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Chapter 1

Introduction

1.1 Preface

This is the collection of exercises for the course in epidemiology for PhD-students in the
spring of 2015.

The exercises are based on students using SAS as the computer program for solving the
exercises, and the weight of the recap of the exercises during the course will be on SAS too.

Students are however welcome to use other software packages, provided that they bring
them on their own computer, and can access the datasets to be used from the net. Some of
the teachers will have some expertise in some of the other frequently used computer
packages such as Stata, R and (limited) SPSS. Most of the teachers have experience using
R, some have experience in Stata, whereas none of the teachers use SPSS. This is reflected
in the solutions sections which are only for SAS, Stata and R.

1.2 Website

The course website for the statistics practicals is
http://BendixCarstensen.com/EpiPhD/F2015. Note that this website is sensitive to
upper- and lower-case letters.

There will be links to this document, to the data, to the programs mentioned in this
document and to solutions to the practicals as the course proceeds.

Whenever we refer to “from www” it means that you should go to the course website or
the data website.

1.3 Data

The datasets are all found in the data folders http://192.38.117.59/~pka/epidata/

resp. http://192.38.117.59/~pka/spss-stata-data/
There is also a link to these at the course website:

http://BendixCarstensen.com/EpiPhD/F2015.
Description of the datasets are in the exercise texts.
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Chapter 2

Exercises

2.1 Vaccinations and childhood mortality in

Guinea-Bissau

In rural Guinea-Bissau, 5274 children under 7 months of age were visited two times at
home with an interval of six months (Kristensen et al., BMJ, 2000, [2]). Information about
vaccination (BCG, DTP, measles vaccine) was collected at each visit, and at the second
visit, death during follow-up was registered. Some children moved away during follow-up,
some survived until the next visit. The following variables are found in the data set
bissau.txt:

id Id number
fuptime Follow-up time in days
dead 0 = censored, 1 = dead
bcg 1 = Yes, 2 = No
dtp Number of DTP doses (0,1,2,3)
age Age at first visit in days
agem Age at first visit in months

2.1.1 A single risk, odds and rate

Tabulate the number of children, the number of deaths and the number of person-years.

• Do the following by using the formulae from the lectures:

1. What is the overall risk of death? Make a confidence interval for this proportion.

2. What is the overall odds of death? Make a confidence interval for this odds.

3. What is the overall rate of death (per year). Make a confidence interval for this
rate.

• Do the same by using your statistical package. Do you get the same confidence
intervals?

2
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2.1.2 Rates, risks and odds

First, make a table of the number of children, the number of deaths and the number of
person-years by BCG vaccination status.

• Based on this do the following calculations by hand (or a suitable program on your
computer), by inserting the numbers in the formulae from the lectures:

1. Estimate the 6-month risk of death for children with or without BCG
vaccination (SAS users may use the program bissau.sas).

2. Compute 95% confidence limits for the two risk parameters.

3. Estimate the 6-month odds of death for children with or without BCG
vaccination. Compute also 95% confidence limits for the odds parameters.
Compare with the risk parameters.

4. Estimate (by your preferred statistical software) the rate (per day) of death for
children with or without BCG vaccination. Compute also 95% confidence limits
for the rate parameters.

5. Estimate the rate (per year) of death for children with or without BCG
vaccination. Compute also 95% confidence limits for the rate parameters.

6. Create a new binary variable indicating whether or not the child was DTP
vaccinated at first visit and repeat the previous questions for this DTP variable.

• Calculations using a statistical model

1. Compute the risk with 95% confidence intervals in each of the two groups. You
must fit a binomial model (without intercept) with log-link and exponentiate the
estimates afterward.

2. Compute the odds of death 95% confidence intervals in each of the two groups.
You must fit a binomial model (without intercept) with logit link and
exponentiate the estimates afterward.

3. Compute the rate of death per year in each of the two groups. You must fit a
Poisson model (without intercept) with log link and the log-person-years as
offset and exponentiate the estimates afterward.

4. Do the same for the subdivision of data by DTP.

2.1.3 Rate ratio, risk ratio, odds ratio

Continuing from before, calculate relative effects of BCG and DTP on mortality.

1. Calculate (SAS-users may use proc freq) the risk ratio and odds ratio and 95%
confidence interval (CI) for the effect of BCG on mortality, i.e., compare the risk/odds
of dying among BCG-vaccinated vs. BCG-unvaccinated. What do you conclude?

2. Do the same for DTP (any dose vs. none, i.e. as a binary exposure). What do you
conclude?
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3. Test the association between BCG and DTP-any dose using a Chi-square test. In this
mortality is not involved, only test whether the occurrence of the two types of
vaccination are related. How would you describe the relationship? What do you
conclude?

4. Estimate the DTP effect (risk ratio and odds ratio) separately for each level of BCG.
What happened?

5. Until now we have not accounted for the follow-up time. Repeat question 1, 2, and 4
but now by calculating the rate ratio and 95% CI for the BCG and DTP exposure.

2.1.4 Confounder control: stratified analysis of odds ratio and
risk ratio.

1. Revisit the previous analyses of this dataset, but now using death (dead) as outcome,
and estimate the DTP effect for each level of BCG.

2. Use the BCG as a potentially confounding variable and obtain the MH-estimate for
the OR and RR. What are they?

3. Do the same, using age in months (agem) as control variable in the analysis. Is there
any DTP effect?

4. Do the same, but now using both agem and bcg (that is, the cross-classification) as
control variables in the analysis. Is there any DTP effect?

2.1.4.1 Computing hints

In SAS you can make an analysis controlling for confounding by including the confounder
variable before the exposure and outcome variables in the table statement, and adding cmh

as option (cmh = Cochran-Mantel-Haenzsel):

proc freq data = bissau ;

table agem * dtpany * dead / norow nocol nopct cmh ;

run ;

2.1.5 Survival analysis of childhood mortality in Guinea-Bissau

The SAS program bissau.sas reads the data from www and fits a simple Cox regression
model with follow-up time as the time variable and including bcg and agem as categorical
covariates.

1. Fit a simple Cox regression model with follow-up time as the time variable and
including bcg and agem as categorical covariates and re-find estimates from the
lectures.

2. Estimate the effect of any dose of DTP, using the created variable dtpany adjusted
only for age in months as a categorical (class in SAS) variable.

3. Now, also adjust for BCG. What happened? Can you explain?
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4. Is there an interaction between DTP (dtpany) and BCG?

5. Make a Cox regression analysis with DTP (dtpany) and BCG, but now with age as
time-variable, i.e. with delayed entry.

6. Repeat the Poisson and logistic regression models that you have seen during the
lectures, and compare the results:

Cox RR (95%CI) Poisson RR (95%CI) Logistic OR (95%CI)

0.71 (0.53-0.94) 0.71 (0.53-0.94) 0.71 (0.53-0.96)

All models should be adjusted for age in months as a categorical variable. In the Cox
model, follow-up time was used as the time-variable. In the Poisson model, the
follow-up time was used as time at risk. The logistic regression did not take the
follow-up time into account.

What do you conclude?

2.2 Case-control study of renal cancer and

trichorehtene

This exercise is based on the paper by Vamvakas et al.: Renal cell cancer correlated with
occupational exposure to trichloroethene. J Cancer Res Clin Oncol, 1998, pp 374–382. [1].

The paper is available at the course homepage as
http://BendixCarstensen.com/EpiPhD/Papers/Vamvakas.1998.pdf

We will discuss the following points based on the paper:

1. What is the primary aim of the study?

2. How were the cases sampled?

3. How were the controls sampled?

4. Are they comparable; i.e. what assumptions are needed?

5. What is the (actual) study base?

6. What study base is the intended (for generalization)?

7. Is the sampling scheme incidence density sampling?

8. Can the age-effect on the occurrence of renal cancer be estimated?

9. Is age a confounder?

10. Key in the numbers in table 6 (p.380), and verify the analysis using your statistical
software (in SAS you could use proc freq).

11. Is there any evidence of heterogeneity of the odds-ratio across age-classes? (Hint:
Use the Breslow-Day-test.)

http://BendixCarstensen.com/EpiPhD/Papers/Vamvakas.1998.pdf
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12. In particular, how does the odds-ratio estimate given by Vamvakas et al. compare the
the Mantel-Haenszel estimate based on the same data?

13. What is the main result (in plain words)?

2.3 IHD data from Clayton & Hills.

The study is described by Clayton & Hills, Ch. 13. The tabulated data set of counts of
IHD cases and person-years is avaliable from www in the file ihd-tab.txt.

The SAS program ihd-reg.sas reads the data from www and fits a Poisson regression
model without interaction between age and exposure.

1. Fit the Poisson model from Clayton & Hills Tables 22.7-8 (p.222) and perform the
tests from exercises 24.1 and 24.2 (pp.237–238). SAS-users may use the program
ihd-reg.sas and notice the use of the ESTIMATE command to obtain a given
reference group and the rate ratios with 95% confidence intervals.

2. Fit the model with interaction and re-find results from Clayton & Hills Table 24.5
(p.242) and the test for no interaction.

2.3.1 Using continuous variables

The IHD-data contains enegy consumption as a continuous variable. The dataset diet.txt
has the following variables:

id Person id
doe Date of entry
dox Date of exit
chd CHD-status at exit: 0-no, 1-yes
dob Date of birth
job Not used
month Notudes
energy Daily energy intake in MJ
height Height in cm
weight Weight in cm
fat Daily fat intake (g)
fibre Daily fibre intake (g)

1. Read the individual diet data records from the file.

2. Create variables for the person-years, by subtracting entry date from date of exit.
Also create a variable with the log-person-years.

3. Use CHD as outcome variable in a Poisson-analysis with the log-person-years as
offset, using energy as a linear explanatory variable. Is there an effect on mortality?

4. Is there any evidence of a non-linear effect of energy, when using linear splines with
knots at say 2, 2.5 and 3? (approx. the quartiles).
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5. How does the non-linear relationship look? Plot the estimated curve together with
the estimated linear relationship.

6. Same question for weight and BMI (the latter you have to calculate yourself as
weight/height2).

2.3.2 Splitting the follow-up of the IHD data

The following exercise is designed to illustrate how follow-up time is subdivided in order to
produce the table of events and person-years. Furthermore the aim is to show you that
tabulated data and time-split data gives the same results if only age and exposure are used
as variables.

We will first analyze frequency records as above (these are almost identical to Table 22.6
in C & H). Next, we shall read the individual records and construct the corresponding
table of cases and person-years.

The splitting of follow-up along a timescale is quite a technical task, which is handeled
somewhat differently in SAS, Stata and R, so the exercise is here given in three different
versions, one for each programming language.

2.3.2.1 Using SAS

1. Import the program ihd-lexis.sas to the program editor. Run the first part of the
program — the part reading the tabulated data and proc genmod. Compare with the
results from table 24.1 in Clayton & Hills.

2. Next, read the individual records from the file diet.txt, including the proc print

and check on the output that it looks reasonable and that you understand what the
data represents.

3. Now you should import the macro %Lexis and use it to split into the age intervals
40–50, 50–60 and 60–70 years:

In order to use this you must first load it from the appropriate folder folder on the
net:

options source2 ; * List the included code in the log-window ;

filename lexispr url "http://BendixCarstensen.com/Lexis/Lexis.sas";

%inc lexispr ;

Once you have specified %inc lexispr ; and run that line in SAS, SAS will know
the macro %lexis and you can use it in the rest of the session.

4. The time-splitting is now done by running the SAS-macro %Lexis1. A SAS-macro is
a piece of SAS-program (normally quite long) where certain small parts of the
program can be changed when the program is run. The SAS-convention is that
names of such programs start with a “%”.

To use the macro we must specify the follow-information from the input file:

1Named after the German demographer, statistician and economist, Wilhelm Lexis, 1837–1914. He wrote
the book “Einführung in die Theorie der Bevölkerungsstatistik, (Strassbourg, 1875)”, while he was professor
in Dorpat (now Tartu, Estonia), wherein he devised the so called Lexis diagram.
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• Date of entry into the study — doe

• Date of exit from the study — dox

• Status at exit from the study — chd ( 1 if CHD occurred at dox, 0 otherwise ).

Moreover, we must decide which timescale to split the data on. In this case we want
to split along the scale “current age”, i.e. time since date of birth. To this end we
must specify:

• The origin of the time-scale, i.e. where the time-scale is 0, in this case date of
birth — dob.

• The intervals where we want the follow-up grouped, here ages 40–50, 50–60 and
60–70.

• As a purely technical thing we need to specify the conversion between the scale
in which time is measured in the input dataset (in this case days) and in the
specification of the grouping (in this case years) — 365.25.

In the case of %Lexis we must supply these 6 parameters in order to specify how to
split time.

Finally we must tell the program where the the original data is, where the time-split
data has to go, and what the name of the created age-variable should be.

This looks like this (you do not have to write the stuff between the /*...*/):

%Lexis( data = ihdindiv, /* Dataset with original data */

out = ihdsplit, /* Dataset with time-split data */

entry = doe, /* Date of entry */

exit = dox, /* Date of exit */

fail = chd, /* Event (failure) indicator */

origin = dob, /* Origin of the time-scale */

scale = 365.25, /* Conversion from input scale to breaks-scale */

breaks = 40 to 70 by 10, /* Where to split the time scale */

left = agr ); /* The name of the new age-variable */

Run this piece of SAS code.

(In the top of the file http://BendixCarstensen.com/Lexis/Lexis.sas are some
more detailed explanations of how to use %Lexis).

5. How many records are in the resulting dataset (ihdsplit)

6. Take at look at the resulting data file, for example the first 20 records:

proc print data = ihdsplit (obs=20) ;

run ;

How does this compare with the the original dataset?

7. Use %PYtab to tabulate ihd-cases and person-years by exposure and age-group. You
must first get this from the net as you did with the %Lexis macro:
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filename pytabpr url "http://BendixCarstensen.com/Lexis/PYtab.sas";

%inc pytabpr ;

%PYtab( data = ihdsplit,

class = exposure agr,

fail = chd,

risk = risk,

scale = 1000 ) ;

Compare with the sums from the table given in the first data step in ihd-lexis.sas

8. Use proc genmod to estimate the effect of age and exposure from the split dataset.
How does the estimates compare with those based on the initial tabulated dataset?

