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Chapter 1

Introduction

1.1 Preface

This is the collection of exercises for the course in epidemiology for PhD-students in the
spring of 2013.

The exercises are based on students using SAS as the computer program for solving the
exercises, and the weight of the recap of the exercises during the course will be on SAS too.

Students are however welcome to use other software packages, provided that they bring
them on their own computer, and can access the datasets to be used from the net. Some of
the teachers will have some expertise in some of the other frequently used computer
packages such as Stata, R and (limited) SPSS. Most of the teachers have experience using
R, some have experience in Stata, whereas none of the teachers use SPSS.

1.2 Website

The course website for the statistics practicals is
http://BendixCarstensen.com/EpiF2013.

There will be links to this document, to the data, to the programs mentioned in this
document and to solutions to the practicals as the course proceeds.

Whenever we refer to “from www” it means that you should go to the course website or
the data website.

1.3 Data

The datasets are all found in the data folders http://192.38.117.59/~pka/epidata/

resp. http://192.38.117.59/~pka/spss-stata-data/
There is also a link to these at the course website:

http://BendixCarstensen.com/EpiF2013/data.
Description of the datasets are in the exercise texts. The detailed scheme for the course

is in www.biostat.ku.dk/~nk/epiF13

Here is the scheme for the exercises to be used each of the days of the course where the
are practical exercises.

1
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Date Subject Exercise

5 Mar No practicals
12 Mar Introduction to SAS; practicals on C&H: ch. 1, 2, 5,

13, 17)
2.1.1 2.1.2, 2.1.3

19 Mar No practicals
26 Mar No teaching (Easter)

2 Apr Case-control studies:
Renal cancer and chemical exposure 2.2
Melanoma 2.5.3

9 Apr No practicals
16 Apr Confounder control 2.1.4, 2.5.4
23 Apr No practicals
30 Apr Starting regression analysis 2.3, 2.4
7 May Handling continuous explanatory variables 2.3.1

13 May Survival analysis, comparing with other types 3.1.6
14 May Analysis of a real Case-control study 2.5.1, 2.5.5, 2.5.6
15 May Follow-up studies from individual records 2.3.2, 2.6.1, 2.6.2

The section numbers above are only the exercises, you will need to read the general
introduction to the relevant datasets before you can do the exercises.



Chapter 2

Exercises

2.1 Vaccinations and childhood mortality in

Guinea-Bissau

In rural Guinea-Bissau, 5274 children under 7 months of age were visited two times at
home with an interval of six months (Kristensen et al., BMJ, 2000, [2]). Information about
vaccination (BCG, DTP, measles vaccine) was collected at each visit, and at the second
visit, death during follow-up was registered. Some children moved away during follow-up,
some survived until the next visit. The following variables are found in the data set
bissau.txt:

id Id number
fuptime Follow-up time in days
dead 0 = censored, 1 = dead
bcg 1 = Yes, 2 = No
dtp Number of DTP doses (0,1,2,3)
age Age at first visit in days
agem Age at first visit in months

2.1.1 A single risk, odds and rate

Tabulate the number of children, the number of deaths and the number of person-years.

• Do the following by using the formulae from the lectures:

1. What is the overall risk of death? Make a confidence inetrval for this proportion.

2. What is the overall odds of death? Make a confidence interval for this odds.

3. What is the overall rate of daeth (per year). Make a confidence interval for this
rate.

• Do the same by using your statistical package. Do you get the same confidence
intervals?

3
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2.1.2 Rates, risks and odds

First, make a table of the number of children, the number of deaths and the number of
person-years by BCG vaccination status.

• Based on this do the following calculations by hand (or a suitable program on your
computer), by inserting the numbers in the formulae from the lectures:

1. Estimate the 6-month risk of death for children with or without BCG
vaccination (SAS users may use the program bissau.sas).

2. Compute 95% confidence limits for the two risk parameters.

3. Estimate the 6-month odds of death for children with or without BCG
vaccination. Compute also 95% confidence limits for the odds parameters.
Compare with the risk parameters.

4. Estimate (by hand or using SAS or another piece of software) the rate (per day)
of death for children with or without BCG vaccination. Compute also 95%
confidence limits for the rate parameters.

5. Estimate the rate (per year) of death for children with or without BCG
vaccination. Compute also 95% confidence limits for the rate parameters.

6. Create a new binary variable indicating whether or not the child was DTP
vaccinated at first visit and repeat the previous questions for this DTP variable.

• Calculations using a statistical model

1. Compute the risk with 95% confidence intervals in each of the two groups. You
must fit a binomial model (without intercept) with log-link and exponentiate the
estimates afterwards.

2. Compute the odds of death 95% confidence intervals in each of the two groups.
You must fit a binomial model (without intercept) with logit link and
exponentiate the estimates afterwards.

3. Compute the rate of death per year in each of the two groups. You must fit a
poisson model (without intercept) with log link and the log-person-years as
offset and exponentiate the estimates afterwards.

4. Do the same for the subdivision of data by DTP.

2.1.3 Rate ratio, risk ratio, odds ratio

Continuing from before, calculate relative effects of BCG and DTP on mortality.

1. Calculate (SAS-users may use proc freq) the risk ratio and odds ratio and 95%
confidence interval (CI) for the effect of BCG on mortality, i.e., compare the risk/odds
of dying among BCG-vaccinated vs. BCG-unvaccinated. What do you conclude?

2. Do the same for DTP (any dose, i.e. as a binary exposure). What do you conclude?

3. Test the association between BCG and DTP-any dose using a Chi-square test. In this
mortality is not involved, only test wheter the occurrence of the two types of
vaccination are related. What do you conclude?
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4. Estimate the DTP effect (risk ratio and odds ratio) separately for each level of BCG.
What happened?

5. Until now we have not accounted for the follow-up time. Repeat question 1, 2, and 4
but now by calculating the rate ratio and 95% CI for the BCG and DTP exposure.

2.1.4 Confounder control: stratified analysis of odds ratio and
risk ratio.

We will continue using the data from Guinea-Bissau for practical exercises.

1. Revisit the analysis from week 2 (Q4), using just death (dead) as outcome, and
estimate the DTP effect for each level of BCG.

2. Use the BCG as a potentially confounding variable and obtain the MH-estimate for
the OR and RR. What are they?

3. Do the same, using age in months (agem) as control variable in the analysis. Is there
any DTP effect?

4. Do the same, but now using both agem and bcg (that is, the cross-classification) as
control variables in the analysis. Is there any DTP effect?

2.1.4.1 Computing hints

In SAS you can make an analysis controlling for confounding by including the confounder
variable before the exposure and outcome variables in the table statement, and adding cmh

as option (cmh = Cochran-Mantel-Haenzsel):

proc freq data = bissau ;

table agem * dtpany * dead / norow nocol nopct cmh ;

run ;

2.1.5 Survival analysis of childhood mortality in Guinea-Bissau

The SAS program bissau.sas reads the data from www and fits a simple Cox regression
model with follow-up time as the time variable and including bcg and agem as categorical
covariates.

1. Fit a simple Cox regression model with follow-up time as the time variable and
including bcg and agem as categorical covariates and re-find estimates from today’s
lecture.

2. Estimate the effect of any dose of DTP, using the created variable dtpany adjusted
only for age in months as a categorical (class in SAS) variable.

3. Now, also adjust for BCG. What happened? Can you explain?

4. Is there an interaction between DTP (dtpany) and BCG?
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5. Make a Cox regression analysis with DTP (dtpany) and BCG, but now with age as
time-variable, i.e. with delayed entry.

6. Repeat the Poisson and logistic regression models that you have seen during the
lectures, and compare the results:

Cox RR (95%CI) Poisson RR (95%CI) Logistic OR (95%CI)

0.71 (0.53-0.94) 0.71 (0.53-0.94) 0.71 (0.53-0.96)

All models should be adjusted for age in months as a categorical variable. In the Cox
model, follow-up time was used as the time-variable. In the Poisson model, the
follow-up time was used as time at risk. The logistic regression did not take the
follow-up time into account.

2.2 Case-control study of renal cancer and

trichorehtene

This exercise is nased on; Vamvakas et al.: Renal cell cancer correlated with occupational
exposure to trichlorethe. J Cancer Res Clin Oncol, 1998, pp 374–382. [1].

The paper is available at the course homepage as
http://BendixCarstensen.com/EpiE2012/Vamvakas.1998.pdf

We will discuss the following points based on the paper:

1. What is the primary aim of the study?

2. How were the cases sampled?

3. How were the controls sampled?

4. Are they comparable; i.e. what assumptions are needed?

5. What is the (actual) study base?

6. What study base is the intended (for generalization)?

7. Is the sampling scheme incidence density sampling?

8. Can the age-effect on the occurrence of renal cancer be estimated?

9. Is age a confounder?

10. Key in the numbers in table 6 (p.380), and verify the analysis using SAS proc freq.

11. Is there any evidence of heterogeneity of the odds-ratio across age-classes? (Hint:
Use the Breslow-Day-test.)

12. In particular, how does the odds-ratio estimate given by Vamvakas et al. compare the
the Mantel-Haenszel estimate based on the same data?

13. What is the main result (in plain words)?

http://BendixCarstensen.com/EpiE2012/Vamvakas.1998.pdf
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2.3 IHD data from Clayton & Hills.

The study is described by Clayton & Hills, Ch. 13. The tabulated data set of counts of
IHD cases and person-years is avaliable from www in the file ihd-tab.txt.

The SAS program ihd-reg.sas reads the data from www and fits a Poisson regression
model without interaction between age and exposure.

1. Fit the model from Clayton & Hills Tables 22.7-8 (p.222) and perform the tests from
exercises 24.1 and 24.2 (pp.237–238). SAS-users may use the program ihd-reg.sas

and notice the use of the ESTIMATE command to obtain a given reference group and
the rate ratios with 95% confidence intervals.

2. Fit the model with interaction and re-find results from Clayton & Hills Table 24.5
(p.242) and the test for no interaction.

2.3.1 Using continuous variables

The IHD-data contains enegy consumption as a continuous variable. The dataset diet.txt
has the following variables:

id Person id
doe Date of entry
dox Date of exit
chd CHD-status at exit: 0-no, 1-yes
dob Date of birth
job Not used
month Notudes
energy Daily energy intake in MJ
height Height in cm
weight Weight in cm
fat Daily fat intake (g)
fibre Daily fibre intake (g)

1. Read the individual diet data records from the file.

2. Create variables for the person-years, by subtracting entry date from date of exit.
Also create a variable with the log-person-years.

3. Use CHD as outcome variable in a Poisson-analysis with the log-person-years as
offset, using energy as a linear explanatory variable. Is there an effect on mortality?

4. Is there any evidence of a non-linear effect of energy, when using linear splines with
knots at say 2, 2.5 and 3? (approx. the quartiles)

5. Same question for weight and BMI (the latter you have to calculate yourself as
weight/height2).
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2.3.2 Splitting the follow-up of the IHD data

The following exercise is designed to illustrate how follow-up time is subdivided in order to
produce the table of events and person-years. Furthermore the aim is to show you that
tabulated data and time-split data gives the same results if only age and exposure are used
as variables.

We will first analyze frequency records as above (these are almost identical to Table 22.6
in C & H). Next, we shall read the individual records and construct the corresponding
table of cases and person-years.

The splitting of follow-up along a timescale is quite a technical task, which is handeled
somewhat differently in SAS, Stata and R, so the exercise is here given in three different
versions, one for each programming language.

2.3.2.1 Using SAS

1. Import the program ihd-lexis.sas to the program editor. Run the first part of the
program — the part reading the tabulated data and proc genmod. Compare with the
results from table 24.1 in Clayton & Hills.

2. Next, read the individual records from the file diet.txt, including the proc print

and check on the output that it looks reasonable and that you understand what the
data represents.

3. Now you should import the macro %Lexis and use it to split into the age intervals
40–50, 50–60 and 60–70 years:

In order to use this you must first load it from the appropriate folder folder on the
net:

options source2 ; * List the included code in the log-window ;

filename lexispr url "http://BendixCarstensen.com/Lexis/Lexis.sas";

%inc lexispr ;

Once you have specified %inc lexispr ; and run that line in SAS, SAS will know
the macro %lexis and you can use it in the rest of the session.

4. The time-splitting is now done by running the SAS-macro %Lexis1. A SAS-macro is
a piece of SAS-program (normally quite long) where certain small parts of the
program can be changed when the program is run. The SAS-convention is that
names of such programs start with a “%”.

To use the macro we must specify the follow-information from the input file:

• Date of entry into the study — doe

• Date of exit from the study — dox

• Status at exit from the study — chd ( 1 if CHD occurred at dox, 0 otherwise ).

1Named after the German demographer, statistician and economist, Wilhelm Lexis, 1837–1914. He wrote
the book “Einführung in die Theorie der Bevölkerungsstatistik, (Strassbourg, 1875)”, while he was professor
in Dorpat (now Tartu, Estonia), wherein he devised the so called Lexis diagram.



Exercises 2.3 IHD data from Clayton & Hills. 9

Moreover, we must decide which timescale to split the data on. In this case we want
to split along the scale “current age”, i.e. time since date of birth. To this end we
must specify:

• The origin of the time-scale, i.e. where the time-scale is 0, in this case date of
birth — dob.

• The intervals where we want the follow-up grouped, here ages 40–50, 50–60 and
60–70.

• As a purely technical thing we need to specify the conversion between the scale
in which time is measured in the input dataset (in this case days) and in the
specification of the grouping (in this case years) — 365.25.

In the case of %Lexis we must supply these 6 parameters in order to specify how to
split time.

Finally we must tell the program where the the original data is, where the time-split
data has to go, and what the name of the age-variable must be.

This looks like this (you do not have to write the stuff between the /*...*/):

%Lexis( data = ihdindiv, /* Dataset with original data */

out = ihdsplit, /* Dataset with time-split data */

entry = doe, /* Date of entry */

exit = dox, /* Date of exit */

fail = chd, /* Event (failure) indicator */

origin = dob, /* Origin of the time-scale */

scale = 365.25, /* Conversion from input scale to breaks-scale */

breaks = 40 to 70 by 10, /* Where to split the time scale */

left = agr ); /* The name of the new age-variable */

Run this piece of SAS code.

(In the top of the file http://BendixCarstensen.com/Lexis/Lexis.sas are some
more detailed explanations of how to use %Lexis).

5. How many records are in the resulting dataset (ihdsplit)

6. Take at look at the resulting data file, for example the first 20 records:

proc print data = ihdsplit (obs=20) ;

run ;

How does this compare with the the original dataset?

7. Use %PYtab to tabulate ihd-cases and person-years by exposure and age-group. You
must first get this from the net as you did with the %Lexis macro:

filename pytabpr url "http://BendixCarstensen.com/Lexis/PYtab.sas";

%inc pytabpr ;
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%PYtab( data = ihdsplit,

class = exposure agr,

fail = chd,

risk = risk,

scale = 1000 ) ;

Compare with the sums from the table given in the first data step in ihd-lexis.sas

8. Use proc genmod to estimate the effect of age and exposure from the split dataset.
How does the estimates compare with those based on the initial tabulated dataset?

9. Add an interaction between age and exposure and check that you get the same test
for interaction as with the grouped data.

10. Compare the type 3 likelihood ratio statistic (Chi-square) for the interaction with
the deviance of the model without interaction for the grouped data.

2.3.2.2 Using Stata

1. First we enter the grouped data and make a simple Poisson analysis:

input eksp agr pyrs cases

1 0 346.87 2

1 1 979.34 12

1 2 699.14 14

0 0 560.13 4

0 1 1127.70 6

0 2 794.15 8

end

poisson cases i.eksp i.agr , exposure(pyrs)

2. Then read the individual data, convert to date variables:

infile id str10 doe str10 dox chd str10 dob job month energy height weight fat fibre /*

*/ in 2/L using "http://BendixCarstensen.com/EpiE2012/data/diet.txt", clear

*Get the dates into date format

gen date_entry = date(doe,"MDY")

gen date_exit = date(dox,"MDY")

gen date_birth = date(dob,"MDY")

format date_entry date_exit date_birth %td

3. Now tell Stata that this is survival data, that is, when persons enter, exit and whether
they are dead or not at exit (fail), and finally which scale we are on (origin):



Exercises 2.3 IHD data from Clayton & Hills. 11

stset date_exit, failure(chd==1) entry(date_entry) origin(date_birth) /*

*/ scale(365.25) id(id)

display _N

Note that Stata generated 4 new variables _t0, _t, _d and _st, describing the
survival. Read the help page for stset and make sure you understand what they
mean. (A useful introduction to stset is
www.pauldickman.com/survival/stset.pdf).

4. Then split the data into age groups 40–50, 50–60, 60–70 and generate a new variable
called current_age:

stsplit current_age, at(40(10)70) after(date_birth)

* How many observations?

display _N

5. Now take a look at the data:

list in 1/10

browse

6. Tabulate IHD cases and person-years by exposure and age group. To this end we use
the sytem variables _t0 and _t which hold the left and the right end-points on the
“analysis time scale”, in this case the current age:

gen pyrs=_t-_t0

gen exposure = (energy < 2.75) + energy-energy

* Only count CHD cases once

gen event=_d

table current_age exposure, c(sum event sum pyrs) format(%9.2f)

Note that current_age ids 0 for all follow up before age 40 (left of first cutpoint).

7. Now use poisson (or glm) to estimate the effect of age and exposure from the split
dataset. How does the estimates compare with those based on the initial tabulated
dataset?

* drop follow-up before age 40

keep if current_age>0

poisson event i.exposure i.current_age, exposure(pyrs)

— the same result as with the tabulated data.

www.pauldickman.com/survival/stset.pdf
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8. Add an interaction between age and exposure and check that you get the same test
for interaction as with the grouped data.

poisson event i.exposure i.current_age i.exposure#i.current_age, exposure(pyrs)

testparm i.exposure#i.current_age

est store m1

poisson event i.exposure i.current_age , exposure(pyrs)

est store m2

lrtest m1 m2

9. Compare the type 3 likelihood ratio statistic for the interaction with the deviance of
the model without interaction for the grouped data.

collapse (sum) pyrs event , by(exposure current_age)

poisson event i.exposure i.current_age , exposure(pyrs)

2.3.2.3 Using R

The following instructions are fairly detailed. You should make sure that you know what
goes on, and that consult the help-pages fro the functions uses, so that you get a bit of a
feeling for how the R-machinery works.

1. Load the Epi package and read the (modified) grouped IHD-data from the file
ihd-xtab.dta from the data folder
"http://BendixCarstensen.com/EpiE2012/data"

> options( width=90 )
> library( Epi )
> library( foreign )
> ihdt <- read.table("http://BendixCarstensen.com/EpiE2012/data/ihd-tab.txt", header=T )
> ihdt

Fit a Poisson model to data with exposure and age-effects:

> mt <- glm( cases ~ factor(age) + exposure,
+ offset = log(pyrs), family=poisson, data=ihdt )
> round( ci.lin( mt, E=T ), 3 )

Compare with the results from table 24.1 in Clayton & Hills.

2. Next, read the individual records from the file diet.txt; remembering to specify how
missing is coded:

> ihdi <- read.table( "../data/diet.txt",
+ # "http://www.biostat.ku.dk/~pka/epidata/diet.txt",
+ header=TRUE, na.strings=".", as.is=TRUE )
> head( ihdi )
> str( ihdi )
> # Turn character variables into dates and then to calendar years:XS
> for( i in c(2,3,5) ) ihdi[,i] <- cal.yr( as.Date(ihdi[,i],format="%m/%d/%Y") )
> str( ihdi )
> head( ihdi )

"http://BendixCarstensen.com/EpiE2012/data"
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Now check that it looks reasonable and that you understand what the data represents.

