keep track of the
state-history, but only records the current state. It requires a data frame of transitions with columns
lex.id, cut (time of transition) and new.state (the state that the transition is to)—see 7rcutLexis.

We change the scale of the date of transition in st2alb to year by cal.yr (to align with the per
variable in L2), and in order to comply with the requirements of rcutLexis we rename the id variable id
to lex.id, the date variable doTr to cut and the state variable state to new.state:

> data(st2alb)
> cut2 <- rename(cal.yr(st2alb),

+ lex.id = id,

+ cut = doTr,

+ new.state = state)

> str(cut2)

'data.frame': 563 obs. of 3 variables:

$ lex.id cnum 1111122222 ...

$ cut : 'cal.yr' num 1993 1995 2000 2002 2007 ...

$ new.state: Factor w/ 3 levels "Norm","Mic","Mac": 2 121212322 ...

An alternative way of achieving the same is to start with st2alb and then pipe it through cal.yr and
rename. This can be done in different styles according to your preferences:

> ( st2alb

+ 4> cal.yr

+ %>} rename(lex.id = id,

+ cut = doTr,

+ new.state = state)

+ ) -> cut2

> #

> # or:

> #

> cut2 <- st2alb >

+ cal.yr 1>%

+ rename(lex.id = id,

+ cut = doTr,

+ new.state = state)

> str(cut2)

'data.frame': 563 obs. of 3 variables:
$ lex.id c:num 1111122222 ...

$ cut : 'cal.yr' num 1993 1995 2000 2002 2007 ...

$ new.state: Factor w/ 3 levels "Norm","Mic","Mac": 2 1 21212322 ...

CcODE EXPLAINED: The initial data frame, st2alb is first processed by cal.yr which turns all date
variables to class cal.yr, that is measured in years (chunks of 365.25 days that is) since 1970-1-1. have
Then variables are renamed (newname — oldname) as needed for rcutLexis, and finally assign the result
to a data frame cut2. The layout of the code is the point here; the pipe operators (%>%) are placed at the
beginning of the lines, so that they are aligned and clearly indicates where each step starts. Finally, after
the data operations, the result (a data frame) is assigned to cut2. It is the initial opening bracket that
makes it possible to place the pipes at the beginning of each line; it ensures that the expression is not
complete till the last closing bracket. If you place the pipe operators at the end of the line you do not
have that worry, but they are less easily noted when reading the code.

We see that 156 persons have recorded transitions, mostly 3, 4 or 5 of them:

> with(cut2, addmargins(table(table(lex.id))))
1 2 3 4 5 Sum
4 25 40 46 41 156

We then cut at intermediate transition times (note that rcutLexis by default assumes that values in the

cut column refer to the first timescale, and the first of the timescales in L2 is per, so we need not use the
timescale argument:
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> L3 <- rcutLexis(L2, cut2)
> summary (L3)

Transitions:
To
From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 299 72 65 27 13 476 177 1383.56 160
Norm 31 90 5 14 7 147 57 608.75 69
Mac 20 3 44 14 18 99 55 428.60 64
Sum 350 165 114 55 38 722 289 2420.91 160

We note that there are transitions both ways between all three transient states Norm, Mic and Mac, which is
a bit illogical, since we have a natural ordering of states: Norm < Mic < Mac, so transitions from Norm to
Mac (and vice versa) should therefore go through Mic. In order to remedy this anomaly we find all
transitions Norm — Mac and provide a transition Norm — Mic in between. And of course similarly for
transitions Mac — Norm.

The relevant “jump” transitions are easily found (we keep all timescales to be able to use the print
method for Lexis objects):

> (jump <-

+ subset (L3, (lex.Cst == "Norm" & lex.Xst == "Mac") |

+ (lex.Xst == "Norm" & lex.Cst == "Mac"))[,

+ c("lex.id",timeScales(L3),"lex.dur","lex.Cst","lex.Xst")])

lex.id per age tfi lex.dur lex.Cst lex.Xst
70 1999.49 64.68 6.42 2.67 Mac Norm
86 2001.76 68.88 8.34 12.82 Norm Mac
130 2000.91 61.42 7.12 1.88 Mac Norm
131 1997.76 65.99 3.85 4.24 Norm Mac
136 1997.21 47.41 3.26 0.47 Mac Norm
136 1997.69 47.88 3.73 4.24 Norm Mac
171 1996.39 56.89 2.08 5.34 Norm Mac
175 2004.58 67.60 10.24 9.88 Norm Mac

CODE EXPLAINED: The jumps we are interested in are records representing time in Norm ending in a jump
to Mac, that is where lex.Cst is Norm and lex.Xst is Mac. Or vice versa.

What we need to do for each of these “jumps” is to provide an extra transition to Mic at a time during the
stay in either Norm or Mac, i.e. somewhere between per and per + lex.dur in these records; we choose a
random time in the middle 80% between the dates. What we are doing here is really single imputation; we
know there is a missing transition time to Mic and we just invent one and pretend it is a real data point.

> set.seed(1952)
> xcut <- select(transform(as.data.frame(jump),

+ cut = per + lex.dur * runif(per, 0.1, 0.9),
+ new.state = "Mic'),
+ c(lex.id, cut, new.state))
> xcut
lex.id cut new.state
291 70 2001.789 Mic
353 86 2012.232 Mic
506 130 2001.488 Mic
511 131 2001.032 Mic
525 136 1997.610 Mic
526 136 2000.780 Mic
654 171 1997.057 Mic
676 175 2013.472 Mic

Then we make extra cuts (transitions to Mic) at these dates using rcutLexis with xcut on the L3 object:

> L4 <- rcutLexis(L3, xcut)
> summary (L4)
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Transitions:
To
From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 312 72 65 30 14 493 181 1437.39 160
Norm 35 90 0 13 6 144 54 581.83 66
Mac 22 0 41 12 18 93 52 401.70 60
Sum 369 162 106 55 38 730 287 2420.91 160

We see that there are now no transitions directly between Norm and Mac in L4, so we can make a plot of the
transitions to consider:

> clr <- c("forestgreen", "orange", '"red", "blue'", gray(0.4))

> boxes (L4, boxpos = list(x = ¢(20,20,20,80,80),
+ = ¢(50,90,10,75,25)),
+ scale.R = 100,
+ show.BE = '"nz",
+ pos.arr = c(2,2,1,1,2,1,1,2,1,1) * 0.25,
+ font = 2,
+ col.bg = clr,
+ col.txt = c("white", "black'")[c(1,2,1,1,1)],
+ col.border = c(clr[1:3], rep("black", 2)),
+ Iwd = 2, cex = 1.1)
Norm
581.8 13
18 (2.2)
72 35
(5.0) (6.0)

22 65

65| |@.5)

Figure 7.1: Transitions between albuminuria and death states in the Steno2 study.
../graph/simlLex-boxL4
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CODE EXPLAINED: The function boxes.Lexis has a zillion arguments to regulate colors and other
appearance parameters of boxes and arrows.

The boxpos argument is a list with = and y coordinates (between 0 and 100) of the midpoints of the
state-boxes. scale.R scales the rates printed along the arrows, show.BE shows the number of persons
beginning, respectively ending their follow-up in each state. pos.arr sets the position of the arrow
annotation (as a fraction, measured from the base of the arrow); it is a vector referring to the internal
numbering of the arrows (see below), here the annotation between the transient states is at the middle,
and the annotation of transitions to the absorbing states at 0.25 from the origin.

font=2 sets the display font to 2 which is bold face.

The col. arguments set the background, text and border color of the boxes. Note the we initially put
the colors in a vector for later use. Finally, cex sets the font size relative to the font size of the current
driver—the default value for the argument cex is 1.4.

Here are two functions that show the sequence of the arrows used in the arguments to boxes that modifies
arrow appearances:

> arr.no <-
+ function(Lx) # arrow numbers
+ {
+ ttm <- t(tmat(Lx))
+ ano <- cumsum(!is.na(ttm)) * as.vector(!is.na(ttm))
+ ttm[,] <- ifelse(ano == 0, NA, ano)
+ t(ttm)
+ }
> arr.ft <-
+ function(Lx) # arrows From To
+ {
+ tt <- arr.no(Lx)
+ ft <- data.frame(expand.grid(from = rownames (tt),
+ to = colnames(tt)),
+ arrow = as.vector(tt))
+ ft <- subset(ft, !is.na(arrow))
+ ftlorder (ft$arrow),]
+ }
> arr.no(L4)
Mic Norm Mac D(oth) D(CVD)
Mic NA 1 2 3 4
Norm 5 NA NA 6 7
Mac 8 NA NA 9 10
D(oth) NA NA NA NA NA
D(CVD) NA NA NA NA NA
> arr.ft(L4)
from to arrow
6 Mic Norm 1
11 Mic Mac 2
16 Mic D(oth) 3
21 Mic D(CVD) 4
2 Norm Mic 5
17 Norm D(oth) 6
22 Norm D(CVD) 7
3 Mac Mic 8
18 Mac D(oth) 9
23 Mac D(CVD) 10

Within this multistate model we fit models for the mortality rates to see how they depend on the current
albuminuria state and treatment allocation, as well as models for the transition rates between the different
albuminuria states and assess how these depend on various other covariates.

First we look at how the mortality rates depends on albuminuria status. We will model the mortality

rates with parametric functions, so we must split the dataset along some time scale; we will use 3 month
intervals (they should be sufficiently small to accommodate an assumption of constant rates in each
interval):
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> 84 <- splitMulti(L4, tfi = seq(0, 25, 1/4))
> summary (S4)

Transitions:
To
From Mic Norm Mac D(oth) D(CVD) Records: Even
Mic 5986 72 65 30 14 6167
Norm 35 2418 0 13 6 2472
Mac 22 0 1644 12 18 1696
Sum 6043 2490 1709 55 38 10335
> summary (Relevel(S4, 2:1))
Transitions:
To
From Norm Mic Mac D(oth) D(CVD) Records: Even
Norm 2418 35 0 13 6 2472
Mic 72 5986 65 30 14 6167
Mac 0 22 1644 12 18 1696
Sum 2490 6043 1709 55 38 10335

ts: Risk time:
181 1437.39
54 581.83
52 401.70

287 2420.91

ts: Risk time:
54 581.83
181 1437.39
52 401.70

287 2420.91

Persons:
160

66

60

160

Persons:
66

160

60

160

We see that the number of events (transitions) and person-years are the same, but the number of records in

S4 is substantially larger than in L4.

We fit separate models for the two causes of death, using the wrapper glm.Lexis, allowing different

allocation effects for different levels of albuminuria:

> mo <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20,
+ Ns(age, knots = seq(50, 80,
+ lex.Cst / allo,

+ to = "D(oth)")

stats::glm Poisson analysis of Lexis object S4 with
Rates for transitions:

Mic->D(oth)

Norm->D(oth)

Mac->D(oth)

> round(ci.exp(mo), 3)

5)) +
10)) +

log link:

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 9.000000e-03
Ns(tfi, knots = seq(0, 20, 5))1 170.742 3.261 8.940449e+03
Ns(tfi, knots = seq(0, 20, 5))2 41.348 1.667 1.025863e+03
Ns(tfi, knots = seq(0, 20, 5))3 50328.536 6.222 4.070989e+08
Ns(tfi, knots = seq(0, 20, 5))4 2.460 0.412 1.468400e+01
Ns(age, knots = seq(50, 80, 10))1 2.680 0.887 8.100000e+00
Ns(age, knots = seq(50, 80, 10))2 1.547 0.148 1.615100e+01
Ns(age, knots = seq(50, 80, 10))3 11.777 4.223 3.284100e+01
lex.CstNorm 0.965 0.396 2.353000e+00
lex.CstMac 0.569 0.208 1.556000e+00
lex.CstMic:alloInt 0.519 0.249 1.080000e+00
lex.CstNorm:alloInt 0.558 0.183 1.695000e+00
lex.CstMac:alloInt 1.538 0.484 4.890000e+00
> mC <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo,
+ to = "D(CVD)")

stats::glm Poisson analysis of Lexis object S4 with
Rates for transitions:

Mic->D(CVD)

Norm->D(CVD)

Mac->D(CVD)

> round(ci.exp(mC), 3)

exp(Est.) 2.5%
(Intercept) 0.001 0.000
Ns(tfi, knots = seq(0, 20, 5))1 1.042 0.150
Ns(tfi, knots = seq(0, 20, 5))2 2.230 0.350
Ns(tfi, knots = seq(0, 20, 5))3 1.242 0.016
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Ns(tfi, knots
Ns(age, knots
Ns(age, knots
Ns(age, knots
lex.CstNorm
lex.CstMac

seq(0, 20, 5))4

seq(50, 80, 10))1
seq (50, 80, 10))2
seq(50, 80, 10))3

lex.CstMic:alloInt
lex.CstNorm:allolInt
lex.CstMac:alloInt

702
21

O OO

.1256
.340
.868
.053
.026
.438
.594
LT17
.206

0.015 1.022
1.120 48.117
1.940 254610.105
4.747 93.374
0.270 3.902
1.842 10.690
0.204 1.727
0.142 3.613
0.058 0.733

For a complete description of all transitions in the model we also need models for the transitions between
albuminuria states; we will use different models for deterioration and improvement of albuminuria status:

> det <- glm.Lexis (54,
+

+
+
+

~ Ns(tfi, knots
Ns(age, knots

se
se

lex.Cst / allo,

from
to

C(".NOI‘IH”, ”MJ'.C”) s
C(”MiC", "Mac”))

stats::glm Poisson analysis of Lexis object
Rates for transitioms:

Norm->Mic
Mic->Mac

> round(ci.exp(det), 3)

(Intercept)

Ns(tfi, knots
Ns(tfi, knots
Ns(tfi, knots
Ns(tfi, knots
Ns(age, knots
Ns(age, knots
Ns(age, knots
lex.CstNorm

lex.CstMic:alloInt
lex.CstNorm:alloInt

exp(Est.)

0.055

seq(0, 20, 5))1 0.635
seq(0, 20, 5))2 0.270
seq(0, 20, 5))3 0.278
seq(0, 20, 5))4 0.220
seq(50, 80, 10))1 1.988
seq (50, 80, 10))2 3.548
seq(50, 80, 10))3 2.692
0.634

0.510

2.044

> imp <- glm.Lexis(S4, ~ Ns(tfi, knots
Ns(age, knots
lex.Cst / allo,
from = c("Mac","Mic"),

+

+
+
+

to

= se
= se

c ("Mic”, "Norm u))

stats::glm Poisson analysis of Lexis object
Rates for transitions:

Mac->Mic
Mic->Norm

> round(ci.exp(imp), 3)

(Intercept)

Ns(tfi, knots
Ns(tfi, knots
Ns(tfi, knots
Ns(tfi, knots
Ns(age, knots
Ns(age, knots
Ns(age, knots
lex.CstMac

lex.CstMic:alloInt
lex.CstMac:alloInt

For the two deterioration rates (Norm—Mic and Mic—Mac) the effects of the intervention is in different
directions. This is also the case for the improvement rates (Mic—Norm and Mac—Mic):

exp(Est.)

0.108

seq(0, 20, 5))1 0.239
seq(0, 20, 5))2 0.067
seq(0, 20, 5))3 0.046
seq(0, 20, 5))4 0.176
seq(50, 80, 10))1 0.841
seq (50, 80, 10))2 0.340
seq (50, 80, 10))3 0.571
2.689

1.902

0.748

> Wald(det, subset="allo")

q( 0, 20, b)) +
q(50, 80, 10)) +

S4 with log link:

2.5% 97.5%
0.028 0.109
0.243 1.659
0.077 0.947
0.045 1.739
0.064 0.757
0.841 4.702
0.939 13.405
0.773 9.382
0.296 1.358
0.305 0.850
0.925 4.517

q( 0, 20, 5)) +
q(50, 80, 10)) +

S4 with log link:

2.5% 97.5%
0.062 0.187
0.074 0.767
0.011 0.420
0.008 0.273
0.034 0.913
0.289 2.453
0.068 1.712
0.069 4.715
1.383 5.230
1.170 3.093
0.304 1.841

simLex



116 7.3 A worked example of using simLexis PMM

Chisq d.f. P

9.76430733 2.00000000 0.00758067

> Wald(imp, subset="allo")
Chisq d.f. P

7.12765757 2.00000000 0.02833015

> Wald(det, subset="allo", ctr.mat = rbind(c(1,-1)))
Chisq d.f. P

8.299873983 1.000000000 0.003964783

> Wald(imp, subset="allo", ctr.mat = rbind(c(1,-1)))

Chisq d.f. P
3.1991556 1.0000000 0.0736763

We see that the Wald-tests based on the parameters are all (almost) significant, so not only are there
significant allocation effects, but they are also different within each direction.

However, we are mostly interested in how the rates impact the probabilities of being in different states
as a function of time, not in the individual rates between albuminuria states.

7.3.2 Simulation of state probabilities

We have fitted statistical models for all transitions, a model for each of the two sets of cause specific
mortality rates, and models for transitions in either direction between albuminuria states. All models
include smooth effects of time since study entry (tfi) and current age (age), as well as state-specific effects
of the treatment allocation.

We can therefore assess the probability of being in each of the states at a given time after entry to the
study, separately for the the two intervention groups. These probabilities depend on the age at entry to the
study because current age (age) and time since entry, (tfi) are both in the model. They also depend on
the treatment allocation.

The state probabilities can be approached in (at least) two different ways, defined by how the initial
population from which we simulate is defined:

e Use a population with the same covariate distribution as the entire study population, and compute
the state probabilities for this. This would be an approximation to the results from the
Aalen-Johansen estimator of state probabilities.

e Evaluate the probabilities for persons with specific covariate values at entry. This is an approach we
could call the conditional (on the specific initial values).

In either case, the state probabilities are not trivial to compute, from a practical point of view they can
only be computed by simulation.?

For simulation of state probabilities we need a data frame of persons, each record indicating a person’s
initial status. simLexis will then simulate individual trajectories through states (what transitions take
place when) and produce a simulated cohort of persons in the form of a Lexis object. The initial data
frame should be a Lexis object, but the values of lex.Xst and lex.dur need not be given, since these will
be simulated. The initial object must have class Lexis, in order to identify the variables that are time
scales, and which of these that are defined as time since entry into a given state. The reason that it should
be a Lexis object is that the time scale variables must be updated during the simulation process.

Of course the object should contain all variables in any of the models fro the transition rates. Hence, we
first construct a cohort with the same covariates as the entire study for each of the allocation groups. The
intention is to simulate what would have happened if the entire Steno2 population were assigned to either
Int or Conv:

> ini <- L2[,c("per", "age", "tfi")]

> ini <- rbind(transform(ini, allo = "Int"),

+ transform(ini, allo = "Conv")) >}

+ mutate(lex.Cst = factor("Mic", levels = levels(L4)),
+ allo = factor(allo))

> str(ini)

2 A detailed description of the use of simLexis is available in the vignette in the Epi package, also available
in a more detailed form as http://bendixcarstensen.com/Epi/simLexis.pdf
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Classes 'Lexis' and 'data.frame': 320 obs. of b5 variables:

$ per : 'cal.yr' num 1993 1993 1993 1993 1993 ...

$ age : 'cal.yr' num 61.1 46.6 49.9 48.5 57.3 ...

$ tfi :num 00 00000O0O0O0 ...

$ allo : Factor w/ 2 levels "Conv","Int": 2222222222 ...