9. Add an interaction between age and exposure and check that you get the same test
for interaction as with the grouped data.

10. Compare the type 3 likelihood ratio statistic (Chi-square) for the interaction with
the deviance of the model without interaction for the grouped data.

2.3.2.2 Using Stata

1. First we enter the grouped data and make a simple Poisson analysis:

input eksp agr pyrs cases

1 0 346.87 2

1 1 979.34 12

1 2 699.14 14

0 0 560.13 4

0 1 1127.70 6

0 2 794.15 8

end

poisson cases i.eksp i.agr , exposure(pyrs)

2. Then read the individual data, convert to date variables:

infile id str10 doe str10 dox chd str10 dob job month energy height /*

*/ weight fat fibre in 2/L /*

*/ using "http://BendixCarstensen.com/EpiPhD/F2014/data/diet.txt", clear

*Get the dates into date format

gen date_entry = date(doe,"MDY")

gen date_exit = date(dox,"MDY")

gen date_birth = date(dob,"MDY")

format date_entry date_exit date_birth %td
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3. Now tell Stata that this is survival data, that is, when persons enter, exit and whether
they are dead or not at exit (fail), and finally which scale we are on (origin):

stset date_exit, failure(chd==1) entry(date_entry) origin(date_birth) /*

*/ scale(365.25) id(id)

display _N

Note that Stata now has generated 4 new variables _t0, _t, _d and _st, describing
the survival. Read the help page for stset and make sure you understand what they
mean. (A useful introduction to stset is
www.pauldickman.com/survival/stset.pdf).

4. Then split the data into age groups 40–50, 50–60, 60–70 and generate a new variable
called current_age:

stsplit current_age, at(40(10)70) after(date_birth)

* How many observations?

display _N

5. Now take a look at the data:

list in 1/10

browse

6. Tabulate IHD cases and person-years by exposure and age group. To this end we use
the sytem variables _t0 and _t which hold the left and the right end-points on the
“analysis time scale”, in this case the current age:

gen pyrs=_t-_t0

gen exposure = (energy < 2.75) + energy-energy

* Only count CHD cases once

gen event=_d

table current_age exposure, c(sum event sum pyrs) format(%9.2f)

Note that current_age is 0 for all follow up before age 40 (left of first cutpoint).

7. Now use poisson (or glm) to estimate the effect of age and exposure from the split
dataset. How does the estimates compare with those based on the initial tabulated
dataset?

* drop follow-up before age 40

keep if current_age>0

poisson event i.exposure i.current_age, exposure(pyrs)

www.pauldickman.com/survival/stset.pdf
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— the same result as with the tabulated data.

8. Add an interaction between age and exposure and check that you get the same test
for interaction as with the grouped data.

poisson event i.exposure i.current_age i.exposure#i.current_age, exposure(pyrs)

testparm i.exposure#i.current_age

est store m1

poisson event i.exposure i.current_age , exposure(pyrs)

est store m2

lrtest m1 m2

9. Compare the type 3 likelihood ratio statistic for the interaction with the deviance of
the model without interaction for the grouped data.

collapse (sum) pyrs event , by(exposure current_age)

poisson event i.exposure i.current_age , exposure(pyrs)

2.3.2.3 Using R

The following instructions are fairly detailed. You should make sure that you know what
goes on, and that consult the help-pages for the functions uses, so that you get a bit of a
feeling for how the R-machinery works.

1. Load the Epi package and read the (modified) grouped IHD-data from the file
ihd-xtab.dta from the data folder
http://BendixCarstensen.com/EpiPhD/F2014/data

> options( width=90 )
> library( Epi )
> library( foreign )
> ihdt <- read.table("http://BendixCarstensen.com/EpiPhD/F2014/data/ihd-tab.txt", header=T )
> ihdt

Fit a Poisson model to data with exposure and age-effects:

> mt <- glm( cases ~ factor(age) + exposure,
+ offset = log(pyrs), family=poisson, data=ihdt )
> round( ci.exp( mt ), 3 )

Compare with the results from table 24.1 in Clayton & Hills.

2. Next, read the individual records from the file diet.txt; remembering to specify how
missing is coded:

> ihdi <- read.table( "../data/diet.txt",
+ # "http://www.biostat.ku.dk/~pka/epidata/diet.txt",
+ header=TRUE, na.strings=".", as.is=TRUE )
> head( ihdi )
> str( ihdi )
> # Turn character variables into dates and then to calendar years:XS
> for( i in c(2,3,5) ) ihdi[,i] <- cal.yr( as.Date(ihdi[,i],format="%m/%d/%Y") )
> str( ihdi )
> head( ihdi )

http://BendixCarstensen.com/EpiPhD/F2014/data
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Now check that it looks reasonable and that you understand what the data represents.

3. Now you should set up the dataset as a Lexis object2., so that R will know when
persons are at risk etc. entry is a named list, the names giving the names of the
timescales we want to use, in this case per (calendar time, period) and age. exit is
also a named list, with one element with the name of one of the timescales, giving the
values of the exit times on this time scale. exit.status gives the state that persons
are in at exit from the study. If entry.status is not specified, it is assumed that
everyone starts in the first state, and this is noted:

> Lx <- Lexis( entry = list( per=doe,
+ age=doe-dob ),
+ exit = list( per=dox ),
+ exit.status = factor( chd, labels=c("Well","IHD") ),
+ data = ihdi )
> summary( Lx )

There is a method for plotting the follow-up in boxes. Not desperately exciting but
capturing the essence:

> boxes( Lx, boxpos=TRUE, scal.Y=1000, show.BE=TRUE )

4. The time-splitting is now done by the function splitLexis. To use the function we
must specify which timescale to split the data on. In this case we want to split along
the scale “current age”, i.e. time since date of birth, here named age. We then specify
the intervals where we want the follow-up grouped, here ages 40–50, 50–60 and 60–70,
so use the breakpoints 40, 50, 60 and 70:

> Ls <- splitLexis( Lx, breaks=c(40,50,60,70), time.scale="age" )
> summary( Ls )
> head( Ls )

For the fun of it you can try the default plot and points methods for a Lexis

object. Note that grid-lines corresponding to the breaks gets inserted:

> plot( Ls, col=gray(0.3) )
> points( Ls, col="red", pch=c(NA,16)[Ls$lex.Xst], cex=0.7 )

On the diagram it appears that all persons are censored at age 70 and at the end of
1976, whereas some follow-up time is present before age 40.

5. The number of records are in the resulting dataset (Ls):

> nrow( Ls )

6. We now list the first 20 records:

> head( Ls, 20 )

2Named after the German demographer, statistician and economist, Wilhelm Lexis, 1837–1914. He wrote
the book “Einführung in die Theorie der Bevölkerungsstatistik, (Strassbourg, 1875)”, while he was professor
in Dorpat (now Tartu, Estonia), wherein he devised the so called Lexis diagram.
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7. Now reproduce the table in Clayton & Hills:

First use the function timeBand to produce a variable which is equal to the left
endpoint of the intervals into which the follow-up have been split:

> Ls <- transform( Ls, agr = timeBand( Ls, "age", "factor" ),
+ eksp = factor( energy<2.75, labels=c("High","Low") ) )
> str( Ls )

Then make a table like the one in C& H:

> round( ftable( xtabs( cbind( D=(lex.Xst=="IHD"), Y=lex.dur ) ~
+ agr + eksp,
+ data = Ls ),
+ row.vars = 1 ), 2 )

You should see that the data is not quite the same as in the book.

Now we do the grouped analysis on the slightly modified data that you can get from
the data folder (which should be identical to the table you just made):

> ihdx <- read.table("http://BendixCarstensen.com/EpiPhD/F2014/data/ihd-xtab.txt", header=T )
> ihdx
> mt <- glm( cases ~ factor(age) + exposure,
+ offset = log(pyrs), family=poisson, data=ihdx )
> round( ci.lin( mt, E=T ), 3 )

8. Estimate the effect of age and exposure from the split dataset. Remember to exclude
follow-uptime before age 40 — as you saw from the table above:

> Ls <- subset( Ls, agr %in% levels(agr)[2:4] )
> Ls$agr <- factor( Ls$agr )
> table( Ls$agr )
> head( Ls )
> mi <- glm( (lex.Xst=="IHD") ~ factor(agr) + eksp,
+ offset = log(lex.dur), family=poisson, data=Ls )
> round( ci.lin( mi, E=T ), 3 )
> round( ci.lin( mt, E=T ), 3 )
> ci.lin( mi, E=T ) / ci.lin( mt, E=T )

We see that the estimates are identical for the two ways of modeling. The point of
using the individual data is that individual-level variables could be included in a
model too.

9. Add an interaction between age and exposure and check that you get the same test
for interaction as with the grouped data.

> mix <- update( mi, . ~ . + factor(agr):eksp )
> mtx <- update( mt, . ~ . + factor(age):exposure )
> anova( mi, mix, test="Chisq" )
> anova( mt, mtx, test="Chisq" )

10. Compare the type 3 likelihood ratio statistic (Chi-square) for the interaction with
the deviance of the model without interaction for the grouped data. You can get the
deviance from the summary:

> summary( mt )
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2.4 Case-control study of BCG vaccination and

leprosy.

The study is decribed by Clayton & Hills, p.156. In short, 260 cases of leprosy among
individuals aged less than 35 years were ascertained in a study area in Malawi. Subjects
were grouped into 7 age intervals and according to absence or presence of a scar after BCG
vaccination. Three sets of controls were studied:

1. a population survey of 80,622 persons

2. a random sample of 1000 persons

3. a 4 to 1 age-matched sample

The file bcgalldata.txt includes data from this study: for each of the 14 age by scar

combinations, a text variable status indicates the type of person in question (case,
conall, con1000, conmatch) and the numerical variable n the number of such persons.

The SAS program bcg-reg.sas reads these data and fits a logistic regression model with
no interaction between age and scar using all cases and all controls.

1. Fit the model from Clayton & Hills Table 23.5 (p.232). SAS-users may use the
program bcg-reg.sas; what are the reference groups?

2. Estimate odds ratios and confidence intervals with non-exposed and youngest,
respectively, as reference groups (in SAS: use ’ESTIMATE’ statements).

3. Estimate instead odds ratios and confidence intervals with the age group 20-24 as
reference.

4. Test the hypothesis of no interaction between age and scar.

5. Analyse the data set with only 1000 controls (i.e., use the controls con1000: Table
23.6, p.233) and compare the precision of the estimate for scar with that based on
the entire sample.

6. Analyse the matched data set (i.e., use the controls conmatch: Table 23.6, p.233) and
compare with the results from Table 23.7.

7. Try (erroneously) to drop age from the analysis of the matched data and study the
consequences for the estimate of scar.

2.5 Case-control study of malignant melanoma.

Anne Østerlind conducted in the middle of the 80’s a case-control study of risk factors for
malignant melanoma in Denmark.

The review paper “Malignant melanoma in Denmark” from Acta Oncologica, 1990 ,[3] is
from Anne Østerlind’s thesis and gives an overview of the results from the study which
included 1400 interviewed persons, 474 cases and 926 controls, cf. table 5 in the article.

In the article incidence changes between 1943 and 1982 are also discussed; that part of
the paper will not be touched upon in this exercise.
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2.5.1 Discussion of the article.

1. Explain the design, the data base and data collection, particularly how the matching
was conducted.

2. How were interviews planned to minimize bias?

3. Explain the drop-out, particularly the analyses in Tables 5-7. What are the
consequenses of these results for the subsequent analyses?

4. How are the analyses carried out? Are all variables included in one step or are the
analyses conducted in smaller steps? How are the matching variables accounted for?
Comments?

5. Explain the analyses presented in Table 9. How many logistic regression models are
fitted here?

6. What is the conclusion from the analyses in the table?

7. What is the purpose of Table 11?

8. Which modifiable factors seem to affect the melanoma risk?

2.5.2 Melanoma data

We have access to a subset of the variables from the study. These are found in the file
melanom.txt. The variables are described in the table below. Based on these data, results
from AØ’s Tables 9 and 10 can (almost) be reconstructed. Revised versions of those two
tables are also found below.

The SAS program melanom.sas reads the data from www and fits a simple logistic
regression model including only the variable skin.

2.5.3 Simple tabulation analysis

1. Make the two by two table showing the association between case-control status and
whether or not the person experienced any sunburns before the age of 15. SAS-users
may use the program melanom.sas to read in the data from www. Estimate the odds
ratio with associated 95% confidence limits and test for no association between the
risk factor and case-control status.

2. Conduct similar analyses for the factors sex, hair, eyes, freckles, acuterea,

chronrea. Compare with Table 9 in the article.

3. The case control study was matched for sex and age and, therefore, analyses of any
risk factor should be adjusted for these two variables. Study how much the
association between the risk factor “any sunburns before the age of 15” and
case-control status is affected by adjustment for sex.

4. Same question for age.
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Table 2.1: Variables in the melanoma data set. Some variables have missing values for
some of the persons, these are coded “.”. In the file there is one line for each person in the
study. Data are found in the file melanom.txt.

casecon — case-control status: 1:case, 0:control
sex — 1:man, 2:woman

ageint — age at interview in years
agroup — grouped age: 10:10–19, 20:20–29, . . .
skin — skin colour: 0:dark, 1:medium, 2:light
hair — hair colour: 0:dark brown/black, 1:light brown, 2:blond, 3:red
eyes — eye colour: 0:brown, 1:grey/green, 2:blue

freckles — freckles: 1:many, 2:some, 3:none
acuterea — acute reaction to sunlight: 1:blisters, 2:painful sunburn, 3:mild sun-

burn, 4:no sunburn
chronrea — chronic reaction to sunlight 1:deep tan, 2:moderate tan, 3:mild tan,

4:no tan
nvsmall — number of naevi < 5mm
nvlarge — number of naevi ≥ 5mm
nvtot — total number of naevi

burn15 — number of sunburns before age 15

2.5.4 Simple analysis controlling for age

1. The case-control study was matched for sex and age and, therefore, analyses of any
risk factor should be adjusted for these two variables.

Study how much the association between the risk factor “any sunburns before the age
of 15” and case-control status is affected by adjustment for sex.