3. Now you should set up the dataset as a Lexis object2., so that R will know when
persons are at risk etc. entry is a named list, the names giving the names of the
timescales we want to use, in this case per (calendar time, period) and age. exit is
also a named list, with one element with the name of one of the timescales, giving the
values of the exit times on this time scale. exit.status gives the state that persons
are in at exit from the study. Id not entry.status is given, it is assumed that
everyone starts in the first state, and this is noted:

> Lx <- Lexis( entry = list( per=doe,
+ age=doe-dob ),
+ exit = list( per=dox ),
+ exit.status = factor( chd, labels=c("Well","IHD") ),
+ data = ihdi )
> summary( Lx )

There is a method for plotting the follow-up in boxes. Not despeartely exciting but
capturing the essence:

> boxes( Lx, boxpos=TRUE )

4. The time-splitting is now done by the function splitLexis. To use the function we
must specify which timescale to split the data on. In this case we want to split along
the scale “current age”, i.e. time since date of birth, here names age. We then specify
the intervals where we want the follow-up grouped, here ages 40–50, 50–60 and 60–70,
so use the breakpoints 40, 50, 60 and 70:

> Ls <- splitLexis( Lx, breaks=c(40,50,60,70), time.scale="age" )
> summary( Ls )
> head( Ls )

For the fun of it you can try the default plot and points methods for a Lexis

object. Note that gridlines corresponding to the breaks gets inserted:

> plot( Ls, col=gray(0.3) )
> points( Ls, col="red", pch=c(NA,16)[Ls$lex.Xst], cex=0.7 )

On the diagram it appears that all persons are censored at age 70 and at the end of
1976, whereas some follow-up time is present before age 40.

5. The number of records are in the resulting dataset (Ls):

> nrow( Ls )

6. We now list the first 20 records:

> head( Ls, 20 )

7. Now reproduce the table in Clayton & Hills:

First use the function timeBand to produce a variable which is equal to the left
endpoint of the intervals into which the follow-up have been split:

2Named after the German demographer, statistician and economist, Wilhelm Lexis, 1837–1914. He wrote
the book “Einführung in die Theorie der Bevölkerungsstatistik, (Strassbourg, 1875)”, while he was professor
in Dorpat (now Tartu, Estonia), wherein he devised the so called Lexis diagram.
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> Ls <- transform( Ls, agr = timeBand( Ls, "age", "factor" ),
+ eksp = factor( energy<2.75, labels=c("High","Low") ) )
> str( Ls )

Then make a table like the one in C& H:

> round(
+ ftable( xtabs( cbind( D=(lex.Xst=="IHD"), Y=lex.dur ) ~
+ agr + eksp,
+ data = Ls ),
+ row.vars = 1 ), 2 )

You should see that the data is not quite the same as in the book.

Now we do the grouped analysis on the slightly modified data that you can get from
the data folder (which should be identical to the table you just made):

> ihdx <- read.table("http://BendixCarstensen.com/EpiE2012/data/ihd-xtab.txt", header=T )
> ihdx
> mt <- glm( cases ~ factor(age) + exposure,
+ offset = log(pyrs), family=poisson, data=ihdx )
> round( ci.lin( mt, E=T ), 3 )

8. Estimate the effect of age and exposure from the split dataset. Remember to exclude
follow-uptime before age 40 — as you saw from the table above:

> Ls <- subset( Ls, agr %in% levels(agr)[2:4] )
> Ls$agr <- factor( Ls$agr )
> table( Ls$agr )
> head( Ls )
> mi <- glm( (lex.Xst=="IHD") ~ factor(agr) + eksp,
+ offset = log(lex.dur), family=poisson, data=Ls )
> round( ci.lin( mi, E=T ), 3 )
> round( ci.lin( mt, E=T ), 3 )
> ci.lin( mi, E=T ) / ci.lin( mt, E=T )

We see that the estimates are identical for the two ways of modeling. The point of
using the individual data is that individual-level variables could be included in a
model too.

9. Add an interaction between age and exposure and check that you get the same test
for interaction as with the grouped data.

> mix <- update( mi, . ~ . + factor(agr):eksp )
> mtx <- update( mt, . ~ . + factor(age):exposure )
> anova( mi, mix, test="Chisq" )
> anova( mt, mtx, test="Chisq" )

10. Compare the type 3 likelihood ratio statistic (Chi-square) for the interaction with
the deviance of the model without interaction for the grouped data. You can get the
deviance from the summary:

> summary( mt )
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2.4 Case-control study of BCG vaccination and

leprosy.

The study is decribed by Clayton & Hills, p.156. In short, 260 cases of leprosy among
individuals aged less than 35 years were ascertained in a study area in Malawi. Subjects
were grouped into 7 age intervals and according to absence or presence of a scar after BCG
vaccination. Three sets of controls were studied:

1. a population survey of 80,622 persons

2. a random sample of 1000 persons

3. a 4 to 1 age-matched sample

The file bcgalldata.txt includes data from this study: for each of the 14 age by scar

combinations, a text variable status indicates the type of person in question (case,
conall, con1000, conmatch) and the numerical variable n the number of such persons.

The SAS program bcg-reg.sas reads these data and fits a logistic regression model with
no interaction between age and scar using all cases and all controls.

1. Fit the model from Clayton & Hills Table 23.5 (p.232). SAS-users may use the
program bcg-reg.sas; what are the reference groups?

2. Estimate odds ratios and confidence intervals with non-exposed and youngest,
respectively, as reference groups (in SAS: use ’ESTIMATE’ statements).

3. Estimate instead odds ratios and confidence intervals with the age group 20-24 as
reference.

4. Test the hypothesis of no interaction between age and scar.

5. Analyse the data set with only 1000 controls (i.e., use the controls con1000: Table
23.6, p.233) and compare the precision of the estimate for scar with that based on
the entire sample.

6. Analyse the matched data set (i.e., use the controls conmatch: Table 23.6, p.233) and
compare with the results from Table 23.7.

7. Try (erroneously) to drop age from the analysis of the matched data and study the
consequences for the estimate of scar.

2.5 Case-control study of malignant melanoma.

Anne Østerlind conducted in the middle of the 80’s a case-control study of risk factors for
malignant melanoma in Denmark.

The review paper “Malignant melanoma in Denmark” from Acta Oncologica, 1990 ,[3] is
from Anne Østerlind’s thesis and gives an overview of the results from the study which
included 1400 interviewed persons, 474 cases and 926 controls, cf. table 5 in the article.

In the article incidence changes between 1943 and 1982 are also discussed; that part of
the paper will not be touched upon in this exercise.



16 Exercises Epidemiology

2.5.1 Discussion of the article.

1. Explain the design, the data base and data collection, particularly how the matching
was conducted.

2. How were interviews planned to minimize bias?

3. Explain the drop-out, particularly the analyses in Tables 5-7. What are the
consequenses of these results for the subsequent analyses?

4. How are the analyses carried out? Are all variables included in one step or are the
analyses conducted in smaller steps? How are the matching variables accounted for?
Comments?

5. Explain the analyses presented in Table 9. How many logistic regression models are
fitted here?

6. What is the conclusion from the analyses in the table?

7. What is the purpose of Table 11?

8. Which modifiable factors seem to affect the melanoma risk?

2.5.2 Melanoma data

We have access to a subset of the variables from the study. These are found in the file
melanom.txt. The variables are described in the table below. Based on these data, results
from AØ’s Tables 9 and 10 can (almost) be reconstructed. Revised versions of those two
tables are also found below.

The SAS program melanom.sas reads the data from www and fits a simple logistic
regression model including only the variable skin.

2.5.3 Simple tabulation analysis

1. Make the two by two table showing the association between case-control status and
whether or not the person experienced any sunburns before the age of 15. SAS-users
may use the program melanom.sas to read in the data from www. Estimate the odds
ratio with associated 95% confidence limits and test for no association between the
risk factor and case-control status.

2. Conduct similar analyses for the factors sex, hair, eyes, freckles, acuterea,

chronrea. Compare with Table 9 in the article.

3. The case control study was matched for sex and age and, therefore, analyses of any
risk factor should be adjusted for these two variables. Study how much the
association between the risk factor “any sunburns before the age of 15” and
case-control status is affected by adjustment for sex.

4. Same question for age.
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Table 2.1: Variables in the melanoma data set. Some variables have missing values for
some of the persons, these are coded “.”. In the file there is one line for each person in the
study. Data are found in the file melanom.txt.

casecon — case-control status: 1:case, 0:control
sex — 1:man, 2:woman

ageint — age at interview in years
agroup — grouped age: 10:10–19, 20:20–29, . . .
skin — skin colour: 0:dark, 1:medium, 2:light
hair — hair colour: 0:dark brown/black, 1:light brown, 2:blond, 3:red
eyes — eye colour: 0:brown, 1:grey/green, 2:blue

freckles — freckles: 1:many, 2:some, 3:none
acuterea — acute reaction to sunlight: 1:blisters, 2:painful sunburn, 3:mild sun-

burn, 4:no sunburn
chronrea — chronic reaction to sunlight 1:deep tan, 2:moderate tan, 3:mild tan,

4:no tan
nvsmall — number of naevi < 5mm
nvlarge — number of naevi ≥ 5mm
nvtot — total number of naevi

burn15 — number of sunburns before age 15

2.5.4 Simple analysis controlling for age

1. The case-control study was matched for sex and age and, therefore, analyses of any
risk factor should be adjusted for these two variables.

Study how much the association between the risk factor “any sunburns before the age
of 15” and case-control status is affected by adjustment for sex.

2. Study how this association is affected by adjustment for age.

3. Study how this association is affected by adjustment for both age and sex.

2.5.5 Introductory analyses.

1. Estimate (log-)odds ratios for the variable skin (see top left in AØ’s Table 9).
SAS-users may use the program melanom.sas.

2. Estimate also odds ratios (in SAS: use ESTIMATE statements).

3. Conduct the other analyses in AØ’s Table 9 (left part) where the factors hair,

eyes, freckles, acuterea, chronrea are studied one at a time.

4. Conduct the analysis corresponding to Table 9 (right part) where several variables are
included simultaneously (see the table footnote).

5. Reconstruct the results from AØ’s Table 10 concerning number of raised naevi.
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Table 2.2: Corrected Table 9. from the paper

Factor Category OR (crude) OR (adjusted)

Skin colour Dark (1.0) (1.0)
Medium 1.4 (1.0-1.9) 1.3 (1.0-1.8)
Light 1.7 (1.2-2.3) 1.3 (0.9-1.9)
trend test p < 0.01 p =0.15

Hair colour Dark-brown/black (1.0) (1.0)
Light-brown 1.5 (1.2-1.9) 1.5 (1.2-1.9)
Blond/fair 1.7 (1.0-2.9) 1.6 (0.9-2.8)
Red 1.7 (1.1-2.7) 1.3 (0.8-2.0)
trend test p < 0.001 p = 0.04

Eye colour Brown (1.0) (1.0)
Grey/green 0.9 (0.6-1.2) 0.7 (0.5-1.1)
Blue 1.1 (0.8-1.5) 0.9 (0.6-1.3)
trend test p =0.32 p =0.98

Freckles None (1.0) (1.0)
Some 1.5 (1.2-1.9) 1.5 (1.2-2.0)
Many 3.0 (2.2-4.1) 3.0 (2.1-4.1)
trend test p < 0.001 p < 0.001

Acute reaction No sunburn (1.0) (1.0)
to sunlight Mild sunburn 1.3 (1.0-1.6) 1.1 (0.8-1.4)

Painful sunburn 1.6 (1.0-2.6) 1.3 (0.8-2.1)
Blisters 2.2 (0.9-5.0) 1.6 (0.7-3.9)
trend test p =0.005 p =0.15

Chronic reaction Deep tan (1.0) (1.0)
to sunlight Moderate tan 1.4 (1.1-1.8) 1.2 (0.9-1.6)

Mild tan 1.8 (1.3-2.6) 1.4 (1.0-2.1)
No tan 2.0 (1.0-3.7) 1.2 (0.6-2.5)
trend test p < 0.001 p =0.10

NB: new variables must be defined from the original variables nvtot, nvsmall,

nvlarge.

2.5.6 Trend tests and interactions.

6. In the analyses so far all variables have been considered as categorical (’class’ in
SAS) variables while all tests in Tables 9 and 10 are trend tests. Conduct the analyses
which give the P -values in Table 9 (right part) for the variables skin and freckles.

7. May freckles be scored linearly (1, 2, 3), when this variable is studied separately?
(Conduct a test for linearity/departures from trend).

8. In AØ’s Table 11 freckles and the total number of naevi (suitably grouped) are
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Table 2.3: Corrected Table 10.

Factor Category OR (crude) OR (adjusted)

Number of raised None (1.0) (1.0)
naevi on arms, 1 1.5 (1.1-2.1) 1.5 (1.1-2.0)
total 2-4 2.3 (1.6-3.1) 2.2 (1.6-3.1)

5+ 5.4 (3.5-8.1) 4.9 (3.2-7.5)
trend test p < 0.001

Number of raised None (1.0) (1.0)
naevi on arms, 1 1.6 (1.1-2.2) 1.6 (1.1-2.2)
< 5 mm (diameter) 2-4 2.5 (1.8-3.4) 2.4 (1.7-3.4)

5+ 5.0 (3.3-7.7) 4.7 (3.0-7.4)
trend test p < 0.001

Number of raised None (1.0) (1.0)
naevi on arms, 1 1.8 (1.2-2.8) 1.6 (1.1-2.5)
≥ 5mm (diameter) 2+ 3.6 (1.8-7.2) 2.7 (1.3-5.5)

trend test p < 0.001

studied. Conduct this analysis. Is there any interaction between these two variables?

9. Study, in a similar vein, interactions between acuterea and skin and between the
grouped version of nnvtot from question 5. and agroup.

10. All of AØ’s analyses are conducted without accounting for the match variable age
(agroup) (in spite of warnings given by Clayton & Hills!). Repeat some of the
previous analyses adjusting for agroup. Are there any substantial differences?
Explain!

2.6 Testicular cancer risk and maternal parity.

This exercise deals with the article “Testicular cancer risk and maternal parity: a
population-based cohort study”, by T. Westergaard, P.K. Andersen, J.B. Pedersen, M.
Frisch, J.H. Olsen, M. Melbye. Br. J. Cancer, 77,pp. 1180-1185 (1998). [4].

2.6.1 Discussion of the article.

1. What is the authors’ argument for the existence of an effect of maternal parity on the
risk of testicular cancer in the son?

2. Describe the design of the study:

• a. which “sons” are included in the study?

• b. when are they followed?

• c. how are cases defined and ascertained?
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3. Concentrating on all testicular cancers, what do you consider to be the main result
reported in Table 1?

4. Explain in words the interpretation of the value RR=0.80 for parity 2+.

5. Compare this value with the corresponding crude RR (and 95 % CI) obtained
without any adjustment. Explain the differences between the two results.

6. Draw a Lexis diagram to illustrate the combinations of age and calendar period
which contribute person-years to the study. An empty diagram is available as
http://BendixCarstensen.com/EpiE2012/blank-Lexis.pdf

7. Explain the meaning of the estimates for “Interval from ...” in the lower part of Table
1.

8. What type of analysis is reported in Table 2?

9. Discuss how, alternatively, a case-control design could have been conducted to
address the same question as the cohort study reported in the article.

2.6.2 Practical exercises

The file testis.txt, available at www contains for each (non-empty) combination of the
factors SON_AGE, SON_KOH, MOTH_AGE, PARITY the number of person-years at risk PYRS,
the numbers of non-seminomas and seminomas, respectively NONSEMI SEMI, and the total
number of testis cancer cases CASES. The first line of the file contains the variable names.

The SAS program testis.sas reads the data from www.

10. Compute the crude rate ratio for testis cancer for parity 2+ versus parity 1. Compare
with 5. above. SAS-users may use the SAS program testis.sas (and PROC GENMOD).

11. Reconstruct the estimates for “parity of mother at birth of son” from the top of Table
1 in the article both for all testis cancers and for non-seminomas.

12. Reconstruct the estimates from Table 2 in the article concerning mother’s age (for all
testis cancers). Is there an interaction between parity and mother’s age?

13. Same question for birth cohort of the son.

http://BendixCarstensen.com/EpiE2012/blank-Lexis.pdf
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Chapter 3

Solutions with SAS

The SAS-programs are available on the course web site in the folder
http://BendixCarstensen.com/EpiF2013/sas. There is also a link to this on the website.

SAS

SAS is the default programming language in this course. It is a big package with many
capabilities, but a bit clumsy for simple calculations. It is expensive, but PhD-students can
have a free copy through KU, but only for the duration of your PhD.

The output from SAS comes in two different files, which makes it difficult to make a safe
documentation of results, and always makes the documentation hard to follow because two
different files have to be read in parallel. The solutions here consists only of the program
code, not of listinngs of the .log (log window) and .lst (ouptput window) as this would
be too extensive.

3.1 Vaccinations and childhood mortality in

Guinea-Bissau

In rural Guinea-Bissau, 5274 children under 7 months of age were visited two times at
home with an interval of six months (Kristensen et al., BMJ, 2000, [2]). Information about
vaccination (BCG, DTP, measles vaccine) was collected at each visit, and at the second
visit, death during follow-up was registered. Some children moved away during follow-up,
some survived until the next visit. The following variables are found in the data set
bissau.txt:

id Id number
fuptime Follow-up time in days
dead 0 = censored, 1 = dead
bcg 1 = Yes, 2 = No
dtp Number of DTP doses (0,1,2,3)
age Age at first visit in days
agem Age at first visit in months

1

http://BendixCarstensen.com/EpiF2013/sas
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The following SAS-programs does all the calculations required in the exercises.

