Splitting the follow-up C\&H 6

Bendix Carstensen

Steno Diabetes Center
\& Department of Biostatistics, University of Copenhagen
bxc@steno.dk
http://BendixCarstensen.com

PhD-course in Epidemiology,
Department of Biostatistics,
Tuesday 23 March 2015

Stratification by age

If follow-up is rather short, age at entry is OK for age-stratification.

If follow-up is long, use stratification by categories of current age, both for:
No. of events, D, and Risk time, Y.

Follow-up

Age-scale

Representation of follow-up data

In a cohort study we have records of:
Events and Risk time.
Follow-up data for each individual must have (at least) three variables:

- Date of entry - entry - date variable.
- Date of exit - exit - date variable
- Status at exit - fail - indicator-variable (0/1)

Specific for each type of outcome.

Probability
$\mathrm{P}\left(d\right.$ at $t_{\mathrm{x}} \mid$ entry $\left.t_{0}\right)$
log-Likelihood
$d \log (\lambda)-\lambda y$
$=\mathrm{P}\left(\right.$ surv $t_{0} \rightarrow t_{1} \mid$ entry $\left.t_{0}\right)$
$=0 \log (\lambda)-\lambda y_{1}$
$\times \mathrm{P}\left(\right.$ surv $t_{1} \rightarrow t_{2} \mid$ entry $\left.t_{1}\right)$
$+0 \log (\lambda)-\lambda y_{2}$
$+d \log (\lambda)-\lambda y_{3}$

Probability
$\mathrm{P}\left(\right.$ surv $t_{0} \rightarrow t_{\mathrm{x}} \mid$ entry $\left.t_{0}\right)$
log-Likelihood
$0 \log (\lambda)-\lambda y$
$=\mathrm{P}\left(\right.$ surv $t_{0} \rightarrow t_{1} \mid$ entry $\left.t_{0}\right)$
$=0 \log (\lambda)-\lambda y_{1}$
$\times \mathrm{P}\left(\right.$ surv $t_{1} \rightarrow t_{2} \mid$ entry $\left.t_{1}\right) \quad+0 \log (\lambda)-\lambda y_{2}$
$\times \mathrm{P}\left(\right.$ surv $t_{2} \rightarrow t_{\mathrm{x}} \mid$ entry $\left.t_{2}\right) \quad+0 \log (\lambda)-\lambda y_{3}$

Splitting the follow-up (C\&H6)

Probability
$\mathrm{P}\left(\right.$ event at $t_{\mathrm{x}} \mid$ entry $\left.t_{0}\right)$
$1 \log (\lambda)-\lambda y$
$=\mathrm{P}\left(\right.$ surv $t_{0} \rightarrow t_{1} \mid$ entry $\left.t_{0}\right)$
$=0 \log (\lambda)-\lambda y_{1}$
$\times \mathrm{P}\left(\right.$ surv $t_{1} \rightarrow t_{2} \mid$ entry $\left.t_{1}\right) \quad+0 \log (\lambda)-\lambda y_{2}$
$\times \mathrm{P}\left(\right.$ event at $t_{\times} \mid$entry $\left.t_{2}\right) \quad+1 \log (\lambda)-\lambda y_{3}$

Aim of dividing time into bands:

- Compute rates in different bands of:
- age
- calendar time
- disease duration
- Allow rates to vary along the timescale:

$$
\begin{array}{rlr}
0 \log (\lambda)-\lambda y_{1} \\
+0 \log (\lambda) & -\lambda y_{2} \\
+d \log (\lambda) & -\lambda y_{3} & \rightarrow \\
& +0 \log \left(\lambda_{1}\right)-\lambda_{1} y_{1} \\
+d \log \left(\lambda_{2}\right)-\lambda_{2} y_{2} & -\lambda_{3} y_{3}
\end{array}
$$

Splitting the follow-up (C\&H 6)

Prerequisites of splitting time

Origin: The date where the time scale is 0 :

- Age - 0 at date of birth
- Disease duration - 0 at date of diagnosis
- Occupation exposure - 0 at date of hire

Intervals: How should it be subdivided:

- 1-year classes? 5 -year classes?
- Equal length - not necessarily.

Cohort with 3 persons:

Id Bdate Entry Exit St
1 14/07/52 04/08/65 27/06/97 1
2 01/04/54 08/09/72 23/05/95
3 10/06/87 23/12/91 24/07/98 1

- Define strata: 10-years intervals of current age.
- Split Y for every subject accordingly
- Treat each segment as a separate unit of observation.
- Keep track of exit status in each interval.