$ lex.Cst: Factor w/ 5 levels "Mic","Norm","Mac",..: 1111111111 ...

attr(*, "time.scales")= chr [1:3] "per" "age" "tfi"
attr(*, "time.since")= chr [1:3] "w wn nn
attr(*, "breaks")=List of 3

..$ per: NULL
..$ age: NULL
..$ tfi: NULL

coDE EXPLAINED: The ini data frame should contain the variables that are in any of the models for the
transitions; in this case tfi, age and lex.Cst. But also all of the timescale variables from the Lexis
object used for fitting the models. Finally, it should also contain lex.Cst even if this variable were not in
any of the models.

We take the ini as the time scale columns of L2, the (Lexis) data frame with one record per person.
This is then duplicated with each half assigned one of the two levels of allo, Int, respectively Conv, and
finally lex.Cst is set to Mic, but defined as a factor with all possible states as levels.

These will be the initial values in the cohort we follow through states. allo will remain the same during
follow-up, but lex.Cst, age and tfi will change during follow-up—the two latter will change
deterministically; they are time scales.

Note that we could not have used mutate here; mutate does not have Lexis method, here we are using
transform.Lexis and rbind.Lexis, because ini is a Lexis object.

We also need a specification of what transitions the rate models refer to, since the simulated transitions
will be using predictions from these models. This is specified in a list of lists:

> Tr <- list(Norm = list(Mic = det,
+ ”D(Oth) (-~ mo,

+ "D(CVD)" = mC),
+ Mic = list(Mac = det,
+ Norm = imp,
+ "D(oth)" = mo,

+ "D(CVD)" = mC),
+ Mac = list(Mic = imp,
+ "D(oth)" = mo,

+ "D(CVD)" = mC))

For example, the object Tr$Norm$Mic is a model for the transition rate Norm — Mic; we see that there are
10 entries in the specification of Tr, corresponding to each of the 10 transitions in the diagram in figure ??.
Note that some of the entries in Tr point to the same model; all the models fitted were actually joint
models for more than one transition. The models all include an effect of lex.Cst, the indicator of the
current state; the state from which the transition goes.

7.3.3 Using the Steno2 population

First we simulate transitions from a large cohort that looks like the study population, say 20 copies of each
person in the original data set (well, 40 actually, ini contains two copies of each person; one assumed
allocated to Conventional treatment and one to Intensive treatment)—see 7simLexis. So we will simulate
histories of 160 x 2 x 50 = 16000 persons:

> set.seed(181783)
> system.time(

+ Sorg <- simLexis(Tr = Tr, # models for each transition

+ init = ini, # cohort of starters

+ N = 50, # how many copies of each person in ini
+ t.range = 21, # when do we censor follow-up

+ n.int = 85) # how many intervals for evaluating rates
+ )
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user system elapsed
59.98 7.11  67.17

> summary (Sorg)

Transitions:
To
From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 3267 7222 6651 2944 1296 21380 18113 141932.98 16000
Norm 3442 1878 0 1301 601 7222 5344 60628.02 6643
Mac 1938 0 1544 1236 1933 6651 5107 40701.84 6087
Sum 8647 9100 8195 5481 3830 35253 28564 243262.85 16000

> save(Sorg, file = "Sorg.rda")

> load(file = "Sorg.rda", v = TRUE)

Loading objects:
Sorg

There is no guaranteed order of the states in the resulting object Sorg, so we explicitly reorder the states:
> levels(Sorg)
[1] "Mic" "Norm" "Mac" "D(Oth)" "D(CVD)"

> Sorg <- Relevel(Sorg, c("Norm", "Mic", "Mac", "D(CVD)", "D(oth)"))
> summary (Sorg)

Transitions:
To
From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 1878 3442 0 601 1301 7222 5344 60628.02 6643
Mic 7222 3267 6651 1296 2944 21380 18113 141932.98 16000
Mac 0 1938 1544 1933 1236 6651 5107 40701.84 6087
Sum 9100 8647 8195 3830 5481 35253 28564 243262.85 16000

For illustration we show the simulated records for 5 select persons:

> subset (Sorg, lex.id 7inj, 28:32)

lex.id per age tfi lex.dur lex.Cst lex.Xst allo cens
28 1993.33 61.05 0.00 12.29 Mic D(oth) Int 2014.326
29 1993.33 61.05 0.00 6.38 Mic Mac Int 2014.326
29 1999.70 67.43 6.38 12.26 Mac D(oth) 1Int 2014.326
30 1993.33 61.05 0.00 18.74 Mic D(oth) Int 2014.326
31 1993.33 61.05 0.00 6.48 Mic Norm Int 2014.326
31 1999.81 67.53 6.48 5.20 Norm Mic Int 2014.326
31 2005.01 72.73 11.68 9.32 Mic Mic Int 2014.326
32 1993.33 61.05 0.00 0.86 Mic Mac Int 2014.326
32 1994.19 61.91 0.86 4.37 Mac Mic Int 2014.326
32 1998.56 66.28 5.23  15.77 Mic Mic Int 2014.326

We see that there is a considerable difference between persons in the number of records simulated:

> addmargins(table(table(Sorg$lex.id)))

1 2 3 4 5 6 7 8 Sum
4252 6845 2909 1533 334 111 12 4 16000

We count how many of the original 3200 persons are in each of the states at each of a prespecified set of
times; this is done by the function nState:

> system.time (
+ Nst <- nState(Sorg,

+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi'))

user system elapsed
16.42 0.42 16.84

simLex



Estimation from multistate models 7.3 A worked example of using simLexis 119

> str(Nst)

'table' int [1:201, 1:5] 0 209 403 611 799 992 1175 1344 1480 1630 ...
- attr(*, "dimnames")=List of 2

..$ when : chr [1:201] "O"™ "O.1i" "0.2" "0.3" ...

..$ State: chr [1:5] "Norm" "Mic" '"Mac" "D(CVD)"

> head (Nst)

State
when Norm Mic Mac D(CVD) D(oth)
0 0 16000 0 0 0
0.1 209 15710 75 6 0
0.2 403 15433 154 10 0
0.3 611 15148 227 14 0
0.4 799 14882 299 19 1
0.5 992 14606 378 23 1

This is however not necessarily a relevant summary; we would be interested in seeing how things look for
each of the allocation groups, Int and Conv.

> Nconv<- nState(subset (Sorg, allo == "Conv"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi")
> head (Nconv)
State

when Norm Mic Mac D(CVD) D(oth)

0 0 8000 0 0 0

0.1 79 7869 48 4 0

0.2 146 7748 99 7 0

0.3 209 7638 144 9 0

0.4 280 7518 188 13 1

0.5 346 7400 237 16 1
> Nint <- nState(subset(Sorg, allo == "Int"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi")
> head (Nint)

State

when Norm Mic Mac D(CVD) D(oth)

0 0 8000 0 0 0

0.1 130 7841 27 2 0

0.2 257 7685 55 3 0

0.3 402 7510 83 5 0

0.4 519 7364 111 6 0

0.5 646 7206 141 7 0

If we divide each of these by 3200, we get the probabilities of being in each if the states at the different
times since entry.

If we want the cumulated state probabilities over states we can derive these by pState, that yields a
matrix with the cumulative state probabilities. This requires an ordering of that states; this is why we
ordered the states in the desired order:

> Pconv <- pState(Nconv)
> Pint <- pState(Nint )
> str(Pint)
'pState' num [1:201, 1:5] 0 0.0163 0.0321 0.0503 0.0649 ...
- attr(*, "dimnames'")=List of 2
..$ when : chr [1:201] "O"™ "O.1" "0.2" "0.3" ...
..$ State: chr [1:5] "Norm" "Mic" "Mac" "D(CVD)"

> head (Pint)
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State
when Norm Mic Mac D(CVD) D(oth)
0 0.000000 1.000000 1.000000 1 1
0.1 0.016250 0.996375 0.999750 1 1
0.2 0.032125 0.992750 0.999625 1 1
0.3 0.050250 0.989000 0.999375 1 1
0.4 0.064875 0.985375 0.999250 1 1
0.5 0.080750 0.981500 0.999125 1 1

CODE EXPLAINED: For each time point (row of nState result) pState generates the cumulative sum of
the state probabilities; this is just a convenience for plotting the stacked state probabilities.

There is a standard plotting method for a pState object, it will plot the stacked state probabilities stacked
in the order given by the perm argument (not used here because the states are already in the order we
want, so the default of 1:n is used):

VV+++VVVVVV+++VVVVVYVYVYVYVYV

par (mfrow = c(1,2), mar=c(3,3,2,2))
# we previously assigned this vector of colors - this is just a reminder
# clr <- c("forestgreen", '"orange", '"red", "blue", gray(0.4))
#
plot(Pconv, col = clr, xlim = c(0, 19.5))
# the survival curve
lines(as.numeric (rownames (Pconv)), Pconv/[,"Mac'"], 1lwd = 2, col = "white')
# state names
text (rownames (Pconv) [150],
Pconv[150,] - diff(c(0, Pconv[150,]))/2,
colnames (Pconv),
col = "white'")
#
plot(Pint, col = clr, xlim = c(19.5, 0))
# the survival curve
lines(as.numeric (rownames (Pint)), Pint[,"Mac"], lwd = 2, col = "white")
# state names
text (rownames (Pint) [150],
Pint[150,] - diff(c(0, Pint[150,1))/2,
colnames (Pint),
col = "white')
#
mtext (c("Conv","Int"), side = 3, at = c¢(1,3)/4, outer = TRUE, line = -2)

CODE EXPLAINED: Remember that we put the colors in a vector clr so that they can be used a several
different places, it is then easier to change colors should we want so. The plot is really plot.pState since
Pconv is of class pState; it plots the state probabilities cumulated over states (which is what is in Pconv).
The column “Mac” is the sum of the state probabilities for Norm, Mic and Mac, that is the probability of
being alive. The rownames of Pconv is the time, and for the 150*" time point we have the cumulated state
probabilities in Pconv[150,]; these are used to compute the midpoints of each of the areas at this time.

The same is repeated for the state probabilities for the intervention group, Pint (with reversed z-axis),
and finally mtext annotates the two panels,

The plot 7.2 is however of limited interest, the probabilities here are really “the probability that a

randomly chosen person from the Steno 2 study...”. So we are referring to a universe that is not
generalizable, the reference is to a particular distribution of ages at entry into the study. The plot is only
partially relevant for showing the intervention effect, the absolute sizes of the state probabilities are
irrelevant, since they refer to the particular distribution of age (and other possible determinants) in the
Steno2 patient population.

Even if we take the modeling background deeply serious and accept that occurrence rates depend only

on current age (age), time since entry (tfi) and treatment allocation (allo), the assumption of
age-distribution as in the Steno 2 study is quite absurd; who wants to refer to this?

Often this is disguised in deceptive terms such as “population averaged”.
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Conv Int

1.0 1.0

D(oth)

D(oth)

D(CVD)

Probability
Probability

0 5 10 15 15 10 5 0
Time Time

Figure 7.2: State probabilities for the two intervention groups, for populations of the same
structure w.r.t. age as the original total Steno2 population. Clearly, the main difference is
that the intervention group has a much smaller CVD-mortality compared to the conventional
qroup. ../graph/simlLex-pStates

7.3.4 Age-stratified initial data

Therefore, it would be more relevant to show the results for a homogeneous population of persons that
enter at a few select ages.
This would just require a different init data frame:

> ini <- S4[1:6,c(timeScales(S4), '"lex.dur", "lex.Cst'", "allo")]
> inil[,"per"] <- 1993 # not used but it is a time scale in S4
> ini[,"ain"] <- # entry age, not changed in the simulation
+ ini[,"age"] <- rep(seq(45,65,10), 2) # current age
> inil[,"tfi"] <- 0
> ini[,"lex.Cst"] <- factor("Mic",
+ levels = c("Norm",'"Mic","Mac","D(CVD)","D(oth)"))
> ini[,"allo"] <- factor(rep(c("Int","Conv"), each = 3))
> ini
per age tfi lex.dur lex.Cst allo ain
1993 45 0 0.12 Mic Int 45
1993 55 0 0.13 Mic Int 55
1993 65 0 0.25 Mic Int 65
1993 45 0 0.25 Mic Conv 45
1993 55 0 0.25 Mic Conv b5
1993 65 0 0.25 Mic Conv 65

CODE EXPLAINED: We make a copy of the first 6 rows of S4, to make sure that the relevant Lexis
attributes necessary are present in the ini object. The rest is just replacing the values with the desired
ones for the simulation.

We must enter the variable lex.Cst as a factor with the same levels as states in the Lexis object S4,
in the order we want the states when reporting results.

The predictor allo must also be entered as a factor, otherwise it is not possible to compute predictions
from the models where allo were included as a factor.
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For each of these combinations of age (at entry) and treatment allocation we will simulate 5000 persons
from each age / sex combination (note that we are using the same transition rates as before, from the
models in Tr):

> set.seed(181783)
> system.time(

+ Sdef <- simLexis(Tr Tr, # models for each transition

+ init = ini, # cohort of starters

+ N = 5000, # how many copies of each person in ini

+ t.range = 21, # how long should we simulate before censoring
+ n.int = 85)) # no points to evaluate rates

user system elapsed
113.42 13.03 126.58

> save(Sdef, file = "Sdef.rda'")

Once simulated, we can take a look at the simulated cohort:

> summary (Sdef)

Transitions:
To
From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 3639 6593 0 1065 2545 13842 10203 115595.65 12658
Mic 13842 6129 12134 2527 5600 40232 34103 262698.91 30000
Mac 0 3639 2706 3343 2446 12134 9428 71434.07 11110
Sum 17481 16361 14840 6935 10591 66208 53734 449728.62 30000
> subset (Sdef, lex.id < 5)
lex.id per age tfi lex.dur lex.Cst lex.Xst allo ain cens
1 1993.00 45.00 0.00 7.23 Mic Norm Int 45 2014
1 2000.23 52.23 7.23 13.77 Norm Norm Int 45 2014
2 1993.00 45.00 0.00 2.67 Mic Norm Int 45 2014
2 1995.67 47.67 2.67 18.33 Norm Norm Int 45 2014
3 1993.00 45.00 0.00 7.92 Mic D(oth) 1Int 45 2014
4 1993.00 45.00 0.00 1.66 Mic Norm Int 45 2014
4 1994.66 46.66 1.66 19.34 Norm Norm Int 45 2014

We now repeat the graph above by generating a pState for each of the 6 combinations of age at
enrollment (ain), and allocation; we start with the 45 year old allocated to Int:

> P45i <- nState(subset(Sdef, ain == 45 & allo == "Int"),

+ at = seq(0, 20, 0.1),

+ from = 0,

+ time.scale = "tfi")

> head (P451i)

State

when Norm Mic Mac D(CVD) D(oth)
0 0 5000 0 0 0
0.1 124 4862 14 0 0
0.2 261 4717 22 0 0
0.3 369 4597 34 0 0
0.4 479 4474 47 0 0
0.5 585 4359 56 0 0

> head(pState (P451i))

State

when Norm Mic Mac D(CVD) D(oth)

0 0.0000 1.0000 1 1 1
.1 0.0248 0.9972 1 1 1

0.2 0.0522 0.9956 1 1 1
0.3 0.0738 0.9932 1 1 1
0.4 0.0958 0.9906 1 1 1
0.5 0.1170 0.9888 1 1 1

This should then be repeated for all three ages at enrollment and the two allocations, but now we only
store the (cumulated) state probabilities:
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> P45c <- pState(nState(subset(Sdef, ain == 45 & allo == '"Conv"),
+ at = seq(0, 20, 0.1),

+ from = 0,

+ time.scale = "tfi"))

> P45i <- pState(nState(subset(Sdef, ain == 45 & allo == "Int"),

+ at = seq(0, 20, 0.1),

+ from = 0,

+ time.scale = "tfi"))

> P55c <- pState(nState(subset(Sdef, ain == 55 & allo == "Conv"),
+ at = seq(0, 20, 0.1),

+ from = 0,

+ time.scale = "tfi"))

> P55i <- pState(nState(subset(Sdef, ain == 55 & allo == "Int"),

+ at = seq(0, 20, 0.1),

+ from = 0,

+ time.scale = "tfi"))

> P65c <- pState(nState(subset(Sdef, ain == 65 & allo == "Conv"),
+ at = seq(0, 20, 0.1),

+ from = 0,

+ time.scale = "tfi"))

> P65i <- pState(nState(subset(Sdef, ain == 65 & allo == "Int"),

+ at = seq(0, 20, 0.1),

+ from = 0,

+ time.scale = "tfi"))

We can then plot these in a multiple lay-out:

> par(mfrow = c(3,2),

+ mar = ¢(1,2,0,0),

+ oma = ¢(3,3,1,0),

+ mgp = ¢c(3,1,0)/1.6)

> plot(P45c, col = clr, xlim = c(0,20))

> plot(P45i, col = clr, xlim = c(20,0))

> plot(P55c, col = clr, xlim = c(0,20))

> plot(P55i, col = clr, xlim = c(20,0))

> plot(P65c, col = clr, xlim = c(0,20))

> plot(P65i, col = clr, xlim = c(20,0))

> mtext(c("Conv","Int"), side = 3, at = ¢(1,3)/4, outer = TRUE, line = 0)
> mtext (paste(seq(45,65,10)), side = 2, at = (3:1*2-1)/6,
+ outer = TRUE, line = 1, las = 1)

This approach entails a lot of hard-coding; we would like to be able to easily get a plot with any set of
ages at entry. To this end it is more convenient to collect the state probabilities in an array:
> (ain <- seq(45, 65, 10))
[1] 45 55 65
> (agr <- levels(S4$allo))
[1] "Conv" "Int"

> pdef <- NArray(c(list(ain = ain,
+ allo = agr),
+ dimnames (P45i)))

> str(pdef)
logi [1:3, 1:2, 1:201, 1:5] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 4
..$ ain : chr [1:3] "45" "55" "g5"
..$ allo : chr [1:2] "Conv" "Int"
..$ when : chr [1:201] "O" "O.1" "0.2" "0.3" ...
..$ State: chr [1:5] "Norm" "Mic" '"Mac" "D(CVD)"

CODE EXPLAINED: NArray defines an empty array (full of NAs), classified by the vectors given in a list

[19%)

argument. Note that the way lists are concatenated is by “c”.
We lose the pState class of the results, so we resort to the mat2pol function that stacks probabilities (well

any set of columns of a matrix) and plots them, so we simply take the result from nState and divide by
the number in the initial state (Mic) using sweep:
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10 conv 10 Int

45

55

65
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Figure 7.3: Predicted probabilities of being in each of the states for persons aged 45, 55
and 65 at entry , separately for the two intervention groups. Clearly the graph needs some
doctoring. ../graph/simLex-panelb

> for(aa in ain)
+ for(gg in agr)

+ pdef [paste(aa), gg, ,] <-

+ nState(subset (Sdef, ain == aa & allo == gg),

+ at = as.numeric(dimnames (pdef) [["when"]]),
+ from = 0,

+ time.scale = "tfi')

> pdef <- sweep(pdef,

+ 1:2,

+ pdef[,,1,"Mic"],

+ ”/ ")

> str(pdef)

num [1:3, 1:2, 1:201, 1:5] 0 0 0 0 0 0 0.014 0.0082 0.0062 0.0248 ...
- attr(*, "dimnames")=List of 4

..$ ain : chr [1:3] "45" "55" "g5"

..$ allo : chr [1:2] "Conv" "Int"

..$ when : chr [1:201] "O" "O.1" "0.2" "0.3" ...

..$ State: chr [1:5] "Norm" "Mic" '"Mac" "D(CVD)"
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CODE EXPLAINED: Each iteration of the loop over ain (age at entry) and all (allocation) computes the
number of person in each of the 5 states at a set of times (3¢ dimension of pdef).