3.1.1 A single risk, odds and rate

3.1.2 A single risk, odds and rate

Tabulate the number of children is 5274, the number of deaths 222 and the number of
person-years 2409.8 (namely 880187 days)

• Following the lectures we get

1. The overall risk of death is 222/5274=4.21%. A näıve 95% confidence inerval for
this is:

p±1.96
√
p× (1− p)/n = 0.0421±1.96

√
0.0421× 0.9579/5274 = (0.0367; 0.0475),

but a better one is the formula:

p

p+ (1− p) ×
÷ erf

, erf = exp
(

1.96
√

1/x+ 1/(n− x)
)

Which gives:
erf = exp(1.96

√
1/222 + 1/5052 = 1.144

and so the c.i.:

0.0421

0.0421 + 0.9579
×
÷ 1.144

= (0.0370; 0.0479)

2. The overall odds of death is simply:

222

5274− 222
= 0.0439

and the s.e. on the log-scale is is used to compute the 95% c.i.:

erf = exp
(

1.96
√

1/222 + 1/5052
)

= 1.144

so we get:

0.0439
×
÷ 1.144 = c(0.0384, 0.0502)

3. The overall rate of death (per year) is

222/2409.8 = 0.0921

and the error factor is exp(1.96/sqrtD) = 1.141 (with D = 222), so the
confidence interval is:

0.0921
×
÷ 1.141 = (0.0807, 0.1050)

• Using your statistical package, you get (almost) the same confidence intervals, the
programs are:
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The SAS-program is in http://BendixCarstensen.com/EpiF2013/sasas
bissau-sol0.sas.

data bissau;
*filename bisfile url "http://www.biostat.ku.dk/~pka/epidata/bissau.txt";
filename bisfile "../data/bissau.txt" ;
infile bisfile firstobs=2;
input id fuptime dead bcg dtp age agem;
lpy = log( fuptime/36525 ) ;

run;

title "All children in study" ;
proc means data=bissau nway ;

var dead fuptime ;
output out=bcgsum

sum= ;
run;

proc print data=bcgsum ;
run ;

title "Use log-link to produce log-probability" ;
proc genmod data = bcgsum ;
model dead/_freq_ = / dist=bin link=log ;
estimate "prob" intercept 1 / Exp ;

run ;
proc genmod data = bcgsum ;
model dead = / dist=bin link=log ;
estimate "prob" intercept 1 / Exp ;

run ;

title "Use logit-link to produce log-odds" ;
proc genmod data = bcgsum ;
model dead/_freq_ = / dist=bin link=logit ;
estimate "odds" intercept 1 / Exp ;

run ;
proc genmod data = bissau ;
model dead = / dist=bin link=logit ;
estimate "odds" intercept 1 / Exp ;

run ;

data bcgsum ;
set bcgsum ;
* We want rates per 100 person-years ;
lpy = log( fuptime/36525 ) ;

run ;

title "Poisson model to derive rate" ;
proc genmod data = bcgsum ;
model dead = / dist=poisson link=log offset=lpy ;
estimate "rate" intercept 1 / Exp ;

run ;
proc genmod data = bissau ;
model dead = / dist=poisson link=log offset=lpy ;
estimate "rate" intercept 1 / Exp ;

run ;

3.1.3 Rates, risks and odds

Program is in http://BendixCarstensen.com/EpiF2013/sasas bissau-sol1.sas.

data bissau;
*filename bisfile url "http://www.biostat.ku.dk/~pka/epidata/bissau.txt";
filename bisfile "../data/bissau.txt" ;
infile bisfile firstobs=2;
input id fuptime dead bcg dtp age agem;
dtpany=1; if dtp>0 then dtpany=2;

run;

title "Bissau data" ;
proc print data = bissau (obs=25) ;
run ;

title "Analysis by BCG groups" ;
proc means data=bissau nway ;

class bcg;
var dead fuptime ;
output out=bcgsum

sum= ;
run;

proc print data=bcgsum ;
run ;

data bcgres;

http://BendixCarstensen.com/EpiF2013/sas
http://BendixCarstensen.com/EpiF2013/sas
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set bcgsum ;
/* Q1: We take the results from PROC MEANS (BCG=1) */
d=dead;
n=_freq_;
y=fuptime;

/* Q2: naive CI for pi */
pi = d/n;
sdpi = sqrt(pi*(1-pi)/n);
pilow = pi - 1.96*sdpi;
piup = pi + 1.96*sdpi;

/* Q3: odds with CI + improved CI for pi*/
omega = pi/(1-pi);
sdlogomega = sqrt(1/d+1/(n-d));
errorfact = exp(1.96*sdlogomega);
omegalow = omega / errorfact;
omegaup = omega * errorfact;
pilow_2 = omegalow/(1+omegalow);
piup_2 = omegaup /(1+omegaup );

/* Q4: rate per day - note that we added fuptime in PROC MEANS above */
lambda=d/y;
errorfact_rate = exp(1.96*sqrt(1/D));
lambda_low = lambda / errorfact_rate;
lambda_up = lambda * errorfact_rate;

/* Q5: rate per year is rate per day times 365.25 */
lambda_year = lambda *365.25;
lambda_year_low = lambda_low*365.25;
lambda_year_up = lambda_up *365.25;
run;

proc print data=bcgres; run;

/* Q6: we repeat everything using the DTPANY variable created in the first DATA step */
title "Analaysis by DTP groups" ;
proc means data=bissau nway ;

class dtpany;
var dead fuptime ;
output out=dtpsum

sum= ;
run;

proc print data=dtpsum ;
run ;

data dtpres;
set dtpsum ;

/* Q1: We take the results from PROC MEANS (BCG=1) */
d=dead;
n=_freq_;
y=fuptime;

/* Q2: naive CI for pi */
pi = d/n;
sdpi = sqrt(pi*(1-pi)/n);
pilow = pi - 1.96*sdpi;
piup = pi + 1.96*sdpi;

/* Q3: odds with CI + improved CI for pi*/
omega = pi/(1-pi);
sdlogomega = sqrt(1/d+1/(n-d));
errorfact = exp(1.96*sdlogomega);
omegalow = omega / errorfact;
omegaup = omega * errorfact;
pilow_2 = omegalow/(1+omegalow);
piup_2 = omegaup /(1+omegaup );

/* Q4: rate per day - note that we added fuptime in PROC MEANS above */
lambda=d/y;
errorfact_rate = exp(1.96*sqrt(1/D));
lambda_low = lambda / errorfact_rate;
lambda_up = lambda * errorfact_rate;

/* Q5: rate per year is rate per day times 365.25 */
lambda_year = lambda *365.25;
lambda_year_low = lambda_low*365.25;
lambda_year_up = lambda_up *365.25;
run;

proc print data=dtpres; run;

3.1.4 Rate ratio, risk ratio, odds ratio

Program is in http://BendixCarstensen.com/EpiF2013/sasas bissau-sol2.sas.

http://BendixCarstensen.com/EpiF2013/sas
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data bissau;
filename bisfile url "http://www.biostat.ku.dk/~pka/epidata/bissau.txt";
filename bisfile "../data/bissau.txt" ;
infile bisfile firstobs=2;
input id fuptime dead bcg dtp age agem;
dead2=dead;
if dead2=0 then dead2=2;
if dtp=0 then dtpany=2;
if dtp>0 then dtpany=1;

run;

/***********************************************************************************/
/* Q1 Effect of BCG on mortality */
title "BCG EFFECT";
proc freq data=bissau;
table bcg*dead2 / nocol nopercent relrisk;

run;

/***********************************************************************************/
/* Q2 Effect of DTP on mortality */
title "DTP EFFECT";
proc freq data=bissau;
table dtpany*dead2 / nocol nopercent relrisk;

run;

/***********************************************************************************/
/* Q3 Association between BCG and DTP */
title "ASSOCIATION BETWEEN DTP AND BCG";
proc freq data=bissau;
table dtpany*bcg / chisq;

run;

/***********************************************************************************/
/* Q4 Effect of DTP on mortality for each value (level) of BCG */
title "DTP EFFECT among BCG vaccinated";
proc freq data=bissau;
where bcg=1;
table dtpany*dead2 / nocol nopercent relrisk;

run;

title "DTP EFFECT among BCG UN-vaccinated";
proc freq data=bissau;
where bcg=2;
table dtpany*dead2 / nocol nopercent relrisk;

run;

/* MUCH EASIER - YOU CAN ADD BCG IN THE THIS WAY: */
title "DTP EFFECT";
proc freq data=bissau;
table bcg*dtpany*dead2 / nocol nopercent relrisk;

run;

/***********************************************************************************/
/* Q5 RATES */
/* We need no. of deaths and the sum of fullow-up time for each value of BCG: */
title "RATE RATIOS: BCG EFFECT";
proc means data=bissau sum;
class bcg;
var dead fuptime;

run;
/* Now we calculate by hand the rate ratio with 95%-CI: */
data rr;
rate1 = (125/554929);
rate2 = ( 97/325258);
rr = rate1/rate2;
sd = sqrt((1/125) + (1/97));
error_factor = exp(1.96*sd);
lower = rr/error_factor;
upper = rr*error_factor;

run;
proc print data=rr;
var rr lower upper error_factor ;

run;

title "RATE RATIOS: DTP EFFECT";
proc means data=bissau sum;
class dtpany;
var dead fuptime;

run;

/* Now we calculate by hand the rate ratio with 95%-CI: */
data rr;
rate1 = (94/364012);
rate2 = (128/516175);
rr = rate1/rate2;
sd = sqrt((1/94) + (1/128));
error_factor = exp(1.96*sd);
lower = rr/error_factor;
upper = rr*error_factor;
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run;
proc print data=rr;
var rr lower upper error_factor ;

run;

title "RATE RATIOS: DTP EFFECT BY BCG STATUS";
proc means data=bissau sum;
class bcg dtpany;
var dead fuptime;

run;

/* Now we calculate by hand the rate ratio with 95%-CI: */
data rr;
bcg="YES";
rate1 = (92/358571);
rate2 = (33/196358);
rr = rate1/rate2;
sd = sqrt((1/92) + (1/33));
error_factor = exp(1.96*sd);
lower = rr/error_factor;
upper = rr*error_factor;
output;
BCG="NO";
rate1 = (2/5441);
rate2 = (95/319817);
rr = rate1/rate2;
sd = sqrt((1/2) + (1/95));
error_factor = exp(1.96*sd);
lower = rr/error_factor;
upper = rr*error_factor;
output;

run;

proc print data=rr;
var bcg rr lower upper error_factor ;

run;

3.1.5 Confounder control: stratified analysis of odds ratio and
risk ratio.

Program is in http://BendixCarstensen.com/EpiF2013/sasas bissau-sol3.sas.

/***********************************************************************************/
/* Read the data and transform */

data bissau;
* filename bisfile url "http://www.biostat.ku.dk/~pka/epidata/bissau.txt" ;
filename bisfile "../data/bissau.txt" ;
infile bisfile firstobs=2;
input id fuptime dead bcg dtp age agem;
dead2=dead;
if dead2=0 then dead2=2;
if dtp=0 then dtpany=2;
if dtp>0 then dtpany=1;

run;

/***********************************************************************************/
/* Q1 Effect of DTP on mortality by bcg */
title "DTP EFFECT for each level of bcg";
proc freq data=bissau;
where bcg eq 1 ;
table dtpany*dead2 / nocol nopercent relrisk;

run;
proc freq data=bissau;
where bcg eq 2 ;
table dtpany*dead2 / nocol nopercent relrisk;

run;

/***********************************************************************************/
/* Q2 Effect of DTP on mortality controlled for BCG */
title "DTP EFFECT controlled for BCG";
proc freq data=bissau;
table bcg*dtpany*dead2 / nocol nopercent relrisk cmh ;

run;

/* Compare with bcg-UNadjusted effect of DTP */
title "DTP EFFECT NOT controlled for BCG";
proc freq data=bissau;
table dtpany*dead2 / nocol nopercent relrisk ;

run;

/***********************************************************************************/
/* Q3 Effect of DTP on mortality controlled for age in months */

http://BendixCarstensen.com/EpiF2013/sas
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title "DTP EFFECT controlled for AGE";
proc freq data=bissau;
table agem*dtpany*dead2 / nocol nopercent relrisk cmh ;

run;

/***********************************************************************************/
/* Q4 Effect of DTP on mortality controlled for age in months AND bcg */
title "DTP EFFECT controlled for AGE and BCG";
proc freq data=bissau;
table bcg*agem*dtpany*dead2 / nocol nopercent relrisk cmh ;

run;

/***********************************************************************************/
/* Qx Effect of DTP on mortality controlled for age in months AND bcg

using logistic regression */
title "DTP EFFECT controlled for AGE and BCG - logistic regression";
proc genmod data=bissau;
class bcg agem dtpany ;
model dead2 = bcg agem dtpany

/ dist=binomial link=logit ;
estimate "OR by dtnm / agecont" dtpany 1 -1 / exp ;

run;

/* Using agem as continuoius (linear) */
title "DTP EFFECT controlled for AGE (continuous) and BCG - logistic regression";
proc genmod data=bissau;
class bcg dtpany ;
model dead2 = bcg agem dtpany

/ dist=binomial link=logit ;
estimate "OR by dtnm / agecont" dtpany 1 -1 / exp ;

run;

/* Computing the RR effect by using the log-link */
title "DTP EFFECT controlled for AGE and BCG - logistic regression";
proc genmod data=bissau;
class bcg agem dtpany ;
model dead2 = bcg agem dtpany

/ dist=binomial link=log ;
estimate "OR by dtnm / agecont" dtpany 1 -1 / exp ;

run;

3.1.6 Survival analysis of childhood mortality in Guinea-Bissau

The SAS program bissau.sas in http://BendixCarstensen.com/EpiF2013/sas reads the
data from the web and defines / recodes relevant variables and fits a simple Cox regression
model with follow-up time as the time variable and including bcg and agem as categorical
covariates.

1. Fit a simple Cox regression model with follow-up time as the time variable and
including bcg and agem as categorical covariates. In the program we have just
recoded bcg to a 0/1 variable.

2. Estimate the effect of any dose of DTP, using the created variable dtpany adjusted
only for age in months as a categorical (class in SAS) variable.

3. Now, also adjust for BCG. We then find a positive risk associated with DTP.

4. Is there an interaction between DTP (dtpany) and BCG?

No, there is no interaction. From the table made by proc tabulate we see that there
are virtually no children with a DTP vaccination who is without BCG vaccination.
And we see that the mortality is very low among the second smallest group, those
with BCG and no DTP. So the strange results hinges on the fact that almost 4000 of
the 5000 in the study eiter are vaccinated by both or by none of the two.

We see that there is an excess risk associated with DTP of 1.3 both for BCG=0 and
for BCG=1, but neither are significant.

http://BendixCarstensen.com/EpiF2013/sas
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5. Make a Cox regression analysis with DTP (dtpany) and BCG, but now with age as
time-variable, i.e. with delayed entry.

We see that we get pretty much the same results as when using the age at entry as
control variable.

6. Repeat the Poisson and logistic regression models that you have seen during the
lectures.

We see that the three types of analysis gives witually the same rsults for the
protective effect of BCG-vaccination namely a mortality RR of 0.71, just significant.

With rather short follow-up time, and hence little scope for censoring and variation of
rates over time, the three different models are virtually the same.

The Poisson model where we use the log of the persons-years as offset is a model
where we assume that the mortality is constant throughout follow-up (as opposed to
the Cox-model where it is allowed to vary witout any restrictions). The Logistic
regression model is a further sinmplification of the Poisson model where we ignore
censoring, so essentially assume that everyone is followd or the same time.

Program is in http://BendixCarstensen.com/EpiF2013/sas as bissau-solcox.sas.

options ps=200 nocenter ;

data bissau;
* filename bisfile url "http://www.biostat.ku.dk/~pka/epidata/bissau.txt";
filename bisfile "../data/bissau.txt";
infile bisfile firstobs=2;
input id fuptime dead bcg dtp age agem;
* DTP - indicator ;
dtpany = dtp>0 ;
* BCG-indicator ;
bcg = 2 - bcg ;
outage = age + fuptime ;
lfup = log(fuptime) ;

run;

proc print data=bissau (obs=10) ;
run ;

proc tabulate data=bissau noseps formchar=" ";
class agem ;
var fuptime dead ;
table agem, n*f=5. dead*f=5. fuptime*f=comma10. ;

run ;

title "Q1: Simple analysis of bcg effect" ;
proc phreg data = bissau ;
class agem ;
model fuptime * dead(0) = bcg agem / rl;

run;

title "Q2: Simple analysis of dtp effect" ;
proc phreg data = bissau ;
class agem ;
model fuptime * dead(0) = dtpany agem / rl ;

run;

title "Q3: Analysis of dtp and bcg effect" ;
proc phreg data = bissau ;
class agem ;
model fuptime * dead(0) = dtpany bcg agem / rl type3 ;

run;

title "Q4: Analysis of dtp and bcg effect with interaction" ;
proc phreg data = bissau;
class agem ;
model fuptime * dead(0) = dtpany bcg dtpany*bcg agem / rl type3 ;

run;
title2 "Explaining the missing interaction and showing possible confounding" ;
proc tabulate data = bissau noseps missing formchar=" ---- ---" ;
class bcg dtpany dead ;
table ( bcg all ) * dtpany,

( n * f=6. pctn<dead all> * f=6.1 ) * (dead all)
/ rts=15 ;

http://BendixCarstensen.com/EpiF2013/sas
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run ;

title "Q4a: Analysis of dtp effect separately for bcg Y/N" ;
proc sort data= bissau ; by bcg ; run ;
proc phreg data = bissau;
by bcg ;
class agem ;
model fuptime * dead(0) = dtpany agem / rl type3 ;

run;

title "Q5: Analysis of dtp and bcg effect using current age as timescale" ;
proc phreg data = bissau;
class agem ;
model (age,outage) * dead(0) = dtpany bcg / rl type3 ;

run;

title "Q6: Analysis of bcg effect using age at entry - Cox-model" ;
proc phreg data = bissau ;
class agem ;
model fuptime * dead(0) = bcg agem / rl ;

run;
title "Q6: Analysis of bcg effect using age at entry - Poisson-model" ;
proc genmod data = bissau ;
class agem ;
model dead = bcg agem / dist = poisson offset = lfup ;
estimate "RR bcg" bcg 1 / Exp ;

run;

title "Q6: Analysis of bcg effect using age at entry - Poisson-model with the same FU for all" ;
proc genmod data = bissau ;
class agem ;
model dead = bcg agem / dist = poisson ;

run;

title "Q6: Analysis of bcg effect using age at entry - logistic regression-model" ;
proc genmod data = bissau descending ;
class agem ;
model dead = bcg agem / dist = binomial ;
estimate "RR bcg" bcg 1 / Exp ;

run;

title "QX: Logistic and Poission regression - the real cheat" ;
data xx ;
set bissau ;
if dead eq 0 then output ;
if dead eq 1 then do ;

fuptime = fuptime - 1 ; dead = 0 ; output ;
fuptime = 1 ; dead = 1 ; output ;
end ;
run ;

proc print data=xx (obs=10) ;
run ;

proc genmod data = xx ;
class agem ;
model dead/fuptime = bcg agem / dist = binomial ;

run;
proc genmod data = xx ;
class agem ;
model dead/fuptime = bcg agem / dist = binomial link = cll;

run;
proc genmod data = bissau ;
class agem ;
model dead = bcg agem / dist = poisson offset=lfup ;

run;

3.2 Case-control study of renal cancer and

trichloroethene

The exercise is based on Vamvakas et al.: Renal cell cancer correlated with occupational
exposure to trichloroethane. J Cancer Res Clin Oncol, 1998, pp 374–382. [1].

The following points were addressed:

1. What is the primary aim of the study?

The primary aim as stated is to assess the effect of thricholorethene (C2HCl3) and
tetrachloroethene (C2Cl4) on the occurrence of kidney cancer. This is based on a
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described possible biological mechanism.

2. How were the cases sampled?

Cases in the study were patients who underwent surgery between 1987-12-01 and
1992-05-01, a period of 3.5 years. Of the 78 patients 62 responded (or their next of
kin, since 4 of these 62 were dead)

3. How were the controls sampled?

Controls were sampled from the accident wards of three other hospitals in the same
area, form the period 1993-01-01 to 1993-12-31.

4. Are they comparable; i.e. what assumptions are needed?

In order to deem cases and controls comparable we must assume:

(a) In principle we must assume that the controls would have been enrolled as cases
if they had had a diagnosis of kidney cancer.

In practice it will suffice that the controls comes from a comparable populations,
that is even though they might have been subjected to surgery at a different
hospital in case of kidney cancer, if this were a similar type of hospital it would
have been sufficient.

(b) Exposure distribution in the population has not changed between the
case-selection period (1987–1992) and the control sampling period (1993).

It is of course difficult to assess this without further knowledge about the
industrial development in Nordrhein-Westphalia in the period 1987–1993.

(c) The attendance of the accident ward is unrelated to the exposure of interest.

At face value it seems so, bar of course accidents related to trichloroethene
exposure itself, but we can safely assume that they are very rare compared to
other. However, the attendance at the accident ward is hardly unrelated to age,
and neither is exposure to to trichloroethene, so the attendance is related to the
exposure, albeit not directly.

(d) Recall of exposure is the same among cases and controls.

It is not stated anywhere whether the purpose of the study was revealed to cases
and controls, but in the likely event that it were, cases may be more prone to
recall exposure to the thricholorethene in order to get an explanation of their
(severe) disease.

As we see there are a few potential biases, some tend to increase the risk estimate;
the problems with age is difficult to assess.

5. What is the (actual) study base?

There is no definite answer to this, but if we define the study base to be the state of
Nordrhein-Westphalia, the validity of the study hinges on assumptions that the
hospitals where cases and controls are sampled are representative of the population
— with respect to the exposure of interest.

Of course, precisely the same argument applies if we define the study base to some
subset of Nordrhein-Westphalia, which includes the uptake-areas of the 4 hospitals,
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and incidentally we might define the study base as the uptake area of these 4
hospitals.

6. What study base is the intended (for generalization)?

The intended study base is presumably all industrialized counties comparable to
Germany.

7. Is the sampling scheme incidence density sampling?

The sampling scheme is certainly not incidence density sampling, that would require
that cases were selected among those at risk at the time of the case-occurrence, ad
that is not the case.

8. Can the age-effect on the occurrence of renal cancer be estimated?

The age-effect cannot be estimated; that would require that the controls were a
representative sample (w.r.t. age) of the study base. Sampling persons from the
accident wards makes this a far-fetched assumption.

9. Is age a confounder?

Most likely so; it is definitely associated with both the exposure and the outcome.

10. Key in the numbers in table 6 (p.380), and verify the analysis using SAS proc freq.

When we enter the data from table 6 there are a few things to be aware of:

• Unlike previously, we are entering grouped or tabulated data from a table, not
individual records. This means that every line in the input dataset represents as
(usually large) number of individuals.

• This in turn means that we shall need one line in the data set per entry in the
table. In addition to the number, the line must then contain variables that tells
us whether it is cases/controls, exposed or not, and what age.