Splitting the follow up

	subj. 1	subj. 2	subj. 3
Age at Entry:	13.06	18.44	4.54
Age at eXit:	44.95	41.14	11.12
Status at exit:	Dead	Alive	Dead
Y	31.89	22.70	6.58
D	1	0	1

Where did the pieces go?

Age	subj. 1		subj. 2		subj. 3		\sum	
	Y	D	Y	D	Y	D	Y	D
0-	0.00	0	0.00	0	5.46	0	5.46	0
10-	6.94	0	1.56	0	1.12	1	8.62	1
20-	10.00	0	10.00	0	0.00	0	20.00	0
30-	10.00	0	10.00	0	0.00	0	20.00	0
40-	4.95	1	1.14	0	0.00	0	6.09	1
\sum	31.89	1	22.70	0	6.58	1	60.17	2

Time-splitting with SAS: \%Lexis

\%Lexis(data=a, entry=Entry, exit=Exit, fail=St, origin=bdate, scale=365.25, breaks=0 to 80 by 10) ;

id	Bdate	Entry	Exit	St	risk left	
1	$14 / 07 / 1952$	$03 / 08 / 1965$	$14 / 07 / 1972$	0	6.9432	10
1	$14 / 07 / 1952$	$14 / 07 / 1972$	$14 / 07 / 1982$	0	10.0000	20
1	$14 / 07 / 1952$	$14 / 07 / 1982$	$14 / 07 / 1992$	0	10.0000	30
1	$14 / 07 / 1952$	$14 / 07 / 1992$	$27 / 06 / 1997$	1	4.9528	40
2	$01 / 04 / 1954$	$08 / 09 / 1972$	$01 / 04 / 1974$	0	1.5606	10
2	$01 / 04 / 1954$	$01 / 04 / 1974$	$31 / 03 / 1984$	0	10.0000	20
2	$01 / 04 / 1954$	$31 / 03 / 1984$	$01 / 04 / 1994$	0	10.0000	30
2	$01 / 04 / 1954$	$01 / 04 / 1994$	$23 / 05 / 1995$	0	1.1417	40
3	$10 / 06 / 1987$	$23 / 12 / 1991$	$09 / 06 / 1997$	0	5.4634	0
3	$10 / 06 / 1987$	$09 / 06 / 1997$	$24 / 07 / 1998$	1	1.1211	10

Time-splitting with Stata stset, stsplit
stset Exit, failure(St==1) entry(Entry) origin(Bdate) /*
stsplit cAge, at(40(10)70) after(Bdate)
gen $p y=~_{-}-_{-} t 0$
table cAge, c(sum _d sum py) format (\%9.2f)

Time-splitting with R Lexis, splitLexis
library (Epi)
Lx <- Lexis(entry = list(per = Entry,
exit.status $=$ factor (St, labels=c("Alive", "Dead")), data $=$ coh)

Ls <- splitLexis(Lx, breaks=seq(0,100,10), time.scale="age")
lex.id per age lex.dur lex.Cst lex.Xst Id Bdate En $1965.58913 .056 \quad 6.943$ Alive Alive 19525331965 $\begin{array}{lllrllllll}1 & 1965.589 & 13.056 & 6.943 & \text { Alive Alive } & 1 & 1952.533 & 1965 \\ 1 & 1972.533 & 20.000 & 10.000 & \text { Alive } & \text { Alive } & 1 & 1952.533 & 1965\end{array}$ $\begin{array}{lllllllll}1 & 1972.533 & 20.000 & 10.000 & \text { Alive } & \text { Alive } & 1 & 1952.533 & 1965 \\ 1 & 1982.533 & 30.000 & 10.000 & \text { Alive } & \text { Alive } & 1 & 1952.533 & 1965\end{array}$ $\begin{array}{llrrlrrrr}1 & 1982.533 & 30.000 & 10.000 & \text { Alive } & \text { Alive } & 1 & 1952.533 & 1965 \\ 1 & 1992.533 & 40.000 & 4.952 & \text { Alive } & \text { Dead } & 1 & 1952.533 & 1965\end{array}$
$\begin{array}{lllllrlll}1 & 1992.533 & 40.000 & 4.952 & \text { Alive } & \text { Dead } & 1 & 1952.533 & 1965 . \\ 2 & 1972.686 & 18.439 & 1.560 & \text { Alive } & \text { Alive } & 2 & 1954.246 & 1972 .\end{array}$
$\begin{array}{lllrlllll}2 & 1972.686 & 18.439 & 1.560 & \text { Alive } & \text { Alive } & 2 & 1954.246 & 1972 . \\ 2 & 1974.246 & 20.000 & 10.000 & \text { Alive } & \text { Alive } & 2 & 1954.246 & 1972 .\end{array}$
$\begin{array}{lllllllll}2 & 1974.246 & 20.000 & 10.000 & \text { Alive } & \text { Alive } & 2 & 1954.246 & 1972 . \\ 2 & 1984.246 & 30.000 & 10.000 & \text { Alive } & \text { Alive } & 2 & 1954.246 & 1972 .\end{array}$
$\begin{array}{lllrlllll}2 & 1984.246 & 30.000 & 10.000 & \text { Alive } & \text { Alive } & 2 & 1954.246 & 1972 . \\ 2 & 1994.246 & 40.000 & 1.141 & \text { Alive } & \text { Alive } & 2 & 1954.246 & 1972 .\end{array}$
$\begin{array}{llrllllll}2 & 1994.246 & 40.000 & 1.141 & \text { Alive } & \text { Alive } & 2 & 1954.246 & 1972 \\ 3 & 1991.974 & 4.536 & 5.463 & \text { Alive } & \text { Alive } & 3 & 1987.437 & 1991 \\ 3 & 1997.437 & 10.000 & 1.121 & \end{array}$
$31997.43710 .000 \quad 1.121 \quad$ Alive \quad Dead 31987.4371991