# panel3, fig = TRUE, width = 8, height = 9
ain <- seq(45, 65, 10)
par (mfrow = c(length(ain), 2),

mar = ¢(1,0,1,0)/20,

oma = ¢(3,5,2,3),

mgp = c(3,1,0) / 1.6,

xaxt = "n", yaxt = "n",

xaxs = "i", yaxs = "i", las = 1)
for(aa in ain)

{

mat2pol (pdef [paste(aa),"Conv",,], col = clr, xlim = c(0,20))
axis(side = 2, yaxt = "s", at = 0:10/10, labels = NA )
axis(side = 2, yaxt = "s", at = (1:5%2-1)/10)
axis(side = 4, yaxt = "s", at = 0:10/10,

labels = NA, tcl = 0.4, col="white'")
axis(side = 4, yaxt = "s", at = 0:20/20,
labels = NA, tcl = 0.3, col="white')
axis(side = 4, yaxt = "s", at = 0:100/100,
labels = NA, tcl = 0.2, col="white')
if(aa == ain[length(ain)]) axis(side = 1, xaxt = "s")

mat2pol (pdef [paste(aa),"Int" ,,], col = clr, xlim = c(20,0), yaxt = "n")
axis(side = 2, yaxt = "s", at = 0:10/10,
labels = NA, tcl = 0.4, col="white'")
axis(side = 2, yaxt = "s", at = 0:20/20,
labels = NA, tcl = 0.3, col="white")
axis(side = 2, yaxt = "s", at = 0:100/100,
labels = NA, tcl = 0.2, col="white')
axis(side = 4, yaxt = "s", at = 0:10/10, labels = NA )
axis(side = 4, yaxt = "s", at = (1:5%2-1)/10)
if(aa == ain[length(ain)]) axis(side = 1, xaxt = "s")

}
mtext (c("Conv","Int"), side = 3, at = c¢(1,3)/4, outer = TRUE, line = 0,
cex = 0.67)
mtext (paste("Age\n",ain),
side = 2

at = (length(ain):1 * 2 - 1) / (length(ain) * 2) + 0.1,
outer = TRUE, line = 2.5, cex = 0.67)

mtext ("Time since entry (years)'", side = 1, line = 3/1.6,
outer = TRUE, cex=0.67)

+V+++VFEVEH++++++ A+ A+ +rFr A+ F A+ FF A+ FVEFFEFV VY

7.3.5 Time spent in albuminuria states

We have observation time till almost 22 years, but we have only made predictions of state probabilities in
pdef till a bit longer than 20 years; pdef contains the state probabilities by time since entry for all
combinations of age at entry and treatment allocation:

> str(pdef)
num [1:3, 1:2, 1:201, 1:51 0 0 0 0 0 0 0.014 0.0082 0.0062 0.0248 ...
- attr(*, "dimnames")=List of 4

..$ ain : chr [1:3] "45" "55" "g5"

..$ allo : chr [1:2] "Conv" "Int"

..$ when : chr [1:201] "O" "O.1" "0.2" "0.3" ...

..$ State: chr [1:5] "Norm" "Mic" '"Mac" "D(CVD)"

> ftable(pdef[,,1:5,], row.vars = c(1,3))

simLex



126 7.3 A worked example of using simLexis PMM
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Figure 7.4: Predicted probabilities of being in each of the states for persons aged 45, 55 and
65 at entry, separately for the two intervention groups. Estimates are based on proportional
hazards models with spline effects of time since entry and current age, and hazard ratios
depending on treatment allocation (Conv/Int), and current microalbuminuria status (current
state) (Norm/Mic/Mac). ../graph/simlLex-panel3
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allo Conv Int
State  Norm Mic Mac D(CVD) D(oth) Norm Mic Mac D(CVD) D(oth)
ain when
45 0 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.1 0.0140 0.9816 0.0044 0.0000 0.0000 0.0248 0.9724 0.0028 0.0000 0.0000
0.2 0.0264 0.9642 0.0094 0.0000 0.0000 0.0522 0.9434 0.0044 0.0000 0.0000
0.3 0.0418 0.9432 0.0150 0.0000 0.0000 0.0738 0.9194 0.0068 0.0000 0.0000
0.4 0.0518 0.9302 0.0178 0.0000 0.0002 0.0958 0.8948 0.0094 0.0000 0.0000
55 0 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.1 0.0082 0.9858 0.0056 0.0004 0.0000 0.0154 0.9808 0.0034 0.0004 0.0000
0.2 0.0162 0.9734 0.0096 0.0008 0.0000 0.0270 0.9666 0.0060 0.0004 0.0000
0.3 0.0222 0.9600 0.0166 0.0012 0.0000 0.0430 0.9480 0.0084 0.0006 0.0000
0.4 0.0296 0.9472 0.0220 0.0012 0.0000 0.0538 0.9334 0.0120 0.0008 0.0000
65 O 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.1 0.0062 0.9838 0.0086 0.0012 0.0002 0.0138 0.9814 0.0042 0.0006 0.0000
0.2 0.0126 0.9650 0.0190 0.0032 0.0002 0.0266 0.9634 0.0084 0.0016 0.0000
0.3 0.0206 0.9466 0.0276 0.0048 0.0004 0.0394 0.9462 0.0118 0.0026 0.0000
0.4 0.0256 0.9334 0.0350 0.0056 0.0004 0.0510 0.9300 0.0154 0.0036 0.0000

CODE EXPLAINED: The

3'4 dimension, with the 15* and 3'¢ as the row classification in a flat table layout.

7.3.5.1

str shows that pdef is a 4-way array; the ftable prints the first 5 levels of the

Using estimated probabilities

We may want to compare groups by the expected time spent in the normoalbuminuric state during the
first, say, 20 years. The expected time in a state is simply the time-integral of the probabilities, so we can
easily compute it from pdef; each probability in pdef represents is computed at a specific time, the times

being 0.1 year apart, so we just take the midpoint of the probabilities at the ends of each interval and

multiply by the interval width:

> mid <- function(x) x[-1] - diff(x) / 2

> pmid <- apply(pdef, c(1,2,4), mid)

> str(pmid)

num [1:200, 1:3, 1:2, 1:5] 0.007 0.0202 0.0341 0.0468 0.059 ...
- attr(*, "dimnames")=List of 4
[1:200]
H45l| |l55l| |l65l|
"CODV" " Int "
||Norm|| l|MiC|| llMaC" IID(CVD) "

..$ : chr
..$ ain : chr
..$ allo : chr
..$ State: chr

[1:3
[1:2
[1:5

]
]
]

"O-lll l|0.2ll l|0.3ll Il0-4ll V.

> pyr <- apply(pmid[1:200,,,], 2:4, sum) * 0.1

> str(pyr)

num [1:3, 1:2, 1:5] 4.69 2.72 1.27 7.11 4.31 ...
- attr(*, "dimnames")=List of 3
"45" "55" ||65l|
"COIIV" ||Int"
”Norm” ||MiC" "Mac" ||D(CVD) "

..$ ain : chr
..$ allo : chr
..$ State: chr

> round(ftable(p
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CODE EXPLAINED: The mid function will return the midpoints between successive values in a vector, a
result that is one shorter than the argument. The apply returns an array classified by dimensions 1, 2
and 4 of pdef and (as the first dimension) the result of the mid function applied to the remaining
dimensions of pdef (in this case only the 374).
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The second apply adds the first 200 entries of the first dimension of pmid, which, when multiplied by
the interval length give the integral of the state probabilities over the first 20 years (200 intervals) of
follow-up.

Note that the apply function automatically keeps track of the three dimensions by which we want the
result classified.

These numbers are the expected time (in years) spent in each state during the first 20 years after
enrollment; we see that the intervention group spend far more time in Norm than do the conventional
group, regardless of the age at entry.

The time spent in the two dead states are not really interpretable, it would be something like the
number of years (during the first 20 years after enrollment) lost to each of the causes. We see that the
most dramatic differences are for the CVD deaths.

We can also take a look at the differences in sojourn times between the two intervention groups; this is
the advantage of having results stored in an array—it is quite easy to do simple manipulations across
multiple dimensions:

> round(pyr[,"Int",] - pyr[,"Conv",], 1)
State
ain Norm Mic Mac D(CVD) D(oth)
45 2.4 -0.3 -1.0 -0.4 -0.8
.9 -1.7 -0.6
.2 -2.9 0.0

7.3.5.2 Using simulated sojourn times

We also have the possibility to compute the sojourn times directly from the simulated object; this however
will not include time spent in the absorbing states, as this is not part of the simulated follow-up:

> tpyr <- with(Sdef, tapply(lex.dur,
list(ain, allo, lex.Cst),

+ sum)) / 2000
> round(ftable(tpyr, col.vars = 3:2), 1)

Norm Mic Mac D(CVD) D(oth)

Conv Int Conv Int Conv Int Conv Int Conv Int
45 12.2 18.5 24.4 24.0 6.7 4.2 NA NA NA NA
55 7.0 11.1 22.3 26.4 8.1 6.0 NA NA NA NA
65 3.2 5.8 14.5 19.8 5.6 5.1 NA NA NA NA
> round(ftable( pyr, col.vars = 3:2), 1)

State Norm Mic Mac D(CVD) D(oth)
allo Conv Int Conv Int Conv Int Conv Int Conv Int

ain
45 4.7 7.1 9.5 9.2 2.5 1.6 0.6 0.3 2.7 1.8
55 2.7 4.3 8.7 10.2 3.1 2.3 3.0 1.3 2.4 1.9
65 1.3 2.3 5.8 7.9 2.2 2.0 5.7 2.8 5.0 5.0
> round(ftable(tpyr / pyr, col.vars = 3:2), 2)

Norm Mic Mac D(CVD) D(oth)

Conv Int Conv Int Conv Int Conv Int Conv Int
45 2.61 2.60 2.58 2.60 2.65 2.67 NA NA NA NA
55 2.57 2.58 2.55 2.58 2.60 2.64 NA NA NA NA
65 2.51 2.52 2.50 2.53 2.51 2.54 NA NA NA NA
> round(ftable(tpyr - pyr, col.vars = 3:2), 2)

Norm Mic Mac D(CVD) D(oth)

Conv Int Conv Int Conv Int Conv Int Conv Int
45 7.53 11.41 14.92 14.75 4.19 2.63 NA NA NA NA
55 4.27 6.81 13.53 16.14 5.01 3.73 NA NA NA NA
65 1.92 3.47 8.73 11.99 3.34 3.07 NA NA NA NA
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Discrepancy to numerical integrals We see that the simulated sojourn times are longer than
those computed from the integration of the simulated state probabilities. Suppose namely that we censored
all simulated sojourn times immediately after the times where we calculated the state probabilities. Then
the simulated probabilities would still be the same, but the simulated sojourn times would be smaller. So
we see that the numerical integration gives downward biased sojourn times; the actually simulated sojourn
times gives the most correct result.

Time spent in absorbing states The time spent in the dead states during the first 20 years of
follow-up is however available from Sdef (only the results from the absorbing states are meaningful):

> apyr <- with(subset(Sdef, lex.Xst Jinj, absorbing(Sdef)),
tapply (20 - (tfi + lex.dur),

+ list(ain, allo, lex.Xst),

+ sum)) / 2000

> round(ftable(pmin(apyr, tpyr, na.rm = TRUE), col.vars = 3:2), 1)
Norm Mic Mac D(CVD) D(oth)
Conv Int Conv Int Conv Int Conv Int Conv Int

45 12.2 18.5 24.4 24.0 6.7 4.2 1.5 0.6 6.7 4.6

55 7.0 11.1 22.3 26.4 8.1 6.0 7.4 3.3 6.1 4.7

65 3.2 5.8 14.5 19.8 5.6 5.1 14.2 7.1 12.6 12.6

> round(ftable( pyr, col.vars = 3:2), 1)

State Norm Mic Mac D(CVD) D(oth)
allo Conv Int Conv Int Conv Int Conv Int Conv Int

ain

45 4.7 7.1 9.5 9.2 2.5 1.6 0.6 0.3 2.7 1.8
55 2.7 4.3 8.7 10.2 3.1 2.3 3.0 1.3 2.4 1.9
65 1.3 2.3 5.8 7.9 2.2 2.0 5.7 2.8 5.0 5.0

7.4 State probabilities from the Aalen-Johansen
estimator in survival

The survival package allows estimation of state probabilities by the Aalen-Johansen estimator similar to
what we did in competing risks. However, the Aalen-Johansen machinery in the survival package is not
aligned with the way Lexis objects are defined, so a naive application will give wrong results or crash the
survfit function.

Therefore, a wrapper for the multistate version of survfit has been devised, called AaJ.Lexis, so we
can just do:

> AaJ4 <- AaJ.Lexis (L4, time = "tfi'")
NOTE: Timescale is tfi

The result is an object which is a list that inherits from survfitms and survfit. Each element of the list
are referred to as a slot. The predicted state probabilities from survfit are in the slot called pstate, and
the confidence intervals in the corresponding slots lower and upper.

> class(AaJ4)
[1] "survfitms" "survfit"

> names (AaJ4)

[1] "n" "time" "n.risk" "n.event" "n.censor" "pstate"
[7] "po" "cumhaz" "std.err" "sp0" "logse" "transitions"
[13] "lower" "upper" "conf.type" "conf.int" "states" "type"
19 yP yP
[19] "call"
> AaJ4$states
[1] "Mic" "Norm" "Mac" "D(CVD)" "D(Oth)"

simLex
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> colnames (AaJ4$pstate) <- AaJ4$states
> head(cbind(time = AaJ4$time,

+ AaJ4$pstate))

time Mic Norm Mac D(CVD) D(oth)
[1,1 0.05201916 0.99375 0.00000 0.00625 0 0
[2,] 0.05749487 0.98750 0.00625 0.00625 0 0
[3,1 0.06570842 0.98750 0.00625 0.00625 0 0
[4,]1 0.09034908 0.98125 0.01250 0.00625 0 0
[5,] 0.09308693 0.98125 0.01250 0.00625 0 0
[6,]1 0.10130048 0.98125 0.01250 0.00625 0 0

We can now graphically show the Aalen-Johansen estimator of the state probabilities:

> mat2pol (AaJ4$pstate,

+ perm = ¢(2,1,3,5,4),

+ x = AaJ4$time,

+ col = clr)

> lines(AaJ4$time,

+ apply(AaJ4$pstate[,1:3], 1, sum),
+ lwd = 1,

+ col = "White")
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Figure 7.5: Aalen-Johansen estimator of state probabilities for the total Steno2 study popu-
lation, disregarding intervention allocation. ../graph/simLex-AaJ0

CODE EXPLAINED: mat2pol plots the columns of the first argument (a matrix) as coloured areas stacked
on top of each other, perm gives the order in which they are stacked. The x argument is the common
z-coordinate against which the columns of the first argument is plotted. col is a vector of colours used
for the areas.

Formally, the Aalen-Johansen estimator is a step function, so instead of just connecting the points we
should have made a proper step-function, but this is a minor point with a dataset of this size.

However, we are interested in seeing the results from each of the allocation groups, so we use the
formula argument to AaJ.Lexis (which is just passed on to Survfit):
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> AaJg <- AaJ.Lexis(L4, ~ allo, time = "tfi')
NOTE: Timescale is tfi

The result for the state probabilities is in a long vector of time and a matrix pstate, the two parts
corresponding to Int and Conv put after one another, with the length of each part in strata

> AaJg$strata
allo=Conv allo=Int
337 375

> wh <- rep(substr(names(AaJg$strata), 6, 9), AaJg$strata)
> table(wh)

wh
Conv Int
337 375

So we can now make the plots for the two subsets and place them next to each other as before:

par (mfrow = c(1,2), mar=c(3,3,0,0), oma=c(0,0,1,1), mgp = c(3,1,0)/1.6)
mat2pol (AaJg$pstate[wh=="Conv",],
perm = ¢(2,1,3:5),
x = AaJg$time[wh=="Conv"],
col = clr, x1im = ¢(0,21), xaxs = "i"
lines(AaJg$time [wh=="Conv"],
apply (AaJg$pstate[,1:3], 1, sum)[wh=="Conv"],
lwd = 2, col = "white")
mat2pol (AaJg$pstate[wh=="Int",],
perm = c(2,1,3:5),
x = AaJg$time[wh=="Int"],
col = clr, xlim = c(21,0), xaxs = "i", yaxs = "i")
lines (AaJg$time[wh=="Int"],
apply (AaJg$pstate[,1:3], 1, sum)[wh=="Int"],
Iwd = 2, col = "white")
mtext (c("Conv","Int"), side = 3, at = c¢(1,3)/4, outer = TRUE, line = 0)

, yaxs = "i")

V++V+++V++V+++Vvy

7.4.1 Relation to the simulation approach by simlLexis

The Aalen-Johansen estimators for the two allocation groups can be considered the empirical counterpart
of the simulation based estimates in figure 7.2; the state probabilities for a population like the one in the
study. But not quite so; the models underlying figure 7.2 are proportional hazards models in the sense that
the effects of current age and time since enrollment are assumed proportional between allocation groups
with proportionality depending on current state. Moreover, the effect of age is assumed to be the same at
all times since enrollment and vice versa. Basically “proportional hazards” just means models without
interaction with any of the time scales.

The plots in figure 7.6 are based on separate models for the effect of time from entry (tfi) for each
transition and allocation, and with no effect of current age or age at entry. So an unspecified interaction
between tfi and allocation, separately for each transition.

In the Aalen-Johansen approach in survfit we get confidence intervals for each of the state
probabilities in the slots lower and upper, but not for sums of subsets of these. Since it is the sums of
state probabilities we have shown in the graph, we cannot directly use the confidence intervals for the
single state probabilities.

We would also want confidence intervals for areas under the curves—the sojourn times. Neither are
available from the Aalen-Johansen approach nor from the simulation approach—at least not in its current
state of development.

Both the results in figure 7.2 and figure 7.6 refer to a patient population identical to the study
population. Thus to the extent that age also has an effect on the transition rates in the model in figure 7.1
the results will depend on the age-distribution in the study population. The two approaches are not
identical, but both answer the question of state probabilities as a function of time on study for a
population with the same age-distribution as the Steno2 study population.

simLex



132 7.4 State probabilities from the Aalen-Johansen estimator in survival PMM

Conv Int
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Figure 7.6: Aalen-Johansen estimator of the state probabilities for the two intervention
groups , for the original total Steno2 population, subdivided by intervention allocation.
../graph/simLex-AaJstates

A parametric counterpart of the Aalen-Johansen estimator would entail fit of separate models for each
of the 10 transitions using a spline model for the effect of time since entry and for each transition separate
models for each of the two intervention groups Conv and Int (corresponding to the baseline hazards). The
simulation of cohorts would then be done separately for the two groups—they would be quite similar
because of the randomization, though. It would still not be identical to the Aalen-Johansen analysis, but
the basic assumptions about the intensities would be the same:

1. Time since entry is the only covariate for all transitions
2. Separate models for the two randomization groups
3. There is no relationship between models for different transitions

If we instead want to assess how e.g. age influences state probabilities we would fit models with
age-effect on the transition rates and use simulation to translate these to the effects on state probabilities
such as figure 7.4. This depends both on the chosen models for the transition rates and on the choice of
initial cohort to simulate from.