• Note that the entries in table 6 in the paper are not the number of cases and
controls, but the number of cases and total number in the strata. So we need to
do a bit of subtraction to get the numbers right.

• Since tabular data are often quite short, it is most convenient to include the
data in the program code itself. This is done inside a data step, and the data
are preceded by a line with the word datalines; indicating that the next lines
are data. The convention in SAS is that data is terminated by a line that only
contains a semicolon, ;.

Thus the program looks like this:

data a ;
input age tri ck n ;
datalines ;
30 1 1 2
40 1 1 2
50 1 1 10
60 1 1 1
70 1 1 4
30 0 1 0
40 0 1 1
50 0 1 12
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60 0 1 17
70 0 1 9
30 1 0 1
40 1 0 4
50 1 0 2
60 1 0 0
70 1 0 0
30 0 0 21
40 0 0 11
50 0 0 25
60 0 0 14
70 0 0 6
;

run ;

The entire SAS-program can be found in the folder
http://bendixcarstensen.com/EpiE2012/sas/, and the program is listed at the
end of this section.

Once we have the data, we use proc freq, first to produce a crude estimate and then
an age-adjusted analysis, and we see that the estimate reported as the
Mantel-Haenszel estimate in the paper in fact is the logit-estimate, based on adding
0.5 to all cells in age-strata where one entry is 0.

11. Is there any evidence of heterogeneity of the odds-ratio across age-classes? (Hint:
Use the Breslow-Day-test.)

There is no evidence of age-heterogeneity, but the age-classes are quite crude
(10-years).

12. In particular, how does the odds-ratio estimate given by Vamvakas et al. compare to
the Mantel-Haenszel estimate based on the same data?

The estimate given in the paper is somewhat smaller than the MH-estimate, but the
substantial message is pretty much the same: definitely an effect, but unclear how
large.

13. What is the main result (in plain words)?

Based on this study alone, there seems to be an excess risk of kidney cancer
associated with trichloroethene exposure, but its cannot really be determined
whether the OR is 2.5 or 25. This is of course due to the rather small sample size.

options formchar=" ----------"
nocenter ;

data a ;
input age tri ck n ;
datalines ;
30 1 1 2
40 1 1 2
50 1 1 10
60 1 1 1
70 1 1 4
30 0 1 0
40 0 1 1
50 0 1 12
60 0 1 17
70 0 1 9
30 1 0 1
40 1 0 4
50 1 0 2
60 1 0 0
70 1 0 0
30 0 0 21
40 0 0 11
50 0 0 25

http://bendixcarstensen.com/EpiE2012/sas/
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60 0 0 14
70 0 0 6
;

run ;

proc print data = a ;
run ;

proc freq data = a ;
table tri * ck / norow nocol nopct relrisk ;
weight n ;

run ;

proc freq data = a ;
table age * tri * ck / norow nocol nopct cmh ;
weight n ;

run ;

proc genmod data = a descending ;
class age tri ;
model ck = tri / dist = bin ;
freq n ;
estimate "OR" tri -1 1 / exp ;

run ;

proc genmod data = a descending ;
class age tri ;
model ck = age tri / dist = bin ;
freq n ;
estimate "OR" tri -1 1 / exp ;

run ;

3.3 IHD data from Clayton & Hills.

The study is described by Clayton & Hills, Ch. 13. The tabulated data set of counts of
IHD cases and person-years is avaliable from www in the file ihd-tab.txt.

1. Fit the model from Clayton & Hills Tables 22.7-8 (p.222) and perform the tests from
exercises 24.1 and 24.2 (pp.237–238). SAS-users may use the program ihd-reg.sas

and notice the use of the ESTIMATE command to obtain a given reference group and
the rate ratios with 95% confidence intervals.

2. Fit the model with interaction and re-find results from Clayton & Hills Table 24.5
(p.242) and the test for no interaction.

These two tasks are completed in the SAS-program listed below:

/*
First read in the data as from the table in the book

*/
data ihd;
input eksp alder pyrs cases;
lpyrs=log(pyrs);
cards;
0 2 311.9 2
0 1 878.1 12
0 0 667.5 14
1 2 607.9 4
1 1 1272.1 5
1 0 888.9 8
;
run;

/*
Q1:
We fit the model with main effects of age and exposure, and we see
we obtain the same estimates as in Clayton \& Hill’s book

*/
proc genmod data=ihd;
class eksp alder;
model cases=eksp alder / dist=poisson offset=lpyrs type3;
estimate "exp. vs. non-exp." eksp 1 -1 / exp;
estimate "50-59 vs. 40-49" alder 0 1 -1 / exp;
estimate "60-69 vs. 40-49" alder 1 0 -1 / exp;
run;



14 Solutions with SAS Epidemiology

/*
Q2:
In order to fit the model wit interaction we simply add the term
eksp*alder and find the test for interaction towards the end of the
output under type 3 analysis. Clearly there is no interaction; the
p-value is 0.433.

*/
proc genmod data=ihd;
class eksp alder;
model cases = eksp alder eksp*alder / dist=poisson offset=lpyrs type3;
run;

3.3.1 Using continuous variables

The IHD-data contains energy consumption as a continuous variable, energy, among other
variables.

The questions were:

1. Read the individual diet data records from the file.

2. Create variables for the person-years, by subtracting entry date from date of exit.
Also create a variable with the log-person-years.

3. Use CHD as outcome variable in a Poisson-analysis with the log-person-years as
offset, using energy as a linear explanatory variable. Is there an effect on mortality?

4. Is there any evidence of a non-linear effect of energy, when using linear splines with
knots at say 2, 2.5 and 3? (approx. the quartiles)

5. Same question for weight and BMI (the latter you have to calculate yourself as
weight/height2).

— and they are addressed in the following SAS-program:

options nocenter ;

/* Q1 & Q2
First we read the individual records from the diet data, and create
person-years and log-PY as well as spline variables for
*/

data ihdindiv ;
* filename dietfile url "http://BendixCarstensen.com/Epi-PhD/diet.txt";
filename dietfile "../data/diet.txt";
infile dietfile firstobs=2;

input id doe dox chd dob job month energy height weight fat fibre ;
* This is to read the date variables correctly in and print them reabably ;
informat doe dox dob mmddyy10.;
format doe dox dob ddmmyy10.;

* We must compute the exposure variable ;
exposure = ( energy < 2.75 ) ;
* Here are the spline variables as shown in the lectures ;

e200 = max( 0, energy-2.0 ) ;
e250 = max( 0, energy-2.5 ) ;
e300 = max( 0, energy-3.0 ) ;

* To make the follow-up comparable with the grouped data only use FU from age 40 to 70 ;
dox = min( dox, dob+70*365.25 ) ;
doe = max( doe, dob+40*365.25 ) ;

* Person-YEARS(!) and the log of them ;
pyrs = ( dox - doe ) / 36525 ;
lpy = log( pyrs ) ;

run ;

proc print data = ihdindiv (obs=20) ;
run ;

/* Q3
Exposure (energy intake) -- first as grouped variable, then as
continuous with a linear effect on log-rates
*/

proc genmod data = ihdindiv ;
class exposure ;
model chd = exposure
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/ dist=poisson link=log offset=lpy ;
estimate "low vs. high" exposure 1 -1 / Exp ;
estimate "Rate unexp" intercept 1 exposure 1 0 / Exp ;
estimate "Rate exp" intercept 1 exposure 0 1 / Exp ;

run ;

proc genmod data = ihdindiv ;
model chd = energy

/ dist=poisson link=log offset=lpy ;
estimate "Effect of 0.1 MJ" energy 0.1 / Exp ;

run ;

/* Q4
Analysis with linear splines in exposure
*/

proc genmod data = ihdindiv ;
model chd = energy e250

/ dist=poisson link=log offset=lpy ;
estimate "Effect above 2.5MJ" energy 1 e250 1 / Exp ;

run ;
proc genmod data = ihdindiv ;
model chd = energy e200 e250 e300

/ dist=poisson link=log offset=lpy ;
run ;

/* Q5
Compute BMI (in kg/m2) and quartiles fof weigt & BMI to inform the
placement of the knots. Note we shoudl base the knot palcement on
the distribution of the variable among those with events, because
this is where most of the information is.
*/

data ihdindiv ;
set ihdindiv ;
if height > 100 ;
bmi = weight / ((height/100)**2) ;

run ;

proc tabulate data = ihdindiv missing noseps ;
var height weight bmi ;
class chd ;
table n nmiss min q1 median q3 max,

( all chd ) * ( height*f=8.0 weight*f=8.1 bmi*f=6.1 ) / rts=10 ;
run ;

proc print data = ihdindiv ;
where height < 100 ;

run ;

/* Breaks approx at quartiles */
data ihdindiv ;
set ihdindiv ;
bmi20 = max( 0, bmi-20 ) ;
bmi25 = max( 0, bmi-25 ) ;
bmi30 = max( 0, bmi-30 ) ;
wt65 = max( 0, weight-65 ) ;
wt75 = max( 0, weight-75 ) ;
wt80 = max( 0, weight-80 ) ;

run ;

/* Models with linear BMI, 1 and 3 knots */
proc genmod data = ihdindiv ;
model chd = bmi / dist=poisson link=log offset=lpy ;

run ;
proc genmod data = ihdindiv ;
model chd = bmi bmi25 / dist=poisson link=log offset=lpy ;

run ;
proc genmod data = ihdindiv ;
model chd = bmi bmi20 bmi25 bmi30 / dist=poisson link=log offset=lpy ;

run ;

/* Models with linear weight, 1 and 3 knots */
proc genmod data = ihdindiv ;
model chd = weight / dist=poisson link=log offset=lpy ;

run ;
proc genmod data = ihdindiv ;
model chd = weight wt75 / dist=poisson link=log offset=lpy ;

run ;
proc genmod data = ihdindiv ;
model chd = weight wt65 wt75 wt80 / dist=poisson link=log offset=lpy ;

run ;
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3.3.2 Splitting the follow-up of the IHD-data

The exercise gives quite a thorough introduction to the exercise, sor there is no need to
repeat that here. The analyses can be done using the SAS-program IHD-Lexis-sol which
is listed here:

* The grouped data (slightly altered from the book by C&H) ;
data ihdfreq;
input eksp agr pyrs cases;
lpyrs = log( pyrs );

datalines;
1 0 346.87 2
1 1 979.34 12
1 2 699.14 14
0 0 560.13 4
0 1 1127.70 6
0 2 794.15 8
;
run;

* Make a Poisson regression of the rates ;
proc genmod data = ihdfreq ;
class eksp agr ;
model cases = eksp agr

/ dist = poisson offset = lpyrs type3 ;
estimate "low vs. high" eksp -1 1 / Exp ;
estimate "Rate E1 A0" intercept 1 eksp 1 0 agr 1 0 0 / Exp ;

run;

/* Q2
Read the individual records from the diet data
*/

data ihdindiv ;
* filename dietfile url "http://BendixCarstensen.com/Epi-PhD/diet.txt";
filename dietfile url "http://www.biostat.ku.dk/~pka/epidata/diet.txt";
infile dietfile firstobs=2 ;

input id doe dox chd dob job month energy height weight fat fibre ;
* This is to read the date variables correctly in and print them reabably ;
informat doe dox dob mmddyy10.;
format doe dox dob ddmmyy10.;

* We must compute the exposure variable ;
exposure = ( energy < 2.75 ) ;
drop job month energy height weight fat fibre ;

run ;

* Take a look at the individual records ;
proc print data = ihdindiv (obs=20) ;
run ;

/* Q3
Include the two macros for time-splitting and tabulation ;
*/

options source2 ;
filename Lexispr url "http://BendixCarstensen.com/Lexis/Lexis.sas";
%inc Lexispr ;
filename PYtabpr url "http://BendixCarstensen.com/Lexis/PYtab.sas";
%inc PYtabpr ;

/* Q4
Timesplitting using the Lexis macro
*/

%Lexis( data = ihdindiv, /* Dataset with original data */
out = ihdsplit, /* Dataset with time-split data */
entry = doe, /* Date of entry */
exit = dox, /* Date of exit */
fail = chd, /* Event (failure) indicator */
origin = dob, /* Origin of the time-scale */
scale = 365.25, /* Convert from input scale to braks-scale */
breaks = 40 to 70 by 10, /* Where to split the time scale */
left = agr ); /* The name of the new age-variable */

/* Q6
We can use proc print to inspect the resulting records
*/

proc print data = ihdsplit (obs=20) ;
run ;

/* Q7
We can use %PYtab to tabulate person-years and detahs:
*/

%PYtab( data = ihdsplit,
class = exposure agr,
fail = chd,
risk = risk,
scale = 1000 ) ;
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/* Q7a
But we can also use proc tabulate to replicate the table from C&H
in a readable form
*/

proc tabulate data=ihdsplit missing noseps formchar=" ---- ---" ;
class agr exposure ;
var risk chd ;
table agr="Age" all="Total",

( exposure="Exposure" all="Total" ) *
sum=" " * ( chd="D"*f=6. risk="Y"*f=8.1 )
/ rts = 15 ;

run ;

/* Q8
Now fit the model to the time-split data - results are as for the
grouped data */

proc genmod data = ihdsplit ;
class agr exposure ;
model chd = agr exposure / dist=poisson offset=lrisk ;

run ;

/* Q9
Add an interaction between age and exposure and check that you
get the same test for interaction as with the grouped data.
*/

proc genmod data = ihdsplit ;
class agr exposure ;
model chd = agr exposure agr*exposure / dist=poisson offset=lrisk type3 ;

run ;

/* Q10
We fit the main effects model to the grouped data (6 obs-dataset)
and observe that the deviance is the same as the type-3 test for
interaction based on the individual data
*/

proc genmod data = ihdfreq ;
class eksp agr ;
model cases = eksp agr

/ dist = poisson offset = lpyrs type3 ;
run;

3.4 Case-control study of BCG vaccination and

leprosy.

The study is decribed by Clayton & Hills, p.156. In short, 260 cases of leprosy among
individuals aged less than 35 years were ascertained in a study area in Malawi. Subjects
were grouped into 7 age intervals and according to absence or presence of a scar after BCG
vaccination. Three sets of controls were studied:

1. a population survey of 80,622 persons

2. a random sample of 1000 persons

3. a 4 to 1 age-matched sample

1. Fit the model from Clayton & Hills Table 23.5 (p.232). SAS-users may use the
program bcg-reg.sas; what are the reference groups?

2. Estimate odds ratios and confidence intervals with non-exposed and youngest,
respectively, as reference groups (in SAS: use ’ESTIMATE’ statements).

3. Estimate instead odds ratios and confidence intervals with the age group 20-24 as
reference.

4. Test the hypothesis of no interaction between age and scar.
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5. Analyse the data set with only 1000 controls (i.e., use the controls con1000: Table
23.6, p.233) and compare the precision of the estimate for scar with that based on
the entire sample.

6. Analyse the matched data set (i.e., use the controls conmatch: Table 23.6, p.233) and
compare with the results from Table 23.7.

7. Try (erroneously) to drop age from the analysis of the matched data and study the
consequences for the estimate of scar.

The following SAS program reads the data and produces the solutions to these tasks:

options nocenter ps=300 ;

data bcgdata;
filename bcgfile url ’http://www.biostat.ku.dk/~pka/epidata/bcgalldata.txt’;
filename bcgfile url ’../data/bcgalldata.txt’;
infile bcgfile firstobs=2;
input age scar status $ n;

run;

/*
Data overview

*/
proc print data=bcgdata (obs=50) ;
run ;

/*
To do a particular analysis we must select cases and a particular
set of controls with the where-statement, so the first analysis is
with the total set of controls.

Q1, Q2:
We use the estimate statements to give the ORs of leprosy between
age-classes, using both the first and last age-class as reference.
Note that the s.e. of the log-odds-ratio is very large when we use
the first age-class with only 2 cases as reference.

*/
proc genmod data=bcgdata;
where status=’case’ or status=’conall’ ;
class age scar;
model status = age scar / dist=bin type3 ;
weight n;
estimate "BCG scar " scar -1 0 / exp ;
estimate "Age 2 vs. 1" age -1 1 0 0 0 0 0 / exp ;
estimate "Age 3 vs. 1" age -1 0 1 0 0 0 0 / exp ;
estimate "Age 4 vs. 1" age -1 0 0 1 0 0 0 / exp ;
estimate "Age 5 vs. 1" age -1 0 0 0 1 0 0 / exp ;
estimate "Age 6 vs. 1" age -1 0 0 0 0 1 0 / exp ;
estimate "Age 7 vs. 1" age -1 0 0 0 0 0 1 / exp ;

run;

/*
Q2x:
log-Odds-ratios with a specific reference can also be obtained using
the param and ref options in the class statement

*/
proc genmod data=bcgdata;
where status=’case’ or status=’conall’ ;
class age (param=ref ref="1")

scar (param=ref ref="0") ;
model status = age scar / dist=bin type3 ;
weight n;
/* There is one parameter less, so we must omit the "-1"

from the estimate statement */
estimate "Age 2 vs. 1" age 1 0 0 0 0 0 / exp ;

run;

/*
Q3:
We now use the age-class 20-24 (age class 5) as reference

*/
proc genmod data=bcgdata;
where status=’case’ or status=’conall’ ;
class age scar;
model status = age scar / dist=bin type3 ;
weight n;
estimate "BCG scar " scar -1 0 / exp ;
estimate "Age 1 vs. 5" age 1 0 0 0 -1 0 0 / exp ;
estimate "Age 2 vs. 5" age 0 1 0 0 -1 0 0 / exp ;
estimate "Age 3 vs. 5" age 0 0 1 0 -1 0 0 / exp ;
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estimate "Age 4 vs. 5" age 0 0 0 1 -1 0 0 / exp ;
estimate "Age 6 vs. 5" age 0 0 0 0 -1 1 0 / exp ;
estimate "Age 7 vs. 5" age 0 0 0 0 -1 0 1 / exp ;

run;

/*
Q4:
We can test for interaction - the hypothesis that OR is the same in
all classes. So we expand the model to one with separate OR for each
age-class. The test for interaction is found undet Type 3 test. But
is only the test for interaction if both age and scar are included
as separate effects too.

*/
proc genmod data=bcgdata;
where status=’case’ or status=’conall’ ;
class age (param=ref ref="1")

scar (param=ref ref="0") ;
model status = age scar age*scar / dist=bin type3 ;
weight n;

run;

/*
If we want to use the trick of getting the effect directly,
leaving out the scar from the model statment you must use the
standard parametrization otherwise you fit a goofy model. Also note
that you can omit trailing 0s from the estimate statement. Finally,
the order of the estimates in the inetraction term depends on the
order of the variables in the CLASS statement.

*/
proc genmod data=bcgdata;
where status=’case’ or status=’conall’ ;
class age scar ;
model status = age age*scar / dist=bin type3 ;
weight n ;
estimate "OR1" age*scar -1 1 / exp ;
estimate "OR2" age*scar 0 0 -1 1 / exp ;
estimate "OR3" age*scar 0 0 0 0 -1 1 / exp ;
estimate "OR4" age*scar 0 0 0 0 0 0 -1 1 / exp ;
estimate "OR5" age*scar 0 0 0 0 0 0 0 0 -1 1 / exp ;
estimate "OR6" age*scar 0 0 0 0 0 0 0 0 0 0 -1 1 / exp ;
estimate "OR7" age*scar 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 / exp ;

run;

/*
Q5:
Re-do analysis for reference - then the 1000 randomly selected
controls what happens is that the estimate barely changes, but that
the s.e. of the log-OR increases some 15%

*/
proc genmod data=bcgdata;
where status=’case’ or status=’conall’ ;
class age (param=ref ref="1")

scar (param=ref ref="0");
model status = age scar / dist=bin type3 ;
weight n ;

run;

proc genmod data=bcgdata;
where status=’case’ or status=’con1000’ ;
class age (param=ref ref="1")

scar (param=ref ref="0") ;
model status = age scar / dist=bin type3 ;
weight n ;

run;

/*
Q6:
Analysis using the matched data. This gives a slightly different
estimate, but the interesting thing is that the s.e. shrinks a bit
because of the better use of the controls

*/
proc genmod data=bcgdata;
where status=’case’ or status=’conmatch’ ;
class age (param=ref ref="1")

scar (param=ref ref="0") ;
model status = age scar / dist=bin type3 ;
weight n ;

run;

/*
Q7:
If we erroneously omit the matching variable (age) from the analysis
we get a more precise estimate, but the estimate is quite strongly
biased towards 0

*/
proc genmod data=bcgdata;
where status=’case’ or status=’conmatch’ ;
class age (param=ref ref="1")

scar (param=ref ref="0") ;
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model status = scar / dist=bin type3 ;
weight n ;

run;

3.5 Case-control study of malignant melanoma.

Anne Østerlind conducted in the middle of the 80’s a case-control study of risk factors for
malignant melanoma in Denmark.