Splitting the follow-up (C\&H6)
Time-splitting with R Lexis, splitLexis
plot(Ls, col="blue", lwd=3)

Splitting the follow-up (C\&H 6)
Time-splitting with R Lexis, splitLexis
Ls <- splitLexis(Ls, breaks=seq(1900,2000,5), time.scale="per" plot(Ls, col="blue", lwd=3)

What happens when splitting time?

- From: one record per person
- To: many records per person,
- - each representing a short piece of follow-up time.
- Same total no. events
- Same total follow-up time (PYs)
- Possibility of different rates in different intervals.

What about the Cox-model?

Data for Cox-regression has only one record per person.

- It allows rates to vary over time (the baseline)
- - internally in the program, the data is split
- Time-dependent covariates require multiple records per person
- Additional time-scales require multiple records per person

What happens when splitting time?

We are actually mimicking a continuous surveillance of the study population.
For each little piece of follow up we attach the relevant covariates:

- Fixed covariates. (sex, genotype, ...)
- Deterministically time-varying covariates: age, time since entry, calendar time - all derived from the current date.
- Non-deterministically varying covariates. (current smoking habits, occupational exposure,...)

Models for time-split data

For follow-up data we make linear models for:

$$
\eta=\log (\lambda Y)=\log (\lambda)+\log (Y)
$$

by telling the software that D is Poisson.
If the model for the rate λ is multiplicative:

$$
\begin{aligned}
\lambda & =\exp \left(x_{1} \beta_{1}+x_{2} \beta_{2}+\cdots\right) \\
\log (\lambda Y) & =x_{1} \beta_{1}+x_{2} \beta_{2}+\cdots+\log (Y)
\end{aligned}
$$

Among the covariates are some that model the time-effect (in the IHD-example, age).

Models for time-split data

Relation to the Cox-model:

$$
\begin{aligned}
\lambda(t) & =\lambda_{0}(t) \exp \left(x_{1} \beta_{1}+x_{2} \beta_{2}+\cdots\right) \\
& =\exp \left(\log \left(\lambda_{0}(t)\right)+x_{1} \beta_{1}+x_{2} \beta_{2}+\cdots\right) \\
& =\exp \left(z_{1} \alpha_{1}+z_{2} \alpha_{2}+\cdots+x_{1} \beta_{1}+x_{2} \beta_{2}+\cdots\right)
\end{aligned}
$$

Covariates z_{1}, z_{2}, \ldots represent time, time ${ }^{2}$, etc.; possibly splines.
"Among the covariates are some that model the time-effect (in the IHD-example, age)."
The baseline hazard - unspecified in the Cox-model - is replaced by a parmetric function, $\exp \left(z_{1} \alpha_{1}+z_{2} \alpha_{2}+\cdots\right)$
Splitting the follow-up (C\&H 6)

Independent observations?

When we split data, each individual contributes several observations, which are not independent.
Yet, we treat them as such.
The likelihood contribution from one person is a product of conditional probabilities.
Because the likelihood is a product, we can use the program (proc genmod, glm, ...) as if they were independent; we are only interested in getting the maximum likelihood estimates.

Splitting the follow-up (C\&H 6)

The offset

Need to take account of the "covariate" $\log (Y)$, which has a regression coefficient fixed to be one:

$$
\log (\lambda Y)=x_{1} \beta_{1}+x_{2} \beta_{2}+\cdots+\log (Y)
$$

$\log (Y)$ is called an offset-variable.