2. Study how this association is affected by adjustment for age.

3. Study how this association is affected by adjustment for both age and sex.

2.5.5 Introductory analyses.

1. Estimate (log-)odds ratios for the variable skin (see top left in AØ’s Table 9).
SAS-users may use the program melanom.sas.

2. Estimate also odds ratios (in SAS: use ESTIMATE statements).

3. Conduct the other analyses in AØ’s Table 9 (left part) where the factors hair,

eyes, freckles, acuterea, chronrea are studied one at a time.

4. Conduct the analysis corresponding to Table 9 (right part) where several variables are
included simultaneously (see the table footnote).

5. Reconstruct the results from AØ’s Table 10 concerning number of raised naevi.
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Table 2.2: Corrected Table 9. from the paper

Factor Category OR (crude) OR (adjusted)

Skin colour Dark (1.0) (1.0)
Medium 1.4 (1.0-1.9) 1.3 (1.0-1.8)
Light 1.7 (1.2-2.3) 1.3 (0.9-1.9)
trend test p < 0.01 p =0.15

Hair colour Dark-brown/black (1.0) (1.0)
Light-brown 1.5 (1.2-1.9) 1.5 (1.2-1.9)
Blond/fair 1.7 (1.0-2.9) 1.6 (0.9-2.8)
Red 1.7 (1.1-2.7) 1.3 (0.8-2.0)
trend test p < 0.001 p = 0.04

Eye colour Brown (1.0) (1.0)
Grey/green 0.9 (0.6-1.2) 0.7 (0.5-1.1)
Blue 1.1 (0.8-1.5) 0.9 (0.6-1.3)
trend test p =0.32 p =0.98

Freckles None (1.0) (1.0)
Some 1.5 (1.2-1.9) 1.5 (1.2-2.0)
Many 3.0 (2.2-4.1) 3.0 (2.1-4.1)
trend test p < 0.001 p < 0.001

Acute reaction No sunburn (1.0) (1.0)
to sunlight Mild sunburn 1.3 (1.0-1.6) 1.1 (0.8-1.4)

Painful sunburn 1.6 (1.0-2.6) 1.3 (0.8-2.1)
Blisters 2.2 (0.9-5.0) 1.6 (0.7-3.9)
trend test p =0.005 p =0.15

Chronic reaction Deep tan (1.0) (1.0)
to sunlight Moderate tan 1.4 (1.1-1.8) 1.2 (0.9-1.6)

Mild tan 1.8 (1.3-2.6) 1.4 (1.0-2.1)
No tan 2.0 (1.0-3.7) 1.2 (0.6-2.5)
trend test p < 0.001 p =0.10

NB: new variables must be defined from the original variables nvtot, nvsmall,

nvlarge.

2.5.6 Trend tests and interactions.

6. In the analyses so far all variables have been considered as categorical (’class’ in
SAS) variables while all tests in Tables 9 and 10 are trend tests. Conduct the analyses
which give the P -values in Table 9 (right part) for the variables skin and freckles.

7. May freckles be scored linearly (1, 2, 3), when this variable is studied separately?
(Conduct a test for linearity/departures from trend).

8. In AØ’s Table 11 freckles and the total number of naevi (suitably grouped) are
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Table 2.3: Corrected Table 10.

Factor Category OR (crude) OR (adjusted)

Number of raised None (1.0) (1.0)
naevi on arms, 1 1.5 (1.1-2.1) 1.5 (1.1-2.0)
total 2-4 2.3 (1.6-3.1) 2.2 (1.6-3.1)

5+ 5.4 (3.5-8.1) 4.9 (3.2-7.5)
trend test p < 0.001

Number of raised None (1.0) (1.0)
naevi on arms, 1 1.6 (1.1-2.2) 1.6 (1.1-2.2)
< 5 mm (diameter) 2-4 2.5 (1.8-3.4) 2.4 (1.7-3.4)

5+ 5.0 (3.3-7.7) 4.7 (3.0-7.4)
trend test p < 0.001

Number of raised None (1.0) (1.0)
naevi on arms, 1 1.8 (1.2-2.8) 1.6 (1.1-2.5)
≥ 5mm (diameter) 2+ 3.6 (1.8-7.2) 2.7 (1.3-5.5)

trend test p < 0.001

studied. Conduct this analysis. Is there any interaction between these two variables?

9. Study, in a similar vein, interactions between acuterea and skin and between the
grouped version of nnvtot from question 5. and agroup.

10. All of AØ’s analyses are conducted without accounting for the match variable age
(agroup) (in spite of warnings given by Clayton & Hills!). Repeat some of the
previous analyses adjusting for agroup. Are there any substantial differences?
Explain!

2.6 Testicular cancer risk and maternal parity.

This exercise deals with the article “Testicular cancer risk and maternal parity: a
population-based cohort study”, by T. Westergaard, P.K. Andersen, J.B. Pedersen, M.
Frisch, J.H. Olsen, M. Melbye. Br. J. Cancer, 77,pp. 1180-1185 (1998). [4].

2.6.1 Discussion of the article.

1. What is the authors’ argument for the existence of an effect of maternal parity on the
risk of testicular cancer in the son?

2. Describe the design of the study:

• a. which “sons” are included in the study?

• b. when are they followed?

• c. how are cases defined and ascertained?
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3. Concentrating on all testicular cancers, what do you consider to be the main result
reported in Table 1?

4. Explain in words the interpretation of the value RR=0.80 for parity 2+.

5. Compare this value with the corresponding crude RR (and 95 % CI) obtained
without any adjustment. Explain the differences between the two results.

6. Draw a Lexis diagram to illustrate the combinations of age and calendar period
which contribute person-years to the study. An empty diagram is available as
http://BendixCarstensen.com/EpiPhD/F2014/blank-Lexis.pdf

7. Explain the meaning of the estimates for “Interval from ...” in the lower part of Table
1.

8. What type of analysis is reported in Table 2?

9. Discuss how, alternatively, a case-control design could have been conducted to
address the same question as the cohort study reported in the article.

2.6.2 Practical exercises

The file testis.txt, available at www contains for each (non-empty) combination of the
factors SON_AGE, SON_KOH, MOTH_AGE, PARITY the number of person-years at risk PYRS,
the numbers of non-seminomas and seminomas, respectively NONSEMI SEMI, and the total
number of testis cancer cases CASES. The first line of the file contains the variable names.

The SAS program testis.sas reads the data from www.

10. Compute the crude rate ratio for testis cancer for parity 2+ versus parity 1. Compare
with 5. above. SAS-users may use the SAS program testis.sas (and PROC GENMOD).

11. Reconstruct the estimates for “parity of mother at birth of son” from the top of Table
1 in the article both for all testis cancers and for non-seminomas.

12. Reconstruct the estimates from Table 2 in the article concerning mother’s age (for all
testis cancers). Is there an interaction between parity and mother’s age?

13. Same question for birth cohort of the son.

2.7 Mediation analysis

The first exercise is a very simple exercise illustrating the simplest possible setup, based on
simulated data.

Suppose there is a relationship between the outcome variable of interest, y, and the
exposure variable of interest, x. But that some of the effect is through the mediating
variable, m, which is influenced by x and in turn influences y.

> library(Epi)
> tmat <- matrix( NA, 3,3 )
> rownames(tmat) <-
+ colnames(tmat) <- c("x","m","y")
> tmat[1,2] <- tmat[1,3] <- tmat[2,3] <- 1
> boxes.Lexis( tmat, boxpos=list(x=c(15,50,85),y=c(20,80,20)), hmult=2, wmult=2 )

http://BendixCarstensen.com/EpiPhD/F2014/blank-Lexis.pdf
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Figure 2.1: Relationship between variable

Under this assumption, and under the assumption that the relationships are linear we
have for the recorded values of the three variables yi, xi and mi:

yi = µ+ βxxi + βmmi + ei, ei ∼ N (0, σ2)

and for the mediator:
mi = ξ + θxxi + ai, ai ∼ N (0, τ 2)

If we naively insert the latter equation in the first we get:

yi = µ+ βxxi + βm(ξ + θxxi + ai) + ei

= (µ+ βmξ) + βxxi + βmθxxi + βmai + ei

= (µ+ βmξ) + (βx + βmθx)xi + βmai + ei

Thus in a marginal analysis of y on x we would say that βmθx of the effect of x on y were
mediated by m.

Also we should see that the residual variance in the marginal analysis is β2
mτ

2 + σ2.
The point of the following exercise is to estimate the parameters in the two defining

relationships and see if the relationship in the marginal analysis is as predicted from the
two analyses.

Note that the setup is conditional on the relationship being as postulated, there is no
guarantee that other relationships between variables could generate data with a similar
joint distribution.

This exercise is based on simulated data in the dataset medex.txt. The dataset has 3
variables — the names are in the first line, so you can read it into Rby:

> med <- read.table( "http://BendixCarstensen.com/EpiPhD/F2014/data/medex.txt", header=TRUE )
> str( med )
> pairs( med, pch=16, cex=0.8, gap=0 )
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Figure 2.2: Pairwise relationship between the simulated variables.

1. There is nothing in the set-up that assumes that the variables y, x and m be
measured on the same scale. Now, describe what units (scale) the regression
parameters in the equations above have, and verify that all calculations can be done
using the correct units — that is that it all fits together in terms of units.

2. First check whether mediation is likely:

(a) Is there a relationship between y and x?

> summary( lm( y ~ x, data=med ) )$coef

(b) Is there a relationship between m and x?

> summary( lm( m ~ x, data=med ) )$coef

(c) Is there a relationship between y and x, when controlling for m?

> summary( lm( y ~ x + m, data=med ) )$coef

3. How much of the effect of x on y is mediated through m ? Look at the marginal
relationship of y and x and see if the parameter estimates look as expected.
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4. Calculate the variance to expect in the marginal relationship and compare to the
actual obtained.

5. What is the conclusion?
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Chapter 3

Solutions with SAS

The SAS-programs are available on the course web site in the folder
http://BendixCarstensen.com/EpiPhD/F2015/sas. There is also a link to this on the
website.

SAS

SAS is the default programming language in this course. It is a big package with many
capabilities, but a bit clumsy for simple calculations. It is expensive, but PhD-students can
have a free copy through KU, but only for the duration of your PhD.

The output from SAS comes in two different files, which makes it difficult to make a safe
documentation of results, and always makes the documentation hard to follow because two
different files have to be read in parallel. The solutions here consists only of the program
code, not of listinngs of the .log (log window) and .lst (ouptput window) as this would
be too extensive.

3.1 Vaccinations and childhood mortality in

Guinea-Bissau

In rural Guinea-Bissau, 5274 children under 7 months of age were visited two times at
home with an interval of six months (Kristensen et al., BMJ, 2000, [2]). Information about
vaccination (BCG, DTP, measles vaccine) was collected at each visit, and at the second
visit, death during follow-up was registered. Some children moved away during follow-up,
some survived until the next visit. The following variables are found in the data set
bissau.txt:

id Id number
fuptime Follow-up time in days
dead 0 = censored, 1 = dead
bcg 1 = Yes, 2 = No
dtp Number of DTP doses (0,1,2,3)
age Age at first visit in days
agem Age at first visit in months

1

http://BendixCarstensen.com/EpiPhD/F2015/sas
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The following SAS-programs does all the calculations required in the exercises.

3.1.1 A single risk, odds and rate

Tabulate the number of children is 5274, the number of deaths 222 and the number of
person-years 2409.8 (namely 880187 days)

• Following the lectures we get

1. The overall risk of death is 222/5274=4.21%. A näıve 95% confidence inerval for
this is:

p±1.96
√
p× (1− p)/n = 0.0421±1.96

√
0.0421× 0.9579/5274 = (0.0367; 0.0475),

but a better one is the formula:

p

p+ (1− p) ×
÷ erf

, erf = exp
(

1.96
√

1/x+ 1/(n− x)
)

Which gives:
erf = exp(1.96

√
1/222 + 1/5052 = 1.144

and so the c.i.:

0.0421

0.0421 + 0.9579
×
÷ 1.144

= (0.0370; 0.0479)

2. The overall odds of death is simply:

222

5274− 222
= 0.0439

and the s.e. on the log-scale is is used to compute the 95% c.i.:

erf = exp
(

1.96
√

1/222 + 1/5052
)

= 1.144

so we get:

0.0439
×
÷ 1.144 = c(0.0384, 0.0502)

3. The overall rate of death (per year) is

222/2409.8 = 0.0921

and the error factor is exp(1.96/sqrtD) = 1.141 (with D = 222), so the
confidence interval is:

0.0921
×
÷ 1.141 = (0.0807, 0.1050)

• Using your statistical package, you get (almost) the same confidence intervals, the
programs are:

The SAS-program is in http://BendixCarstensen.com/EpiPhD/F2015/sas as
bissau-sol0.sas.

http://BendixCarstensen.com/EpiPhD/F2015/sas
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data bissau;
*filename bisfile url "http://www.biostat.ku.dk/~pka/epidata/bissau.txt";
filename bisfile "../data/bissau.txt" ;
infile bisfile firstobs=2;
input id fuptime dead bcg dtp age agem;
lpy = log( fuptime/36525 ) ;

run;

title "All children in study" ;
proc means data=bissau nway ;

var dead fuptime ;
output out=bcgsum

sum= ;
run;

proc print data=bcgsum ;
run ;

title "Use log-link to produce log-probability" ;
proc genmod data = bcgsum ;
model dead/_freq_ = / dist=bin link=log ;
estimate "prob" intercept 1 / Exp ;

run ;
proc genmod data = bcgsum ;
model dead = / dist=bin link=log ;
estimate "prob" intercept 1 / Exp ;

run ;

title "Use logit-link to produce log-odds" ;
proc genmod data = bcgsum ;
model dead/_freq_ = / dist=bin link=logit ;
estimate "odds" intercept 1 / Exp ;

run ;
proc genmod data = bissau ;
model dead = / dist=bin link=logit ;
estimate "odds" intercept 1 / Exp ;

run ;

data bcgsum ;
set bcgsum ;
* We want rates per 100 person-years ;
lpy = log( fuptime/36525 ) ;

run ;

title "Poisson model to derive rate" ;
proc genmod data = bcgsum ;
model dead = / dist=poisson link=log offset=lpy ;
estimate "rate" intercept 1 / Exp ;

run ;
proc genmod data = bissau ;
model dead = / dist=poisson link=log offset=lpy ;
estimate "rate" intercept 1 / Exp ;

run ;