Chapter 8

Multistate packages

...now input from msm

8.1 The msm package

8.1.1 Relationship between Lexis and msm

The Lexis representation of follow-up assumes that times of all transitions between states are known, so a
Lexis object is a an exact representation of persons entire follow-up through the states. Each record in a
Lexis object represents a piece of follow-up in a state (lex.Cst) of a certain length (lex.dur), at the end
of which a transition to the next state (lex.Xst) occurs.

The msm package is unlike the Lexis machinery aimed at partially observed multistate models—what is
often referred to as “panel data”;it is assumed that you only know the state of a person at a finite set of
times, but nothing is known about the exact transition times. There is though a provision in the msm
package to assume that some or all transition times are are known exactly. This will typically be the case
with transitions to “Dead” states, but it is required that this is for all transitions to a given state.

8.1.2 Exact transition times?

When states are disease states where transitions times are defined as date of recording of a given diagnosis,
it may be argued that some conditions (such as for example bladder cancer) in reality may have occurred
some time before the recording date. This is however to some extent a matter of state-definition; using the
recorded date of the event as an exact occurrence date means that model is not a model for the occurrence
of bladder cancer but for the occurrence of recorded bladder cancer. This is essentially just moving the
problem to another realm; the relationship between occurrence and recording of bladder cancer is in this
way moved outside the realm of the practical modeling, and into the realm of results interpretation.

If we want to use msm for data recorded in a Lexis object we must restructure it. The Lexis
representation is as the state in which follow-up time occurs (lex.Cst) as well as the next state
(lex.Xst—which however may be the same as lex.Cst).

But if we have a Lexis object with, say, n consecutive intervals with the follow-up of a person we must
supply to msm the states occupied at the beginning of each interval (which will be the “next” state for the
previous interval if any), but also the state at the end of the last interval, so a total of n + 1 records.

For the first n intervals the time will be the values of the timescale, while the time we need for the last
“extra” record is the time of transition, which for time scale ts will be ts + lex.dur.

However, if we have non-consecutive follow-up intervals for a person, this will have to be done for each
set of consecutive intervals within each person.

8.2 Data transformation from Lexis to msm

The function Lexis2msm in the Epi package does exactly this job.
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> library(Epi)
> library (msm)
> library(tidyverse)

For illustration we run (a slight extension) of the example code for mcutlexis to provide a Lexis object
with 5 states:

> set.seed(1952)
> dd <- data.frame(id

1:30,

doN = round(runif(30,-30, 0),1), # birth
doE = round(runif (30, 0,20),1), # entry
doX = round(runif (30, 50,60),1), # exit

doD = round(runif (30, 50,60),1), # death

# these are the event times fo A and B
doA = c(NA,21,NA,27,35,NA,52, 5,43,80,
NA,22,56,28,53,NA,51, 5,43,80,
NA,23,NA,33,51,NA,55, 5,43,80),
doB = c¢(NA,20,NA,53,27,NA, 5,52,34,83,
NA,20,23,37,35,NA,52, 8,33,NA,
25,NA,37,40,NA,NA,15,23,36,61))
# set up a Lexis object with time from entry to death/exit
Lx <- Lexis(entry = list(time = doE,
age = doE - dol),
exit = list(time=pmin(doX, doD)),
exit.status = factor(doD < doX, labels = c("OK", "D")),
data = dd)

NOTE: entry.status has been set to "OK" for all.

+ 4+ ++VVHA+ A+ttt A+

> summary( Lx )

Transitions:
To

From OK D Records: Events: Risk time: Persons:
0K 14 16 30 16 1288 30

> # cut the follow-up at dates doA and doB

> L3 <- mcutLexis( Lx, '"time",

+ wh = c("doA", "doB"),

+ new.states = c("A","B"),

+ precursor.states = "OK",

+ seq.states = FALSE,

+ new.scales = c("tfA","tfB") )

> L3 <- Relevel(LB, C(HDKH’HAH,HBH,HA+BH’HDH))

> summary( L3 )

Transitions:

To

From OK A B A+B D Records: Events: Risk time: Persons:
0K 6 6 10 0 3 25 19 743.8 25
A 00 O 6 2 8 8 143.5 8
B 00 3 6 3 12 9 196.9 12
A+B 00 O 5 8 13 8 203.8 13
Sum 6 6 13 17 16 58 44 1288.0 30

> # Make a graphical display of the data

> boxes (L3, boxpos = list(x = ¢(12,12,88,88,50),
+ y = ¢(88,12,88,12,50)),
+ scale.R = 1000, show.BE = TRUE)

With this data set we can illustrate how the Lexis2msm works —we just use the three first persons for
illustration:

> (Lx <- subset(L3, lex.id J}inj, 1:3))
lex.id time age tfA tfB lex.dur lex.Cst lex.Xst id doN doE doX doD doA doB

1 16.5 18.0 NA NA 36.7 0K OK 1 -1.5 16.5 53.2 55.1 NA NA
3 11.9 34.1 NA NA 40.9 0K D 3 -22.2 11.9 53.1 52.8 NA NA
2 3.0 6.1 NA NA 17.0 0K B 2 -3.1 3.050.155.3 21 20
2 20.0 23.1 NA O 1.0 B A+B 2 -3.1 3.0 50.1 55.3 21 20
221.0 24.1 0 1 29.1 A+B A+B 2 -3.1 3.0 50.1 65.3 21 20
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Figure 8.1: Simple artificial example of a 5-state model. The numbers in the middle of each
box is the risk time spent in each state (in years), and teh numbers at the bottom are the
number of persons beginning, resp. ending follow-up in the state. The number of transitions
and the empirical rates are given (per 1000 PY) on the transition arrows.

. ./graph/msm-exbox

> Lexis2msm(Lx, v = T)

Object with state occupied at time points on the time
time age tfA tfB
lex.id time age tfA tfB state id doN doE doX

4 116.5 18.0 NA NA 0K 1 -1.5 16.5 53.2
1 1 53.254.7 NA NA 0K 1 -1.5 16.5 53.2
5 2 3.0 6.1 NA NA 0K 2 -3.1 3.0 50.1
6 2 20.0 23.1 NA 0.0 B 2 -3.1 3.050.1
7 221.024.1 0.0 1.0 A+B 2 -3.1 3.0 50.1
2 2 50.1 63.2 29.1 30.1 A+B 2 -3.1 3.0 50.1
8 3 11.9 34.1 NA NA 0K 3 -22.2 11.9 53.1
3 3 52.8 75.0 NA NA D 3 -22.2 11.9 53.1

scales:

doD doA doB
55.1 NA NA
55.1 NA NA
55.3 21 20
55.3 21 20
55.3 21 20
55.3 21 20
52.8 NA NA
52.8 NA NA

Note that if we delete a record of follow-up for person 2 in state A, we still get the same results even if we
have a “hole” in the follow-up of person 2, because the surrounding two records have the states occupied.

> (Lx <- subset(Lx, !(lex.id == 2 & lex.Cst == "A")))
lex.id time age tfA tfB lex.dur lex.Cst lex.Xst id
116.5 18.0 NA NA 36.7 0K 0K 1
3 11.9 34.1 NA NA 40.9 0K D 3 -
2 3.0 6.1 NA NA 17.0 0K B 2
220.0 23.1 NA O 1.0 B A+B 2
221.024.1 0 1 29.1 A+B A+B 2

> Lexis2msm(Lx, v = T)

Object with state occupied at time points on the time
time age tfA tfB

doN doE doX

-1.5 16.5 53.

22.2 11.9 53
-3.1 3.0 50
-3.1 3.0 50
-3.1 3.0 50

scales:

2

.1
.1
.1
.1

doD doA doB

55.1
52.8
55.3
55.3
55.3

NA
NA
21
21
21

NA
NA
20
20
20

msm



136 8.3 Analysis of rates PMM

lex.id time age tfA tfB state id doN doE doX doD doA doB

4 1 16.5 18.0 NA NA DK 1 -1.5 16.5 53.2 55.1 NA NA
1 1 53.2 54.7 NA NA DK 1 -1.5 16.5 53.2 55.1 NA NA
5 2 3.0 6.1 NA NA DK 2 -3.1 3.0 50.1 55.3 21 20
6 2 20.0 23.1 NA 0.0 B 2 -3.1 3.0 50.155.3 21 20
7 221.0 24.1 0.0 1.0 A+B 2 -3.1 3.0 50.1 55.3 21 20
2 2 50.1 53.2 29.1 30.1 A+B 2 -3.1 3.0 50.1 55.3 21 20
8 3 11.9 34.1 NA NA DK 3 -22.2 11.9 53.1 52.8 NA NA
3 3 52.8 75.0 NA NA D 3 -22.2 11.9 53.1 52.8 NA NA
The more realistic example is:
> mLx <- Lexis2msm(L3)
> ¢(nid(L3), nid(mLx))
[1] 30 30
> c(nrow(L3), nrow(mLx))
[1] 58 88
> str(mLx)
Classes 'msmlLexis' and 'data.frame': 88 obs. of 13 variables:
$ lex.id: int 1122223344 ...
$ time : num 16.5 53.2 3 20 21 50.1 11.9 52.8 14.7 27 ...
$ age : num 18 54.7 6.1 23.1 24.1 53.2 34.1 75 19.4 31.7 ...
$ tfA : nun NA NA NA NA O 29.1 NA NA NA O ...
$ tfB  : num NA NA NA O 1 30.1 NA NA NA NA ...
$ state : Factor w/ 5 levels "OK","A","B","A+B",..: 1113441512 ...
$id :dnt 1122223344...
$ doN :num -1.5 -1.5 -3.1 -3.1 -3.1 -3.1 -22.2 -22.2 -4.7 -4.7 ...
$ doE :num 16.5 16.5 3 3 3 3 11.9 11.9 14.7 14.7 ...
$ doX : num b53.2 53.2 50.1 50.1 50.1 50.1 53.1 53.1 60 60 ...
$ doD : num b55.1 55.1 55.3 55.3 55.3 55.3 52.8 52.8 55.6 55.6 ...
$ doA : num NA NA 21 21 21 21 NA NA 27 27 ...
$ doB : num NA NA 20 20 20 20 NA NA 53 53 ...
- attr(*, "time.scales")= chr [1:4] "time" "age" "tfA" "tfB"
- attr(*, "time.since")= chr [1:4] "" "» ©"p" "B"

We see that the data frame is of class msmLexis, and nicely sorted, but also that there are more records in
the msmLexis dataset, namely the number of records in the original data set plus the number of persons in
the dataset. The latter is only true because all persons have consecutive follow-up intervals in the Lexis
data frame.

8.3 Analysis of rates

8.3.1 Follow-up analysis using glm.Lexis

We can use the glm.Lexis function to model all 8 transitions; 4 mortality transitions in one model and the
transitions to other transient states in two other. Note that we are not providing any values for the
arguments from and to for the mortality analyses, because the default behaviour of glm.Lexis is to model
all transitions to all absorbing states—in this case Dead is the only absorbing state:

> library(Epi)

> # mortality rates

> mm <- glm.Lexis(L3, ~ lex.Cst - 1)
stats::glm Poisson analysis of Lexis object L3 with log link:
Rates for transitioms:

0K->D

A->D

B->D

A+B->D

> # occurrence of A then B

> mab <- glm.Lexis(L3, ~ lex.Cst -1,

+ from C(HUKH, "A n) s
+ to C(HAH’ HA+BH))

msm
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stats::glm Poisson analysis of Lexis object L3 with log link:
Rates for transitioms:

0K->A

A->A+B

> # occurrence of B then A

> mba <- glm.Lexis(L3, ~ lex.Cst -1,

+ from = c("OK","B"),
+ to = C(!IBI!,!IA+BII))

stats::glm Poisson analysis of Lexis object L3 with log link:
Rates for transitions:

0K->B

B->A+B

We can arrange the estimated rates and the corresponding confidence intervals from the three models
nicely:

> rates <- rbind(ci.exp(mab),

+ ci.exp(mba),

+ ci.exp(mm))

> from <- gsub("lex.Cst", "", rownames(rates))

>  to <- c("A","B","A+B","D")[c(1,3,2,3,4,4,4,4)]

> rownames (rates) <- NULL

> colnames (rates) <- c("Rate", "L", "U")

> data.frame(from, to, round(rates * 1000, 1))
from to Rate L U

1 0K A 8.1 3.6 18.0

2 A A+B 41.8 18.8 93.1

3 0K B 13.4 7.2 25.0

4 B A+B 30.5 13.7 67.8

5 0K D 4.0 1.3 12.5

6 A D 13.9 3.5 55.7

7 B D 15.2 4.9 47.2

8 A+B D 39.3 19.6 78.5

We see that we reproduce the empirical rates as shown in the plot with the boxes. This is a model
assuming that all rates are constant, a model that can also be fitted using msm

8.3.2 Markov analysis by msm

We can also fit the model using msm by specifying that times given are excact times. However, msm requires
that that states be numbered (and not, and moreover we want estimated rates in rates per 1000 PY, so we
rescale time:

> Lm <- Lexis2msm(L3)
> Lt <- transform(Lm, state
+ t1000

as.integer(state),
time / 1000)

We illustrate that we have the same transition matrix

> library(msm)
> summary (L3)

Transitions:
To

From OK A B A+B D Records: Events: Risk time: Persons:
0K 6 6 10 0 3 25 19 743.8 25
A 00 O 6 2 8 8 143.5 8
B 00 3 6 3 12 9 196.9 12
A+ B 00 O 5 8 13 8 203.8 13
Sum 6 6 13 17 16 58 44 1288.0 30

> statetable.msm(state, lex.id, data = Lm)

msm
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to

from OK A B A+B D
1 6 6 10 0 3
2 0 0 O 6 2
3 0 0 3 6 3
4 0 0 O 5 8

We need to specify a transtion matrix:

> gm <- tmat(L3) / 10
> gm[is.na(gm)] <- 0
> rownames (gm) <-
+ colnames(qm) <- 1:5
> gm
1 23 4 5
100.610.00.3
200.000.60.2
300.000.60.3
40 0.000.00.8
500.000.00.0

Then we can specify the Markov model:

> msmM <- msm(state ~ t1000,

+ subject = lex.id,

+ data = Lt,

+ gmatrix = gm,

+ obstype = 2)

> msmM

Call:

msm(formula = state ~ t1000, subject = lex.id, data = Lt, gmatrix = qm, obstype = 2)

Maximum likelihood estimates

Transition intensities

Baseline
1 -1 -25.545 ( -40.048,-16.29)
1 -2 8.067 ( 3.624, 17.96)
1 - 3 13.445 ( 7.234, 24.99)
1 -5 4,033 ( 1.301, 12.51)
2 - 2 -55.749 (-111.477,-27.88)
2 -4 41.812 ( 18.784, 93.07)
2 -5 13.938 ( 3.486, 55.73)
3 - 3 -45.709 ( -87.848,-23.78)
3 -4 30.473 ( 13.690, 67.83)
3 -5 15.236 ( 4.914, 47.24)
4 - 4 -39.254 ( -78.493,-19.63)
4 - 5 39.254 ( 19.631, 78.49)

-2 * log-likelihood: -168.7931

We can extract the estimated transition rates with c.i. using the extractor function gmatrix.msm:

> str(gmatrix.msm(msmM))

List of 5
$ estimates: num [1:5, 1:5] -256.5 0 0 0 O ...
..- attr(x, "dimnames")=List of 2
..$ . chr [1:5] nqn o noun wgn wgn
.. ..% : chr [1:5] "qm nom ngn ngn
$ SE : num [1:5, 1:5] 5.86 0 0 0 O ...
..- attr(*, "dimnames")=List of 2
$ . chr [15] nyn o owgu ngn g
X $ . chr [15] n{n owgu ngn g
$ L : num [1:5, 1:5] -40 0 0 0 O ...
..— attr(x, "dimnames")=List of 2
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. ‘$ . ChI' [1:5] ||1|| ||2l| |’3l| ||4||
.. ..$ i chr [1:5] "in mgw w3n wgn
$U : num [1:5, 1:5] -16.3 0 0 0 O ...
..— attr(x, "dimnames")=List of 2
. .$ : Chr [1:5] lllll ||2l| "3" ||4l|
.. ..% : chr [1:5] mqm nom ngn ngn
$ fixed : logi [1:5, 1:5] FALSE FALSE FALSE FALSE FALSE FALSE ...
- attr(*, "class")= chr "msm.est"

> gm <- gmatrix.msm(msmM)$estimates
> ql <- gmatrix.msm(msmM)$L
> qu <- gmatrix.msm(msmM)$U

We can then doctor this to a more readable from by applying state names, and then use these to get the
estimated rates in the same form as those from the Lexis analysis:

> rownames (gm) <- rownames(ql) <- rownames(qu) <-
+ colnames(qm) <- colnames(ql) <- colnames(qu) <- levels(L3)
> data.frame(from, to,

+ round(rates * 1000, 1),

+ round (cbind (qm[cbind (from,to)],

+ ql[cbind(from,to)],

+ qu[cbind(from,to)]), 1))
from to Rate L U X1 X2 X3

1 0K A 8.1 3.6 18.0 8.1 3.6 18.0

2 A A+B 41.8 18.8 93.1 41.8 18.8 93.1

3 OK B 13.4 7.2 25.0 13.4 7.2 25.0

4 B A+B 30.5 13.7 67.8 30.5 13.7 67.8

5 0K D 4.0 1.3 12.5 4.0 1.3 12.5

6 A D 13.9 3.5 55.7 13.9 3.5 55.7

7 B D 15.2 4.9 47.2 15.2 4.9 47.2

8 A+B D 39.3 19.6 78.5 39.3 19.6 78.5

...and bingo, we see we get exactly the same results.
So we can get the same results from msm as from traditional calculation of transition rates. But there are
a couple of derivatives that come much easier from msm

...now input from dogma
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Advice and dogma

9.1 Practical advice for multistate analysis

The following is a summary of things to keep in mind when gathering data, doing analysis and reporting
multistate models.

1.
2.

10.

Record all event times as dates — facilitates calculation of any other time scale.
Draw boxes and arrows with person-years and transitions; this gives an overview of the data.

Draw Lexis diagrams of follow-up for (all) pairs of time scales, it may reveal (some of the) fishy
features of your data.

. Divide absorbing states by transition type (which state was immediately before the absorbing state,

e.g. death with or without previous CVD) — then you will be able to address the risk of ever being
in a given state.

Different occurrence rates (transition intensities) out of a state are not likely to be proportional.
Specifically, they are not likely to depend on time (and other covariates) in the same way. Hence
they will therefore normally be modeled separately. For example, it is unlikely that rates of cancer
and CVD among persons not suffering from any of them will depend on age in the same way.

Transition intensities from different states into the same (type of) state are more likely to depend
on time (and other covariates) in the same way. For example it is quite likely that cancer rates
depend on age in the same way for persons with and without CVD.

The stacking of data (also called the long format, see e.g. [?], and p. ??) when modeling several
transition rates with the common parameters is only needed if several rates out of the same state
are modeled jointly (that is, with common parameters). If the joint modeling of several rates
concerns at most one rate out of any state, the stacked data are not needed, simple subsetting of the
the follow-up in the Lexis representations will suffice.

By the previous token, this means the stacking of follow-up data is quite rarely needed. But there is
a stack function that will transform a Lexis object to the long format.

Adding clinical measurements to a Lexis object naturally induces a time-scale for each (type of)
clinical examination, namely the time since the measurement was taken.

This is because we would expect that the effect of a measurement attenuates with time since the
measurement. This can be modeled because we will have a timescale variable indicating the time
since last clinical measurement. It simply amounts to including an interaction between the
measurement value and the time since measurement.