The review paper “Malignant melanoma in Denmark” from Acta Oncologica, 1990[3] is
from Anne Østerlind’s thesis and gives an overview of the results from the study which
included 1400 interviewed persons, 474 cases and 926 controls, cf. table 5 in the article.

In the article incidence changes between 1943 and 1982 are also discussed; that part of
the paper will not be touched upon in this exercise.

3.5.1 Discussion of the article.

1. Explain the design, the data base and data collection, particularly how the matching
was conducted.

The study is a group-matched (stratified) case-control study. Based on knowledge of
the age- and sex-distribution of melanoma cases in Denmark a sample of the
population with the same age- and sex-distribution was requested from the CPR.

The data base (study base) is persons living in the eastern part of Denmark.

Data were collected by personal interview.

2. How were interviews planned to minimize bias?

Interviewers were blinded to the case/control status of the persons they interviewed
for the study.

3. Explain the drop-out, particularly the analyses in Tables 5-7. What are the
consequences of these results for the subsequent analyses?

The drop-outs are differential between age-classes, older seem to be less likely to
respond. It would have been more informative to have had the response probabilities
for each subcategory, instead of the relative distribution separately for responders
and non-responders.

4. How are the analyses carried out? Are all variables included in one step or are the
analyses conducted in smaller steps? How are the matching variables accounted for?
Comments?

Analyses are conducted first with one variable at a time, giving marginal results, and
then jointly to give mutually controlled results.

Sex, but not age, is included in the controlled analyses, so strictly speaking there is a
potential bias. Particularly if confounding is expected, that is if the distribution of
the risk factors are different across age-classes. This is however not particularly likely.

5. Explain the analyses presented in Table 9. How many logistic regression models are
fitted here?
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Table 9 contains 6 analyses of one variable and 1 analysis with all variables, that is a
total of 7 analyses.

6. What is the conclusion from the analyses in the table?

Table 9 seems to indicate that freckles and to some extent skin and hair colour are
the major (non-modifiable) risk factors for melanoma of the skin.

7. What is the purpose of Table 11?

Table 11 shows the joint effect of freckles and naevi on the risk of melanoma. Clearly
the risk increases by both, but there is no assessment of whether an interaction is
present or not. Incidentally, as you will see, there is none.

8. Which modifiable factors seem to affect the melanoma risk?

Number of sunburns before age 15. So one would in general expect that sunlight
exposure increases the occurrence of melanoma. However detailed assessment of
exposure history for each piece of skin for each study participant is of course
impossible. So this seems to be pretty much as good as it gets.

3.5.2 Melanoma data

The SAS-program listed below reads data and does the analyses requested in the questions.
Title statemenst and comments explains what question the code relates to.

3.5.3 Simple tabulation analysis

1. Make the two by two table showing the association between case-control status and
whether or not the person experienced any sunburns before the age of 15. SAS-users
may use the program melanom.sas to read in the data from www. Estimate the odds
ratio with associated 95% confidence limits and test for no association between the
risk factor and case-control status.

2. Conduct similar analyses for the factors sex, hair, eyes, freckles, acuterea,

chronrea. Compare with Table 9 in the article.

3. The case control study was matched for sex and age and, therefore, analyses of any
risk factor should be adjusted for these two variables. Study how much the
association between the risk factor “any sunburns before the age of 15” and
case-control status is affected by adjustment for sex.

4. Same question for age.

These analyses can be accomplished using the following SAS program:

data mel;
* filename melfile url "http://www.biostat.ku.dk/~pka/epidata/melanom.txt";
* infile melfile firstobs=2 ;
infile "../data/melanom.txt" firstobs=2 ;
input casecon sex ageint agroup skin hair eyes freckles acuterea

chronrea nvsmall nvlarge nvtot burn15;
run;

/* Q1 ----------------------------------------------------------------------
Create binary variable for sunburns in new DATA step */
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data mel;
set mel;
if burn15 = 0 then burnbin = 0 ;
if burn15 > 0 then burnbin = 1 ;
if burn15 = . then burnbin = . ;

/* or a little shorter and less easy to read (adding and subtracting
burnbin makes sure that missing values are carried over to the new
variable) */
brbin = ( burn15 > 0 ) + burnbin - burnbin ;

run;

proc freq data=mel;
tables casecon * burnbin / chisq relrisk;
run;

/* Q2 ----------------------------------------------------------------------
NB the analysis of sex is unjustified due to matching on sex */

proc freq data=mel;
tables casecon * sex / chisq relrisk;
run;

/* Q2 ----------------------------------------------------------------------
The analysis of hair is done in 3 steps looking at 3 2 by 3 tables with
dark haired people as reference throughout */

proc freq data = mel;
where hair=0 or hair=1;

tables casecon*hair/chisq relrisk;
run;

proc freq data = mel;
where hair=0 or hair=2;

tables casecon*hair/chisq relrisk;
run;

proc freq data = mel;
where hair=0 or hair=3;

tables casecon*hair/chisq relrisk;
run;

/* Q2 ----------------------------------------------------------------------
Similar approach for the other risk factors */

proc freq data=mel;
where eyes=0 or eyes=1;

tables casecon*eyes/chisq relrisk;
run;

proc freq data=mel;
where eyes=0 or eyes=2;

tables casecon*eyes/chisq relrisk;
run;

proc freq data=mel;
where skin=0 or skin=1;

tables casecon*skin/chisq relrisk;
run;

proc freq data=mel;
where skin=0 or skin=2;

tables casecon*skin/chisq relrisk;
run;

/* The factors freckles and acuterea need recoding first */

data mel;
set mel;
newfreck = 3 - freckles ;
newacute = 4 - acuterea ;
chronrea = chronrea - 1 ;

run;

/* freckels, one level at a time */
proc freq data=mel;
where newfreck=0 or newfreck=1;

tables casecon*newfreck/chisq relrisk;
run;

proc freq data=mel;
where newfreck=0 or newfreck=2;

tables casecon*newfreck/chisq relrisk;
run;

/* acute reaction, one level at a time */
proc freq data=mel;
where newacute=0 or newacute=1;

tables casecon*newacute/chisq relrisk;
run;
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proc freq data=mel;
where newacute=0 or newacute=2;

tables casecon*newacute/chisq relrisk;
run;

proc freq data=mel;
where newacute=0 or newacute=3;

tables casecon*newacute/chisq relrisk;
run;

/* chronic reaction, one level at a time */
proc freq data=mel;
where chronrea=0 or chronrea=1;

tables casecon*chronrea/chisq relrisk;
run;

proc freq data=mel;
where chronrea=0 or chronrea=2;

tables casecon*chronrea/chisq relrisk;
run;

proc freq data=mel;
where chronrea=0 or chronrea=3;

tables casecon*chronrea/chisq relrisk;
run;

/* chronic reaction, one level at a time - controlling for sex */
proc freq data=mel;
where chronrea=0 or chronrea=1;

tables sex * casecon * chronrea / chisq relrisk cmh ;
run;

proc freq data=mel;
where chronrea=0 or chronrea=2;

tables sex * casecon * chronrea / chisq relrisk cmh ;
run;

proc freq data=mel;
where chronrea=0 or chronrea=3;

tables sex * casecon * chronrea / chisq relrisk cmh ;
run;

/* Using proc genmod for chronic reaction */
proc genmod data = mel descending ;
class chronrea ;
model casecon = chronrea

/ dist=bin type3 ;
estimate "kronisk 1 vs 4" chronrea 1 0 0 -1 / exp ;
estimate "kronisk 2 vs 4" chronrea 0 1 0 -1 / exp ;
estimate "kronisk 3 vs 4" chronrea 0 0 1 -1 / exp ;

run ;

/* Using proc genmod for chronic reaction controlling for sex */
proc genmod data = mel ;
class chronrea sex ;
model casecon = sex chronrea

/ dist=bin type3 ;
estimate

run ;

/* Using proc genmod for chronic reaction controlling for age and sex */
proc genmod data = mel descending ;
class brbin sex agroup ;
model casecon = brbin

/ dist=bin type3 ;
estimate "solsk < 15" brbin -1 1 / exp ;

run ;

proc genmod data = mel descending ;
class brbin sex agroup ;
model casecon = brbin sex agroup

/ dist=bin type3 ;
estimate "solsk < 15" brbin -1 1 / exp ;

run ;

3.5.4 Introductory analyses.

1. Estimate (log-)odds ratios for the variable skin (see top left in AØ’s Table 9).
SAS-users may use the program melanom.sas.

2. Estimate also odds ratios (in SAS: use ESTIMATE statements).



24 Solutions with SAS Epidemiology

3. Conduct the other analyses in AØ’s Table 9 (left part) where the factors hair,

eyes, freckles, acuterea, chronrea are studied one at a time.

4. Conduct the analysis corresponding to Table 9 (right part) where several variables are
included simultaneously (see the table footnote).

5. Reconstruct the results from AØ’s Table 10 concerning number of raised naevi.

NB: new variables must be defined from the original variables nvtot, nvsmall,

nvlarge.

3.5.5 Trend tests and interactions.

6. In the analyses so far all variables have been considered as categorical (’class’ in
SAS) variables while all tests in Tables 9 and 10 are trend tests. Conduct the analyses
which give the P -values in Table 9 (right part) for the variables skin and freckles.

7. May freckles be scored linearly (1, 2, 3), when this variable is studied separately?
(Conduct a test for linearity/departures from trend).

8. In AØ’s Table 11 freckles and the total number of naevi (suitably grouped) are
studied. Conduct this analysis. Is there any interaction between these two variables?

9. Study, in a similar vein, interactions between acuterea and skin and between the
grouped version of nnvtot from question 5. and agroup.

10. All of AØ’s analyses are conducted without accounting for the match variable age
(agroup) (in spite of warnings given by Clayton & Hills!). Repeat some of the
previous analyses adjusting for agroup. Are there any substantial differences?
Explain!

These analyses can be accomplished using the following SAS program:

options ps=300 ;
data mel;
* filename melfile url "http://www.biostat.ku.dk/~pka/epidata/melanom.txt";
* infile melfile firstobs=2 ;
infile "../data/melanom.txt" firstobs=2 ;
input casecon sex ageint agroup skin hair eyes freckles acuterea

chronrea nvsmall nvlarge nvtot burn15;
run;

/* Q1 Create binary variable for sunburns in new DATA step */

data mel;
set mel;
if burn15 = 0 then burnbin = 0 ;
if burn15 > 0 then burnbin = 1 ;
if burn15 = . then burnbin = . ;

/* or a little shorter and less easy to read (adding and subtracting
burnbin makes sure that missing values are carried over to the new
variable) */
brbin = ( burn15 > 0 ) + burnbin - burnbin ;

run;
proc print data = mel(obs=10) ; run;

/* Introductory analyses ***********************************************/
/* Q1 & 2

Effect of skincolor on the odds of MM.
Remember the descending option to proc genmod to get the response modelling right
*/

proc genmod data = mel descending;
class skin ;
model casecon = skin / dist=binomial ;
estimate "OR light vs. dark " skin -1 0 1 / exp ;
estimate "OR medium vs. dark " skin -1 1 0 / exp ;
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estimate "OR ligth vs. medium " skin 0 -1 1 / exp ;
run ;

proc genmod data = mel descending;
model casecon = skin / dist=binomial ;

run ;

/* Q3
Same analysis for hair eyes freckles akurea and chronrea
*/

proc genmod data = mel descending;
class hair ;
model casecon = hair / dist=binomial ;
estimate "OR light vs. black " hair -1 1 0 0 / exp ;
estimate "OR blond vs. black " hair -1 0 1 0 / exp ;
estimate "OR red vs. black " hair -1 0 0 1 / exp ;

run ;
proc genmod data = mel descending;
class eyes ;
model casecon = eyes / dist=binomial ;
estimate "OR grey vs. brown" eyes -1 1 0 / exp ;
estimate "OR blue vs. brown" eyes -1 0 1 / exp ;

run ;
proc genmod data = mel descending;
class freckles ;
model casecon = freckles / dist=binomial ;
estimate "OR some vs. none" freckles 0 1 -1 / exp ;
estimate "OR many vs. none" freckles 1 0 -1/ exp ;

run ;
proc genmod data = mel descending;
class acuterea ;
model casecon = acuterea / dist=binomial ;
estimate "OR blisters vs. none" acuterea 1 0 0 -1 / exp ;
estimate "OR painful vs. none" acuterea 0 1 0 -1 / exp ;
estimate "OR mild vs. none" acuterea 0 0 1 -1 / exp ;

run ;
proc genmod data = mel descending;
class chronrea ;
model casecon = chronrea / dist=binomial ;
estimate "OR moderate vs. deep" chronrea -1 1 0 0 / exp ;
estimate "OR mild vs. deep" chronrea -1 0 1 0 / exp ;
estimate "OR no tan vs. deep" chronrea -1 0 0 1 / exp ;

run ;

/* Q4
Here repeat all the previous analyses where all varaibles are included
simultaneously and adjusted for sex
*/

proc genmod data = mel descending;
class sex skin hair eyes freckles acuterea chronrea ;
model casecon = sex skin hair eyes freckles acuterea chronrea / dist=binomial ;
estimate "OR light vs. dark " skin -1 0 1 / exp ;
estimate "OR medium vs. dark " skin -1 1 0 / exp ;
estimate "OR light vs. black " hair -1 1 0 0 / exp ;
estimate "OR blond vs. black " hair -1 0 1 0 / exp ;
estimate "OR red vs. black " hair -1 0 0 1 / exp ;
estimate "OR grey vs. brown" eyes -1 1 0 / exp ;
estimate "OR blue vs. brown" eyes -1 0 1 / exp ;
estimate "OR some vs. none" freckles 0 1 -1 / exp ;
estimate "OR many vs. none" freckles 1 0 -1/ exp ;
estimate "OR blisters vs. none" acuterea 1 0 0 -1 / exp ;
estimate "OR painful vs. none" acuterea 0 1 0 -1 / exp ;
estimate "OR mild vs. none" acuterea 0 0 1 -1 / exp ;
estimate "OR moderate vs. deep" chronrea -1 1 0 0 / exp ;
estimate "OR mild vs. deep" chronrea -1 0 1 0 / exp ;
estimate "OR no tan vs. deep" chronrea -1 0 0 1 / exp ;

run ;

proc genmod data = mel descending;
class sex skin hair eyes freckles acuterea chronrea ;
model casecon = sex skin hair eyes freckles acuterea chronrea / dist=binomial type3 ;

run ;

/* Q5
Construct the total numver of nevi and group then 1 / 2-4 /5+
*/

data mel ;
set mel ;
gnvsml = ( nvsmall>0 ) + ( nvsmall>1 ) + ( nvsmall>4 ) + nvsmall-nvsmall ;
gnvlrg = ( nvlarge>0 ) + ( nvlarge>1 ) + ( nvlarge>4 ) + nvlarge-nvlarge ;
gnvtot = ( nvtot >0 ) + ( nvtot >1 ) + ( nvtot >4 ) + nvtot -nvtot ;

run ;

/* UNadjusted analyses */
proc genmod data = mel descending;
class gnvsml ;
model casecon = gnvsml / dist=binomial ;
estimate "OR gnvsml 1 vs. none" gnvsml -1 1 0 0 / exp ;
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estimate "OR gnvsml 2-4 vs. none" gnvsml -1 0 1 0 / exp ;
estimate "OR gnvsml 5+ vs. none" gnvsml -1 0 0 1 / exp ;
estimate "OR gnvsml 1 vs. none" gnvsml -1 1 0 0 / exp ;
estimate "OR gnvsml 2-4 vs. 1" gnvsml 0 -1 1 0 / exp ;
estimate "OR gnvsml 5+ vs. 2-4" gnvsml 0 0 -1 1 / exp ;

run ;

proc genmod data = mel descending;
class gnvlrg ;
model casecon = gnvlrg / dist=binomial ;
estimate "OR gnvlrg 1 vs. none" gnvlrg -1 1 0 0 / exp ;
estimate "OR gnvlrg 2-4 vs. none" gnvlrg -1 0 1 0 / exp ;
estimate "OR gnvlrg 5+ vs. none" gnvlrg -1 0 0 1 / exp ;

run ;

proc genmod data = mel descending;
class gnvtot ;
model casecon = gnvtot / dist=binomial ;
estimate "OR gnvtot 1 vs. none" gnvtot -1 1 0 0 / exp ;
estimate "OR gnvtot 2-4 vs. none" gnvtot -1 0 1 0 / exp ;
estimate "OR gnvtot 5+ vs. none" gnvtot -1 0 0 1 / exp ;

run ;

/* Adjusted analyses */
proc genmod data = mel descending;
class gnvsml sex freckles hair skin ;
model casecon = gnvsml sex freckles hair skin / dist=binomial type3 ;
estimate "OR gnvsml 1 vs. none" gnvsml -1 1 0 0 / exp ;
estimate "OR gnvsml 2-4 vs. none" gnvsml -1 0 1 0 / exp ;
estimate "OR gnvsml 5+ vs. none" gnvsml -1 0 0 1 / exp ;

run ;

proc genmod data = mel descending;
class gnvlrg sex freckles hair skin ;
model casecon = gnvlrg sex freckles hair skin / dist=binomial ;
estimate "OR gnvlrg 1 vs. none" gnvlrg -1 1 0 0 / exp ;
estimate "OR gnvlrg 2-4 vs. none" gnvlrg -1 0 1 0 / exp ;
estimate "OR gnvlrg 5+ vs. none" gnvlrg -1 0 0 1 / exp ;

run ;

proc genmod data = mel descending;
class gnvtot sex freckles hair skin ;
model casecon = gnvtot sex freckles hair skin / dist=binomial ;
estimate "OR gnvtot 1 vs. none" gnvtot -1 1 0 0 / exp ;
estimate "OR gnvtot 2-4 vs. none" gnvtot -1 0 1 0 / exp ;
estimate "OR gnvtot 5+ vs. none" gnvtot -1 0 0 1 / exp ;

run ;

/* Trend tests and interactions ****************************************/

/* Q6
Trend tests for skin and freckles
*/

data mel ;
set mel ;
vskin = skin ;
vfreck = freckles ;

run ;

proc genmod data = mel descending;
class skin ;
model casecon = vskin / dist=binomial type3 ;
run ;

proc genmod data = mel descending;
class skin ;
model casecon = vskin skin / dist=binomial type3 ;
run ;

proc genmod data = mel descending;
class sex skin hair eyes freckles acuterea chronrea ;
model casecon = sex vskin hair eyes freckles acuterea chronrea / dist=binomial type3 ;
run ;

proc genmod data = mel descending;
class freckles ;
model casecon = vfrevk / dist=binomial type3 ;
run ;

proc genmod data = mel descending;
class sex skin hair eyes freckles acuterea chronrea ;
model casecon = sex skin hair eyes acuterea chronrea vfreck / dist=binomial type3 ;
run ;

/* Q7
Test for linearity - test if the categorical variable can be removed
*/

proc genmod data = mel descending;
class freckles ;
model casecon = vfreck freckles / dist=binomial type3 ;
run ;

proc genmod data = mel descending;
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class sex skin hair eyes freckles acuterea chronrea ;
model casecon = sex skin hair eyes acuterea chronrea vfreck freckles / dist=binomial type3 ;
run ;

/* Q8
Interaction between freckles and total naevi.
First the table
*/

proc tabulate data=mel missing noseps formchar=" ---- ---" ;
class casecon freckles gnvtot ;
table freckles all,