3.1.2 Rates, risks and odds

Program is in http://BendixCarstensen.com/EpiPhD/F2015/sasas bissau-sol1.sas.

data bissau;
*filename bisfile url "http://www.biostat.ku.dk/~pka/epidata/bissau.txt";
filename bisfile "../data/bissau.txt" ;
infile bisfile firstobs=2;
input id fuptime dead bcg dtp age agem;
dtpany=1; if dtp>0 then dtpany=2;

run;

title "Bissau data" ;
proc print data = bissau (obs=25) ;
run ;

title "Analysis by BCG groups" ;
proc means data=bissau nway ;

class bcg;
var dead fuptime ;
output out=bcgsum

sum= ;
run;

proc print data=bcgsum ;
run ;

data bcgres;
set bcgsum ;

/* Q1: We take the results from PROC MEANS (BCG=1) */
d=dead;
n=_freq_;

http://BendixCarstensen.com/EpiPhD/F2015/sas
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y=fuptime;

/* Q2: naive CI for pi */
pi = d/n;
sdpi = sqrt(pi*(1-pi)/n);
pilow = pi - 1.96*sdpi;
piup = pi + 1.96*sdpi;

/* Q3: odds with CI + improved CI for pi*/
omega = pi/(1-pi);
sdlogomega = sqrt(1/d+1/(n-d));
errorfact = exp(1.96*sdlogomega);
omegalow = omega / errorfact;
omegaup = omega * errorfact;
pilow_2 = omegalow/(1+omegalow);
piup_2 = omegaup /(1+omegaup );

/* Q4: rate per day - note that we added fuptime in PROC MEANS above */
lambda=d/y;
errorfact_rate = exp(1.96*sqrt(1/D));
lambda_low = lambda / errorfact_rate;
lambda_up = lambda * errorfact_rate;

/* Q5: rate per year is rate per day times 365.25 */
lambda_year = lambda *365.25;
lambda_year_low = lambda_low*365.25;
lambda_year_up = lambda_up *365.25;
run;

proc print data=bcgres; run;

/* Q6: we repeat everything using the DTPANY variable created in the first DATA step */
title "Analaysis by DTP groups" ;
proc means data=bissau nway ;

class dtpany;
var dead fuptime ;
output out=dtpsum

sum= ;
run;

proc print data=dtpsum ;
run ;

data dtpres;
set dtpsum ;

/* Q1: We take the results from PROC MEANS (BCG=1) */
d=dead;
n=_freq_;
y=fuptime;

/* Q2: naive CI for pi */
pi = d/n;
sdpi = sqrt(pi*(1-pi)/n);
pilow = pi - 1.96*sdpi;
piup = pi + 1.96*sdpi;

/* Q3: odds with CI + improved CI for pi*/
omega = pi/(1-pi);
sdlogomega = sqrt(1/d+1/(n-d));
errorfact = exp(1.96*sdlogomega);
omegalow = omega / errorfact;
omegaup = omega * errorfact;
pilow_2 = omegalow/(1+omegalow);
piup_2 = omegaup /(1+omegaup );

/* Q4: rate per day - note that we added fuptime in PROC MEANS above */
lambda=d/y;
errorfact_rate = exp(1.96*sqrt(1/D));
lambda_low = lambda / errorfact_rate;
lambda_up = lambda * errorfact_rate;

/* Q5: rate per year is rate per day times 365.25 */
lambda_year = lambda *365.25;
lambda_year_low = lambda_low*365.25;
lambda_year_up = lambda_up *365.25;
run;

proc print data=dtpres; run;

3.1.3 Rate ratio, risk ratio, odds ratio

Program is in http://BendixCarstensen.com/EpiPhD/F2015/sasas bissau-sol2.sas.

data bissau;
filename bisfile url "http://www.biostat.ku.dk/~pka/epidata/bissau.txt";
filename bisfile "../data/bissau.txt" ;

http://BendixCarstensen.com/EpiPhD/F2015/sas
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infile bisfile firstobs=2;
input id fuptime dead bcg dtp age agem;
dead2=dead;
if dead2=0 then dead2=2;
if dtp=0 then dtpany=2;
if dtp>0 then dtpany=1;

run;

/***********************************************************************************/
/* Q1 Effect of BCG on mortality */
title "BCG EFFECT";
proc freq data=bissau;
table bcg*dead2 / nocol nopercent relrisk;

run;

/***********************************************************************************/
/* Q2 Effect of DTP on mortality */
title "DTP EFFECT";
proc freq data=bissau;
table dtpany*dead2 / nocol nopercent relrisk;

run;

/***********************************************************************************/
/* Q3 Association between BCG and DTP */
title "ASSOCIATION BETWEEN DTP AND BCG";
proc freq data=bissau;
table dtpany*bcg / chisq;

run;

/***********************************************************************************/
/* Q4 Effect of DTP on mortality for each value (level) of BCG */
title "DTP EFFECT among BCG vaccinated";
proc freq data=bissau;
where bcg=1;
table dtpany*dead2 / nocol nopercent relrisk;

run;

title "DTP EFFECT among BCG UN-vaccinated";
proc freq data=bissau;
where bcg=2;
table dtpany*dead2 / nocol nopercent relrisk;

run;

/* MUCH EASIER - YOU CAN ADD BCG IN THE THIS WAY: */
title "DTP EFFECT";
proc freq data=bissau;
table bcg*dtpany*dead2 / nocol nopercent relrisk;

run;

/***********************************************************************************/
/* Q5 RATES */
/* We need no. of deaths and the sum of fullow-up time for each value of BCG: */
title "RATE RATIOS: BCG EFFECT";
proc means data=bissau sum;
class bcg;
var dead fuptime;

run;
/* Now we calculate by hand the rate ratio with 95%-CI: */
data rr;
rate1 = (125/554929);
rate2 = ( 97/325258);
rr = rate1/rate2;
sd = sqrt((1/125) + (1/97));
error_factor = exp(1.96*sd);
lower = rr/error_factor;
upper = rr*error_factor;

run;
proc print data=rr;
var rr lower upper error_factor ;

run;

title "RATE RATIOS: DTP EFFECT";
proc means data=bissau sum;
class dtpany;
var dead fuptime;

run;

/* Now we calculate by hand the rate ratio with 95%-CI: */
data rr;
rate1 = (94/364012);
rate2 = (128/516175);
rr = rate1/rate2;
sd = sqrt((1/94) + (1/128));
error_factor = exp(1.96*sd);
lower = rr/error_factor;
upper = rr*error_factor;

run;
proc print data=rr;
var rr lower upper error_factor ;
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run;

title "RATE RATIOS: DTP EFFECT BY BCG STATUS";
proc means data=bissau sum;
class bcg dtpany;
var dead fuptime;

run;

/* Now we calculate by hand the rate ratio with 95%-CI: */
data rr;
bcg="YES";
rate1 = (92/358571);
rate2 = (33/196358);
rr = rate1/rate2;
sd = sqrt((1/92) + (1/33));
error_factor = exp(1.96*sd);
lower = rr/error_factor;
upper = rr*error_factor;
output;
BCG="NO";
rate1 = (2/5441);
rate2 = (95/319817);
rr = rate1/rate2;
sd = sqrt((1/2) + (1/95));
error_factor = exp(1.96*sd);
lower = rr/error_factor;
upper = rr*error_factor;
output;

run;

proc print data=rr;
var bcg rr lower upper error_factor ;

run;

3.1.4 Confounder control: stratified analysis of odds ratio and
risk ratio.

Program is in http://BendixCarstensen.com/EpiPhD/F2015/sasas bissau-sol3.sas.

/***********************************************************************************/
/* Read the data and transform */

data bissau;
* filename bisfile url "http://www.biostat.ku.dk/~pka/epidata/bissau.txt" ;
filename bisfile "../data/bissau.txt" ;
infile bisfile firstobs=2;
input id fuptime dead bcg dtp age agem;
dead2=dead;
if dead2=0 then dead2=2;
if dtp=0 then dtpany=2;
if dtp>0 then dtpany=1;

run;

/***********************************************************************************/
/* Q1 Effect of DTP on mortality by bcg */
title "DTP EFFECT for each level of bcg";
proc freq data=bissau;
where bcg eq 1 ;
table dtpany*dead2 / nocol nopercent relrisk;

run;
proc freq data=bissau;
where bcg eq 2 ;
table dtpany*dead2 / nocol nopercent relrisk;

run;

/***********************************************************************************/
/* Q2 Effect of DTP on mortality controlled for BCG */
title "DTP EFFECT controlled for BCG";
proc freq data=bissau;
table bcg*dtpany*dead2 / nocol nopercent relrisk cmh ;

run;

/* Compare with bcg-UNadjusted effect of DTP */
title "DTP EFFECT NOT controlled for BCG";
proc freq data=bissau;
table dtpany*dead2 / nocol nopercent relrisk ;

run;

/***********************************************************************************/
/* Q3 Effect of DTP on mortality controlled for age in months */
title "DTP EFFECT controlled for AGE";
proc freq data=bissau;
table agem*dtpany*dead2 / nocol nopercent relrisk cmh ;

http://BendixCarstensen.com/EpiPhD/F2015/sas
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run;

/***********************************************************************************/
/* Q4 Effect of DTP on mortality controlled for age in months AND bcg */
title "DTP EFFECT controlled for AGE and BCG";
proc freq data=bissau;
table bcg*agem*dtpany*dead2 / nocol nopercent relrisk cmh ;

run;

/***********************************************************************************/
/* Qx Effect of DTP on mortality controlled for age in months AND bcg

using logistic regression */
title "DTP EFFECT controlled for AGE and BCG - logistic regression";
proc genmod data=bissau;
class bcg agem dtpany ;
model dead2 = bcg agem dtpany

/ dist=binomial link=logit ;
estimate "OR by dtnm / agecont" dtpany 1 -1 / exp ;

run;

/* Using agem as continuoius (linear) */
title "DTP EFFECT controlled for AGE (continuous) and BCG - logistic regression";
proc genmod data=bissau;
class bcg dtpany ;
model dead2 = bcg agem dtpany

/ dist=binomial link=logit ;
estimate "OR by dtnm / agecont" dtpany 1 -1 / exp ;

run;

/* Computing the RR effect by using the log-link */
title "DTP EFFECT controlled for AGE and BCG - logistic regression";
proc genmod data=bissau;
class bcg agem dtpany ;
model dead2 = bcg agem dtpany

/ dist=binomial link=log ;
estimate "OR by dtnm / agecont" dtpany 1 -1 / exp ;

run;

3.1.5 Survival analysis of childhood mortality in Guinea-Bissau

The SAS program bissau.sas in http://BendixCarstensen.com/EpiPhD/F2015/sas

reads the data from the web and defines / recodes relevant variables and fits a simple Cox
regression model with follow-up time as the time variable and including bcg and agem as
categorical covariates.

1. Fit a simple Cox regression model with follow-up time as the time variable and
including bcg and agem as categorical covariates. In the program we have just
recoded bcg to a 0/1 variable.

2. Estimate the effect of any dose of DTP, using the created variable dtpany adjusted
only for age in months as a categorical (class in SAS) variable.

3. Now, also adjust for BCG. We then find a positive risk associated with DTP.

4. Is there an interaction between DTP (dtpany) and BCG?

No, there is no interaction. From the table made by proc tabulate we see that there
are virtually no children with a DTP vaccination who is without BCG vaccination.
And we see that the mortality is very low among the second smallest group, those
with BCG and no DTP. So the strange results hinges on the fact that almost 4000 of
the 5000 in the study eiter are vaccinated by both or by none of the two.

We see that there is an excess risk associated with DTP of 1.3 both for BCG=0 and
for BCG=1, but neither are significant.

5. Make a Cox regression analysis with DTP (dtpany) and BCG, but now with age as
time-variable, i.e. with delayed entry.
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We see that we get pretty much the same results as when using the age at entry as
control variable.

6. Repeat the Poisson and logistic regression models that you have seen during the
lectures.

We see that the three types of analysis gives witually the same rsults for the
protective effect of BCG-vaccination namely a mortality RR of 0.71, just significant.

With rather short follow-up time, and hence little scope for censoring and variation of
rates over time, the three different models are virtually the same.

The Poisson model where we use the log of the persons-years as offset is a model
where we assume that the mortality is constant throughout follow-up (as opposed to
the Cox-model where it is allowed to vary witout any restrictions). The Logistic
regression model is a further sinmplification of the Poisson model where we ignore
censoring, so essentially assume that everyone is followd or the same time.