Rates are smooth functions of time scales (and other covariates).
The choice of timescales to use in modeling is an empirical question, as is the in- or ex-clusion of any

other covariate of potential interest from the model.
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11.

12.

Differences between time scales may be relevant as covariates, e.g. age at diagnosis = current age —

disease duration.

It is easier to obtain expected sojourn times, cumulative risks and other derived measures when

rates are modeled by smooth parametric functions.

9.2 Dogma for multistate analysis

The following is a collection of dogma that I consider essential to obtain a valid and sensible statistical
analysis and reporting from observations in a multistate model with multiple time scales.

1.
2.

do not condition on the future (see [1])
do not label quantities "probability’ or ’survival’ if they are not (see [1])

. . . . . L . v w w
do label interactions “interactions” if they are it is confusing to invent ne ords such as
“non-proportional hazards”

do not test for interactions—quantify them

stick to this world:

(a) rates are smooth functions of time scales

(b) rates are likely to depend on more than one time scale
— empirical examination is required to establish which

(c) report multiple time scale effects jointly
— they advance at the same time in real life

...now input from Rtools
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Useful R functions and packages

10.1 Lexis functions

The Lexis machinery has evolved over time since it was first introduced in a workable version in
Epi_1.0.5 in August 2008, as described in [9, 3].

Over the years there have been additions of tools for handling multistate data. Below is a list of the
current functions relating to Lexis objects with a very brief description of each; it does not replace the
documentation so you have to RTFM. Unless otherwise stated, functions named something.Lexis (with a
“.”) are S3 methods for Lexis objects, so you can skip the “.Lexis” in daily use.

Define
Lexis defines a Lexis object
Cut and split

cutLexis cut follow-up at one intermediate event

mcutLexis cut follow-up at several intermediate events, keep track of history, no recurrences allowed

rcutLexis cut follow-up at several intermediate events, only most recent event kept, recurrences
allowed

countLexis cut follow-up at intermediate event count the no. events so far

addCov.Lexis add clinical measurements at a given date to a Lexis object

splitLexis split follow up along a time scale

popEpi::splitMulti split follow up along a time scale — from the popEpi package, faster and has
simpler syntax than splitLexis

Boxes and plots

boxes.Lexis draw a diagram of states and transitions

cohorttools: :boxesLx draw a diagram of states and transitions using the graphVz machinery
plot.Lexis draw a standard Lexis diagram

points.Lexis add points to a Lexis diagram

lines.Lexis add lines to a Lexis diagram

PY.ann.Lexis annotate life lines in a Lexis diagram

Summarize and query

summary.Lexis overview of transitions, risk time etc.

levels.Lexis what are the states in the Lexis object

nid.Lexis number of persons in the Lexis object — how many unique values of lex.id are present
entry entry time

exit exit time

status status at entry or exit

timeBand factor of time bands

timeScales what time scales are in the Lexis object
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timeSince what time scales are defined as time since a given state
breaks what breaks are currently defined

absorbing what are the absorbing states

transient what are the transient states

preceding, before which states precede this

succeeding, after which states can follow this

tmat.Lexis transition matrix for the Lexis object

Manipulate

subset.Lexis, [ subset of a Lexis object

merge.Lexis merges a Lexis objects with a data.frame

cbind.Lexis bind a data.frame to a Lexis object

rbind.Lexis put two Lexis objects head-to-foot

transform.Lexis transform and add variables

order.Lexis, orderLexis return order by (lex.id, time scale)
sortLexis sort by (lex.id, time scale)—note: no S3 method available
tsNA20 turn NAs to Os for time scales

factorize.Lexis make lex.Cst and lex.Xst factors, removing empty levels
Relevel.Lexis reorder and combine states

rm.tr remove transitions from a Lexis object

bootLexis bootstrap sample of persons (lex.id) from a Lexis object

Simulate

simLexis simulate a Lexis object from specified transition rate models
nState, pState count state occupancy from a simulated Lexis object
plot.pState, lines.pState plot state occupancy from a pState object

Stack

stack.Lexis make a stacked object for simultaneous analysis of transitions — returns a
stacked.Lexis object

subset.stacked.Lexis subsets of a stacked.Lexis object

transform.stacked.Lexis transform a stacked.Lexis object

Interfaces to other packages

msdata.Lexis interface to mstate package
etm.Lexis interface to etm package
crr.Lexis interface to cmprsk package

Statistical modeling —these are not S3 methods; you cannot omit .Lexis

glm.Lexis fit a glm model using the poisreg family to (hopefully) time split data

gam.Lexis fit a gam model (from the mgcv package) using the poisreg family to (hopefully)
split data

coxph.Lexis fit a Cox model to follow-up in a Lexis object

10.2 Modeling and reporting functions

coxph.Lexis
glm.Lexis
gam.Lexis
ci.lin
ci.exp
ci.pred
ci.cum
ci.surv
ci.Crisk

time

Rtools
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10.3 R Packages

survival
cmprsk

etm
flexsurv
mstate

msm

pseudo
timereg
cohorttools

...now input from appendix
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Appendices

...now input from mrcut

11.1 Comparing mcut and rcut

This is a short overview of the functioning of these two functions, the situations where they are relevant,
and how the results relate to each other.

> library(Epi)
> library(popEpi)

The following is a modified version of the help page for mcutLexis; where we first set up a data frame of
simulated dates, mimicking a multistate model with survival from A to D, and with possible intermediate
states Z and W.

> set.seed(56324)
> N <- 500 # no. persons simulated
> dd <- data.frame(id = 1:N,
+ doB = runif(N,-30, 0), # date of birth
+ doE = runif(N, 0,20), # date of entry
+ doX = runif(N, 50,60), # date of exit
+ doD = runif(N, 50,60), # date of death
+ doZ = runif(N, -6,20), # date of Z
+ doW = runif(N, -2,20)) # date of W
> dd$doD[sample(1:N,N/3)] <- NA
> dd$doZ[sample(1:N,N/2)] <- NA
> dd$doW[sample(1:N,N/4)] <- NA
> dd$doZ <- dd$doZ + dd$doE
> dd$doW <- dd$doW + dd$doE
> dd$doX <- pmin(dd$doX, dd$doD, na.rm = TRUE)
> ddl[,-1] <- dd[,-1] + 1940
> round(dd[1:10,], 2)
id doB doE doX doD doZ doW
1 1 1927.25 1955.39 1995.58 NA 1970.91 1970.46
2 2 1937.28 1957.90 1992.72 1992.72 NA 1969.56
3 3 1916.47 1953.62 1996.79 1999.94 1967.15 1954.14
4 4 1918.35 1950.14 1991.40 1991.40 1956.44 1959.23
5 5 1935.66 1940.56 1998.77 1998.77 NA 1948.83
6 6 1938.15 1954.53 1997.71 1998.52 1965.80 1956.97
7 7 1922.91 1956.24 1992.41 NA NA 1961.81
8 8 1930.93 1951.31 1993.38 1993.38 1952.24 1957.62
9 9 1913.37 1943.33 1997.02 1997.02 NA 1957.69
10 10 1932.00 1941.75 1991.78 1996.55 1939.55 1960.28

We then set up a Lexis object with follow-up time from entry to death/exit:
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> Lx <- Lexis(entry = list(time = doE,

+ age = doE - doB),

+ exit = list(time = doX),

+ exit.status = factor(!is.na(doD),

+ labels=c("A", "D")),
+ data = dd)

NOTE: entry.status has been set to "A" for all.

> summary (Lx)

Transitions:
To
From A D Records: Events: Risk time: Persons:
A 166 334 500 334 22018.58 500

11.1.1 mcutlLexis: Cutting at dates of transitions, keeping history

11.1.1.1 If state sequence matters

Here we cut the follow-up at dates of Z and W, keeping track of whether Z occurred before W or vice versa:

> L2 <- mcutLexis(Lx, "time",

+ wh = c("doZ", "doW"),
+ new.states = c("Z", "W"),

+ seq.states = TRUE,

+ new.scales = c("tfZ", "tfW"),
+ ties.resolve = TRUE)

NOTE: Precursor states set to A
> levels(L2)
[1] ||AH Ilwll IIW_ZH IIDII IlZIl HZ_wll

CODE EXPLAINED: The second argument is the name of the time scale in Lx object that the variables
named in the wh argument refer to (here, the calendar time). The new.states argument names the states
that persons transition to at these dates. The new.scales names new variables measuring times since
entry to the states.

For display reasons we reorder the sequence of the state names (levels):

> L2 <- Relevel(LQ, C(”A”, qu, ”Z—W”, ”W”, ”W—Z”, HDH))
> summary (L2)

Transitions:
To

From A Z Z-W W W-2Z D Records: Events: Risk time: Persons:
A 16 121 0 237 0 45 419 403 5621.22 419
Z 0 20 109 0 0 44 173 153 3304.06 173
Z-W O 0 41 0 0 73 114 73 3582.81 114
W 0 0 0 65 70 124 259 194 7293.06 259
W- 0 0 0 0 24 48 72 48 2217.43 72
Sum 16 141 150 302 94 334 1037 871 22018.58 500

The reordering makes it a bit easier to get the coordinates for the boxes right:

> boxes( L2, boxpos = list(x = c(10, 65, 90, 65, 90, 50),
+ y = c(50, 95, 70, 5, 30, 50)),
+ show.R = FALSE, show.BE = TRUE, cex = 1 )

The resulting graph corresponds to the top panel in figure 11.1.
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11.1.1.2 If state sequence does not matter

We may consider the relative timing of the events Z and W irrelevant from the beginning and decide to
ignore the order in which Z and W occur by specifying seq.states=FALSE (TRUE is the default), in which
case we get a state called W+Z. As above we also reorder the states to get an easier readable table:

> L3 <- mcutLexis(Lx, "time",
wh = c("doZ", "doW"),
new.states = c("Z", "W"),
seq.states = FALSE,
new.scales = c("tfZ", "tfW"),
ties.resolve = TRUE)

NOTE: Precursor states set to A

> L3 <- Relevel(LB, C("A”, ”Z”, ”W”, "W+Z", IIDH))
> summary (L3)

++ + + +

Transitions:
To

From A Z W W+Z D Records: Events: Risk time: Persons:
A 16 121 237 0 45 419 403 5621.22 419
Z 0 20 0 109 44 173 153 3304.06 173
W 0 0 65 70 124 259 194 7293.06 259
W+Z O 0 0 65 121 186 121 5800.25 186
Sum 16 141 302 244 334 1037 871 22018.58 500

> boxes( L3, boxpos = list(x = ¢(10,70,70,90,45),

+ y = ¢(50,90,10,50,50)),

+ show.R = FALSE, show.BE = TRUE, cex = 1)

The resulting graph corresponds to the middle panel in figure 11.1.
It is of course also possible to use Relevel.Lexis to merge the two states in the object L2 “by hand” to
obtain the same:

> L3m <- Relevel(L2, list(1, 2, 4, "W+Z" = c("W-Z","Z-W"), 6))
> summary (L3m)

Transitions:
To

From A Z W W+Z D Records: Events: Risk time: Persons:
A 16 121 237 0 45 419 403 5621.22 419
Z 0 20 0 109 44 173 153 3304.06 173
W 0 0 65 70 124 259 194 7293.06 259
W+Z O 0 0 65 121 186 121 5800.25 186
Sum 16 141 302 244 334 1037 871 22018.58 500

We see we get the same result as L3. In fact it would have sufficient to say Relevel (L2, list ("W+Z" =
c("W-Z","Z-W"))), but the ordering of the states would have been different.

11.1.2 rcutlexis: Recurrent events — no memory

A somewhat different variant is where we do not keep track of persons’ history but only the currently
occupied state. This may for example be the case where it is possible to have both Z and W as recurrent
states. This is handled by the function rcutLexis (“r” for recurrent), which requires the cut dates in
“long” form, that is with one record per transition with variables lex.id, cut—date of transition and
new.state—the state to which a transition occur:

> lcut <- with(Lx, rbind(data.frame(lex.id,

+ cut = doZ,
+ new.state = "Z"),
+ data.frame(lex.id,

+ cut = dol,
+ new.state = "W'")))

> lcut <- lcut[!is.na(lcut$cut),]
> lcut <- lcut[order(lcut$lex.id,lcut$cut),]
> print(lcut[1:10,], row.names=FALSE)
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cut new.state
1970.457
1970.906
1969.559
1954.139
1967.152
1956.440
1959.234
1948.834
1956.971
1965.801

> L4 <- rcutLexis(Lx, cut = lcut)
> L4 <- Relevel(L4, c("A","Z","W","D"))
> summary (L4)

=
0]
ol
H
Q

OO P WWN -
N=sNN=Z=N==

Transitions:
To

From A Z W D Records: Events: Risk time: Persons:
A 16 121 237 45 419 403 5621.22 419
Z 0 44 109 92 245 201 5521.49 245
W 0 70 106 197 373 267 10875.87 373
Sum 16 235 452 334 1037 871 22018.58 500

> boxes (L4, boxpos = list(x = ¢(10,70,70,45),

+ y = ¢(50,85,15,50)),

+ show.R = FALSE, show.BE = TRUE, cex = 1)

The resulting graph corresponds to the lower panel in figure 11.1.

par (mfcol = c(3, 1))
boxes (L2, boxpos = list(x = c(10, 70, 95, 70, 95, 45),
y c(50, 85, 70, 15, 30, 50)),
show.R = FALSE, show.BE = TRUE)
text (5, 90, "Full history\n(mcutLexis)", adj = c(0,1), cex = 1.7)
boxes (L3, boxpos = list(x = c¢(10,70,70,95,45),
v = ¢(50,85,15,50,50)),
show.R = FALSE, show.BE = TRUE)
text (5, 90, "Order ignored\n(mcutLexis)", adj = c(0,1), cex = 1.7)
boxes (L4, boxpos = list(x = ¢(10,70,70,45),
y = ¢(50,85,15,50)),
show.R = FALSE, show.BE = TRUE)
text (5, 90, "History ignored\n(rcutLexis)", adj = c(0,1), cex = 1.7)

V++VV++VV++ VvV

The rcutLexis gives a result corresponding to merging of levels W and Z-W one one hand and Z and W-Z on
the other. But rcutLexis also accommodates the more general case where recurrent transitions between Z
and W occur, here is simple illustration:

> subset (L4, lex.id == 4)[,1:6]

lex.id time age lex.dur lex.Cst lex.Xst
4 1950.14 31.79 6.30 A Z
4 1956.44 38.09 2.79 Z W
4 1959.23 40.88  32.17 W D

4

> xcut <- data.frame(lex.id s
c(1956 + 0:4, 1975, 1990, 1995) + 0.1,

+ cut =
+ new. State = C(HWH’ HZH’ HWH, HZH’ Hw!l’ HZH’ Hw!l’ HZ”) )
> xcut
lex.id cut new.state
1 4 1956.1 W
2 4 1957.1 Z
3 4 1958.1 W
4 4 1959.1 Z
5 4 1960.1 W
6 4 1975.1 Z
7 4 1990.1 W
8 4 1995.1 Z

mrcut
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> subset (X4 <- rcutLexis(L4, xcut), lex.id == 4)[,1:6]

lex.id ti
1950.
1956.
1956.
1957.
1958.
1959.
1959.
1960.
1975.
1990.

NGO NN NI NI NN

me
14

age lex.dur lex.Cst lex.Xst

.79

=
il e NeoN i e NeNé|

SN=ZNN=ZNS== = >

O N=ZNN=ZN==

The original transitions to Z at 1956.440 and to W at 1959.234 are preserved, and we also see that the new
transition recorded after death (well after end of follow-up) is ignored.
Finally, we demonstrate that it is perfectly admissible with repeat recordings of the same state, it just

results in

> xcut <- data.frame(lex.id
cut
new.state

> xcut

lex.id cut new.state

NN NN N NN

lex.id ti
1950.
1956.
1956.
1957.
1958.
1959.
1959.
1960.
1975.
1990.

NN NN NN N NI NI N NN

1956.
1957.
1958.
1959.
1960.
1975.
1990.
1995.

subset (X4 <- rcutLexis(L4, xcut), lex.id == 4)[,1:6]

1

e e e

me
14

N=ESN=SNNS==

4

c(1956 + 0:4, 1975, 1990, 1995) + 0.1,
c("w”, "W”, ”Z", ”Z"’ ”W", ”Z”, "w”, "Z”) )

age lex.dur lex.Cst lex.Xst

.79
.75
.09
.75
.75
.75
.88
.75
.75
.75

=
P OO OO R, OOWO,

SN=ZNNNS = = >

W

O=N=ZNNN===

...now input from CovDrug

CovDrug



150 11.1 Comparing mcut and rcut PMM

; z
Full history
(mcutLexis) 3,304.1 109
52 20 \ Z-W
121 3,582.8
A‘V 5 41
A 73
5,621.2 L D334
419 16
237 48 W-Z
124 2,217.4
W 0w 2 24
7,293.1
22 65
; z
Order ignored
(mcutLexis) 3,304.1
52 20
109
121 ‘4
A W+Z
5,621.2 Ll P |- o 5,800.2
419 16 7 65
237 70
124
w
7,293.1
22 65
) ) Z
History ignored
(rcutLexis) 5,521.5
54 44
A
A
109
5,621.2 L D334 70
419 16
237
197 '
w
10,875.9
27 106

Figure 11.1: States and transitions in the three different cases.

Top: keeping track of the sequence of states visited, constructed by mcutLexis using the ar-
gument seq.states=TRUE (the default).

Middle: keeping track of states wvisited, bug ignoring visit order. constructed by mcutLexis
using the argument seq.states=FALSE. Can be obtained from the top panel by merging states
Z-W and W-Z.

Bottom: only keeping track of the last wvisited state, ignoring history, constructed by
rcutLexis. Can be obtained from the top panel by merging states Z-W and W and states
W-Z and Z. ../graph/cuts-all3
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11.2 Adding time-dependent variables

If time-dependent variables are binary, such as for example “occurrence of CVD diagnosis” it may be
relevant to define a new state as, say, CVD; this is the business of cut.Lexis and its cousins. But if we want
to append quantitative variables that in principle can take any (positive) value at different times we need
special functions for that. The functions addCov.Lexis and addDrug.Lexis are designed for this in
different situations. The functions are S3 methods for Lexis objects, so in code you can omit the “.Lexis”.

The function addCov.Lexis provides the ability to amend a Lexis object with clinical measurements
taken at different times, and propagate the values as LOCF (Last Observation Carried Forward) to all
subsequent records. This means that time-splitting of a Lexis object after adding clinical measurements
will be meaningful, because both splitLexis and splitMulti will carry variables forward to the split
records. The follow-up in the resulting Lexis object will be cut at dates of clinical measurement.

As opposed to this, addDrug.Lexis will use drug information at each date of recorded drug purchase,
and subsequently compute cumulative exposure measures at the times in the resulting Lexis object. This
is essentially done by linear interpolation, so it will not be meaningful to further split an object resulting
from addDrug.Lexis—LOCF is not meaningful for continuously time-varying covariates such as
cumulative exposure.

If persons have very frequent drug purchases, the intervals may become very small and the sheer number
of records may present an impediment to practical analysis. Therefore the function coarse.Lexis is
provided to collapse adjacent follow-up records, to facilitate practical analysis.

In order to illustrate the working of the two functions we load the relevant packages and define a small
utility to compactify the printing of data frames with a given number of digits after the decimal point.

> library(Epi)
> library(popEpi)
> library(tidyverse)

11.2.1 addCov.Lexis
11.2.1.1 Rationale

The function has arisen out of a need to attach values measured at clinical visits to a Lexis object
representing follow-up for events constituting a multistate model. Hence the data frame with
measurements at clinical visits will be called clin for mnemonic reasons.