Splitting the follow-up (C\&H 6)

Analysis of results from \%Lexis

- D - events in the variable fail.
- Y - risk time $=$ difference: exit - entry. Enters in the model via $\log (Y)$ as offset.
- Covariates are:
- timescales (age, calendar time, time since entry)
- other variables for this person (constant or assumed constant in each interval).
- Model rates using the covariates in proc genmod
- Note: there is no difference in how time-scales and other covariates are treated in the model.

Poisson model for split data

- Each interval contribute λY to the log-likelihood.
- All intervals with the same set of covariate values (age,exposure,...) have the same λ.
- The log-likelihood contribution from these is $\lambda \sum Y$ - the same as from aggregated data.
- The event intervals contribute each $D \log \lambda$.
- The log-likelihood contribution from those with the same lambda is $\sum D \log \lambda$ - the same as from aggregated data.
- The log-likelihood is the same for split data and aggregated data - no need to tabulate first.

Spliting the follow-up (C\&H 6)

Your turn now: IHD data

The following exercise is designed to illustrate how follow-up time is subdivided in order to produce the table of events and person-years. Furthermore the aim is to show you that tabulated data and time-split data gives the same results if only age and exposure are used as variables.
We will first analyze frequency records as above (these are almost identical to Table 22.6 in C \& H). Next, we shall read the individua records and construct the corresponding table of cases and person-years.

1. Import the program ihd-lexis.sas to the program editor. Run the first part of the program - the part reading the tabulated data and proc genmod. Compare with the results from table $x x$ in Clayton \& Hills.
2. Next, use the second part of the program to read the individual records from the file diet.txt, including the proc print and check on the output that it looks reasonable and that you understand what the data represents.

Splitting the follow-up (C\&H 6)

Time-splitting with SAS I

3. Now you should import the macro \%Lexis and use it to split into the age intervals $40-50,50-60$ and $60-70$ years:
In order to use this you must first load it from the appropriate folder folder on the net:

* This will list the included code in your log-window ; options source2 ;
filename lexispr url
"http://www.biostat.ku.dk/~bxc/Lexis/Lexis.sas";
\%inc lexispr ;
Once you have specified \%inc lexispr ; and run that line in SAS, SAS will know the macro \%lexis and you can use it in the rest of the session.

Time-splitting with SAS III

5. To this end we must specify:

- The origin of the time-scale, i.e. where the time-scale is 0 , in this case date of birth - dob.
- The intervals where we want the follow-up grouped, here ages $40-50,50-60$ and $60-70$.
- As a purely technical thing we need to specify the conversion between the scale in which time is measured in the input dataset (in this case days) and in the specification of the grouping (in this case years) - 365.25 .
In the case of \%Lexis we must supply these 6 parameters in order to specify how to split time.
Finally we must tell the program where the original data is, where the time-split data has to go, and what the name of the age-variable should be.

Splitting the follow-up (C\&H 6)

Time-splitting with SAS IV

This looks like this (you do not have to write the stuff between the /*...*/):
\%Lexis(data = ihdindiv, /* Dataset with original data out = ihdsplit, /* Dataset with time-split data entry $=$ doe entry $=$ doe, fail $=$ dox,
breaks $=40$ to 70 by 10 origin $=$ dob, scale $=365.25$,

Run this piece of SAS code.
(In the top of the file
http://www.biostat.ku.dk/~bxc/Lexis/Lexis.sas are some more detailed explanations of how to use \%Lexis).

Tabulation of time-split data with SAS I

6. How many records are in the resulting dataset (ihdsplit)
7. Take at look at the resulting data file, for example the first 20 records:
proc print data $=$ ihdsplit (obs=20) ;
run ;
How does this compare with the the original dataset?
8. Use \%PYtab to tabulate IHD-cases and person-years by exposure and age-group. You must first get this from the net as you did with the \%Lexis macro:
filename pytabpr url
"http://www.biostat.ku.dk/~bxc/Lexis/PYtab.sas"; \%inc pytabpr ;

Time-splitting with SAS II

4. The time-splitting is now done by running the SAS-macro \%Lexis A SAS-macro is a piece of SAS-program (normally quite long) where certain small parts of the program can be changed when the program is run. The SAS-convention is that names of such programs start with a "\%".
To use the macro we must specify the follow-up information from the input file:

- Date of entry into the study - doe
- Date of exit from the study - dox
- Status at exit from the study - chd (1 if CHD occurred at dox, 0 otherwise).
Moreover, we must decide which timescale to split the data on. In this case we want to split along the scale "current age", i.e. time since date of birth.

Splitting the follow-up (C\&H 6)

Tabulation of time-split data with SAS II

Once you have imported the macro you can use it:
\%PYtab(data = ihdsplit,
class $=$ exposure agr,
fail = chd,
risk = risk,
scale = 1000) ;
Compare with the sums from the table given in the first data step in ihd-lexis.sas