Program is in http://BendixCarstensen.com/EpiPhD/F2015/sas as
bissau-solcox.sas.

options ps=200 nocenter ;

data bissau;
* filename bisfile url "http://www.biostat.ku.dk/~pka/epidata/bissau.txt";
filename bisfile "../data/bissau.txt";
infile bisfile firstobs=2;
input id fuptime dead bcg dtp age agem;
* DTP - indicator ;
dtpany = dtp>0 ;
* BCG-indicator ;
bcg = 2 - bcg ;
outage = age + fuptime ;
lfup = log(fuptime) ;

run;

proc print data=bissau (obs=10) ;
run ;

proc tabulate data=bissau noseps formchar=" ";
class agem ;
var fuptime dead ;
table agem, n*f=5. dead*f=5. fuptime*f=comma10. ;

run ;

title "Q1: Simple analysis of bcg effect" ;
proc phreg data = bissau ;
class agem ;
model fuptime * dead(0) = bcg agem / rl;

run;

title "Q2: Simple analysis of dtp effect" ;
proc phreg data = bissau ;
class agem ;
model fuptime * dead(0) = dtpany agem / rl ;

run;

title "Q3: Analysis of dtp and bcg effect" ;
proc phreg data = bissau ;
class agem ;
model fuptime * dead(0) = dtpany bcg agem / rl type3 ;

run;

title "Q4: Analysis of dtp and bcg effect with interaction" ;
proc phreg data = bissau;
class agem ;
model fuptime * dead(0) = dtpany bcg dtpany*bcg agem / rl type3 ;

run;
title2 "Explaining the missing interaction and showing possible confounding" ;
proc tabulate data = bissau noseps missing formchar=" ---- ---" ;
class bcg dtpany dead ;
table ( bcg all ) * dtpany,

( n * f=6. pctn<dead all> * f=6.1 ) * (dead all)
/ rts=15 ;

run ;

title "Q4a: Analysis of dtp effect separately for bcg Y/N" ;
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proc sort data= bissau ; by bcg ; run ;
proc phreg data = bissau;
by bcg ;
class agem ;
model fuptime * dead(0) = dtpany agem / rl type3 ;

run;

title "Q5: Analysis of dtp and bcg effect using current age as timescale" ;
proc phreg data = bissau;
class agem ;
model (age,outage) * dead(0) = dtpany bcg / rl type3 ;

run;

title "Q6: Analysis of bcg effect using age at entry - Cox-model" ;
proc phreg data = bissau ;
class agem ;
model fuptime * dead(0) = bcg agem / rl ;

run;
title "Q6: Analysis of bcg effect using age at entry - Poisson-model" ;
proc genmod data = bissau ;
class agem ;
model dead = bcg agem / dist = poisson offset = lfup ;
estimate "RR bcg" bcg 1 / Exp ;

run;

title "Q6: Analysis of bcg effect using age at entry - Poisson-model with the same FU for all" ;
proc genmod data = bissau ;
class agem ;
model dead = bcg agem / dist = poisson ;

run;

title "Q6: Analysis of bcg effect using age at entry - logistic regression-model" ;
proc genmod data = bissau descending ;
class agem ;
model dead = bcg agem / dist = binomial ;
estimate "RR bcg" bcg 1 / Exp ;

run;

title "QX: Logistic and Poission regression - the real cheat" ;
data xx ;
set bissau ;
if dead eq 0 then output ;
if dead eq 1 then do ;

fuptime = fuptime - 1 ; dead = 0 ; output ;
fuptime = 1 ; dead = 1 ; output ;
end ;
run ;

proc print data=xx (obs=10) ;
run ;

proc genmod data = xx ;
class agem ;
model dead/fuptime = bcg agem / dist = binomial ;

run;
proc genmod data = xx ;
class agem ;
model dead/fuptime = bcg agem / dist = binomial link = cll;

run;
proc genmod data = bissau ;
class agem ;
model dead = bcg agem / dist = poisson offset=lfup ;

run;
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Solutions with Stata

The Stata-programs are available on the course web site in the folder
http://BendixCarstensen.com/EpiPhD/F2015/stata. There is also a link to this on the
website.

Stata

Stata is a commercial statistical package which is renowned for it speed. It is not as
expensive as SAS. It has good capabilities for documenting analyses through log-files
(derived from do-files) that provides good and readable documentation of analyses in a
readable format.

4.1 Vaccinations and childhood mortality in

Guinea-Bissau

In rural Guinea-Bissau, 5274 children under 7 months of age were visited two times at
home with an interval of six months (Kristensen et al., BMJ, 2000, [2]). Information about
vaccination (BCG, DTP, measles vaccine) was collected at each visit, and at the second
visit, death during follow-up was registered. Some children moved away during follow-up,
some survived until the next visit. The following variables are found in the data set
bissau.txt:

id Id number
fuptime Follow-up time in days
dead 0 = censored, 1 = dead
bcg 1 = Yes, 2 = No
dtp Number of DTP doses (0,1,2,3)
age Age at first visit in days
agem Age at first visit in months

4.1.1 A single risk, odds and rate

Tabulate the number of children is 5274, the number of deaths 222 and the number of
person-years 2409.8 (namely 880187 days)

1
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• Following the lectures we get

1. The overall risk of death is 222/5274=4.21%. A näıve 95% confidence inerval for
this is:

p±1.96
√
p× (1− p)/n = 0.0421±1.96

√
0.0421× 0.9579/5274 = (0.0367; 0.0475),

but a better one is the formula:

p

p+ (1− p) ×
÷ erf

, erf = exp
(

1.96
√

1/x+ 1/(n− x)
)

Which gives:

erf = exp(1.96
√

1/222 + 1/5052 = 1.144

and so the c.i.:

0.0421

0.0421 + 0.9579
×
÷ 1.144

= (0.0370; 0.0479)

2. The overall odds of death is simply:

222

5274− 222
= 0.0439

and the s.e. on the log-scale is is used to compute the 95% c.i.:

erf = exp
(

1.96
√

1/222 + 1/5052
)

= 1.144

so we get:

0.0439
×
÷ 1.144 = c(0.0384, 0.0502)

3. The overall rate of death (per year) is

222/2409.8 = 0.0921

and the error factor is exp(1.96/sqrtD) = 1.141 (with D = 222), so the
confidence interval is:

0.0921
×
÷ 1.141 = (0.0807, 0.1050)

• Using your statistical package, you get (almost) the same confidence intervals, the
programs are:

The Stata-program is in http://BendixCarstensen.com/EpiPhD/F2015/stata as
bissau-sol0.do.

The following Stata-programs do all the calculations required in the questions for the
other exercsies on the Bissau-data:

http://BendixCarstensen.com/EpiPhD/F2015/stata


Solutions with Stata 4.1 Vaccinations and childhood mortality in Guinea-Bissau 3

4.1.2 Rates, risks and odds

4.1.3 Rate ratio, risk ratio, odds ratio

use "E:\Epidemiologi\bissau.dta", replace

*The risk of death

* TO USE THE EPITAB COMMANDS WE NEED EXPOSURE VARIABLES CODED AS 0 or 1 AND
* OUTCOME CODED AS 0 or 1

gen bcg01=bcg
replace bcg01=0 if bcg==2

*QUESTION 2.1.1. 1 and 2
ci dead if bcg==1, binomial wald

ci dead if bcg==2, binomial wald

*QUESTION 2.1.1.3

tabodds dead bcg01

*QUESTION 2.1.1.4

ci dead if bcg==1, exposure(fuptime)
ci dead if bcg==2, exposure(fuptime)

*QUESTION 2.1.1.5
gen year=fuptime/365.25

ci dead if bcg==1, exposure(year)
ci dead if bcg==2, exposure(year)

*QUESTION 2.1.1.6
gen dtp_any=1 if dtp>0
replace dtp_any=0 if dtp==0

*RISK
ci dead if dtp_any==1, binomial wald

ci dead if dtp_any==0, binomial wald

*ODDS
tabodds dead dtp_any

*RATES

ci dead if dtp_any==1, exposure(fuptime)
ci dead if dtp_any==0, exposure(fuptime)

ci dead if dtp_any==1, exposure(year)
ci dead if dtp_any==0, exposure(year)

***************************
* 2.1.2 *
***************************

*RISK RATIO
*VARIABLES MUST BE 0/1

cs dead bcg01

cc dead bcg01

*QUESTION 2.1.2.2

cs dead dtp_any

cc dead dtp_any

*QUESTION 2.1.2.3

tab bcg01 dtp_any, chi2 expected

*QUESTION 2.1.2.4

cs dead dtp_any if bcg01==1
cs dead dtp_any if bcg01==0

cc dead dtp_any if bcg01==1
cc dead dtp_any if bcg01==0

cc dead dtp_any, by(bcg01)
mhodds dead dtp_any bcg01
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*QUESTION 2.1.2.5

ir dead bcg01 fuptime

ir dead dtp_any fuptime

ir dead dtp_any fuptime if bcg01==1
ir dead dtp_any fuptime if bcg01==0

4.1.4 Confounder control: stratified analysis of odds ratio and
risk ratio.

4.1.5 Survival analysis of childhood mortality in Guinea-Bissau

The Stata program bissau-cox.do in
http://BendixCarstensen.com/EpiPhD/F2015/stata reads the data from the web and
defines / recodes relevant variables and fits Cox regression models with follow-up time as
the time variable and including bcg and agem as categorical covariates.

use "C:\ewan\Epidemiologi\Data\bissau.dta", clear

*QUESTION 1
*GETTING READY TO DO A SURVLVAL ANALYSIS

stset fuptime, failure(dead==1)
*NEW VARIABLES ARE CREATED

*COX MODEL

stcox i.bcg i.agem

*THE HAZARD OF DEATH IS 42% HIGHER IN SUBJECTS WITHOUT A BCG VACCINE COMPARED TO
*SUBJECTS WITH THE VACCINE ADJUSTED FOR AGE.

*GETTING THE PARAMETRISATION FROM THE SLIDES:

stcox b2.bcg b6.agem, nohr

stcox b2.bcg b6.agem

*QUESTION 2
gen dtpany=0 if dtp==0
replace dtpany=1 if dtp>0

stcox i.dtpany i.agem

*QUESTION 3
*ADJUST FOR BCG

stcox i.dtpany i.agem b2.bcg
*THE EFFECT OF DTAANY INCREASES

*QUESTION 4
*INTERACTION BETWEEN BCG AND DTPANY?

stcox i.dtpany i.agem b2.bcg i.dtpany#b2.bcg
*THE WALD TEST FOR THE INTERACTION IS NOT SIGNIFICANT
est store m1

stcox i.dtpany i.agem b2.bcg
est store m2
lrtest m1 m2
*LIKELIHOOD RATIO NOT SIGNIFICANT

*QUESTION 5
*USE AGE AS TIME SCALE

gen outage=age+fuptime

stset outage, failure(dead==1) enter(age)

stcox i.dtpany b2.bcg

*QUESTION 6
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*REPEAT ANALYSES FROM LECTURES
stset fuptime, failure(dead==1)

stcox b2.bcg i.agem

poisson dead b2.bcg i.agem, exposure(fuptime) ir

logistic dead b2.bcg i.agem
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Chapter 5

Solutions with R

The R-programs are available on the course web site in the folder
http://BendixCarstensen.com/EpiPhD/F2015/r. There is also a link to this on the
website.

R

R is a free statistics package, which has become the default computing tool a large part of
the statisticians of the world. It is dominant in bioinformatics. It is particularly useful for
its excellent and versatile graphics. As can be seen from the first few solutions, it can also
be used as a mere desk top calculatior.
R comes with a versatil documentation system for analyses and results, Rweave, which is

used for these solutions. It provides a way of documention reproducible research, which is
widely used, particularly in bioinformatics.
R can be expanded by downloading additional packages, of which there are currently

about 3000. The relevant site is CRAN, the Comprehensive R Archive Network,
http://cran.r-project.org/.

5.1 Vaccinations and childhood mortality in

Guinea-Bissau

In rural Guinea-Bissau, 5274 children under 7 months of age were visited two times at
home with an interval of six months (Kristensen et al., BMJ, 2000, [2]). Information about
vaccination (BCG, DTP, measles vaccine) was collected at each visit, and at the second
visit, death during follow-up was registered. Some children moved away during follow-up,
some survived until the next visit. The following variables are found in the data set
bissau.txt:

1
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id Id number
fuptime Follow-up time in days
dead 0 = censored, 1 = dead
bcg 1 = Yes, 2 = No
dtp Number of DTP doses (0,1,2,3)
age Age at first visit in days
agem Age at first visit in months

5.1.1 A single risk, odds and rate

Tabulate the number of children is 5274, the number of deaths 222 and the number of
person-years 2409.8 (namely 880187 days)

• Following the lectures we get

1. The overall risk of death is 222/5274=4.21%. A näıve 95% confidence inerval for
this is:

p±1.96
√
p× (1− p)/n = 0.0421±1.96

√
0.0421× 0.9579/5274 = (0.0367; 0.0475),

but a better one is the formula:

p

p+ (1− p) ×
÷ erf

, erf = exp
(

1.96
√

1/x+ 1/(n− x)
)

Which gives:
erf = exp(1.96

√
1/222 + 1/5052 = 1.144

and so the c.i.:

0.0421

0.0421 + 0.9579
×
÷ 1.144

= (0.0370; 0.0479)

2. The overall odds of death is simply:

222

5274− 222
= 0.0439

and the s.e. on the log-scale is is used to compute the 95% c.i.:

erf = exp
(

1.96
√

1/222 + 1/5052
)

= 1.144

so we get:

0.0439
×
÷ 1.144 = c(0.0384, 0.0502)

3. The overall rate of death (per year) is

222/2409.8 = 0.0921

and the error factor is exp(1.96/sqrtD) = 1.141 (with D = 222), so the
confidence interval is:

0.0921
×
÷ 1.141 = (0.0807, 0.1050)
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• Using your statistical package, you get (almost) the same confidence intervals, the
programs are:

The R-program is in http://BendixCarstensen.com/EpiPhD/F2015/r as bissau-sol0.R.
Reading and Tabulating the dataset:

> bis <- read.table( "../data/bissau.txt", header=TRUE )
> N <- nrow( bis )
> D <- sum( bis$dead )
> Y <- sum( bis$fuptime/365.25 )
> cbind( N, D, Y )

N D Y
[1,] 5274 222 2409.821

shows the number of children is 5274, the number of deaths 222 and the number of
person-years 2409.8 (namely 880187 days)

• Following the lectures we get

1. The overall risk of death is 222/5274=4.21%. A naive 95% confidence interval
for this is:

p±1.96
√
p× (1− p)/n = 0.0421±1.96

√
0.0421× 0.9579/5274 = (0.0367; 0.0475),

> p <- D/N
> se <- sqrt( p*(1-p)/N )
> round( cbind( p, lo=p-1.96*se, hi=p+1.96*se ), 4 )

p lo hi
[1,] 0.0421 0.0367 0.0475

But a better one is the formula:

p

p+ (1− p) ×
÷ erf

, erf = exp
(

1.96
√

1/x+ 1/(n− x)
)

Which gives:

erf = exp(1.96
√

1/222 + 1/5052 = 1.144

and so the c.i.:

0.0421

0.0421 + 0.9579
×
÷ 1.144

= (0.0370; 0.0479)

> erf <- exp( 1.96*sqrt(1/D+1/(N-D)) )
> round( cbind( p, lo=p/(p+(1-p)*erf),
+ hi=p/(p+(1-p)/erf) ), 4 )

p lo hi
[1,] 0.0421 0.037 0.0479

2. The overall odds of death is simply:

222

5274− 222
= 0.0439
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and the s.e. on the log-scale is is used to compute the 95% c.i., it is the same
error factor as before:

erf = exp
(

1.96
√

1/222 + 1/5052
)

= 1.144

so we get:

0.0439
×
÷ 1.144 = c(0.0384, 0.0503)

> odds <- D/(N-D)
> round( cbind( odds, lo=odds/erf, hi=odds*erf ), 4 )

odds lo hi
[1,] 0.0439 0.0384 0.0503

3. The overall rate of death (per year) is

222/2409.8 = 0.0921

and the error factor is exp(1.96/sqrtD) = 1.141 (with D = 222), so the
confidence interval is:

0.0921
×
÷ 1.141 = (0.0807, 0.1050)

> rate <- D/Y
> erf <- exp(1.96/sqrt(D))
> round( cbind( rate, lo=rate/erf, hi=rate*erf ), 4 )

rate lo hi
[1,] 0.0921 0.0808 0.1051

• Using the modelling we can get the same. Although it seems like bringing coal to
Newcastle, there is sense in this, because we get some code which is generalizable:

1. A single proportion can be modelled in a binomial model with log-link and
subsequently using ci.exp to fish out and exponentiate the result. We can
either use the tabulated numbers or the entire data set. Note that when we use
tabulated data we must put the response in as a two-column matrix with dead
and non-dead, using cbind:

> library( Epi )
> summary( m0 <-glm( cbind(D,N-D) ~ 1, family=binomial(link=log) ) )

Call:
glm(formula = cbind(D, N - D) ~ 1, family = binomial(link = log))

Deviance Residuals:
[1] 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.16787 0.06569 -48.23 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 0.0000e+00 on 0 degrees of freedom
Residual deviance: 9.8588e-14 on 0 degrees of freedom
AIC: 9.1983

Number of Fisher Scoring iterations: 3
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> round( ci.exp( m0 ), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0421 0.037 0.0479

> summary( l0 <-glm( dead ~ 1, family=binomial(link=log), data=bis ) )

Call:
glm(formula = dead ~ 1, family = binomial(link = log), data = bis)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.2933 -0.2933 -0.2933 -0.2933 2.5171

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.16787 0.06568 -48.23 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1841.1 on 5273 degrees of freedom
Residual deviance: 1841.1 on 5273 degrees of freedom
AIC: 1843.1

Number of Fisher Scoring iterations: 6

> round( ci.exp( l0 ), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0421 0.037 0.0479

2. The same goes for the odds, now we just use the default link function which is
the logit, and so exponentiation of the estimate (the intercept) will be the odds:

> summary( m1 <-glm( cbind(D,N-D) ~ 1, family=binomial ) )

Call:
glm(formula = cbind(D, N - D) ~ 1, family = binomial)

Deviance Residuals:
[1] 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.12486 0.06857 -45.57 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 0.0000e+00 on 0 degrees of freedom
Residual deviance: 4.3165e-13 on 0 degrees of freedom
AIC: 9.1983

Number of Fisher Scoring iterations: 2

> round( ci.exp( m1 ), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0439 0.0384 0.0503

> summary( l1 <-glm( dead ~ 1, family=binomial, data=bis ) )

Call:
glm(formula = dead ~ 1, family = binomial, data = bis)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.2933 -0.2933 -0.2933 -0.2933 2.5171

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.12486 0.06857 -45.57 <2e-16
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1841.1 on 5273 degrees of freedom
Residual deviance: 1841.1 on 5273 degrees of freedom
AIC: 1843.1

Number of Fisher Scoring iterations: 6

> round( ci.exp( l1 ), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0439 0.0384 0.0503

3. The likelihood for a constant rate looks like a likelihood for a poisson variate, so
we can use the Poisson family to estimate a single rate:

> summary( m2 <-glm( D ~ 1, family=poisson, offset=log(Y) ) )

Call:
glm(formula = D ~ 1, family = poisson, offset = log(Y))

Deviance Residuals:
[1] 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.38463 0.06712 -35.53 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.3767e-14 on 0 degrees of freedom
Residual deviance: 1.3767e-14 on 0 degrees of freedom
AIC: 9.2413

Number of Fisher Scoring iterations: 2

> round( ci.exp( m2 ), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0921 0.0808 0.1051

> summary( l2 <-glm( dead ~ 1, family=poisson,
+ offset=log(fuptime/365.25), data=bis ) )

Call:
glm(formula = dead ~ 1, family = poisson, data = bis, offset = log(fuptime/365.25))

Deviance Residuals:
Min 1Q Median 3Q Max

-0.3038 -0.3038 -0.3030 -0.2850 3.3151

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.38463 0.06712 -35.53 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1759.2 on 5273 degrees of freedom
Residual deviance: 1759.2 on 5273 degrees of freedom
AIC: 2205.2

Number of Fisher Scoring iterations: 6

> round( ci.exp( l2 ), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0921 0.0808 0.1051

So we see we get the same by using the glm function and the classical formulae. But
the glm machinery is easier to generalize than the classical formulae.
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In the following is shown the R-commands to do all the calculations required in the
questions.

5.1.2 Rates, risks and odds

1. For convenience we first load the Epi package, and the read the data — including the
variable names from the first line:

> library( Epi )
> library( epitools )
> bissau <- read.table( "../data/bissau.txt",
+ header=TRUE )
> str( bissau )

'data.frame': 5274 obs. of 7 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ fuptime: int 65 161 166 166 161 161 166 166 166 166 ...
$ dead : int 1 0 0 0 0 0 0 0 0 0 ...
$ bcg : int 1 1 2 1 1 1 1 1 1 1 ...
$ dtp : int 1 2 0 0 0 0 2 1 2 2 ...
$ age : int 182 125 69 96 131 26 129 90 119 146 ...
$ agem : int 5 4 2 3 4 0 4 2 3 4 ...

Then we need the no. onservation, no. of deaths and no. person-years for the two
groups defined by bcg:

> with( subset( bissau, bcg==1 ), c(sum(dead),sum(fuptime),length(dead)) )

[1] 125 554929 3301

> with( subset( bissau, bcg==2 ), c(sum(dead),sum(fuptime),length(dead)) )

[1] 97 325258 1973

Alternatively — some would say simpler, some would say more convoluted — we
could use xtabs:

> ( xx <- xtabs( cbind(dead,fuptime,n=1) ~ bcg, data=bissau ) )

bcg dead fuptime n
1 125 554929 3301
2 97 325258 1973

> str( xx )

xtabs [1:2, 1:3] 125 97 554929 325258 3301 ...
- attr(*, "dimnames")=List of 2
..$ bcg: chr [1:2] "1" "2"
..$ : chr [1:3] "dead" "fuptime" "n"
- attr(*, "class")= chr [1:2] "xtabs" "table"
- attr(*, "call")= language xtabs(formula = cbind(dead, fuptime, n = 1) ~ bcg, data = bissau)

2. We then compute the fraction of dead and the confidence interval:

> d <- xx[,"dead"]
> n <- xx[,"n"]
> pi <- d / n
> sdpi <- sqrt(pi*(1-pi)/n)
> pilow <- pi - 1.96*sdpi
> piup <- pi + 1.96*sdpi
> cbind( pi, pilow, piup )
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pi pilow piup
1 0.03786731 0.03135578 0.04437884
2 0.04916371 0.03962328 0.05870414

If we prefer the result in % and rounded, we just do:

> round( cbind( pi, pilow, piup )*100, 2 )

pi pilow piup
1 3.79 3.14 4.44
2 4.92 3.96 5.87

3. We now compute odds with c.i. and backtransform to improved c.i. for the
proportions

> omega <- pi/(1-pi)
> sdlogomega <- sqrt(1/d+1/(n-d))
> errorfact <- exp(1.96*sdlogomega)
> omegalow <- omega / errorfact
> omegaup <- omega * errorfact
> pilow_2 <- omegalow/(1+omegalow)
> piup_2 <- omegaup /(1+omegaup )
> round( cbind( omega, omegalow, omegaup ), 3 )

omega omegalow omegaup
1 0.039 0.033 0.047
2 0.052 0.042 0.063

> round( cbind( pi, pilow, piup, pilow_2, piup_2 )*100, 2 )

pi pilow piup pilow_2 piup_2
1 3.79 3.14 4.44 3.19 4.49
2 4.92 3.96 5.87 4.05 5.96

4. Now we compute rate per day - note that we added fuptime in xtabs above:

> y <- xx[,"fuptime"]
> lambda <- d/y;
> errorfact_rate <- exp(1.96*sqrt(1/d));
> lambda_low <- lambda / errorfact_rate;
> lambda_up <- lambda * errorfact_rate;
> cbind( lambda, lambda_low, lambda_up )

lambda lambda_low lambda_up
1 0.0002252540 0.0001890329 0.0002684156
2 0.0002982248 0.0002444082 0.0003638914

5. Rates per day are not interesting, so we convert them to rates per year:

> round( cbind( lambda, lambda_low, lambda_up )*365.25, 3 )

lambda lambda_low lambda_up
1 0.082 0.069 0.098
2 0.109 0.089 0.133

6. We now repeat everything using the indicator of whether any DTP was received:

> ( xx <- xtabs( cbind(dead,fuptime,n=1) ~ bcg, data=bissau ) )
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bcg dead fuptime n
1 125 554929 3301
2 97 325258 1973

> str( xx )

xtabs [1:2, 1:3] 125 97 554929 325258 3301 ...
- attr(*, "dimnames")=List of 2
..$ bcg: chr [1:2] "1" "2"
..$ : chr [1:3] "dead" "fuptime" "n"
- attr(*, "class")= chr [1:2] "xtabs" "table"
- attr(*, "call")= language xtabs(formula = cbind(dead, fuptime, n = 1) ~ bcg, data = bissau)

7. We then compute the fraction of dead and the confidence interval:

> d <- xx[,"dead"]
> n <- xx[,"n"]
> pi <- d / n
> sdpi <- sqrt(pi*(1-pi)/n)
> pilow <- pi - 1.96*sdpi
> piup <- pi + 1.96*sdpi
> cbind( pi, pilow, piup )

pi pilow piup
1 0.03786731 0.03135578 0.04437884
2 0.04916371 0.03962328 0.05870414

If we prefer the result in % and rounded, we just do:

> round( cbind( pi, pilow, piup )*100, 2 )

pi pilow piup
1 3.79 3.14 4.44
2 4.92 3.96 5.87

8. We now compute odds with c.i. and backtransform to improved c.i. for the
proportions

> omega <- pi/(1-pi)
> sdlogomega <- sqrt(1/d+1/(n-d))
> errorfact <- exp(1.96*sdlogomega)
> omegalow <- omega / errorfact
> omegaup <- omega * errorfact
> pilow_2 <- omegalow/(1+omegalow)
> piup_2 <- omegaup /(1+omegaup )
> round( cbind( omega, omegalow, omegaup ), 3 )

omega omegalow omegaup
1 0.039 0.033 0.047
2 0.052 0.042 0.063

> round( cbind( pi, pilow, piup, pilow_2, piup_2 )*100, 2 )

pi pilow piup pilow_2 piup_2
1 3.79 3.14 4.44 3.19 4.49
2 4.92 3.96 5.87 4.05 5.96

9. Now we compute rate per day - note that we added fuptime in xtabs above:
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> y <- xx[,"fuptime"]
> lambda <- d/y;
> errorfact_rate <- exp(1.96*sqrt(1/d));
> lambda_low <- lambda / errorfact_rate;
> lambda_up <- lambda * errorfact_rate;
> cbind( lambda, lambda_low, lambda_up )

lambda lambda_low lambda_up
1 0.0002252540 0.0001890329 0.0002684156
2 0.0002982248 0.0002444082 0.0003638914

10. Rates per day are not interesting, we convert them to rates per year:

> round( cbind( lambda, lambda_low, lambda_up )*365.25, 3 )

lambda lambda_low lambda_up
1 0.082 0.069 0.098
2 0.109 0.089 0.133

11. Finally we repeat it al but now subdividing persons by wheter they have received any
DTP dose or not:

> ( xx <- xtabs( cbind(dead,fuptime,n=1) ~ (dtp>0), data=bissau ) )

dtp > 0 dead fuptime n
FALSE 128 516175 3101
TRUE 94 364012 2173

> str( xx )

xtabs [1:2, 1:3] 128 94 516175 364012 3101 ...
- attr(*, "dimnames")=List of 2
..$ dtp > 0: chr [1:2] "FALSE" "TRUE"
..$ : chr [1:3] "dead" "fuptime" "n"
- attr(*, "class")= chr [1:2] "xtabs" "table"
- attr(*, "call")= language xtabs(formula = cbind(dead, fuptime, n = 1) ~ (dtp > 0), data = bissau)

> d <- xx[,"dead"]
> n <- xx[,"n"]
> pi <- d / n
> sdpi <- sqrt(pi*(1-pi)/xx[,"n"])
> pilow <- pi - 1.96*sdpi
> piup <- pi + 1.96*sdpi
> cbind( pi, pilow, piup )

pi pilow piup
FALSE 0.04127701 0.03427527 0.04827875
TRUE 0.04325817 0.03470440 0.05181194

If we prefer the result in % and rounded, we just do:

> round( cbind( pi, pilow, piup )*100, 2 )

pi pilow piup
FALSE 4.13 3.43 4.83
TRUE 4.33 3.47 5.18

Compute odds with c.i. and backtransform to improved c.i. for the proportions
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> omega <- pi/(1-pi)
> sdlogomega <- sqrt(1/d+1/(n-d))
> errorfact <- exp(1.96*sdlogomega)
> omegalow <- omega / errorfact
> omegaup <- omega * errorfact
> pilow_2 <- omegalow/(1+omegalow)
> piup_2 <- omegaup /(1+omegaup )
> round( cbind( omega, omegalow, omegaup ), 3 )

omega omegalow omegaup
FALSE 0.043 0.036 0.051
TRUE 0.045 0.037 0.056

> round( cbind( pi, pilow, piup, pilow_2, piup_2 )*100, 2 )

pi pilow piup pilow_2 piup_2
FALSE 4.13 3.43 4.83 3.48 4.89
TRUE 4.33 3.47 5.18 3.55 5.27

Rate per day:

> y <- xx[,"fuptime"]
> lambda <- d/y;
> errorfact_rate <- exp(1.96*sqrt(1/d));
> lambda_low <- lambda / errorfact_rate;
> lambda_up <- lambda * errorfact_rate;
> cbind( lambda, lambda_low, lambda_up )

lambda lambda_low lambda_up
FALSE 0.0002479779 0.0002085333 0.0002948836
TRUE 0.0002582332 0.0002109676 0.0003160884