11.2.1.2 The example data

For illustration we devise a small bogus cohort of 3 people, where we convert the character dates into
numerical variables (fractional years) using cal.yr. Note that we are using a character variable as id:

> xcoh <- structure(list(id = c("A", "B", "C"),
+ birth = c("1952-07-14", "1954-04-01", "1987-06-10"),
+ entry = c("1965-08-04", "1972-09-08", '"1991-12-23"),
+ exit = c("1997-06-27", "1995-05-23", "1998-07-24"),
+ fail = c(1, 0, 1) ),
+ .Names = c("id", "birth", "entry", "exit'", '"fail"),
+ row.names = c("1'", "2", "3"),
+ class = '"data.frame" )
> xcoh$dob <- cal.yr(xcoh$birth)
> xcoh$doe <- cal.yr(xcoh$entry)
> xcoh$dox <- cal.yr(xcoh$exit )
> xcoh
id birth entry exit fail dob doe dox
1 A 1952-07-14 1965-08-04 1997-06-27 1 1952.533 1965.589 1997.485
2 B 1954-04-01 1972-09-08 1995-05-23 0 1954.246 1972.686 1995.388
3 C 1987-06-10 1991-12-23 1998-07-24 1 1987.437 1991.974 1998.559
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11.2.1.3 A Lexis object

Define this as a Lexis object with timescales calendar time (per, period) and age (age):

> Lcoh <- Lexis(entry = list(per = doe),

+ exit = list(per = dox,

+ age = dox - dob),

+ id = id,

+ exit.status = factor(fail, 0:1, c("Alive","Dead")),
+ data = xcoh)

NOTE: entry.status has been set to "Alive" for all.
> str(Lcoh)

Classes 'Lexis' and 'data.frame': 3 obs. of 14 variables:
$ per : 'cal.yr' num 1966 1973 1992
$ age : 'cal.yr' num 13.06 18.44 4.54
$ lex.dur: 'cal.yr' num 31.9 22.7 6.58
$ lex.Cst: Factor w/ 2 levels "Alive","Dead": 1 1 1
$ lex.Xst: Factor w/ 2 levels "Alive","Dead": 2 1 2
$ lex.id : chr "A" "B" "C"
$ id . Chr IIAII llBll ||cl|
$ birth : chr "1952-07-14" "1954-04-01" "1987-06-10"
$ entry : chr "1965-08-04" "1972-09-08" "1991-12-23"
$ exit : chr "1997-06-27" "1995-05-23" "1998-07-24"
$ fail :num 1 0 1
$ dob : 'cal.yr' num 1953 1954 1987
$ doe : 'cal.yr' num 1966 1973 1992
$ dox : 'cal.yr' num 1997 1995 1999

attr(*, "time.scales")= chr [1:2] "per" "age"

- attr(x, "time.since")= chr [1:2] "" ""
- attr(*, "breaks")=List of 2

..$ per: NULL
..$ age: NULL
> (Lx <- Lcoh[,1:6])
lex.id per age lex.dur lex.Cst lex.Xst

A 1965.59 13.06 31.90 Alive Dead
B 1972.69 18.44 22.70 Alive Alive
C 1991.97 4.54 6.58 Alive Dead

11.2.1.4 Factor or character lex.id?

Note that when the id argument to Lexis is a character variable then the lex.id will be a factor. Which,
if each person has a lot of records may save time, but if you subset a Lexis object may be a waste of space.
Moreover, merging (i.e. joining in the language of tidyverse) may present problems with different levels
of factors. merge from the base R, will coerce to factor with union of levels as levels (including also levels
that are not assumed in data), whereas the _join functions from dplyr will coerce to character.

Thus the most reasonable strategy thus seems to keep lex.id as a character variable.

> Lx$lex.id <- as.character(Lx$lex.id)

> str(Lx)
Classes 'Lexis' and 'data.frame': 3 obs. of 6 variables:
$ per : 'cal.yr' num 1966 1973 1992
$ age : 'cal.yr' num 13.06 18.44 4.54
$ lex.dur: 'cal.yr' num 31.9 22.7 6.58
$ lex.Cst: Factor w/ 2 levels "Alive","Dead": 1 1 1
$ lex.Xst: Factor w/ 2 levels "Alive","Dead": 2 1 2
$ lex.id : chr "A"™ "B" "C"

attr(x, "time.scales")= chr [1:2] "per" "age"
attr(*, "time.since")= chr [1:2] "" ""
attr(x, "breaks")=List of 2

..$ per: NULL

..$ age: NULL

> Lx
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lex.id per age lex.dur lex.Cst lex.Xst
A 1965.59 13.06 31.90 Alive Dead
B 1972.69 18.44 22.70 Alive Alive
C 1991.97 4.54 6.58 Alive Dead

11.2.1.5 Clinical measurements

Then we generate data frame with clinical examination data, that is date of examination in per, some
bogus clinical measurements and also names of the examination rounds:

> clin <- data.frame(lex.id = c("A", "A'", "A", "C", "B", "C"),
+ per = c(1983.3, 1975.2, 1971.7, 1996.2, 1990.6, 1989.2),
+ bp = c(120, 135, 140, 160, 157, 145),
+ chol = c¢c(6, NA, 5, 8, 9, 6),

+ xnam = C(IIXBH, HXQII’ ”Xl”, qun, HX2H, HXOH)’
+ stringsAsFactors = FALSE)

> str(clin)

'data.frame': 6 obs. of b5 variables:

$ lex.id: chr "A'™ A" M"A" "C" ..

$ per : num 1983 1975 1972 1996 1991 ...

$ bp : num 120 135 140 160 157 145

$ chol : num 6 NA 5 8 9 6

$ xnam . Chr ||X3|l ||X2|l ||X1H lle”

> clin

lex.id per bp chol xnam

1 A 1983.3 120 6 X3

2 A 1975.2 135 NA X2

3 A 1971.7 140 5 X1
4 C 1996.2 160 8 X1

5 B 1990.6 157 9 X2

6 C 1989.2 145 6 X0

Note that we have chosen a measurement for person C from 1989—before the person’s entry to the study,
and have an NA for chol for person A.

11.2.1.6 Adding clinical data

There is a slightly different behaviour according to whether the variable with the name of the examination
is given or not, and whether the name of the (incomplete) time scale is given or not:

> (Cx <- addCov.Lexis(Lx, clin))
lex.id per age tfc lex.dur lex.Cst lex.Xst exnam bp chol xnam

A 1965.59 13.06 NA 6.11 Alive Alive <NA> NA NA <NA>
A 1971.70 19.17 0.00 3.50 Alive Alive ex1 140 5 X1
A 1975.20 22.67 0.00 8.10 Alive Alive ex2 135 NA X2
A 1983.30 30.77 0.00 14.19 Alive Dead ex3 120 6 X3
B 1972.69 18.44 NA 17.91 Alive Alive <NA> NA NA <NA>
B 1990.60 36.35 0.00 4.79 Alive Alive exl 157 9 X2
C 1991.97 4.54 2.77 4.23 Alive Alive exl 145 6 X0
C 1996.20 8.76 0.00 2.36 Alive Dead ex2 160 8 X1

Note that the clinical measurement preceding the entry of person C is included, and that the tfc (time
from clinical measurement) is correctly rendered, we a non-zero value at date of entry.

We also see that a variable exnam is constructed with consecutive numbering of examinations within
each person, while the variable xnam is just carried over as any other.

If we explicitly give the name of the variable holding the examination names we do not get a constructed
exnam. We can also define the name of the (incomplete) timescale to hold the time since measurement, in
this case as t£Cl:

> (Dx <- addCov.Lexis(Lx, clin, exnam = "xnam", tfc = "tfC1l"))
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lex.id per age tfCl lex.dur lex.Cst lex.Xst xnam bp chol
A 1965.59 13.06 NA 6.11 Alive Alive <NA> NA NA
A 1971.70 19.17 0.00 3.50 Alive Alive X1 140 5
A 1975.20 22.67 0.00 8.10 Alive Alive X2 135 NA
A 1983.30 30.77 0.00 14.19 Alive Dead X3 120 6
B 1972.69 18.44 NA 17.91 Alive Alive <NA> NA NA
B 1990.60 36.35 0.00 4.79 Alive Alive X2 157 9
C 1991.97 4.54 2.77 4,23 Alive Alive X0 145 6
C 1996.20 8.76 0.00 2.36 Alive Dead X1 160 8
> summary (Dx, t=T)
Transitions:
To
From Alive Dead Records: Events: Risk time: Persons:
Alive 6 2 8 2 61.18 3
Timescales:
per age tf(Cl
nn nn llxll

11.2.1.7 Exchanging split and add

As noted before addCov.Lexis uses LOCF, and so it is commutative with splitLexis:

>
>
+
—+
+
+

> Lb

'_I
(0]
>
[
Q.

[PEPEP RPN A rlvcRvsiiveiiveiivell-_ji-— ...

1997

+ 4+ +4+VvVVvy

> La

lex.id

1965.
1967.
1971.
1972.
1975.
1977.
1982.
1983.
1987.
1992.
1972.
1974.
1979.
1984.
1989.
1990.
1994.
1991.
1992.
1996.

20
.44

per

10.

# split BEFORE add
Lb <- addCov.Lexis (splitLexis(Lx,

#
# split AFTER add
La <- splitLexis(addCov.Lexis(Lx,

time.scale = '"age",
breaks = seq(0, 80, 5)),
clin,
exnam = "xnam"
tfc lex.dur lex.Cst lex.Xst xnam

NA 1.94 Alive Alive <NA>
NA 4.17 Alive Alive <NA>
0.00 0.83 Alive Alive X1
0.83 2.67 Alive Alive X1
0.00 2.33 Alive Alive X2
2.33 5.00 Alive Alive X2
7.33 0.77 Alive Alive X2
0.00 4,23 Alive Alive X3
4,23 5.00 Alive Alive X3
9.23 4.95 Alive Dead X3
NA 1.56 Alive Alive <NA>
NA 5.00 Alive Alive <NA>
NA 5.00 Alive Alive <NA>
NA 5.00 Alive Alive <NA>
NA 1.35 Alive Alive <NA>
0.00 3.65 Alive Alive X2
3.65 1.14 Alive Alive X2
2.77 0.46 Alive Alive X0
3.24 3.76 Alive Alive X0
0.00 1.24 Alive Alive X1
1.24 1.12 Alive Dead X1

clin,
p—l} n
exnam = "xnam" ),

time.scale = '"age",

age

A 1965.59 13.06
A 1967.53 15.00
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breaks = seq(0, 80, 5))

tfc lex.dur lex.Cst lex.Xst xnam
NA 1.94 Alive Alive <NA>
NA 4.17 Alive Alive <NA>

bp chol
NA NA
NA NA
140 5
140 5
135 NA
135 NA
135 NA
120 6
120 6
120 6
NA NA
NA NA
NA NA
NA  NA
NA NA
157 9
157 9
145 6
145 6
160 8
160 8
bp chol
NA NA
NA  NA
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1971.70 19.
1972.53 20.
1975.20 22.
1977.53 25.
1982.53 30.
1983.30 30.
1987.53 35.
1992.53 40.
1972.69 18.
1974.25 20.
1979.25 25.
1984.25 30.
1989.25 35.
1990.60 36.
1994.25 40.
1991.97 4.
1992.44 5.
1996.20 8.
1997.44 10.

QOO eE = EE e

o
o
OPONNOOO

(@]
N
O WN WO

.83 Alive Alive X1 140 5
.67 Alive Alive X1 140 5
.33 Alive Alive X2 135 NA
.00 Alive Alive X2 135 NA
77 Alive Alive X2 135 NA
.23 Alive Alive X3 120 6
.00 Alive Alive X3 120 6
.95 Alive Dead X3 120 6
.56 Alive Alive <NA> NA NA
Alive Alive <NA> NA NA
.00 Alive Alive <NA> NA NA
.00 Alive Alive <NA> NA NA
.35 Alive Alive <NA> NA
.65 Alive Alive X2 157
.14 Alive Alive X2 157
.46 Alive Alive X0 145
.76 Alive Alive X0 145
.24 Alive Alive X1 160
.12 Alive Dead X1 160

HF R WORWFRLROOORPDPAOPDOONNO
(@]
o

=
0 0 O O O O =

We see that the results are identical bar the sequence of variables and attributes.
We can more explicitly verify that the resulting data frames are the same:

> La$tfc == Lb$tfc

[1] NA NA TRUE
[16] TRUE TRUE TRUE

> La$age == Lb$age

[1] TRUE TRUE TRUE
[16] TRUE TRUE TRUE

> La$per == Lb$per

[1] TRUE TRUE TRUE
[16] TRUE TRUE TRUE

TRUE
TRUE

TRUE
TRUE

TRUE
TRUE

TRUE
TRUE

TRUE
TRUE

TRUE
TRUE

The same goes for splitMulti:

# split BEFORE ad

#
# split AFTER add

V+++VVYV++ VYV

La$tfc == Lb$tfc

d

clin,

exn

am =

TRUE TRUE TRUE TRUE TRUE NA NA NA NA NA
TRUE

TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
TRUE

TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
TRUE

Mb <- addCov.Lexis(splitMulti(Lx, age = seq(0, 80, 5)),

"xnam"

Ma <- splitMulti(addCov.Lexis(Lx,

clin,
exnam = "xnam"

age = seq(0, 80, 5))

[1] NA NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA NA NA NA NA
[16] TRUE TRUE TRUE TRUE TRUE TRUE

> Ma$tfc == Mb$tfc

[1] NA NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA NA NA NA NA
[16] TRUE TRUE TRUE TRUE TRUE TRUE

In summary, because both addCov.Lexis and splitLexis/splitMulti use LOCF for covariates the order
of splitting and adding does not matter.
This is certainly not the case with addDrug.Lexis as we shall see.
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11.2.1.8 Filling the NAs

As mentioned in the beginning, clinical measurements given as NA in the clin data frame are carried
forward. If you want to have these replaced by ’older’ clinical measurements you can do that explicitly by
dplyr::£ill:

> cov <- c("bp", "chol")

> Lx <- La

> Lx[,cov] <- as.data.frame(group_by(La, lex.id) >} fill(cov))[,cov]
> La

lex.id per age tfc lex.dur lex.Cst lex.Xst xnam bp chol
1965.59 13.06 NA .94 Alive Alive <NA> NA NA
1967.53 15.00 NA 17 Alive Alive <NA> NA NA
1971.70 19.17 .83 Alive Alive X1 140 5
1972.53 20.00 .67 Alive Alive X1 140 5
1975.20 22.67 .33 Alive Alive X2 135 NA
1977.53 25.00 .00 Alive Alive X2 135 NA
1982.53 30.00 77 Alive Alive X2 135 NA
1983.30 30.77 .23 Alive Alive X3 120 6
1987.53 35.00 .00 Alive Alive X3 120 6
1992.53 40.00 Alive Dead X3 120 6
1972.69 18.44 NA .56 Alive Alive <NA> NA NA
1974.25 20.00 NA .00 Alive Alive <NA> NA NA
1979.25 25.00 NA .00 Alive Alive <NA> NA NA
1984.25 30.00 NA .00 Alive Alive <NA> NA NA
1989.25 35.00 NA .35 Alive Alive <NA> NA NA

OPONNOOO
N w
w w
PR WORWRFRLROOORDOAOPROONNDO D -
©
(]

QOO eE === D> s>

1990.60 36.35 0.00 .65 Alive Alive X2 157 9
1994.25 40.00 3.65 .14 Alive Alive X2 157 9
1991.97 4.54 2.77 .46  Alive Alive X0 145 6
1992.44 5.00 3.24 .76 Alive Alive X0 145 6
1996.20 8.76 0.00 .24 Alive Alive X1 160 8
1997.44 10.00 1.24 .12 Alive Dead X1 160 8
> Lx

lex.id per age tfc lex.dur lex.Cst lex.Xst xnam bp chol
A 1965.59 13.06 NA 1.94 Alive Alive <NA> NA NA
A 1967.53 15.00 NA 4.17 Alive Alive <NA> NA NA
A 1971.70 19.17 0.00 0.83 Alive Alive X1 140 5
A 1972.53 20.00 0.83 2.67 Alive Alive X1 140 5
A 1975.20 22.67 0.00 2.33 Alive Alive X2 135 5
A 1977.53 25.00 2.33 5.00 Alive Alive X2 135 5
A 1982.53 30.00 7.33 0.77 Alive Alive X2 135 5
A 1983.30 30.77 0.00 4.23 Alive Alive X3 120 6
A 1987.53 35.00 4.23 5.00 Alive Alive X3 120 6
A 1992.53 40.00 9.23 4.95 Alive Dead X3 120 6
B 1972.69 18.44 NA 1.56 Alive Alive <NA> NA NA
B 1974.25 20.00 NA 5.00 Alive Alive <NA> NA NA
B 1979.25 25.00 NA 5.00 Alive Alive <NA> NA NA
B 1984.25 30.00 NA 5.00 Alive Alive <NA> NA NA
B 1989.25 35.00 NA 1.35 Alive Alive <NA> NA NA
B 1990.60 36.35 0.00 3.65 Alive Alive X2 157 9
B 1994.25 40.00 3.65 1.14 Alive Alive X2 157 9
C 1991.97 4.54 2.77 0.46 Alive Alive X0 145 6
C 1992.44 5.00 3.24 3.76 Alive Alive X0 145 6
C 1996.20 8.76 0.00 1.24 Alive Alive X1 160 8
C 1997.44 10.00 1.24 1.12  Alive Dead X1 160 8

The slightly convoluted code where the covariate columns are explicitly selected, owes to the fact that the
dplyr functions will strip the data frames of the Lexis attributes. So you need to use £ill to just
generate the covariates and not touch the Lexis object itself.

The facility of propagating older clinical measurements should of course be built into addCov.Lexis as a
separate argument.

Note that the tfc, time from clinical measurement is now not a valid variable any more; the 5 in chol is
measured in 1971.5 but tfc is reset to 0 at 1977.3, despite only bp but not chol is measured at that time.
If you want that remedied you will have to use addCov.Lexis twice, one with a clin data frame with only
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bp and another with a data frame with only chol, each generating a differently named time from clinical
measurement.

This is a problem that comes from the structure of the supplied data not from the program features; in
the example we had basically measurements of different clinical variables at different times, and so
necessarily also a need for different times since last measurement.

11.2.2 addDrug.Lexis

The general purpose of the function is to amend a Lexis object with drug exposure data. The data base

with information on a specific drug is assumed to be a data frame with one entry per drug purchase (or

prescription), containing the date and the amount purchased and optionally the prescribed dosage (that is

how much is supposed to be taken per time). We assume that we have such a data base for each drug of

interest, which also includes an id variable, lex.id, that matches the lex.id variable in the Lexis object.
For each type of drug the function derives 4 variables:

ex : logical, is the person currently exposed
tf : numeric, time since first purchase

ct : numeric, cumulative time on the drug
cd : numeric, cumulative dose of the drug

These names are pre- or suf-fixed by the drug name, so that exposures to different drugs can be
distinguished; see the examples. The variables all refer to the status of the perons at the beginning of the
intervals.

The resulting Lexis object has extra records corresponding to cuts at each drug purchase and at each
expiry date of a purchase. For each purchase the coverage period is derived (different methods for this are
available), and if the end of this (the expiry date) is earlier than the next purchase of the person, the
person is considered off the drug from the expiry date, and a cut in the follow-up is generated with ex set
to FALSE.