( gnvtot all ) * casecon="Ca/Co" * f= 5.
/ rts = 15 ;

run ;
/* Without missing */
proc tabulate data=mel noseps formchar=" ---- ---" ;
class casecon freckles gnvtot ;
table freckles all,

( gnvtot all ) * casecon="Ca/Co" * f= 5.
/ rts = 15 ;

run ;

/* Estimates of OR for each combination of freckles and nvtot,
relative to the lowest level of both.
*/

proc genmod data = mel descending;
class freckles gnvtot ;
model casecon = freckles * gnvtot / dist=binomial ;
estimate "1,2" freckles * gnvtot 0 0 0 0 0 0 0 0 -1 1 0 0 / exp ;
estimate "1,3" freckles * gnvtot 0 0 0 0 0 0 0 0 -1 0 1 0 / exp ;
estimate "1,4" freckles * gnvtot 0 0 0 0 0 0 0 0 -1 0 0 1 / exp ;
estimate "2,1" freckles * gnvtot 0 0 0 0 1 0 0 0 -1 0 0 0 / exp ;
estimate "2,2" freckles * gnvtot 0 0 0 0 0 1 0 0 -1 0 0 0 / exp ;
estimate "2,3" freckles * gnvtot 0 0 0 0 0 0 1 0 -1 0 0 0 / exp ;
estimate "2,4" freckles * gnvtot 0 0 0 0 0 0 0 1 -1 0 0 0 / exp ;
estimate "3,1" freckles * gnvtot 1 0 0 0 0 0 0 0 -1 0 0 0 / exp ;
estimate "3,2" freckles * gnvtot 0 1 0 0 0 0 0 0 -1 0 0 0 / exp ;
estimate "3,3" freckles * gnvtot 0 0 1 0 0 0 0 0 -1 0 0 0 / exp ;
estimate "3,4" freckles * gnvtot 0 0 0 1 0 0 0 0 -1 0 0 0 / exp ;
run ;

/* Same model, but differently parametrized to make the type3
likelihood ratio test for interaction meaningful */

proc genmod data = mel descending;
class freckles gnvtot ;
model casecon = freckles gnvtot freckles*gnvtot / dist=binomial type3 ;
run ;

/* Likelihood ratio test for quantitatlive interaction by defining a
quantitative interaction variable, a product of nvtot */

data mel ;
set mel;
fnv = (4-freckles)*(gnvtot+1) ;
vfreck = freckles ;
vnvtot = gnvtot ;

run ;

title1 "Parametric 1 d.f. interaction between freckles and naevi" ;
proc genmod data = mel descending;
class freckles gnvtot ;
model casecon = freckles gnvtot fnv / dist=binomial type3 ;
run ;

title1 "Marginal test for linearity by freckles" ;
proc genmod data = mel descending;
class freckles gnvtot ;
model casecon = vfreck freckles gnvtot / dist=binomial type3 ;
run ;

title1 "Marginal test for trend by freckles" ;
proc genmod data = mel descending;
class freckles gnvtot ;
model casecon = vfreck gnvtot / dist=binomial type3 ;
run ;

title1 "Marginal test for linearity by naevi" ;
proc genmod data = mel descending;
class freckles gnvtot ;
model casecon = freckles vnvtot gnvtot / dist=binomial type3 ;
run ;

title1 "Marginal test for trend by naevi" ;
proc genmod data = mel descending;
class freckles gnvtot ;
model casecon = freckles vnvtot / dist=binomial type3 ;
run ;

proc genmod data = mel descending;
class freckles gnvtot ;
model casecon = vfreck vnvtot / dist=binomial type3 ;
run ;

/* Q9a



28 Solutions with SAS Epidemiology

Interaction between acuterea and skin */
title1 "Acuterea and skin" ;
proc tabulate data=mel missing noseps formchar=" ---- ---" ;
class casecon acuterea skin ;
table skin all,

( acuterea all ) * casecon="Ca/Co" * f=5.
/ rts = 15 ;

run ;
/* Without missing */
proc tabulate data=mel noseps formchar=" ---- ---" ;
class casecon acuterea skin ;
table skin all,

( acuterea all ) * casecon="Ca/Co" * f=5.
/ rts = 15 ;

run ;

/* A variable to use as quantitrative interaction:
Skin is coded so that increasing values 0-2 corresponsds to increasing risk,
Acuterea is coded so that DEcreasing values 4-1 corresponsds to increasing risk
*/

data mel ;
set mel;
acsk = (5-acuterea)*(skin+1) ;

run ;

proc genmod data = mel descending;
class skin acuterea;
model casecon = skin * acuterea / dist=binomial ;
estimate " dark,mild" skin * acuterea 0 0 1 -1 0 0 0 0 0 0 0 0 / exp ;
estimate " dark,pain" skin * acuterea 0 1 0 -1 0 0 0 0 0 0 0 0 / exp ;
estimate " dark,blis" skin * acuterea 1 0 0 -1 0 0 0 0 0 0 0 0 / exp ;
estimate " med,none" skin * acuterea 0 0 0 -1 0 0 0 1 0 0 0 0 / exp ;
estimate " med,mild" skin * acuterea 0 0 0 -1 0 0 1 0 0 0 0 0 / exp ;
estimate " med,pain" skin * acuterea 0 0 0 -1 0 1 0 0 0 0 0 0 / exp ;
estimate " med,blis" skin * acuterea 0 0 0 -1 1 0 0 0 0 0 0 0 / exp ;
estimate "light,none" skin * acuterea 0 0 0 -1 0 0 0 0 0 0 0 1 / exp ;
estimate "light,mild" skin * acuterea 0 0 0 -1 0 0 0 0 0 0 1 0 / exp ;
estimate "light,pain" skin * acuterea 0 0 0 -1 0 0 0 0 0 1 0 0 / exp ;
estimate "light,blis" skin * acuterea 0 0 0 -1 0 0 0 0 1 0 0 0 / exp ;
run ;

/* Same model, but differently parametrized to make the type3
likelihood ratio test for interaction meaningful */

title1 "Skin x acuterea interaction - ?" ;
proc genmod data = mel descending;
class skin acuterea ;
model casecon = skin acuterea skin*acuterea / dist=binomial type3 ;
run ;

/* Likelihood ratio test for quantitative interaction by defining a
quantitative interaction variable, a product of skin and acuterea */

title1 "Skin x acuterea interaction - is it linear ?" ;
proc genmod data = mel descending;
class skin acuterea ;
model casecon = skin acuterea acsk skin*acuterea / dist=binomial type3 ;
run ;

title1 "Skin x acuterea interaction - is it significant GIVEN linear ?" ;
proc genmod data = mel descending;
class skin acuterea ;
model casecon = skin acuterea acsk / dist=binomial type3 ;
run ;

/* Q10
Analysis skin as categorical / linear with and without agroup
Very small differences
*/

title1 "skin without agroup" ;
proc genmod data = mel descending;
class skin agroup ;
model casecon = skin / dist=binomial type3 ;

run ;
title1 "skin with agroup" ;
proc genmod data = mel descending;
class skin agroup ;
model casecon = skin agroup / dist=binomial type3 ;

run ;
title1 "Trend test for skin without agroup" ;
proc genmod data = mel descending;
class skin agroup ;
model casecon = vskin / dist=binomial type3 ;

run ;
title1 "Trend test for skin with agroup" ;
proc genmod data = mel descending;
class skin agroup ;
model casecon = vskin agroup / dist=binomial type3 ;

run ;
title1 "Trend test for skin without agroup but other vars" ;
proc genmod data = mel descending;
class sex skin hair eyes freckles acuterea chronrea agroup ;
model casecon = sex vskin hair eyes freckles acuterea chronrea / dist=binomial type3 ;

run ;
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title1 "Trend test for skin with agroup and other vars" ;
proc genmod data = mel descending;
class sex skin hair eyes freckles acuterea chronrea agroup ;
model casecon = sex vskin hair eyes freckles acuterea chronrea agroup / dist=binomial type3 ;

run ;

title1 "brbin without agroup" ;
proc genmod data = mel descending;
class brbin agroup ;
model casecon = brbin / dist=binomial type3 ;

run ;
title1 "brbin with agroup" ;
proc genmod data = mel descending;
class brbin agroup ;
model casecon = brbin agroup / dist=binomial type3 ;

run ;

3.6 Testicular cancer risk and maternal parity.

This exercise deals with the article “Testicular cancer risk and maternal parity: a
population-based cohort study”, by T. Westergaard, P.K. Andersen, J.B. Pedersen, M.
Frisch, J.H. Olsen, M. Melbye. Br. J. Cancer, 77,pp. 1180-1185 (1998). [4].

3.6.1 Practical exercises

The file testis.txt, available at www contains for each (non-empty) combination of the
factors SON_AGE, SON_KOH, MOTH_AGE, PARITY the number of person-years at risk PYRS,
the numbers of non-seminomas and seminomas, respectively NONSEMI SEMI, and the total
number of testis cancer cases CASES. The first line of the file contains the variable names.

The SAS-program Testis-sol.sas listed below reads the data and does the analyses
required to answer the practical questions.

10. Compute the crude rate ratio for testis cancer for parity 2+ versus parity 1. Compare
with 5. above. SAS-users may use the SAS program testis.sas (and PROC GENMOD).

11. Reconstruct the estimates for “parity of mother at birth of son” from the top of Table
1 in the article both for all testis cancers and for non-seminomas.

12. Reconstruct the estimates from Table 2 in the article concerning mother’s age (for all
testis cancers). Is there an interaction between parity and mother’s age?

13. Same question for birth cohort of the son.

data twe;
filename testfile url "http://www.biostat.ku.dk/~pka/epidata/testis.txt";
infile testfile firstobs=2;
input SON_AGE SON_KOH MOTH_AGE PARITY PYRS NONSEMI SEMI CASES;
lpyrs=log(pyrs);
par2 = (parity>=2);
* Merging the the first two cohorts ;
if son_koh=1973 then son_koh=1968;
* Grouping cohort to 3 levels ;

if son_koh=1950 or son_koh=1958 then son_kohny=1;
else if son_koh=1963 then son_kohny=2;
else if son_koh=1968 or son_koh=1973 then son_kohny=3;

run;

/* Q10
*/

title ’Q10 Crude RR for parity 2+ vs 1’;
proc genmod data=twe;

class par2;
model cases = PAR2 / offset=lpyrs dist=poisson type3 ;
estimate "par 2+ vs par 1" PAR2 -1 1 / exp ;

run;
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/* Q11
*/

title ’Q11a All testis cancers’;
proc genmod data=twe ;
class SON_AGE SON_KOH MOTH_AGE parity;
model cases = SON_AGE SON_KOH MOTH_AGE PARity

/ offset=lpyrs dist=poi type3;
estimate ’par 2 vs. par 1’ parity -1 1 0 0 /exp;
estimate ’par 3 vs. par 1’ parity -1 0 1 0 /exp;
estimate ’par 4+ vs. par 1’ parity -1 0 0 1 /exp;

run;

title ’Q11b Non seminoma testis cancers’;
proc genmod data=twe;
class SON_AGE SON_KOH MOTH_AGE parity;
model nonsemi = SON_AGE SON_KOH MOTH_AGE PARity

/ offset=lpyrs dist=poi type3;
estimate ’par 2 vs. par 1’ parity -1 1 0 0 /exp;
estimate ’par 3 vs. par 1’ parity -1 0 1 0 /exp;
estimate ’par 4+ vs. par 1’ parity -1 0 0 1 /exp;

run;

/* Q12
Estimates concerning Mother’s age at first birth
*/

title "Q12: Mother’s age at boy’s birth - test of interaction" ;
proc genmod data=twe;
class SON_AGE SON_KOH MOTH_AGE par2;
model cases = SON_AGE SON_KOH MOTH_AGE par2 moth_age*par2

/ offset=lpyrs dist=poi type3 ;
run;

title "Q12: Mother’s age at boy’s birth - interaction effects" ;
proc genmod data=twe;
class SON_AGE SON_KOH MOTH_AGE par2;
model cases = SON_AGE SON_KOH MOTH_AGE moth_age*par2

/ offset=lpyrs dist=poi type3;
estimate ’par2+ vs. 1, <20’ moth_age*par2 -1 1 0 0 0 0 0 0 /exp;
estimate ’par2+ vs. 1, 20-24’ moth_age*par2 0 0 -1 1 0 0 0 0 /exp;
estimate ’par2+ vs. 1, 25-29’ moth_age*par2 0 0 0 0 -1 1 0 0 /exp;
estimate ’par2+ vs. 1, 30+ ’ moth_age*par2 0 0 0 0 0 0 -1 1 /exp;
run;

/* Q13
Estimates concerning Birth cohort of the son
*/

title ’Q13 Birth cohort of the son - test of interaction’ ;
proc genmod data=twe ;
class SON_AGE MOTH_AGE son_kohny son_koh par2;
model cases=SON_AGE MOTH_AGE son_koh par2 son_kohny*par2

/offset=lpyrs dist=poi type3;
run;

title ’Q13 Birth cohort of the son - interaction effects’ ;
proc genmod data=twe ;
class SON_AGE MOTH_AGE son_kohny son_koh par2;
model cases=SON_AGE MOTH_AGE son_koh son_kohny*par2

/offset=lpyrs dist=poi type3;
estimate ’par 2+ vs. 1, 1950-63’ son_kohny*par2 -1 1 0 0 0 0 /exp;
estimate ’par 2+ vs. 1, 1963-67’ son_kohny*par2 0 0 -1 1 0 0 /exp;
estimate ’par 2+ vs. 1, 1968-92’ son_kohny*par2 0 0 0 0 -1 1 /exp;

run;



Chapter 4

Solutions with Stata

The Stata-programs are available on the course web site in the folder
http://BendixCarstensen.com/EpiF2013/stata. There is also a link to this on the
website.

Stata

Stata is a commercial statistical package which is renowned for it speed. It is not as
expensive as SAS. It has good capabilities for documenting analyses through log-files
(derived from do-files) that provides good and readable documentation of analyses in a
readable format.

4.1 Vaccinations and childhood mortality in

Guinea-Bissau

In rural Guinea-Bissau, 5274 children under 7 months of age were visited two times at
home with an interval of six months (Kristensen et al., BMJ, 2000, [2]). Information about
vaccination (BCG, DTP, measles vaccine) was collected at each visit, and at the second
visit, death during follow-up was registered. Some children moved away during follow-up,
some survived until the next visit. The following variables are found in the data set
bissau.txt:

id Id number
fuptime Follow-up time in days
dead 0 = censored, 1 = dead
bcg 1 = Yes, 2 = No
dtp Number of DTP doses (0,1,2,3)
age Age at first visit in days
agem Age at first visit in months

1

http://BendixCarstensen.com/EpiF2013/stata
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4.1.1 A single risk, odds and rate

4.1.2 A single risk, odds and rate

Tabulate the number of children is 5274, the number of deaths 222 and the number of
person-years 2409.8 (namely 880187 days)

• Following the lectures we get

1. The overall risk of death is 222/5274=4.21%. A näıve 95% confidence inerval for
this is:

p±1.96
√
p× (1− p)/n = 0.0421±1.96

√
0.0421× 0.9579/5274 = (0.0367; 0.0475),

but a better one is the formula:

p

p+ (1− p) ×
÷ erf

, erf = exp
(

1.96
√

1/x+ 1/(n− x)
)

Which gives:
erf = exp(1.96

√
1/222 + 1/5052 = 1.144

and so the c.i.:

0.0421

0.0421 + 0.9579
×
÷ 1.144

= (0.0370; 0.0479)

2. The overall odds of death is simply:

222

5274− 222
= 0.0439

and the s.e. on the log-scale is is used to compute the 95% c.i.:

erf = exp
(

1.96
√

1/222 + 1/5052
)

= 1.144

so we get:

0.0439
×
÷ 1.144 = c(0.0384, 0.0502)

3. The overall rate of death (per year) is

222/2409.8 = 0.0921

and the error factor is exp(1.96/sqrtD) = 1.141 (with D = 222), so the
confidence interval is:

0.0921
×
÷ 1.141 = (0.0807, 0.1050)

• Using your statistical package, you get (almost) the same confidence intervals, the
programs are:

The Stata-program is in http://BendixCarstensen.com/EpiF2013/stataas
bissau-sol0.do.

The following Stata-programs do all the calculations required in the questions for the
other exercsies on the Bissau-data:

http://BendixCarstensen.com/EpiF2013/stata
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4.1.3 Rates, risks and odds

4.1.4 Rate ratio, risk ratio, odds ratio

use "E:\Epidemiologi\bissau.dta", replace

*The risk of death

* TO USE THE EPITAB COMMANDS WE NEED EXPOSURE VARIABLES CODED AS 0 or 1 AND
* OUTCOME CODED AS 0 or 1

gen bcg01=bcg
replace bcg01=0 if bcg==2

*QUESTION 2.1.1. 1 and 2
ci dead if bcg==1, binomial wald

ci dead if bcg==2, binomial wald

*QUESTION 2.1.1.3

tabodds dead bcg01

*QUESTION 2.1.1.4

ci dead if bcg==1, exposure(fuptime)
ci dead if bcg==2, exposure(fuptime)

*QUESTION 2.1.1.5
gen year=fuptime/365.25

ci dead if bcg==1, exposure(year)
ci dead if bcg==2, exposure(year)

*QUESTION 2.1.1.6
gen dtp_any=1 if dtp>0
replace dtp_any=0 if dtp==0

*RISK
ci dead if dtp_any==1, binomial wald

ci dead if dtp_any==0, binomial wald

*ODDS
tabodds dead dtp_any

*RATES

ci dead if dtp_any==1, exposure(fuptime)
ci dead if dtp_any==0, exposure(fuptime)

ci dead if dtp_any==1, exposure(year)
ci dead if dtp_any==0, exposure(year)

***************************
* 2.1.2 *
***************************

*RISK RATIO
*VARIABLES MUST BE 0/1

cs dead bcg01

cc dead bcg01

*QUESTION 2.1.2.2

cs dead dtp_any

cc dead dtp_any

*QUESTION 2.1.2.3

tab bcg01 dtp_any, chi2 expected

*QUESTION 2.1.2.4

cs dead dtp_any if bcg01==1
cs dead dtp_any if bcg01==0

cc dead dtp_any if bcg01==1
cc dead dtp_any if bcg01==0

cc dead dtp_any, by(bcg01)
mhodds dead dtp_any bcg01
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*QUESTION 2.1.2.5

ir dead bcg01 fuptime

ir dead dtp_any fuptime

ir dead dtp_any fuptime if bcg01==1
ir dead dtp_any fuptime if bcg01==0

4.1.5 Confounder control: stratified analysis of odds ratio and
risk ratio.

4.1.6 Survival analysis of childhood mortality in Guinea-Bissau

The Stata program bissau-cox.do in http://BendixCarstensen.com/EpiF2013/stata

reads the data from the web and defines / recodes relevant variables and fits Cox regression
models with follow-up time as the time variable and including bcg and agem as categorical
covariates.

use "C:\ewan\Epidemiologi\Data\bissau.dta", clear

*QUESTION 1
*GETTING READY TO DO A SURVLVAL ANALYSIS

stset fuptime, failure(dead==1)
*NEW VARIABLES ARE CREATED

*COX MODEL

stcox i.bcg i.agem

*THE HAZARD OF DEATH IS 42% HIGHER IN SUBJECTS WITHOUT A BCG VACCINE COMPARED TO
*SUBJECTS WITH THE VACCINE ADJUSTED FOR AGE.