Rates per year:

> round( cbind( lambda, lambda_low, lambda_up )*365.25, 3 )

lambda lambda_low lambda_up
FALSE 0.091 0.076 0.108
TRUE 0.094 0.077 0.115

5.1.3 Rate ratio, risk ratio, odds ratio

1. In order to compute odds-ratios and risk ratios, we use the twoby2 from the Epi

package:

> ( tt <- with( bissau, table(BCG=bcg,dead) ) )

dead
BCG 0 1
1 3176 125
2 1876 97

> twoby2( tt )
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2 by 2 table analysis:
------------------------------------------------------
Outcome : 0
Comparing : 1 vs. 2

0 1 P(0) 95% conf. interval
1 3176 125 0.9621 0.9551 0.9681
2 1876 97 0.9508 0.9404 0.9595

95% conf. interval
Relative Risk: 1.0119 0.9997 1.0242

Sample Odds Ratio: 1.3137 1.0016 1.7232
Conditional MLE Odds Ratio: 1.3136 0.9908 1.7376

Probability difference: 0.0113 0.0001 0.0233

Exact P-value: 0.0555
Asymptotic P-value: 0.0487

------------------------------------------------------

— but this is the wrong way round, so we swap the outcome categories:

> twoby2( tt[,2:1] )

2 by 2 table analysis:
------------------------------------------------------
Outcome : 1
Comparing : 1 vs. 2

1 0 P(1) 95% conf. interval
1 125 3176 0.0379 0.0319 0.0449
2 97 1876 0.0492 0.0405 0.0596

95% conf. interval
Relative Risk: 0.7702 0.5943 0.9982

Sample Odds Ratio: 0.7612 0.5803 0.9984
Conditional MLE Odds Ratio: 0.7612 0.5755 1.0093

Probability difference: -0.0113 -0.0233 -0.0001

Exact P-value: 0.0555
Asymptotic P-value: 0.0487

------------------------------------------------------

So we see that the mortality is smaller among those BCG vaccinated.

But it is always more convenient to annotate variables correctly, so we turn bcg

dtpany and Dead into factors. Note that we let the first level of the factor be the
exposed:

> bissau <- transform( bissau, bcg = factor(bcg,levels=1:2,
+ labels=c("BCG","no BCG")),
+ dtpany = factor(dtp>0,levels=c(TRUE,FALSE),
+ labels=c("1+ DTP","no DTP")),
+ Dead = factor(dead,levels=0:1,
+ labels=c("Alive","Dead") )
+ )

2. The same analysis for DTP (any dose):

> ( tt <- with( bissau, table(dtpany,Dead) ) )
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Dead
dtpany Alive Dead
1+ DTP 2079 94
no DTP 2973 128

> twoby2( tt )

2 by 2 table analysis:
------------------------------------------------------
Outcome : Alive
Comparing : 1+ DTP vs. no DTP

Alive Dead P(Alive) 95% conf. interval
1+ DTP 2079 94 0.9567 0.9473 0.9645
no DTP 2973 128 0.9587 0.9511 0.9652

95% conf. interval
Relative Risk: 0.9979 0.9865 1.0095

Sample Odds Ratio: 0.9522 0.7254 1.2500
Conditional MLE Odds Ratio: 0.9523 0.7195 1.2640

Probability difference: -0.0020 -0.0134 0.0089

Exact P-value: 0.7281
Asymptotic P-value: 0.7244

------------------------------------------------------

> twoby2( tt[,2:1] )

2 by 2 table analysis:
------------------------------------------------------
Outcome : Dead
Comparing : 1+ DTP vs. no DTP

Dead Alive P(Dead) 95% conf. interval
1+ DTP 94 2079 0.0433 0.0355 0.0527
no DTP 128 2973 0.0413 0.0348 0.0489

95% conf. interval
Relative Risk: 1.0480 0.8076 1.3599

Sample Odds Ratio: 1.0502 0.8000 1.3785
Conditional MLE Odds Ratio: 1.0501 0.7911 1.3899

Probability difference: 0.0020 -0.0089 0.0134

Exact P-value: 0.7281
Asymptotic P-value: 0.7244

------------------------------------------------------

We see that there is no effect of DTP on mortality; the RR is 1.05 and the c.i. is
reasonably narrow: (0.81,1.36).

3. Now we look at the association of the two exposures:

> with( bissau, table(dtpany,bcg) )

bcg
dtpany BCG no BCG
1+ DTP 2142 31
no DTP 1159 1942

We see that DTP vaccination is largely confined to those who are BCG-vaccinated.
Thus it is only relevant to evaluate the DTP effect among those BCG-vaccinated,
because there is no information on the DTP-effect among the non-BCG-vaccinated:
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> ( tt <- with( subset(bissau,bcg=="no BCG"), table(dtpany,Dead) ) )

Dead
dtpany Alive Dead
1+ DTP 29 2
no DTP 1847 95

> twoby2( tt[,2:1] )

2 by 2 table analysis:
------------------------------------------------------
Outcome : Dead
Comparing : 1+ DTP vs. no DTP

Dead Alive P(Dead) 95% conf. interval
1+ DTP 2 29 0.0645 0.0162 0.2242
no DTP 95 1847 0.0489 0.0402 0.0595

95% conf. interval
Relative Risk: 1.3188 0.3403 5.1114

Sample Odds Ratio: 1.3408 0.3153 5.7028
Conditional MLE Odds Ratio: 1.3406 0.1528 5.4347

Probability difference: 0.0156 -0.0322 0.1585

Exact P-value: 0.6628
Asymptotic P-value: 0.6913

------------------------------------------------------

But among those with a BCG-vaccination there is information:

> ( tt <- with( subset(bissau,bcg=="BCG"), table(dtpany,Dead) ) )

Dead
dtpany Alive Dead
1+ DTP 2050 92
no DTP 1126 33

> twoby2( tt[,2:1] )

2 by 2 table analysis:
------------------------------------------------------
Outcome : Dead
Comparing : 1+ DTP vs. no DTP

Dead Alive P(Dead) 95% conf. interval
1+ DTP 92 2050 0.0430 0.0351 0.0524
no DTP 33 1126 0.0285 0.0203 0.0398

95% conf. interval
Relative Risk: 1.5085 1.0201 2.2307

Sample Odds Ratio: 1.5313 1.0221 2.2942
Conditional MLE Odds Ratio: 1.5311 1.0110 2.3697

Probability difference: 0.0145 0.0008 0.0269

Exact P-value: 0.0444
Asymptotic P-value: 0.0389

------------------------------------------------------

and we see that is a borderline significant RR=1.5 associated with DTP.

> ( ff <- with( bissau, ftable( dtpany, bcg, dead ) ) )
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dead 0 1
dtpany bcg
1+ DTP BCG 2050 92

no BCG 29 2
no DTP BCG 1126 33

no BCG 1847 95

> round( cbind( ff, ff[,2]/ff[,1]*100 ), 1 )

[,1] [,2] [,3]
[1,] 2050 92 4.5
[2,] 29 2 6.9
[3,] 1126 33 2.9
[4,] 1847 95 5.1

This table shows that BCG alone is protective, but that either absence of BCG or
addition of DTP increases mortality.

This analysis can be made (but only for the OR) by the effx function:

> effx( dead, type="binary", exposure=dtpany, strata=bcg, data=bissau )

---------------------------------------------------------------------------
response : dead
type : binary
exposure : dtpany
stratified by : bcg

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is 1+ DTP
bcg is a factor with levels: BCG/no BCG
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of dtpany on dead
stratified by bcg

number of observations 5274

Effect 2.5% 97.5%
strata BCG level no DTP vs 1+ DTP 0.653 0.436 0.978
strata no BCG level no DTP vs 1+ DTP 0.746 0.175 3.170

Test for effect modification on 1 df: p-value= 0.86

So we see there is no evidence that DTP has differential effect, so we could BCG as a
confounder instead (controlling for it:

> effx( dead, type="binary", exposure=dtpany, control=bcg, data=bissau )

---------------------------------------------------------------------------
response : dead
type : binary
exposure : dtpany
control vars : bcg

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is 1+ DTP
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of dtpany on dead
controlled for bcg
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number of observations 5274

Effect 2.5% 97.5%
0.660 0.448 0.971

Test for no effects of exposure on 1 df: p-value= 0.0313

4. The effx function allows calculation of the rate-ratios etc. very easily:

> effx( dead, type="failure", fup=fuptime/365.25, exposure=bcg, data=bissau )

---------------------------------------------------------------------------
response : dead
type : failure
exposure : bcg

bcg is a factor with levels: BCG / no BCG
baseline is BCG
effects are measured as rate ratios
---------------------------------------------------------------------------

effect of bcg on dead
number of observations 5274

Effect 2.5% 97.5%
1.32 1.02 1.73

Test for no effects of exposure on 1 df: p-value= 0.0395

> effx( dead, type="failure", fup=fuptime/365.25, exposure=dtpany, base=2, data=bissau )

---------------------------------------------------------------------------
response : dead
type : failure
exposure : dtpany

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as rate ratios
---------------------------------------------------------------------------

effect of dtpany on dead
number of observations 5274

Effect 2.5% 97.5%
1.040 0.798 1.360

Test for no effects of exposure on 1 df: p-value= 0.766

> effx( dead, type="failure", fup=fuptime/365.25, exposure=dtpany,
+ strata=bcg, base=2, data=bissau )

---------------------------------------------------------------------------
response : dead
type : failure
exposure : dtpany
stratified by : bcg

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
bcg is a factor with levels: BCG/no BCG
effects are measured as rate ratios
---------------------------------------------------------------------------
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effect of dtpany on dead
stratified by bcg

number of observations 5274

Effect 2.5% 97.5%
strata BCG level 1+ DTP vs no DTP 1.53 1.030 2.27
strata no BCG level 1+ DTP vs no DTP 1.24 0.305 5.02

Test for effect modification on 5272 df: p-value= 0.685

> effx( dead, type="failure", fup=fuptime/365.25, exposure=dtpany,
+ control=bcg, base=2, data=bissau )

---------------------------------------------------------------------------
response : dead
type : failure
exposure : dtpany
control vars : bcg

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as rate ratios
---------------------------------------------------------------------------

effect of dtpany on dead
controlled for bcg

number of observations 5274

Effect 2.5% 97.5%
1.50 1.03 2.19

Test for no effects of exposure on 1 df: p-value= 0.0316

The results are virtually identical to those for the relative risk, where we ignored the
follow-up time.

5.1.4 Confounder control: stratified analysis of odds ratio and
risk ratio

We will continue using the data from Guinea-Bissau for this third part of the exercise.

1. Revisit the analysis from previously, using just death (dead) as outcome, and
estimate the DTP effect for each level of BCG.

When we use only dead/alive as outcome in the analysis-function effx, we must use
“Dead” as outcome:

> effx( (Dead=="Dead")*1, type="binary", exposure=dtpany, strata=bcg, data=bissau )

---------------------------------------------------------------------------
response : (Dead == "Dead") * 1
type : binary
exposure : dtpany
stratified by : bcg

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is 1+ DTP
bcg is a factor with levels: BCG/no BCG
effects are measured as odds ratios
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---------------------------------------------------------------------------

effect of dtpany on (Dead == "Dead") * 1
stratified by bcg

number of observations 5274

Effect 2.5% 97.5%
strata BCG level no DTP vs 1+ DTP 0.653 0.436 0.978
strata no BCG level no DTP vs 1+ DTP 0.746 0.175 3.170

Test for effect modification on 1 df: p-value= 0.86

We see that there is no interaction by the test for effct modification (the
likelihood-ratio counterpart of the Breslow-Day-test). So we conclude that there is the
same effect of DTP for both levels of BCG vaccination. It is clear that because of the
vary sparse data, the effect of DTP in the “no BCG” stratum is largely undetermined.

But we also see that the reference levels used is those exposed to dtp, so we must use
the base argument to get the right comparison:

> effx( (Dead=="Dead")*1,
+ type = "binary",
+ exposure = dtpany,
+ base = "no DTP",
+ strata = bcg,
+ data = bissau )

---------------------------------------------------------------------------
response : (Dead == "Dead") * 1
type : binary
exposure : dtpany
stratified by : bcg

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
bcg is a factor with levels: BCG/no BCG
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of dtpany on (Dead == "Dead") * 1
stratified by bcg

number of observations 5274

Effect 2.5% 97.5%
strata BCG level 1+ DTP vs no DTP 1.53 1.020 2.29
strata no BCG level 1+ DTP vs no DTP 1.34 0.315 5.70

Test for effect modification on 1 df: p-value= 0.86

2. Use the BCG as a potentially confounding variable and obtain the MH-estimate for
the OR and RR. What are they?

We can use effx with a slight modification to compute the common effect, by simply
replacing strata= with control=:

> effx( (Dead=="Dead")*1, type="binary", exposure=dtpany, base="no DTP",
+ control=bcg, data=bissau )
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---------------------------------------------------------------------------
response : (Dead == "Dead") * 1
type : binary
exposure : dtpany
control vars : bcg

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of dtpany on (Dead == "Dead") * 1
controlled for bcg

number of observations 5274

Effect 2.5% 97.5%
1.52 1.03 2.23

Test for no effects of exposure on 1 df: p-value= 0.0313

It is also possible to estimate the relative risk, using the argument eff="RR" — but
only from version 1.1.40 of the Epi package, where it is also possible to use just a
logical as a binary response. You can check your version of the Epi-package by:

> installed.packages()["Epi",c("Version","Built"),drop=FALSE]

Version Built
Epi "1.1.40" "2.15.1"

> effx( Dead=="Dead", type="binary", exposure=dtpany, base="no DTP",
+ control=bcg, data=bissau, eff="RR" )

---------------------------------------------------------------------------
response : Dead == "Dead"
type : binary
exposure : dtpany
control vars : bcg

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as relative risk
---------------------------------------------------------------------------

effect of dtpany on Dead == "Dead"
controlled for bcg

number of observations 5274

Effect 2.5% 97.5%
1.49 1.03 2.17

Test for no effects of exposure on 1 df: p-value= 0.0314

3. Do the same, using age in months (agem) as control variable in the analysis. Is there
any DTP effect?

We first get an overview of how the data are distributed by age, agem:

> ( tt <- with( bissau, table(agem,dtp) ) )



20 Solutions with R Epidemiology

dtp
agem 0 1 2 3

0 867 7 0 0
1 808 81 0 0
2 559 326 32 2
3 339 328 122 18
4 256 267 160 76
5 196 209 181 109
6 76 100 96 59

> pctab( tt )

dtp
agem 0 1 2 3 All N

0 99.2 0.8 0.0 0.0 100.0 874.0
1 90.9 9.1 0.0 0.0 100.0 889.0
2 60.8 35.5 3.5 0.2 100.0 919.0
3 42.0 40.6 15.1 2.2 100.0 807.0
4 33.7 35.2 21.1 10.0 100.0 759.0
5 28.2 30.1 26.0 15.7 100.0 695.0
6 23.0 30.2 29.0 17.8 100.0 331.0

> ( tt <- with( bissau, table(agem,bcg) ) )

bcg
agem BCG no BCG

0 237 637
1 468 421
2 598 321
3 589 218
4 581 178
5 554 141
6 274 57

> pctab( tt )

bcg
agem BCG no BCG All N

0 27.1 72.9 100.0 874.0
1 52.6 47.4 100.0 889.0
2 65.1 34.9 100.0 919.0
3 73.0 27.0 100.0 807.0
4 76.5 23.5 100.0 759.0
5 79.7 20.3 100.0 695.0
6 82.8 17.2 100.0 331.0

We see that the distribution of DTP and BCG vaccinations are highly dependent on
age. So we should perhaps expect hat some of the effect would disappar when we
control for age. Note that we can control for age in two different ways; we can either
include it as a continuous variable (with a linear effect) or as a factor:

> effx( Dead=="Dead", type="binary", exposure=dtpany, base="no DTP", control=agem, data=bissau )

---------------------------------------------------------------------------
response : Dead == "Dead"
type : binary
exposure : dtpany
control vars : agem

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as odds ratios
---------------------------------------------------------------------------
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effect of dtpany on Dead == "Dead"
controlled for agem

number of observations 5274

Effect 2.5% 97.5%
1.010 0.731 1.400

Test for no effects of exposure on 1 df: p-value= 0.947

> effx( Dead=="Dead", type="binary", exposure=dtpany, base="no DTP", control=factor(agem), data=bissau )

---------------------------------------------------------------------------
response : Dead == "Dead"
type : binary
exposure : dtpany
control vars : agem

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of dtpany on Dead == "Dead"
controlled for agem

number of observations 5274

Effect 2.5% 97.5%
1.020 0.729 1.420

Test for no effects of exposure on 1 df: p-value= 0.915

We see that with this control there is no effect of DTP, irrespective of how we control
for age.

4. Do the same, but now using both agem and bcg (that is, the cross-classification) as
control variables in the analysis. Is there any DTP effect?

If we control for both, it means that we insert both variables as confounders, in the
effx function this means that we should insert the two in a list used as the
control argument:

> effx( Dead=="Dead", type="binary", exposure=dtpany, base="no DTP", control=list(bcg,factor(agem)), data=bissau )

---------------------------------------------------------------------------
response : Dead == "Dead"
type : binary
exposure : dtpany
control vars : bcg factor(agem)

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of dtpany on Dead == "Dead"
controlled for bcg factor(agem)

number of observations 5274

Effect 2.5% 97.5%
1.470 0.954 2.280

Test for no effects of exposure on 1 df: p-value= 0.0754
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> effx( Dead=="Dead", type="binary", exposure=dtpany, base="no DTP", control=list(bcg,agem), data=bissau )

---------------------------------------------------------------------------
response : Dead == "Dead"
type : binary
exposure : dtpany
control vars : bcg agem

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of dtpany on Dead == "Dead"
controlled for bcg agem

number of observations 5274

Effect 2.5% 97.5%
1.460 0.954 2.230

Test for no effects of exposure on 1 df: p-value= 0.077

Again we see that the addition of bcg as a confounding variable reveals some effect of
DTP, regardless of whether we use agem as a quantitative variable (assuming that the
effect of age is linear on the log-odds-scale).

Formally speaking the effect is non-significant as opposed to what it was when we
only controlled for BCG and not age. However, the difference between a p-value of 3
and one of 7% is very small, the actual effect is in both cases an odd-ratio of 1.46,
and depending on how we control we have and lower limit of the confidnece interval
for the OR of 1.03 (signif.) or of 0.95 (non-sign.).

However in both cases we see an indication of elevated risk of about 50%, but we
cannot really tell wheter it is a few percent or a doubling of mortality.

Since the absolute mortality is so small, it does not matter wheter we use OR or RR,
the two measures are virtually identical when the probabilities of putcome are small:

> effx( Dead=="Dead", type="binary", exposure=dtpany, base="no DTP", eff="RR",
+ control=list(bcg,agem), data=bissau )

---------------------------------------------------------------------------
response : Dead == "Dead"
type : binary
exposure : dtpany
control vars : bcg agem

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as relative risk
---------------------------------------------------------------------------

effect of dtpany on Dead == "Dead"
controlled for bcg agem

number of observations 5274

Effect 2.5% 97.5%
1.440 0.956 2.160

Test for no effects of exposure on 1 df: p-value= 0.0761
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5.1.5 Survival analysis of childhood mortality in Guinea-Bissau

1. We start by reading the data and transforming data as before In order to do survival
analysis we set up data as a Lexis object with two time-scales, time since visit and
current age (time since birth), note we enter the time-scales in months:

> Lb <- Lexis( entry = list( Time = 0,
+ Age = age/(365.25/12) ),
+ exit = list( Time = fuptime/(365.25/12) ),
+ exit.status = Dead,
+ data = bissau )

NOTE: entry.status has been set to "Alive" for all.

> summary( Lb )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 5052 222 5274 222 28917.85 5274

Rates:
To

From Alive Dead Total
Alive 0 0.01 0.01

We can show the follow-up in a Lexis-diagram, both for all and for a 5% random
sample:

> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plot( Lb, col=gray(0.6) )
> points( Lb, pch=c(NA,16)[Lb$"lex.Xst"], col="red", cex=0.6 )
> wh <- runif(nrow(Lb))<0.05
> plot( Lb[wh,], col=gray(0.6) )
> points( Lb[wh,], pch=c(NA,16)[Lb[wh,"lex.Xst"]], col="red", cex=0.6 )
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Note that both age and fuptime are measured in days, so the time-variables we have
in Lb are measured in months. A simple Cox-model with bcg and age at entry (in
months) at entry is set up using time since first visit (Time) as time-scale:
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> library( survival )
> m1 <- coxph( Surv( Time, Time+lex.dur, lex.Xst=="Dead" ) ~
+ bcg + factor(agem),
+ data=Lb )
> ci.exp( m1 )

exp(Est.) 2.5% 97.5%
bcgno BCG 1.4150942 1.0628313 1.884110
factor(agem)1 1.1218691 0.7118992 1.767933
factor(agem)2 0.7734721 0.4659289 1.284014
factor(agem)3 1.2201058 0.7574272 1.965414
factor(agem)4 1.3944726 0.8680841 2.240052
factor(agem)5 1.3918874 0.8534351 2.270062
factor(agem)6 0.9895328 0.4950160 1.978068

We see that persons without BCG-vaccination have a higher mortality.

2. We can evaluate the effect of DTP vaccination by changing the covariate bcg wirth
dtpany

> m2 <- update( m1, . ~ . - bcg + dtpany )
> ci.exp( m2 )

exp(Est.) 2.5% 97.5%
factor(agem)1 1.0293268 0.6558760 1.615418
factor(agem)2 0.6788407 0.4068749 1.132595
factor(agem)3 1.0393116 0.6327681 1.707053
factor(agem)4 1.1729539 0.7104716 1.936490
factor(agem)5 1.1584998 0.6882826 1.949958
factor(agem)6 0.8117511 0.3957607 1.664996
dtpanyno DTP 0.9979789 0.7197838 1.383696

and we see there is no mrginal effect of DTP om mortality.

3. But if we enter both variables we see an effect of both:

> m3 <- update( m1, . ~ . + dtpany )
> ci.exp( m3 )

exp(Est.) 2.5% 97.5%
bcgno BCG 1.7376437 1.1871318 2.543446
factor(agem)1 1.1420990 0.7243778 1.800704
factor(agem)2 0.7302230 0.4365875 1.221349
factor(agem)3 1.0978956 0.6678785 1.804781
factor(agem)4 1.2286509 0.7444014 2.027915
factor(agem)5 1.2090204 0.7186231 2.034071
factor(agem)6 0.8495861 0.4143648 1.741935
dtpanyno DTP 0.6915217 0.4524274 1.056970

we see a protective effect of BCD, but potential harmful effect of DTP.

4. We can then try to insert the interaction:

> m4 <- update( m3, . ~ . + dtpany:bcg )
> ci.exp( m4 )

exp(Est.) 2.5% 97.5%
bcgno BCG 1.4305868 0.3522739 5.809624
factor(agem)1 1.1453270 0.7261539 1.806468
factor(agem)2 0.7319001 0.4374948 1.224421
factor(agem)3 1.0989575 0.6684984 1.806598
factor(agem)4 1.2299067 0.7451548 2.030008
factor(agem)5 1.2120327 0.7202963 2.039471
factor(agem)6 0.8509784 0.4150298 1.744849
dtpanyno DTP 0.6796851 0.4369438 1.057280
bcgno BCG:dtpanyno DTP 1.2359351 0.2877469 5.308609
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> anova( m3, m4, test="Chisq" )

Analysis of Deviance Table
Cox model: response is Surv(Time, Time + lex.dur, lex.Xst == "Dead")
Model 1: ~ bcg + factor(agem) + dtpany
Model 2: ~ bcg + factor(agem) + dtpany + bcg:dtpany
loglik Chisq Df P(>|Chi|)

1 -1875.2
2 -1875.2 0.086 1 0.7693

which, although not significant, is not very informative; we want the RR for each
combination of the two variables:

> m5 <- update( m1, . ~ . - bcg + dtpany:bcg )
> ci.exp( m5 )

exp(Est.) 2.5% 97.5%
factor(agem)1 1.1453270 0.7261539 1.8064679
factor(agem)2 0.7319001 0.4374948 1.2244210
factor(agem)3 1.0989575 0.6684984 1.8065977
factor(agem)4 1.2299067 0.7451548 2.0300083
factor(agem)5 1.2120327 0.7202963 2.0394708
factor(agem)6 0.8509784 0.4150298 1.7448486
bcgBCG:dtpany1+ DTP 0.8321130 0.5908951 1.1718020
bcgno BCG:dtpany1+ DTP 1.1904099 0.2893258 4.8978542
bcgBCG:dtpanyno DTP 0.5655749 0.3788463 0.8443395

coxph produces a warning, because the interaction generated contains the intercept
(namely the sum of the 4 columns), and so automatically exclude the last one.

We can also see the estimates graphically

> plotEst( ci.exp(m5,subset="bcg"), xlog=T, vref=1 )

●

●

●
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bcgBCG:dtpanyno DTP

bcgno BCG:dtpany1+ DTP

bcgBCG:dtpany1+ DTP

The reference is the no BCG, no DTP group, so we see that the protective effect is
smaller in the DTP-vaccinated group than in the non-DTP-vaccinated group. It is of
course also of interest to see the DTP-effect within the BCG-group, and that can be
teased out:
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> CM <- rbind( diag(3), c(1,0,-1) )
> rownames( CM ) <- c("BCG+DTP vs. none",
+ "DTP only vs. none",
+ "BCG only vs. none",
+ "DTP+BCG vs. BCG only")
> CM

[,1] [,2] [,3]
BCG+DTP vs. none 1 0 0
DTP only vs. none 0 1 0
BCG only vs. none 0 0 1
DTP+BCG vs. BCG only 1 0 -1

> plotEst( ci.exp(m5,subset="bcg",ctr.mat=CM), xlog=T, vref=1 )
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There are very few persons and

> ftable( xtabs( cbind(dead,N=1) ~ bcg + dtpany, data=Lb ) )

dead N
bcg dtpany
BCG 1+ DTP 92 2142

no DTP 33 1159
no BCG 1+ DTP 2 31

no DTP 95 1942

so essentially we can only estimate a BCG-effect among non-DTP vaccinated and a
DTP-effect among BCG-vaccinated, which are the effects we see in the main effects
model.

5. If we instead use current age as time-scale, we just change the outcome variable using
update, and then re-use the code to generate the graph:

> m5a <- update( m5, Surv(Age,Age+lex.dur,lex.Xst=="Dead") ~ . - factor(agem) )

> plotEst( ci.exp(m5a,subset="bcg",ctr.mat=CM), xlog=T, vref=1 )
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We see that the analysis with current age as time scale gives pretty much the same
estimates as the analysis with time since entry and age at entry:
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6. Finally we compare the results from a Poisson model where we assume constant
rates, and a logistic regression model where we altogether ignore censoring:

> ci.exp(m3,subset="no")

exp(Est.) 2.5% 97.5%
bcgno BCG 1.7376437 1.1871318 2.543446
dtpanyno DTP 0.6915217 0.4524274 1.056970

> p3 <- glm( (lex.Xst=="Dead") ~ bcg + dtpany + factor(agem),
+ offset=log(fuptime), family=poisson, data=Lb )
> ci.exp(p3,subset="no")

exp(Est.) 2.5% 97.5%
bcgno BCG 1.7349813 1.1851585 2.539880
dtpanyno DTP 0.6912244 0.4521804 1.056638

> l3 <- glm( (lex.Xst=="Dead") ~ bcg + dtpany + factor(agem),
+ family=binomial, data=Lb )
> ci.exp(l3,subset="no")

exp(Est.) 2.5% 97.5%
bcgno BCG 1.7397389 1.1772134 2.571064
dtpanyno DTP 0.6784886 0.4393344 1.047828

We see that the three approaches produce virtually identical results. For the Poisson
model it is because the mortality varies very little with age and follow-up, and the
Poisson model is a model that assumes constant mortality. For the logistic model it
is because the amount of censring is quite limited
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