11.2.2.1 The help example

The following is a slight modification of the code from the example subsection of the help page for
addDrug.Lexis

First we generate follow-up of 2 persons, and split the follow-up in intervals of length 0.6 years along the
calendar time scale, per:

h
=

c (2006, 2008),
c (2015, 2018),
dob = ¢ (1950, 1951),
xst = factor(c("A","D")))
<- Lexis(entry = list(per = doe,
age = doe- dob),
list(per = dox),

<- data.frame(doe
dox

I
Il

1

exit
exit.status xst,
data = fu)

NOTE: entry.status has been set to "A" for all.

+ 4+ ++V+++V
=
54

> Lx <- subset(Lx, select = -c(doe, dob, dox, xst))
> Sx <- splitLexis(Lx, '"per'", breaks = seq(1990, 2020, 0.6))
> summary (Sx)

Transitions:
To
From A D Records: Events: Risk time: Persons:
A 321 33 1 19 2

Then we generate drug purchases for these two persons, one data frame for each of the drugs F and G. Note
that we generate lex.ide (1,2) referring to the values of lex.id in the lexis object Sx.
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> set.seed(1952)
> rf <- data.frame(per = c(2005 + runif(12, 0, 10)),
amt = sample(2:4, 12, replace = TRUE),
lex.id = sample(1:2, 12, replace TRUE)) >/
arrange (lex.id, per)
rg <- data.frame(per = c(2009 + runif(10, 0, 10)),
amt = sample(round(2:4/3,1), 10, replace = TRUE),
lex.id = sample(1:2, 10, replace = TRUE)) 7>}
arrange (lex.id, per)

o
[/

++ +V o+ + o+

We do not need to sort the drug purchase data frames (it is done internally by addDrug.Lexis), but it
makes it easier to grasp the structure.

The way purchase data is supplied to the function is in a 1ist where each element is a data frame of
purchase records for one type of drug. The list must be named, the names will be used as prefixes of the
generated exposure variables. We can show the resulting data:

> pdat <- list(F = rf, G = rg)
> pdat

$F

per amt lex.id

2013.964
2014.251
2014.509
2014.990
2005.311
2007.595
2011.710
2011.812
2012.865
2013.331
2013.417
2013.932

H == O0NOOTE WN -
N = O

NNNNWD WNDN WD
NNNNNMNNMDNNNNE PP

“
«

=
[0}
B
i
Q.

per
2009.630
2012.987
2013.018
2016.954
2017.924
2009.089
2011.599
2014.566
2016.912
10 2017.004

> Lx

OOO~NNOO D WN -
HO»—LOH»—LOH»—H—-g
O~NO~NWONWWW -t
NNNMNNMNNRFE PP

lex.id per age lex.dur lex.Cst lex.Xst
1 2006 56 9 A A
2 2008 57 10 A D

Note that we have generated data so that there are drug purchases of drug F that is before start of
follow-up for person 2.

We can then expand the time-split Lexis object, Sx with the drug information. addDrug.Lexis not
only adds 8 wvariables (4 from each drug), it also adds records representing cuts at the purchase dates and
possible expiry dates.

> summary(Sx) ; names (Sx)

Transitions:
To
From A D Records: Events: Risk time: Persons:
A 321 33 1 19 2
[1] "lex.id" "per" "age" "lex.dur" "lex.Cst" "lex.Xst"

> ex1 <- addDrug.Lexis(Sx, pdat, method = "ext") # default
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NOTE: timescale taken as 'per'
NOTE: end of exposure based on differences in purchase times (per)
and amount purchased (amt).

> summary(ex1) ; names(ex1)

Transitions:
To
From A D Records: Events: Risk time: Persons:
A 641 65 1 19 2
[1] "lex.id" ‘'"per" "age" "lex.dur" "lex.Cst" "lex.Xst" "F.ex"
[8] "F.tf" "F.ct" "F.cd" "G.ex" "G.tf" "G.ct" "G.cd"
> exl
lex.id per age lex.dur lex.Cst lex.Xst F.ex F.tf F.ct F.cd
1 2006.00 56.00 0.20 A A FALSE 0.000 0.000 0.000
1 2006.20 56.20 0.60 A A FALSE 0.000 0.000 0.000
1 2006.80 56.80 0.60 A A FALSE 0.000 0.000 0.000
1 2007.40 57.40 0.60 A A FALSE 0.000 0.000 0.000
1 2008.00 58.00 0.60 A A FALSE 0.000 0.000 0.000
1 2008.60 58.60 0.60 A A FALSE 0.000 0.000 0.000
1 2009.20 59.20 0.43 A A FALSE 0.000 0.000 0.000
1 2009.63 59.63 0.17 A A FALSE 0.000 0.000 0.000
1 2009.80 59.80 0.60 A A FALSE 0.000 0.000 0.000
1 2010.40 60.40 0.60 A A FALSE 0.000 0.000 0.000
1 2011.00 61.00 0.60 A A FALSE 0.000 0.000 0.000
1 2011.60 61.60 0.60 A A FALSE 0.000 0.000 0.000
1 2012.20 62.20 0.60 A A FALSE 0.000 0.000 0.000
1 2012.80 62.80 0.19 A A FALSE 0.000 0.000 0.000
1 2012.99 62.99 0.03 A A FALSE 0.000 0.000 0.000
1 2013.02 63.02 0.03 A A FALSE 0.000 0.000 0.000
1 2013.05 63.05 0.35 A A FALSE 0.000 0.000 0.000
1 2013.40 63.40 0.56 A A FALSE 0.000 0.000 0.000
1 2013.96 63.96 0.00 A A TRUE 0.000 0.000 0.000
1 2013.96 63.96 0.04 A A TRUE 0.000 0.000 0.000
1 2014.00 64.00 0.25 A A TRUE 0.036 0.036 0.497
1 2014.25 64.25 0.00 A A TRUE 0.286 0.286 4.000
1 2014.25 64.25 0.26 A A TRUE 0.286 0.286 4.000
1 2014.51 64.51 0.00 A A TRUE 0.545 0.545 8.000
1 2014.51 64.51 0.09 A A TRUE 0.545 0.545 8.000
1 2014.60 64.60 0.10 A A TRUE 0.636 0.636 9.406
1 2014.70 64.70 0.00 A A FALSE 0.739 0.739 11.000
1 2014.70 64.70 0.29 A A FALSE 0.739 0.739 11.000
1 2014.99 64.99 0.01 A A TRUE 1.025 0.739 11.000
2 2008.00 57.00 0.60 A A TRUE 0.000 0.405 0.354
2 2008.60 57.60 0.49 A A TRUE 0.600 1.005 0.879
2 2009.09 58.09 0.11 A A TRUE 1.089 1.494 1.308
2 2009.20 58.20 0.60 A A TRUE 1.200 1.605 1.405
2 2009.80 58.80 0.60 A A TRUE 1.800 2.205 1.930
2 2010.40 59.40 0.60 A A TRUE 2.400 2.805 2.455
2 2011.00 60.00 0.02 A A TRUE 3.000 3.405 2.981
2 2011.02 60.02 0.00 A A FALSE 3.022 3.427 3.000
2 2011.02 60.02 0.58 A A FALSE 3.022 3.427 3.000
2 2011.60 60.60 0.00 A A FALSE 3.599 3.427 3.000
2 2011.60 60.60 0.11 A A FALSE 3.600 3.427 3.000
2 2011.71 60.71 0.00 A A TRUE 3.710 3.427 3.000
2 2011.71 60.71 0.10 A A TRUE 3.710 3.427 3.000
2 2011.81 60.81 0.08 A A TRUE 3.812 3.529 7.000
2 2011.89 60.89 0.31 A A FALSE 3.889 3.605 10.000
2 2012.20 61.20 0.60 A A FALSE 4.200 3.605 10.000
2 2012.80 61.80 0.07 A A FALSE 4.800 3.605 10.000
2 2012.87 61.87 0.09 A A TRUE 4.865 3.605 10.000
2 2012.95 61.95 0.38 A A TRUE 4.951 3.691 10.368
2 2013.33 62.33 0.07 A A TRUE 5.331 4.071 12.000
2 2013.40 62.40 0.02 A A TRUE 5.400 4.140 13.606
2 2013.42 62.42 0.09 A A TRUE 5.417 4.157 14.000
2 2013.50 62.50 0.43 A A FALSE 5.503 4.243 16.000

G.ex
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
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2 2013.93 62.93 0.07 A A TRUE 5.932 4.243 16.000 FALSE
2 2014.00 63.00 0.45 A A TRUE 6.000 4.311 16.265 FALSE
2 2014.45 63.45 0.12 A A FALSE 6.447 4.758 18.000 FALSE
2 2014.57 63.57 0.03 A A FALSE 6.566 4.758 18.000 TRUE
2 2014.60 63.60 0.60 A A FALSE 6.600 4.758 18.000 TRUE
2 2015.20 64.20 0.60 A A FALSE 7.200 4.758 18.000 TRUE
2 2015.80 64.80 0.60 A A FALSE 7.800 4.758 18.000 TRUE
2 2016.40 65.40 0.51 A A FALSE 8.400 4.758 18.000 TRUE
2 2016.91 65.91 0.09 A A FALSE 8.912 4.758 18.000 TRUE
2 2017.00 66.00 0.00 A A FALSE 9.000 4.758 18.000 TRUE
2 2017.00 66.00 0.13 A A FALSE 9.004 4.758 18.000 TRUE
2 2017.14 66.14 0.46 A A FALSE 9.135 4.758 18.000 FALSE
2 2017.60 66.60 0.40 A D FALSE 9.600 4.758 18.000 FALSE
G.tf G.ct G.cd
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.170 0.170 0.066
0.770 0.770 0.298
1.370 1.370 0.531
1.970 1.970 0.763
2.570 2.570 0.995
3.170 3.170 1.228
3.357 3.357 1.300
3.388 3.388 2.600
3.420 3.420 3.900
3.770 3.420 3.900
4.334 3.420 3.900
4.334 3.420 3.900
4.370 3.420 3.900
4.621 3.420 3.900
4.621 3.420 3.900
4.879 3.420 3.900
4.879 3.420 3.900
4.970 3.420 3.900
5.073 3.420 3.900
5.073 3.420 3.900
5.360 3.420 3.900
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.111 0.111 0.057
0.711 0.711 0.368
1.311 1.311 0.679
1.911 1.911 0.990
1.933 1.933 1.001
1.933 1.933 1.001
2.510 2.510 1.300
2.511 2.511 1.300
2.621 2.621 1.358
2.621 2.621 1.358
2.723 2.723 1.410
2.800 2.800 1.450
3.111 3.111 1.611
3.711 3.711 1.922
3.776 3.776 1.956
3.862 3.862 2.000
4.242 3.862 2.000
4.311 3.862 2.000
4.328 3.862 2.000
4.414 3.862 2.000
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4.843 3.862 2.000
4.911 3.862 2.000
5.357 3.862 2.000
5.477 3.862 2.000
5.511 3.895 2.014
6.111 4.495 2.270
6.711 5.095 2.526
7.311 5.695 2.782
7.822 6.207 3.000
7.911 6.295 3.673
7.914 6.299 3.700
8.046 6.430 4.700
8.511 6.430 4.700

> ex2 <- addDrug.Lexis(Sx, pdat, method = "ext", grace = 0.5)

NOTE: timescale taken as 'per'

Values of grace has been recycled across 2 drugs

NOTE: end of exposure based on differences in purchase times (per)
and amount purchased (amt).

> summary (ex2)

Transitions:
To
From A D Records: Events: Risk time: Persons:
A 62 1 63 1 19 2

> dos <- addDrug.Lexis(Sx, pdat, method = "dos", dpt = 6)

NOTE: timescale taken as 'per'
NOTE: end of exposure based on purchase and dosage (dpt).

> summary (dos)

Transitions:
To
From A D Records: Events: Risk time: Persons:
A 66 1 67 1 19 2

> dos

lex.id per age lex.dur lex.Cst lex.Xst F.ex F.tf F.ct
1 2006.00 56.00 0.20 A A FALSE 0.000 0.000 O
1 2006.20 56.20 0.60 A A FALSE 0.000 0.000 O
1 2006.80 56.80 0.60 A A FALSE 0.000 0.000 O
1 2007.40 57.40 0.60 A A FALSE 0.000 0.000 O
1 2008.00 58.00 0.60 A A FALSE 0.000 0.000 O
1 2008.60 58.60 0.60 A A FALSE 0.000 0.000 O
1 2009.20 59.20 0.43 A A FALSE 0.000 0.000 O
1 2009.63 59.63 0.17 A A FALSE 0.000 0.000 O
1 2009.80 59.80 0.05 A A FALSE 0.000 0.000 O
1 2009.85 59.85 0.55 A A FALSE 0.000 0.000 O
1 2010.40 60.40 0.60 A A FALSE 0.000 0.000 O
1 2011.00 61.00 0.60 A A FALSE 0.000 0.000 O
1 2011.60 61.60 0.60 A A FALSE 0.000 0.000 O
1 2012.20 62.20 0.60 A A FALSE 0.000 0.000 O
1 2012.80 62.80 0.19 A A FALSE 0.000 0.000 O
1 2012.99 62.99 0.03 A A FALSE 0.000 0.000 O
1 2013.02 63.02 0.22 A A FALSE 0.000 0.000 O
1 2013.23 63.23 0.17 A A FALSE 0.000 0.000 O
1 2013.40 63.40 0.56 A A FALSE 0.000 0.000 O
1 2013.96 63.96 0.00 A A TRUE 0.000 0.000 O
1 2013.96 63.96 0.04 A A TRUE 0.000 0.000 O
1 2014.00 64.00 0.25 A A TRUE 0.036 0.036 O
1 2014.25 64.25 0.00 A A TRUE 0.286 0.286 4
1 2014.25 64.25 0.26 A A TRUE 0.286 0.286 4
1 2014.51 64.51 0.00 A A TRUE 0.545 0.545 8
1 2014.51 64.51 0.09 A A TRUE 0.545 0.545 8
1 2014.60 64.60 0.39 A A TRUE 0.636 0.636 8
1 2014.99 64.99 0.00 A A TRUE 1.025 1.025 11.
1 2014.99 64.99 0.01 A A TRUE 1.025 1.025 11.

F.cd
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.497
.000
.000
.000
.000
.567

000

000

G.ex
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

TRUE

TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

TRUE

TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
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2 2008.00 57.00 0.10 A A TRUE 0.000 0.405 2.428 FALSE
2 2008.10 57.10 0.00 A A FALSE 0.095 0.500 3.000 FALSE
2 2008.10 57.10 0.50 A A FALSE 0.095 0.500 3.000 FALSE
2 2008.60 57.60 0.49 A A FALSE 0.600 0.500 3.000 FALSE
2 2009.09 58.09 0.11 A A FALSE 1.089 0.500 3.000 TRUE
2 2009.20 58.20 0.11 A A FALSE 1.200 0.500 3.000 TRUE
2 2009.31 58.31 0.49 A A FALSE 1.306 0.500 3.000 FALSE
2 2009.80 58.80 0.60 A A FALSE 1.800 0.500 3.000 FALSE
2 2010.40 59.40 0.60 A A FALSE 2.400 0.500 3.000 FALSE
2 2011.00 60.00 0.60 A A FALSE 3.000 0.500 3.000 FALSE
2 2011.60 60.60 0.00 A A FALSE 3.599 0.500 3.000 TRUE
2 2011.60 60.60 0.11 A A FALSE 3.600 0.500 3.000 TRUE
2 2011.71 60.71 0.01 A A TRUE 3.710 0.500 3.000 TRUE
2 2011.72 60.72 0.10 A A TRUE 3.716 0.506 3.216 FALSE
2 2011.81 60.81 0.39 A A TRUE 3.812 0.602 7.000 FALSE
2 2012.20 61.20 0.11 A A TRUE 4.200 0.990 9.326 FALSE
2 2012.31 61.31 0.49 A A FALSE 4.312 1.102 10.000 FALSE
2 2012.80 61.80 0.07 A A FALSE 4.800 1.102 10.000 FALSE
2 2012.87 61.87 0.33 A A TRUE 4.865 1.102 10.000 FALSE
2 2013.20 62.20 0.13 A A FALSE 5.199 1.435 12.000 FALSE
2 2013.33 62.33 0.07 A A TRUE 5.331 1.435 12.000 FALSE
2 2013.40 62.40 0.02 A A TRUE 5.400 1.504 13.606 FALSE
2 2013.42 62.42 0.33 A A TRUE 5.417 1.521 14.000 FALSE
2 2013.75 62.75 0.18 A A FALSE 5.750 1.855 16.000 FALSE
2 2013.93 62.93 0.07 A A TRUE 5.932 1.855 16.000 FALSE
2 2014.00 63.00 0.27 A A TRUE 6.000 1.923 16.409 FALSE
2 2014.27 63.27 0.30 A A FALSE 6.265 2.188 18.000 FALSE
2 2014.57 63.57 0.03 A A FALSE 6.566 2.188 18.000 TRUE
2 2014.60 63.60 0.13 A A FALSE 6.600 2.188 18.000 TRUE
2 2014.73 63.73 0.47 A A FALSE 6.733 2.188 18.000 FALSE
2 2015.20 64.20 0.60 A A FALSE 7.200 2.188 18.000 FALSE
2 2015.80 64.80 0.60 A A FALSE 7.800 2.188 18.000 FALSE
2 2016.40 65.40 0.51 A A FALSE 8.400 2.188 18.000 FALSE
2 2016.91 65.91 0.09 A A FALSE 8.912 2.188 18.000 TRUE
2 2017.00 66.00 0.00 A A FALSE 9.000 2.188 18.000 TRUE
2 2017.00 66.00 0.17 A A FALSE 9.004 2.188 18.000 TRUE
2 2017.17 66.17 0.43 A A FALSE 9.170 2.188 18.000 FALSE
2 2017.60 66.60 0.40 A D FALSE 9.600 2.188 18.000 FALSE
G.tf G.ct G.cd
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.170 0.170 1.020
0.217 0.217 1.300
0.770 0.217 1.300
1.370 0.217 1.300
1.970 0.217 1.300
2.570 0.217 1.300
3.170 0.217 1.300
3.357 0.217 1.300
3.388 0.248 2.600
3.605 0.465 3.900
3.770 0.465 3.900
4.334 0.465 3.900
4.334 0.465 3.900
4.370 0.465 3.900
4.621 0.465 3.900
4.621 0.465 3.900
4.879 0.465 3.900
4.879 0.465 3.900
4.970 0.465 3.900
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.360
.360
.000
.000
.000
.000
.000
111
.217
.711
.311
911
.510
.511
.621
.627
.723
111
.223
.T11
.776
.109
.242
.311
.328
.661
.843
.911
.176
LAT7
.511
.644
111
.T11
.311
.822
.911
.914
.081
.511
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> fix <-

.465
.465
.000
.000
.000
.000
.000
111
217
.217
.217
.217
.217
.217
.328
.333
.333
.333
.333
.333
.333
.333
.333
.333
.333
.333
.333
.333
.333
.333
.367
.500
.500
.500
.500
.500
.588
.592
.759
.759

BPRWWWWWWWNNNNNDNNNNNNNNNNNMNMNNNNNPPRPRPRPRPRPRPRPRPOOO0OO0OO0OO0OWW

.900
.900
.000
.000
.000
.000
.000
.665
.300
.300
.300
.300
.300
.304
.967
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.201
.000
.000
.000
.000
.000
.673
.700
.700
.700

addDrug.Lexis(Sx, pdat, method = "fix", maxt

NOTE: timescale taken as 'per'
Values of maxt has been recycled across 2 drugs
NOTE: end of exposure based on fixed coverage time of 1 .