*GETTING THE PARAMETRISATION FROM THE SLIDES:

stcox b2.bcg b6.agem, nohr

stcox b2.bcg b6.agem

*QUESTION 2
gen dtpany=0 if dtp==0
replace dtpany=1 if dtp>0

stcox i.dtpany i.agem

*QUESTION 3
*ADJUST FOR BCG

stcox i.dtpany i.agem b2.bcg
*THE EFFECT OF DTAANY INCREASES

*QUESTION 4
*INTERACTION BETWEEN BCG AND DTPANY?

stcox i.dtpany i.agem b2.bcg i.dtpany#b2.bcg
*THE WALD TEST FOR THE INTERACTION IS NOT SIGNIFICANT
est store m1

stcox i.dtpany i.agem b2.bcg
est store m2
lrtest m1 m2
*LIKELIHOOD RATIO NOT SIGNIFICANT

*QUESTION 5
*USE AGE AS TIME SCALE

gen outage=age+fuptime

stset outage, failure(dead==1) enter(age)

stcox i.dtpany b2.bcg

*QUESTION 6
*REPEAT ANALYSES FROM LECTURES

http://BendixCarstensen.com/EpiF2013/stata
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stset fuptime, failure(dead==1)

stcox b2.bcg i.agem

poisson dead b2.bcg i.agem, exposure(fuptime) ir

logistic dead b2.bcg i.agem

4.2 Case-control study of renal cancer and

trichloroethene

The exercise is based on Vamvakas et al.: Renal cell cancer correlated with occupational
exposure to trichloroethane. J Cancer Res Clin Oncol, 1998, pp 374–382. [1].

The following points were addressed:

1. What is the primary aim of the study?

The primary aim as stated is to assess the effect of thricholorethene (C2HCl3) and
tetrachloroethene (C2Cl4) on the occurrence of kidney cancer. This is based on a
described possible biological mechanism.

2. How were the cases sampled?

Cases in the study were patients who underwent surgery between 1987-12-01 and
1992-05-01, a period of 3.5 years. Of the 78 patients 62 responded (or their next of
kin, since 4 of these 62 were dead)

3. How were the controls sampled?

Controls were sampled from the accident wards of three other hospitals in the same
area, form the period 1993-01-01 to 1993-12-31.

4. Are they comparable; i.e. what assumptions are needed?

In order to deem cases and controls comparable we must assume:

(a) In principle we must assume that the controls would have been enrolled as cases
if they had had a diagnosis of kidney cancer.

In practice it will suffice that the controls comes from a comparable populations,
that is even though they might have been subjected to surgery at a different
hospital in case of kidney cancer, if this were a similar type of hospital it would
have been sufficient.

(b) Exposure distribution in the population has not changed between the
case-selection period (1987–1992) and the control sampling period (1993).

It is of course difficult to assess this without further knowledge about the
industrial development in Nordrhein-Westphalia in the period 1987–1993.

(c) The attendance of the accident ward is unrelated to the exposure of interest.

At face value it seems so, bar of course accidents related to trichloroethene
exposure itself, but we can safely assume that they are very rare compared to
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other. However, the attendance at the accident ward is hardly unrelated to age,
and neither is exposure to to trichloroethene, so the attendance is related to the
exposure, albeit not directly.

(d) Recall of exposure is the same among cases and controls.

It is not stated anywhere whether the purpose of the study was revealed to cases
and controls, but in the likely event that it were, cases may be more prone to
recall exposure to the thricholorethene in order to get an explanation of their
(severe) disease.

As we see there are a few potential biases, some tend to increase the risk estimate;
the problems with age is difficult to assess.

5. What is the (actual) study base?

There is no definite answer to this, but if we define the study base to be the state of
Nordrhein-Westphalia, the validity of the study hinges on assumptions that the
hospitals where cases and controls are sampled are representative of the population
— with respect to the exposure of interest.

Of course, precisely the same argument applies if we define the study base to some
subset of Nordrhein-Westphalia, which includes the uptake-areas of the 4 hospitals,
and incidentally we might define the study base as the uptake area of these 4
hospitals.

6. What study base is the intended (for generalization)?

The intended study base is presumably all industrialized counties comparable to
Germany.

7. Is the sampling scheme incidence density sampling?

The sampling scheme is certainly not incidence density sampling, that would require
that cases were selected among those at risk at the time of the case-occurrence, ad
that is not the case.

8. Can the age-effect on the occurrence of renal cancer be estimated?

The age-effect cannot be estimated; that would require that the controls were a
representative sample (w.r.t. age) of the study base. Sampling persons from the
accident wards makes this a far-fetched assumption.

9. Is age a confounder?

Most likely so; it is definitely associated with both the exposure and the outcome.

10. Key in the numbers in table 6 (p.380), and verify the analysis using Stata.

When we enter the data from table 6 there are a few things to be aware of:

• Unlike previously, we are entering grouped or tabulated data from a table, not
individual records. This means that every line in the input dataset represents as
(usually large) number of individuals.
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• This in turn means that we shall need one line in the data set per entry in the
table. In addition to the number, the line must then contain variables that tells
us whether it is cases/controls, exposed or not, and what age.

• Note that the entries in table 6 in the paper are not the number of cases and
controls, but the number of cases and total number in the strata. So we need to
do a bit of subtraction to get the numbers right.

• Since tabular data are often quite short, it is most convenient to include the
data in the program code itself. This is done by listing the data in the program
starting with input and terminating data with an end.

• In the analysis we need the use the option [fweight=n] (frequenct weights) in
order to tell Stata that the variable n represents the number of observations.

The Stata-program, Renal.do can be found in the folder
http://bendixcarstensen.com/EpiE2012/stata/, and the log is printed at the end
of this section.

11. Is there any evidence of heterogeneity of the odds-ratio across age-classes? (Hint:
Use the Breslow-Day-test.)

There is no evidence of age-heterogeneity, but the age-classes are quite crude
(10-years).

12. In particular, how does the odds-ratio estimate given by Vamvakas et al. compare to
the Mantel-Haenszel estimate based on the same data?

The estimate given in the paper is somewhat smaller than the MH-estimate, but the
substantial message is pretty much the same: definitely an effect, but unclear how
large.

13. What is the main result (in plain words)?

Based on this study alone, there seems to be an excess risk of kidney cancer
associated with trichloroethene exposure, but its cannot really be determined
whether the OR is 2.5 or 25. This is of course due to the rather small sample size.

*FIRST WE NEED TO ENTER THE DATA
* ONE OBSERVATION PER LINE
* AGE GROUP, EXPOSURE, CASE/CONTROL AND N
* CASE MUST BE 1 and CONTROL 0
* EXPOSED=1 AND UNEXPOSED=0
clear
input age tri ck n
30 1 1 2
40 1 1 2
50 1 1 10
60 1 1 1
70 1 1 4
30 0 1 0
40 0 1 1
50 0 1 12
60 0 1 17
70 0 1 9
30 1 0 1
40 1 0 4
50 1 0 2
60 1 0 0
70 1 0 0
30 0 0 21
40 0 0 11
50 0 0 25
60 0 0 14
70 0 0 6

end

http://bendixcarstensen.com/EpiE2012/stata/
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*CRUDE ODDS RATIO NOT ADJUSTING FOR AGE
* MUST REMEMBER THAT EACH LINE REPRESENTS N INDIVIDUALS

cc ck tri [fweight=n]

*ADJUSTING FOR AGE GROUP

cc ck tri [fweight=n], by(age) bd

*STILL MH ODDS SLIGHTLY DIFFERENT METHOD FOR CONFIDENCE INTERVALS
mhodds ck tri [fweight=n], by(age)

4.3 IHD data from Clayton & Hills.

The study is described by Clayton & Hills, Ch. 13. The tabulated data set of counts of
IHD cases and person-years is avaliable from www in the file ihd-tab.txt.

1. Fit the model from Clayton & Hills Tables 22.7-8 (p.222) and perform the tests from
exercises 24.1 and 24.2 (pp.237–238).

2. Fit the model with interaction and re-find results from Clayton & Hills Table 24.5
(p.242) and the test for no interaction.

These two tasks are completed in the Stata-program listed below:

use "http://www.biostat.ku.dk/~pka/spss-stata-data/ihd-tab.dta", clear

*FIT MODEL FROM CLAYTON AND HILLS P. 222

*ON THE LOG SCALE
poisson cases i.exposure i.age, exposure(pyrs)

*REPORT RATE RAIOS
poisson cases i.exposure i.age, exposure(pyrs) irr

*WALD TEST FOR NO EFFECT OF EXPOSURE ON IHD
testparm i.exposure
*THE EFFECT OF EXPOSURE IS STATISTICALLY SIGNIFICANT

*LIKELIHOOD RATIO TEST FOR THE EFFECT OF EXPOSURE ON IHD
*THE MODEL WITH MOST PARAMETERS HAS HIGHEST LOG L
*WE DO NOT GET THE SAME LOG L AS IN THE BOOK BUT THE SAME DIFFERENCE SO
*THERE IS A CONSTANT LEFT OUT.

poisson cases i.exposure i.age, exposure(pyrs)
est store mod1

poisson cases i.age, exposure(pyrs)
est store mod2

lrtest mod1 mod2

*INTERACTIONS
poisson cases i.exposure i.age i.exposure#i.age, exposure(pyrs)
est store mod3

*TEST INTERACTION
lrtest mod1 mod3
*INTERACTION NOT SIGNIFICANT

*EFFECT OF EXPOSURE IN AGE GROUPS
poisson cases i.age i.exposure#i.age, exposure(pyrs)

4.3.1 Using continuous variables

The IHD-data contains energy consumption as a continuous variable, energy, among other
variables.

The questions were:
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1. Read the individual diet data records from the file.

2. Create variables for the person-years, by subtracting entry date from date of exit.
Also create a variable with the log-person-years.

3. Use CHD as outcome variable in a Poisson-analysis with the log-person-years as
offset, using energy as a linear explanatory variable. Is there an effect on mortality?

4. Is there any evidence of a non-linear effect of energy, when using linear splines with
knots at say 2, 2.5 and 3? (approx. the quartiles)

5. Same question for weight and BMI (the latter you have to calculate yourself as
weight/height2).

— and they are addressed in the following Stata-program:

4.3.2 Splitting the follow-up of the IHD-data

The exercise gives quite a thorough introduction to the exercise, sor there is no need to
repeat that here. The analyses can be done using the Stata-program ihd-Lexis-sol.do

which is listed here:

clear

input eksp agr pyrs cases
1 0 346.87 2
1 1 979.34 12
1 2 699.14 14
0 0 560.13 4
0 1 1127.70 6
0 2 794.15 8
end

*QUESTION 1
*FIT POISSON MODEL WITH EXPOSURE AND AGE EFFECT

*ON THE LOG SCALE
poisson cases i.eksp i.agr , exposure(pyrs)

*QUESTION 2
*READ INDIVIDUAL DATA

infile id str10 doe str10 dox chd str10 dob job month energy height weight fat fibre /*
*/ in 2/L using "C:\ewan\Epidemiologi\data\diet.txt", clear

*GET THE DATES INTO DATE FORMAT

gen date_entry= date(doe,"MDY")
gen date_exit= date(dox, "MDY")
gen date_birth= date(dob, "MDY")

format date_entry date_exit date_birth %td

*QUESTION 3
*TELL STATA THAT THIS IS SURVIVAL DATA

stset date_exit, failure(chd==1) entry(date_entry) origin(date_birth) /*
*/ scale(365.25) id(id)

*HOW MANY OBSERVATIONS ?
display _N

*QUESTION 4
*SPLIT THE FOLLOW UP INTO AGE GROUPS 40-50, 50-60, 60-70
*GENERATE A NEW VARIABLE CALLED CURRENT AGE

stsplit current_age, at(40(10)70) after(date_birth)

*QUESTION 5
*HOW MANY OBSERVATIONS?

display _N

*QUESTION 6



10 Solutions with Stata Epidemiology

*HAVE A LOOK AT THE DATA

browse

*QUESTION 7
*TABULATE IHD CASES AND PERSON YEARS BY EXPOSURE AND AGE GROUP

gen pyrs=_t-_t0
gen exposure=1 if energy < 2.75
replace exposure=0 if energy >= 2.75 & energy!=.

*ONLY COUNT CHD CASES ONCE
gen event=_d

table exposure current_age, c(sum event sum pyrs) format(%9.2f)
*CURRENT_AGE=0 IS ALL FOLLOW UP BEFORE AGE 40

*QUESTION 8
*ESTIMATE EFFECT OF CURRENT_AGE AND EXPOSURE
*DROP FOLLOW_UP BEFORE AGE 40

keep if current_age>0

poisson event i.exposure i.current_age, exposure(pyrs)
*THE SAME RESULT AS WITH THE TABULATED DATA

*QUESTION 9
*INTERACTION BETWEEN AGE AND EXPOSURE
poisson event i.exposure i.current_age i.exposure#i.current_age, exposure(pyrs)
testparm i.exposure#i.current_age
est store m1

poisson event i.exposure i.current_age , exposure(pyrs)
est store m2
lrtest m1 m2

*THE GROUPED DATA
collapse (sum) pyrs event , by(exposure current_age)
poisson event i.exposure i.current_age , exposure(pyrs)

4.4 Case-control study of BCG vaccination and

leprosy.

The study is decribed by Clayton & Hills, p.156. In short, 260 cases of leprosy among
individuals aged less than 35 years were ascertained in a study area in Malawi. Subjects
were grouped into 7 age intervals and according to absence or presence of a scar after BCG
vaccination. Three sets of controls were studied:

1. a population survey of 80,622 persons

2. a random sample of 1000 persons

3. a 4 to 1 age-matched sample

1. Fit the model from Clayton & Hills Table 23.5 (p.232).

2. Estimate odds ratios and confidence intervals with non-exposed and youngest,
respectively, as reference.

3. Estimate instead odds ratios and confidence intervals with the age group 20-24 as
reference.

4. Test the hypothesis of no interaction between age and scar.
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5. Analyse the data set with only 1000 controls (i.e., use the controls con1000: Table
23.6, p.233) and compare the precision of the estimate for scar with that based on
the entire sample.

6. Analyse the matched data set (i.e., use the controls conmatch: Table 23.6, p.233) and
compare with the results from Table 23.7.

7. Try (erroneously) to drop age from the analysis of the matched data and study the
consequences for the estimate of scar.

The following Stata program reads the data and produces the solutions to these tasks:

4.5 Case-control study of malignant melanoma.

Anne Østerlind conducted in the middle of the 80’s a case-control study of risk factors for
malignant melanoma in Denmark.

The review paper “Malignant melanoma in Denmark” from Acta Oncologica, 1990[3] is
from Anne Østerlind’s thesis and gives an overview of the results from the study which
included 1400 interviewed persons, 474 cases and 926 controls, cf. table 5 in the article.

In the article incidence changes between 1943 and 1982 are also discussed; that part of
the paper will not be touched upon in this exercise.

4.5.1 Discussion of the article.

1. Explain the design, the data base and data collection, particularly how the matching
was conducted.

The study is a group-matched (stratified) case-control study. Based on knowledge of
the age- and sex-distribution of melanoma cases in Denmark a sample of the
population with the same age- and sex-distribution was requested from the CPR.

The data base (study base) is persons living in the eastern part of Denmark.

Data were collected by personal interview.

2. How were interviews planned to minimize bias?

Interviewers were blinded to the case/control status of the persons they interviewed
for the study.

3. Explain the drop-out, particularly the analyses in Tables 5-7. What are the
consequences of these results for the subsequent analyses?

The drop-outs are differential between age-classes, older seem to be less likely to
respond. It would have been more informative to have had the response probabilities
for each subcategory, instead of the relative distribution separately for responders
and non-responders.

4. How are the analyses carried out? Are all variables included in one step or are the
analyses conducted in smaller steps? How are the matching variables accounted for?
Comments?



12 Solutions with Stata Epidemiology

Analyses are conducted first with one variable at a time, giving marginal results, and
then jointly to give mutually controlled results.

Sex, but not age, is included in the controlled analyses, so strictly speaking there is a
potential bias. Particularly if confounding is expected, that is if the distribution of
the risk factors are different across age-classes. This is however not particularly likely.

5. Explain the analyses presented in Table 9. How many logistic regression models are
fitted here?

Table 9 contains 6 analyses of one variable and 1 analysis with all variables, that is a
total of 7 analyses.

6. What is the conclusion from the analyses in the table?

Table 9 seems to indicate that freckles and to some extent skin and hair colour are
the major (non-modifiable) risk factors for melanoma of the skin.

7. What is the purpose of Table 11?

Table 11 shows the joint effect of freckles and naevi on the risk of melanoma. Clearly
the risk increases by both, but there is no assessment of whether an interaction is
present or not. Incidentally, as you will see, there is none.

8. Which modifiable factors seem to affect the melanoma risk?

Number of sunburns before age 15. So one would in general expect that sunlight
exposure increases the occurrence of melanoma. However detailed assessment of
exposure history for each piece of skin for each study participant is of course
impossible. So this seems to be pretty much as good as it gets.

4.5.2 Melanoma data

The Stata-program listed below reads data and does the analyses requested in the
questions. Comments explains what question the code relates to.

4.5.3 Simple tabulation analysis

1. Make the two by two table showing the association between case-control status and
whether or not the person experienced any sunburns before the age of 15. SAS-users
may use the program melanom.sas to read in the data from www. Estimate the odds
ratio with associated 95% confidence limits and test for no association between the
risk factor and case-control status.

2. Conduct similar analyses for the factors sex, hair, eyes, freckles, acuterea,

chronrea. Compare with Table 9 in the article.

3. The case control study was matched for sex and age and, therefore, analyses of any
risk factor should be adjusted for these two variables. Study how much the
association between the risk factor “any sunburns before the age of 15” and
case-control status is affected by adjustment for sex.

4. Same question for age.
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These analyses can be accomplished using the following SAS program:
. use "C:\ewan\Epidemiologi\melanom.dta", clear
.
. *QUESTION 2
. *ANY SUNBURNS BEFORE AGE 15
.
. gen Any_burn15=1 if burn15>0 & burn15!=.
. replace Any_burn15=0 if burn15==0
.
. *OR OF CASE IF ANY BURN BEFORE AGE 15
. cc case Any_burn15
.
. *OR=2.07 (1.50; 2.85) IS SIGNIFICANT
.
. *QUESTION 3
. *TO USE cc WE MUST HAVE EXPOSED=1 AND UNEXPOSD=0
.
. gen woman=sex-1
.
. cc case woman

. * NOT SIGNIFICANT EFFECT OF SEX

.

. logistic case i.hair

.

. logistic case i.eyes

.

. *I WANT GROUP 3=NONE AS REFERENCE

. logistic case b3.freckles

.

. *GROUP 4=NO SUNBURN AS REFERENCE

. logistic case b4.acuterea

.

. logistic case i.chronrea

.

. *QUESTION 4

. *ADJUSTING FOR SEX

.

. logistic case i.Any_burn15 i.sex

. *STILL A SIGNIFICANT EFFECT OF SUNBURN

.

. *QUESTION 5

. *ADJUSTING FOR AGE

.

. logistic case i.Any_burn15 i.agroup

. *STILL A SIGNIFICANT EFFECT OF SUNBURN

4.5.4 Introductory analyses.

1. Estimate (log-)odds ratios for the variable skin (see top left in AØ’s Table 9).
SAS-users may use the program melanom.sas.

2. Estimate also odds ratios (in SAS: use ESTIMATE statements).

3. Conduct the other analyses in AØ’s Table 9 (left part) where the factors hair,

eyes, freckles, acuterea, chronrea are studied one at a time.

4. Conduct the analysis corresponding to Table 9 (right part) where several variables are
included simultaneously (see the table footnote).

5. Reconstruct the results from AØ’s Table 10 concerning number of raised naevi.

NB: new variables must be defined from the original variables nvtot, nvsmall,

nvlarge.

4.5.5 Trend tests and interactions.

6. In the analyses so far all variables have been considered as categorical (’class’ in
SAS) variables while all tests in Tables 9 and 10 are trend tests. Conduct the analyses
which give the P -values in Table 9 (right part) for the variables skin and freckles.
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7. May freckles be scored linearly (1, 2, 3), when this variable is studied separately?
(Conduct a test for linearity/departures from trend).

8. In AØ’s Table 11 freckles and the total number of naevi (suitably grouped) are
studied. Conduct this analysis. Is there any interaction between these two variables?

9. Study, in a similar vein, interactions between acuterea and skin and between the
grouped version of nnvtot from question 5. and agroup.

10. All of AØ’s analyses are conducted without accounting for the match variable age
(agroup) (in spite of warnings given by Clayton & Hills!). Repeat some of the
previous analyses adjusting for agroup. Are there any substantial differences?
Explain!