> summary (fix)

Transitions:
To

From A D Records:
A 63 1

> fix

lex.id

1 2006.
2006.
2006.
2007.
2008.
2008.
2009.
2009.
2009.
2010.
2010.
2011.
2011.

N e el e e e e

6

4

Events:

1

Risk time:

19

Persons:

age lex.dur lex.Cst lex.Xst

.00
.20
.80
.40

[eNoNoNoNoNoNoNoNoRoNoNoNe]

.20
.60
.60

B>

o -

2

F.ex
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

[eNoNoNoNoNoNoNoNoNoNoNoNe)

=1)

F.tf
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

[eNoNoNoNoNoNoNoNoNoNoNoNe]

F.ct
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

[eNeoloNoloNoRoNooRoNoReNe]

F.cd
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

G.ex
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

TRUE

TRUE

TRUE
FALSE
FALSE
FALSE
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1 2012.20 62.20 0.60 A A FALSE 0.000 0.000 0.000 FALSE
1 2012.80 62.80 0.19 A A FALSE 0.000 0.000 0.000 FALSE
1 2012.99 62.99 0.03 A A FALSE 0.000 0.000 0.000 TRUE
1 2013.02 63.02 0.38 A A FALSE 0.000 0.000 0.000 TRUE
1 2013.40 63.40 0.56 A A FALSE 0.000 0.000 0.000 TRUE
1 2013.96 63.96 0.00 A A TRUE 0.000 0.000 0.000 TRUE
1 2013.96 63.96 0.04 A A TRUE 0.000 0.000 0.000 TRUE
1 2014.00 64.00 0.02 A A TRUE 0.036 0.036 0.497 TRUE
1 2014.02 64.02 0.23 A A TRUE 0.054 0.054 0.752 FALSE
1 2014.25 64.25 0.00 A A TRUE 0.286 0.286 4.000 FALSE
1 2014.25 64.25 0.26 A A TRUE 0.286 0.286 4.000 FALSE
1 2014.51 64.51 0.00 A A TRUE 0.545 0.545 8.000 FALSE
1 2014.51 64.51 0.09 A A TRUE 0.545 0.545 8.000 FALSE
1 2014.60 64.60 0.39 A A TRUE 0.636 0.636 8.567 FALSE
1 2014.99 64.99 0.00 A A TRUE 1.025 1.025 11.000 FALSE
1 2014.99 64.99 0.01 A A TRUE 1.025 1.025 11.000 FALSE
2 2008.00 57.00 0.60 A A TRUE 0.000 0.405 1.214 FALSE
2 2008.60 57.60 0.00 A A FALSE 0.595 1.000 3.000 FALSE
2 2008.60 57.60 0.00 A A FALSE 0.595 1.000 3.000 FALSE
2 2008.60 57.60 0.49 A A FALSE 0.600 1.000 3.000 FALSE
2 2009.09 58.09 0.11 A A FALSE 1.089 1.000 3.000 TRUE
2 2009.20 58.20 0.60 A A FALSE 1.200 1.000 3.000 TRUE
2 2009.80 58.80 0.29 A A FALSE 1.800 1.000 3.000 TRUE
2 2010.09 59.09 0.31 A A FALSE 2.089 1.000 3.000 FALSE
2 2010.40 59.40 0.60 A A FALSE 2.400 1.000 3.000 FALSE
2 2011.00 60.00 0.60 A A FALSE 3.000 1.000 3.000 FALSE
2 2011.60 60.60 0.00 A A FALSE 3.599 1.000 3.000 TRUE
2 2011.60 60.60 0.11 A A FALSE 3.600 1.000 3.000 TRUE
2 2011.71 60.71 0.10 A A TRUE 3.710 1.000 3.000 TRUE
2 2011.81 60.81 0.39 A A TRUE 3.812 1.102 7.000 TRUE
2 2012.20 61.20 0.40 A A TRUE 4.200 1.490 8.163 TRUE
2 2012.60 61.60 0.20 A A TRUE 4.599 1.889 9.361 FALSE
2 2012.80 61.80 0.01 A A TRUE 4.800 2.090 9.963 FALSE
2 2012.81 61.81 0.05 A A FALSE 4.812 2.102 10.000 FALSE
2 2012.87 61.87 0.47 A A TRUE 4.865 2.102 10.000 FALSE
2 2013.33 62.33 0.07 A A TRUE 5.331 2.568 12.000 FALSE
2 2013.40 62.40 0.02 A A TRUE 5.400 2.637 13.606 FALSE
2 2013.42 62.42 0.51 A A TRUE 5.417 2.654 14.000 FALSE
2 2013.93 62.93 0.07 A A TRUE 5.932 3.168 16.000 FALSE
2 2014.00 63.00 0.57 A A TRUE 6.000 3.237 16.136 FALSE
2 2014.57 63.57 0.03 A A TRUE 6.566 3.803 17.269 TRUE
2 2014.60 63.60 0.33 A A TRUE 6.600 3.837 17.336 TRUE
2 2014.93 63.93 0.27 A A FALSE 6.932 4.168 18.000 TRUE
2 2015.20 64.20 0.37 A A FALSE 7.200 4.168 18.000 TRUE
2 2015.57 64.57 0.23 A A FALSE 7.566 4.168 18.000 FALSE
2 2015.80 64.80 0.60 A A FALSE 7.800 4.168 18.000 FALSE
2 2016.40 65.40 0.51 A A FALSE 8.400 4.168 18.000 FALSE
2 2016.91 65.91 0.09 A A FALSE 8.912 4.168 18.000 TRUE
2 2017.00 66.00 0.00 A A FALSE 9.000 4.168 18.000 TRUE
2 2017.00 66.00 0.60 A A FALSE 9.004 4.168 18.000 TRUE
2 2017.60 66.60 0.40 A D FALSE 9.600 4.168 18.000 TRUE
G.tf G.ct G.cd
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.170 0.170 0.221
0.770 0.770 1.001
1.000 1.000 1.300
1.370 1.000 1.300
1.970 1.000 1.300
2.570 1.000 1.300
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11.2.2.2 A more realistic example with timing

.170
. 357
.388
.770
.334
.334
.370
.388
.621
.621
.879
.879
.970
.360
.360
.000
.000
.000
.000
.000
111
.711
.000
.311
911
.510
.511
.621
.723
111
.510
.T11
.723
LT76
.242
.311
.328
.843
911
LATT
.511
.843
111
LATT
.711
.311
.822
911
.914
.511

WWWWWWWNNNNNNNNNNNNNNNNNRRPPRPPRPPRPPRPPRPRPOOOOOOONNNNNNNNNR,REREREREE-

.000
.000
.031
.413
.978
.978
.013
.031
.031
.031
.031
.031
.031
.031
.031
.000
.000
.000
.000
.000
111
.711
.000
.000
.000
.000
.001
111
.213
.601
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.034
.365
.634
.000
.000
.000
.000
.088
.092
.688

B WWWWWWNNNNNNMNNNNMNNNNNNRPRPRPRPRPPRPPRPPRPPRPPRPOOO0OO0O00WWWWWWWWWWWWNEFF

.300
.300
.600
.096
.830
.830
.876
.900
.900
.900
.900
.900
.900
.900
.900
.000
.000
.000
.000
.000
.144
.924
.300
.300
.300
.300
.301
.378
.449
.721
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.034
.365
.634
.000
.000
.000
.000
.673
.700
.299

Follow-up data: DMlate As example data we use the DMlate example data from the Epi package:

> data(DMlate) ; str(DMlate)

'data.frame':

$

6 P PR LPH PP

sex

dox

num
num
num
num
num

10000 obs. of 7 variables:

: Factor w/ 2 levels "M","F": 2122121121
dobth:
dodm :
dodth:
dooad:
doins:
: num

1940 1939 1918 1965 1933 ...

1999 2003 2005 2009 2009 ...

NA NA NA NA NA ...

NA 2007 NA NA NA ...

NA NA NA NA NA NA NA NA NA NA ...
2010 2010 2010 2010 2010 ...
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> Lx <- Lexis(entry = list(per = dodm,

+ age = dodm - dobth,

+ tfd = 0),

+ exit = list(per = dox),

+ exit.status = factor(!is.na(dodth),

+ labels = c("DM", "Dead")),

+ data = DMlate)

NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 4 rows with duration of follow up < tol

> summary (Lx)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 7497 2499 9996 2499 54273.27 9996

We split the data along the age-scale (omitting the variables we shall not need):

> Sx <- splitMulti(Lx[,1:7], age =
> summary (Sx)

0:120)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 61627 2499 64126 2499 54273.27 9996

Artificial prescription data To explore how addDrug.Lexis works, we also need some drug
exposure data, but these are unfortunately not available, so we simulate three datasets representing three
types of drugs:

> set.seed(1952)
> purd <-
+ ( data.frame(lex.id = rep(Lx$lex.id,
+ round (runif (nrow(Lx), 0, 20))))
+ 4>% left_join(Lx[,c("lex.id", '"dodm", "dox'")])
+ %>/ mutate(per = dodm + runif(length(dodm), -0.1, 0.99) * (dox - dodm),
+ amt = sample(4:20%10, length(dodm), replace = TRUE),
+ dpt = amt * round(runif (length(dodm), 3, 7)))
+ %>% select(-dodm, -dox)
+ >} arrange(lex.id, per)
+
> addmargins (table(table(purA$lex.id)))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
504 529 474 480 489 445 485 476 494 489 518 487 501 525 522 524
17 18 19 20 Sum
505 524 498 254 9723
> str(purd)
'data.frame': 100736 obs. of 4 variables:
$ lex.id: int 1111111 111...
$ per : num 1999 1999 1999 2000 2000 ...
$ amt : num 200 160 190 90 160 90 100 90 90 190 ...
$ dpt : num 1000 960 1330 360 640 630 500 450 630 950 ...
> purB <-
+ ( data.frame(lex.id = rep(Lx$lex.id,
+ round (pmax (runif (nrow(Lx), -10, 15), 0))))
+ %>7% left_join(Lx[,c("lex.id", "dodm", "dox")])
+ %>} mutate(per = dodm + runif(length(dodm), -0.1, 0.99) * (dox - dodm),
+ amt = sample(4:20%10, length(dodm), replace = TRUE),
+ dpt = amt * round(runif (length(dodm), 5, 9)))
+ %>% select(-dodm, -dox)
+ }>), arrange(lex.id, per)
+ ) -> purB
> addmargins (table(table(purB$lex.id)))
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sum
374 418 414 406 391 383 361 429 375 415 394 401 375 394 223 5753
> str(purB)
'data.frame': 44695 obs. of 4 variables:
$ lex.id: int 111 1111111...
$ per : num 1998 1998 1999 1999 2000 ...
$ amt : num 100 190 110 140 120 90 140 70 150 180 ...
$ dpt : num 800 1520 770 980 960 810 1260 560 1050 1440 ...
> purC <-
+ ( data.frame(lex.id = rep(Lx$lex.id,
+ round (pmax (runif (nrow(Lx), -5, 12), 0))))
+ %>7% left_join(Lx[,c("lex.id", "dodm", "dox")])
+ }>) mutate(per = dodm + runif(length(dodm), -0.1, 0.99) * (dox - dodm),
+ amt = sample(4:20%10, length(dodm), replace = TRUE),
+ dpt = amt * round(runif (length(dodm), 5, 7)))
+ >} select(-dodm, -dox)
+ %>} arrange(lex.id, per)
+
> addmargins (table(table (purB$lex.id)))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sum
374 418 414 406 391 383 361 429 375 415 394 401 375 394 223 5753

> str(purC)

'data.frame': 42302 obs. of 4 variables:

$ lex.id:
$ per
$ amt
$ dpt

int

. num
. num
I num

1111155555 ...

1998 2000 2003 2007 2008 ...

90 40 200 100 100 160 60 90 170 60 ...

450 240 1200 600 700 1120 360 630 1190 360 ...

> head (purC)

lex.id

1 1998.
2000.
2002.
2006.
2007.
2008.

per amt
363 90
059 40
642 200
568 100
684 100
775 160

dpt
450
240
1200
600
700
1120

DO WN =
(S e e e

Note that the time scale is in years, so the dpt must be in amount per year, so that dpt/amt is the
approximate number of annual drug purchases.

We now have three artificial drug purchase datasets so we can see how addDrug.Lexis performs on

larger datasets:

Using addDrug

1000 and 500 persons We start out with a small sample and a two month grace period to limit the

number of gaps:

> Sx1 <- subset(Sx, lex.id < 1000)

> pur <- list(A = subset(purd, lex.id < 1000),

+ B = subset(purB, lex.id < 1000),

+ C = subset (purC, lex.id < 1000))

> system.time(adl <- addDrug.Lexis(Sx1, pur, tnam =

Values of grace has been recycled across 3 drugs

NOTE: end of exposure based on differences in purchase times (per)
and amount purchased (amt).

"per", grace = 1/4))

user system elapsed
25.42 0.97 26.42
> summary (Sx1)
Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 6037 241 6278 241 5303.26 999
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> summary (ad1)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 28720 241 28961 241 5303.26 999

We then cut the number of persons in half:

> Sx2 <- subset(Sx, lex.id < 500)
> pur <- list(A = subset(purd, lex.id < 500),
+ B = subset(purB, lex.id < 500),
+ C = subset (purC, lex.id < 500))
> system.time(ad2 <- addDrug.Lexis(Sx2, pur, tnam = "per", grace = 1/6))
Values of grace has been recycled across 3 drugs
NOTE: end of exposure based on differences in purchase times (per)
and amount purchased (amt).
user system elapsed
12.83 0.15 13.02

> summary (Sx2)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 3023 118 3141 118 2653.65 499
> summary (ad2)
Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 15413 118 15531 118 2653.65 499

It looks like timing is broadly proportional to the number of persons.

Fewer prescription records We can try to cut the number of purchases in half:

> pur <- list(A = subset(purd, lex.id < 500 & runif (nrow(purd)) < 0.5),

+ B = subset (purB, lex.id < 500 & runif(nrow(purB)) < 0.5),
+ C = subset (purC, lex.id < 500 & runif (nrow(purC)) < 0.5))
> sapply(pur, nrow)

A B C

2557 1098 1063
> system.time(ad3 <- addDrug.Lexis(Sx2, pur, tnam = "per", grace = 1/6))

Values of grace has been recycled across 3 drugs
NOTE: end of exposure based on differences in purchase times (per)
and amount purchased (amt).
user system elapsed
5.84 0.21 6.08

> summary (Sx2)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 3023 118 3141 118 2653.65 499
> summary (ad3)
Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 9646 118 9764 118 2653.65 499

It appears that the number of purchases per person is also a determinant of the run time too; the timing is
largely proportional to the number of drug records.

In any concrete application it is recommended to run the function on a fairly small sample of persons,
say 1000 to get a feel for the run time. It may also be a good idea to run the function on chunks of the
persons, to make sure that you do not lose all the processed data in a crash.
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Fewer prescription types Finally we try to cut the number of drugs, to assess how this influences
the run time:

> pur <- list(B = subset(purB, lex.id < 500),

+ C = subset (purC, lex.id < 500))
> sapply(pur, nrow)

B C
2197 2170

> system.time(ad4 <- addDrug.Lexis(Sx2, pur, tnam = "per", grace = 1/6))

Values of grace has been recycled across 2 drugs
NOTE: end of exposure based on differences in purchase times (per)
and amount purchased (amt).
user system elapsed
4.81 0.08 4.90

> summary (5x2)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 3023 118 3141 118 2653.65 499
> summary (ad4)
Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 8976 118 9094 118 2653.65 499

We see that the number of records have been greatly expanded, almost tripled.

Too many records —coarse.Lexis If we look at the length of the intervals as given in lex.dur
we see that some are are quite small:

> summary(ad1$lex.dur)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.02848 0.10277 0.18312 0.25620 1.00000

Half are smaller then 0.11 years, 40 days. We could without much loss of precision in the analysis merge
adjacent records that have total risk time less than 3 months.

The function coarse.Lexis will collapse records with short lex.dur with the subsequent record. The
collapsing will use the covariates from the first record, and so the entire follow-up from the two records will
have the characteristics of the first. Therefore it is wise to choose first records with reasonably short
lex.dur—the approximation will be better than if the first record was with a larger lex.dur. Therefore
there are two values supplied to coarse.Lexis; the maximal length of the first record’s 1lex.dur and the
maximal length of the lex.dur in the resulting combined record. The larger these parameters are, the
more the Lexis object is coarsened.

> summary (ad1)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 28720 241 28961 241 5303.26 999
> summary(adc <- coarse.Lexis(adl, lim = c(1/6,1/2)))
Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 14670 241 14911 241 5303.26 999
> summary (adc$lex.dur)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.2079 0.3048 0.3557 0.4406 1.0000
> min(adc$lex.dur)
[1] 4.547474e-12

This could cut the number of units for analysis substantially, in this case from about 27,000 to some 13,000.
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Records to be kept When we are dealing with drug exposure data we will be interested keeping the
record that holds the start of a drug exposure. Some may argue that it does not matter much, though.

The records (i.e. beginnings of FU intervals) that should be kept must be given in logical vector in the
argument keep:

> summary (5x2)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 3023 118 3141 118 2653.65 499
> system.time(ad4 <- addDrug.Lexis(Sx2,
+ pur,
+ tnam = "per",
+ grace = 1/6))

Values of grace has been recycled across 2 drugs
NOTE: end of exposure based on differences in purchase times (per)
and amount purchased (amt).
user system elapsed
5.34 0.11 5.48

> summary (ad4)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 8976 118 9094 118 2653.65 499
> #
> adb <- coarse.Lexis(ad4,
+ lim = c(1/4, 1/2))
> summary (ad5)
Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 5460 118 5578 118 2653.65 499

We can identify the first date of exposure to drug B, say, by the exposure (B.ex) being true and the
cumulative time on the drug (B.ct) being 0:

> ad4$keep <- with(ad4, (B.ex & B.ct == 0) |

+ (C.ex & C.ct == 0))
> ad6 <- coarse.Lexis(ad4,
+ lim = c(1/4, 1/2),
+ keep = ad4$keep)
> summary (ad6)
Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 5578 118 5696 118 2653.65 499

We see the expected behaviour when we use coarse.Lexis: we get fewer records, but identical follow-up.
And the keep argument gives the possibility to keep selected records, or more precisely beginnings. keep
prevents a record to be collapsed with a previous one, but not with a subsequent one.
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About this book

This book takes you all the way through multistate models—from
data definition and -manipulation through graphical
representation of data to modeling of transition rates, and further
to calculation of state probabilities and sojourn times.

The book includes the traditional methods based on
semiparametric models for rates, but the main emphasis is on
more credible parametric models for transition rates, allowing
simultaneous dependence on more than one time scale (such as
age and disease duration).

You will find a detailed demonstration of parametric modeling
of transition rates and the application of these to derive estimates
of state probabilities, sojourn times and other relevant measures.

Unlike most other books on this topic, the data representation
and manipulation plays a prominent role; using carefully worked
examples it covers in detail the Lexis machinery from the Epi
and popEpi packages for R as well as the multistate tools from
the R-packages survival, mstate and msm.

The style of the book is to illustrate concepts by examples in R,
as close as possible to real modeling. That means that not only is
the multistate machinery illustrated, also the paraphernalia to
graph and report analyses and results. All the code in the book is
also available on the book’s website
http://bendixcarstensen.com/PMM
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