These analyses can be accomplished using the following SAS program:

use "C:\ewan\Epidemiologi\data\melanom.dta", clear

*QUESTION 1
* LOG-ODDS FOR SKIN

logit case i.skin

*QUESTION 2
* ODDS FOR SKIN

logistic case i.skin

*QUESTION 3

logistic case i.hair

logistic case i.eyes

*I WANT GROUP 3=NONE AS REFERENCE
logistic case b3.freckles

*GROUP 4=NO SUNBURN AS REFERENCE
logistic case b4.acuterea

logistic case i.chronrea

*QUESTION 4
*SEVERAL VARIBALES

logistic case i.skin i.hair i.eyes b3.freckles b4.acuterea i.chronrea i.sex

*QUESTION 5

gen nvtot_grp=0 if nvtot==0
replace nvtot_grp=1 if nvtot==1
replace nvtot_grp=2 if nvtot>=2 & nvtot<=4
replace nvtot_grp=3 if nvtot>=5 & nvtot!=.

gen nvsmall_grp=0 if nvsmall==0
replace nvsmall_grp=1 if nvsmall==1
replace nvsmall_grp=2 if nvsmall>=2 & nvsmall<=4
replace nvsmall_grp=3 if nvsmall>=5 & nvsmall!=.

gen nvlarge_grp=0 if nvlarge==0
replace nvlarge_grp=1 if nvlarge==1
replace nvlarge_grp=2 if nvlarge>=2 & nvlarge!=.

logistic case i.nvtot_grp

logistic case i.nvsmall_grp

logistic case i.nvlarge_grp

logistic case i.nvtot_grp i.sex i.freckles i.hair i.skin

logistic case i.nvsmall_grp i.sex i.freckles i.hair i.skin

logistic case i.nvlarge_grp i.sex i.freckles i.hair i.skin

***************************************
* 2.5.5 TREND TESTS AND INTERACTIONS *
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***************************************

*QUESTION 6
*TREND TEST

logistic case skin
*WALD TEST p=0.002

logistic case freckles

*QUESTION 7
*LINEAR MODEL FOR FRECKLES

logistic case b3.freckles
est store m1

logistic case freckles
est store m2
lrtest m1 m2
*ACCEPTED

*QUESTION 8
*INTERACTION BEWTEEN FRECKLES AND nvtot_grp

logistic case b3.freckles i.nvtot_grp b3.freckles#i.nvtot_grp
est store m1

logistic case b3.freckles i.nvtot_grp
est store m2
lrtest m1 m2
*INTERACTION NOT SIGNIFICANT p=0.5071

*GETTING THE ESTIMATES FROM TABLE 11

logistic case b3.freckles#b0.nvtot_grp , base

*OR FOR FRECKLES ADJUSTED FOR NVTOT AND OR FOR NVTOT ADJUSTED FOR FRECKLES
logistic case b3.freckles b0.nvtot_grp

*TREND TEST FOR FRECKLES (WALD)
logistic case freckles b0..nvtot_grp

*TREND TEST FOR NVTOT_GRP (WALD)
logistic case b3.freckles nvtot_grp

*NUMBER OF CASES AND CONTROLS BY FRECKLES AND NVTOT_GRP
gen control=1-casecon
table freckles nvtot_grp, c(sum casecon sum control)

table freckles if nvtot_grp!=., c(sum casecon sum control)

table nvtot_grp if freckles!=., c(sum casecon sum control)

*QUESTION 9

logistic case b4.acuterea i.skin b4.acuterea#i.skin
est store m1

logistic case b4.acuterea i.skin
est store m2
lrtest m1 m2
*THE INTERACTION IS STATISTICALLY SIGNIFICANT p=0.0112

logistic case b4.acuterea#b0.skin, base

*OR FOR ACUTREA ADJUSTED FOR SKIN AND OR FOR SKIN ADJUSTED FOR ACUTREA
logistic case b4.acuterea i.skin , base

*NUMBER OF CASES AND CONTROLS BY ACUTREA AND SKIN
table acuterea skin, c(sum casecon sum control)
*NOT MANY IN GROUP WITH ACUTREA=1

table acuterea if skin!=., c(sum casecon sum control)

table skin if acuterea!=., c(sum casecon sum control)

* NVTOT AND AGROUP
logistic case i.nvtot_grp i.agroup i.nvtot_grp#i.agroup
testparm i.nvtot_grp#i.agroup
est store m1

*SIX OBSERVATIONS NOT USED WHEN INTERACTION LRTEST NEEDS SAME DATA
logistic case i.nvtot_grp i.agroup if e(sample)
est store m2
lrtest m1 m2
*NOT SIGNIFICANT

*QUESTION 10
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*ADJUST FOR AGE

logistic case i.skin i.agroup

logistic case b4.acuterea i.agroup

*DOES NOT MAKE MUCH DIFFERENCE
*AGE DOES NOT INFLUENCE SKIN COLOUR OR ACUT REACTION SO NOT CONFOUNDER

4.6 Testicular cancer risk and maternal parity.

This exercise deals with the article “Testicular cancer risk and maternal parity: a
population-based cohort study”, by T. Westergaard, P.K. Andersen, J.B. Pedersen, M.
Frisch, J.H. Olsen, M. Melbye. Br. J. Cancer, 77,pp. 1180-1185 (1998). [4].

4.6.1 Discussion of the article.

1. What is the authors’ argument for the existence of an effect of maternal parity on the
risk of testicular cancer in the son?

Mainly the existing literature on occurrence of testis cancer.

2. Describe the design of the study:

• a. which “sons” are included in the study?

Sons of mothers born after 1935; that is essentially only boys born after 1950.
But not all such boys.

• b. when are they followed?

They are followed from the start of CPR, 1.1.1968 till the end of 1992.

• c. how are cases defined and ascertained?

Cases are defined as cases reported to the Danish Cancer registry with certain
diagnoses.

3. Concentrating on all testicular cancers, what do you consider to be the main result
reported in Table 1?

The effect of parity 2+, and the remarkable small effect of any other variable.

4. Explain in words the interpretation of the value RR=0.80 for parity 2+.

This means that the incidence rate of TC among boys born as the 2nd or later sibling
of a woman is 0.8 of the rate among first-born.

5. Compare this value with the corresponding crude RR (and 95 % CI) obtained
without any adjustment. Explain the differences between the two results.

The crude RR was 0.57, but adjustment for the age at follow-up (called SON_AGE in
the dataset), makes this effect go to to 0.8. This is because of confounding —
incidence increases by age, and first born are likely to be older in a dataset collected
as follow-up of cohorts.
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Figure 4.1: Lexis diagrams showing the number of cases and person-years by age and date of
follow-up. The black outline indicates the sampling frame for the study.

6. Draw a Lexis diagram to illustrate the combinations of age and calendar period
which contribute person-years to the study. This is shown in the figure.

In the section with solutions in R is a small section illustration how to draw the Lexis
diagrams with lines indicating age-classes and birth cohorts.

7. Explain the meaning of the estimates for “Interval from ...” in the lower part of Table
1.

This interval basically gives the age-difference to the closest older sibling. This is
meant as a proxy fro some sort of infection pressure in infancy.

8. What type of analysis is reported in Table 2?

Table 2 reports interactions, investigating whether the effect of being 1st born is
constant across other factor available in this study.

9. Discuss how, alternatively, a case-control design could have been conducted to
address the same question as the cohort study reported in the article.

A case-control study would include as cases the same cases as this cohort study,
namely those ascertained from the Cancer Registry. As there is a substantial
variation by age and birth-cohort in testis cancer incidence, which is well known, it
would be natural to match each case to a number of controls born on the same day
and who survived till the date of diagnosis of the case (for example all).

The maternal parameters would then be ascertained from the various registers for
both cases and controls.

Even though an individual matching is done this way, the analysis needed not be
done as matched (conditional) logistic regression, the matching variables, date of
birth and age are perfectly quantifiable and could just be included as covariates in an
ordinary logistic regression analysis.
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The case-control study would not be able to assess the incidence rates, but in so far
the aim of the analysis was to assess the effect of maternal parameters, this would not
be of interest. The level and age-dependence of TC incidence rates are well known
from descriptive studies based on the cancer registry data anyway.

4.6.2 Practical exercises

The file testis.txt, available at www contains for each (non-empty) combination of the
factors SON_AGE, SON_KOH, MOTH_AGE, PARITY the number of person-years at risk PYRS,
the numbers of non-seminomas and seminomas, respectively NONSEMI SEMI, and the total
number of testis cancer cases CASES. The first line of the file contains the variable names.

The Stata-program Testis-sol.do listed below reads the data and does the analyses
required to answer the practical questions.

10. Compute the crude rate ratio for testis cancer for parity 2+ versus parity 1. Compare
with 5. above.

11. Reconstruct the estimates for “parity of mother at birth of son” from the top of Table
1 in the article both for all testis cancers and for non-seminomas.

12. Reconstruct the estimates from Table 2 in the article concerning mother’s age (for all
testis cancers). Is there an interaction between parity and mother’s age?

13. Same question for birth cohort of the son.

use "C:\ewan\Epidemiologi\Data\testis.dta", clear

* CRUDE RATE RATE RATIO FOR PARITY 2+

*QUESTION 10
poisson cases i.par2, exposure(pyrs) irr

*COMPARE TO QUESTION 5
*FROM TABLE 2 OF PAPER WE GET PERSON YEARS AND CASES
*228 EXPOSED CASES 8009691 PYRS
*398 UNEXPOSED CASES 7972276 PYRS

iri 228 398 8009691 7972276
*THE SAME RATE RATIO AS ABOVE

*QUESTION 11
*ESTIMATES FOR PARITY OF MOTHER

*ALL CASES
table parity, c(sum cases sum pyrs) format(%9.0f)

poisson cases i.parity i.moth_age i.son_koh i.son_age, exposure(pyrs) irr

*TREND TEST
poisson cases parity i.moth_age i.son_koh i.son_age, exposure(pyrs) irr
est store m1

poisson cases i.moth_age i.son_koh i.son_age, exposure(pyrs) irr
est store m2
lrtest m1 m2

*NON-SEMINOMAS
table parity, c(sum nonsemi sum pyrs) format(%9.0f)

poisson nonsemi i.parity i.moth_age i.son_koh i.son_age, exposure(pyrs) irr

*TREND TEST
poisson nonsemi parity i.moth_age i.son_koh i.son_age, exposure(pyrs) irr
est store m1

poisson nonsemi i.moth_age i.son_koh i.son_age, exposure(pyrs) irr
est store m2
lrtest m1 m2
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*QUESTION 12
* AGE OF MOTHER AND INTERACTION WITH PARITY

table moth_age, c(sum cases sum pyrs) format(%9.0f)

poisson cases b20.moth_age i.son_koh i.son_age i.parity, exposure(pyrs) irr base
est store m1

poisson cases b20.moth_age i.son_koh i.son_age i.parity b20.moth_age#i.parity/*
*/, exposure(pyrs) irr base
est store m2
lrtest m2 m1
*INTERACTION NOT STATISTICALLY SIGNIFICANT

*QUESTION 13
*INTERACTION BETWEEN MOTHER AGE AND BIRTH COHORT OF SON
poisson cases b20.moth_age i.son_koh i.son_age i.parity b20.moth_age#i.son_koh/*
*/, exposure(pyrs) irr base
est store m2
lrtest m2 m1
*INTERACTION NOT STATISTICALLY SIGNIFICANT



20 Solutions with Stata Epidemiology



Chapter 5

Solutions with R

The R-programs are available on the course web site in the folder
http://BendixCarstensen.com/EpiF2013/r. There is also a link to this on the website.

R

R is a free statistics package, which has become the default computing tool a large part of
the statisticians of the world. It is dominant in bioinformatics. It is particularly useful for
its excellent and versatile graphics. As can be seen from the first few solutions, it can also
be used as a mere desk top calculatior.
R comes with a versatil documentation system for analyses and results, Rweave, which is

used for these solutions. It provides a way of documention reproducible research, which is
widely used, particularly in bioinformatics.
R can be expanded by downloading additional packages, of which there are currently

about 3000. The relevant site is CRAN, the Comprehensive R Archive Network,
http://cran.r-project.org/.

5.1 Vaccinations and childhood mortality in

Guinea-Bissau

In rural Guinea-Bissau, 5274 children under 7 months of age were visited two times at
home with an interval of six months (Kristensen et al., BMJ, 2000, [2]). Information about
vaccination (BCG, DTP, measles vaccine) was collected at each visit, and at the second
visit, death during follow-up was registered. Some children moved away during follow-up,
some survived until the next visit. The following variables are found in the data set
bissau.txt:

id Id number
fuptime Follow-up time in days
dead 0 = censored, 1 = dead
bcg 1 = Yes, 2 = No
dtp Number of DTP doses (0,1,2,3)
age Age at first visit in days
agem Age at first visit in months

1

http://BendixCarstensen.com/EpiF2013/r
http://cran.r-project.org/
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5.1.1 A single risk, odds and rate

The R-program is in http://BendixCarstensen.com/EpiF2013/sasas bissau-sol0.R.

5.1.2 A single risk, odds and rate

Reading and Tabulating the dataset:

> bis <- read.table( "../data/bissau.txt", header=TRUE )
> N <- nrow( bis )
> D <- sum( bis$dead )
> Y <- sum( bis$fuptime/365.25 )
> cbind( N, D, Y )

N D Y
[1,] 5274 222 2409.821

shows the number of children is 5274, the number of deaths 222 and the number of
person-years 2409.8 (namely 880187 days)

• Following the lectures we get

1. The overall risk of death is 222/5274=4.21%. A naive 95% confidence interval
for this is:

p±1.96
√
p× (1− p)/n = 0.0421±1.96

√
0.0421× 0.9579/5274 = (0.0367; 0.0475),

> p <- D/N
> se <- sqrt( p*(1-p)/N )
> round( cbind( p, lo=p-1.96*se, hi=p+1.96*se ), 4 )

p lo hi
[1,] 0.0421 0.0367 0.0475

But a better one is the formula:

p

p+ (1− p) ×
÷ erf

, erf = exp
(

1.96
√

1/x+ 1/(n− x)
)

Which gives:

erf = exp(1.96
√

1/222 + 1/5052 = 1.144

and so the c.i.:

0.0421

0.0421 + 0.9579
×
÷ 1.144

= (0.0370; 0.0479)

> erf <- exp( 1.96*sqrt(1/D+1/(N-D)) )
> round( cbind( p, lo=p/(p+(1-p)*erf),
+ hi=p/(p+(1-p)/erf) ), 4 )

p lo hi
[1,] 0.0421 0.037 0.0479

http://BendixCarstensen.com/EpiF2013/sas
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2. The overall odds of death is simply:

222

5274− 222
= 0.0439

and the s.e. on the log-scale is is used to compute the 95% c.i., it is the same
error factor as before:

erf = exp
(

1.96
√

1/222 + 1/5052
)

= 1.144

so we get:

0.0439
×
÷ 1.144 = c(0.0384, 0.0503)

> odds <- D/(N-D)
> round( cbind( odds, lo=odds/erf, hi=odds*erf ), 4 )

odds lo hi
[1,] 0.0439 0.0384 0.0503

3. The overall rate of death (per year) is

222/2409.8 = 0.0921

and the error factor is exp(1.96/sqrtD) = 1.141 (with D = 222), so the
confidence interval is:

0.0921
×
÷ 1.141 = (0.0807, 0.1050)

> rate <- D/Y
> erf <- exp(1.96/sqrt(D))
> round( cbind( rate, lo=rate/erf, hi=rate*erf ), 4 )

rate lo hi
[1,] 0.0921 0.0808 0.1051

• Using the modelling we can get the same. Although it seems like bringing coal to
Newcastle, there is sense in this, because we get some code which is generalizable:

1. A single proportion can be modelled in a binomial model with log-link and
subsequently using ci.exp to fish out and exponentiate the result. We can
either use the tabulated numbers or the entire data set. Note that when we use
tabulated data we must put the response in as a two-column matrix with dead
and non-dead, using cbind:
> library( Epi )
> summary( m0 <-glm( cbind(D,N-D) ~ 1, family=binomial(link=log) ) )

Call:
glm(formula = cbind(D, N - D) ~ 1, family = binomial(link = log))

Deviance Residuals:
[1] 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.16787 0.06569 -48.23 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 0.0000e+00 on 0 degrees of freedom
Residual deviance: 9.8588e-14 on 0 degrees of freedom
AIC: 9.1983

Number of Fisher Scoring iterations: 3
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> round( ci.exp( m0 ), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0421 0.037 0.0479

> summary( l0 <-glm( dead ~ 1, family=binomial(link=log), data=bis ) )

Call:
glm(formula = dead ~ 1, family = binomial(link = log), data = bis)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.2933 -0.2933 -0.2933 -0.2933 2.5171

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.16787 0.06568 -48.23 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1841.1 on 5273 degrees of freedom
Residual deviance: 1841.1 on 5273 degrees of freedom
AIC: 1843.1

Number of Fisher Scoring iterations: 6

> round( ci.exp( l0 ), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0421 0.037 0.0479

2. The same goes for the odds, now we just use the default link function which is
the logit, and so exponentiation of the estimate (the intercept) will be the odds:
> summary( m1 <-glm( cbind(D,N-D) ~ 1, family=binomial ) )

Call:
glm(formula = cbind(D, N - D) ~ 1, family = binomial)

Deviance Residuals:
[1] 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.12486 0.06857 -45.57 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 0.0000e+00 on 0 degrees of freedom
Residual deviance: 4.3165e-13 on 0 degrees of freedom
AIC: 9.1983

Number of Fisher Scoring iterations: 2

> round( ci.exp( m1 ), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0439 0.0384 0.0503

> summary( l1 <-glm( dead ~ 1, family=binomial, data=bis ) )

Call:
glm(formula = dead ~ 1, family = binomial, data = bis)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.2933 -0.2933 -0.2933 -0.2933 2.5171
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.12486 0.06857 -45.57 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1841.1 on 5273 degrees of freedom
Residual deviance: 1841.1 on 5273 degrees of freedom
AIC: 1843.1

Number of Fisher Scoring iterations: 6

> round( ci.exp( l1 ), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0439 0.0384 0.0503

3. The likelihood for a constant rate looks like a likelihood for a poisson variate, so
we can use the Poisson family to estimate a single rate:
> summary( m2 <-glm( D ~ 1, family=poisson, offset=log(Y) ) )

Call:
glm(formula = D ~ 1, family = poisson, offset = log(Y))

Deviance Residuals:
[1] 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.38463 0.06712 -35.53 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.3767e-14 on 0 degrees of freedom
Residual deviance: 1.3767e-14 on 0 degrees of freedom
AIC: 9.2413

Number of Fisher Scoring iterations: 2

> round( ci.exp( m2 ), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0921 0.0808 0.1051

> summary( l2 <-glm( dead ~ 1, family=poisson,
+ offset=log(fuptime/365.25), data=bis ) )

Call:
glm(formula = dead ~ 1, family = poisson, data = bis, offset = log(fuptime/365.25))

Deviance Residuals:
Min 1Q Median 3Q Max

-0.3038 -0.3038 -0.3030 -0.2850 3.3151

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.38463 0.06712 -35.53 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1759.2 on 5273 degrees of freedom
Residual deviance: 1759.2 on 5273 degrees of freedom
AIC: 2205.2

Number of Fisher Scoring iterations: 6

> round( ci.exp( l2 ), 4 )
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exp(Est.) 2.5% 97.5%
(Intercept) 0.0921 0.0808 0.1051

So we see we get the same by using the glm function and the classical formulae. But
the glm machinery is easier to generalize than the classical formulae.

In the following is shown the R-commands to do all the calculations required in the
questions.

5.1.3 Rates, risks and odds

1. For convenience we first load the Epi package, and the read the data — including the
variable names from the first line:

> library( Epi )
> library( epitools )
> bissau <- read.table( "../data/bissau.txt",
+ header=TRUE )
> str( bissau )

’data.frame’: 5274 obs. of 7 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ fuptime: int 65 161 166 166 161 161 166 166 166 166 ...
$ dead : int 1 0 0 0 0 0 0 0 0 0 ...
$ bcg : int 1 1 2 1 1 1 1 1 1 1 ...
$ dtp : int 1 2 0 0 0 0 2 1 2 2 ...
$ age : int 182 125 69 96 131 26 129 90 119 146 ...
$ agem : int 5 4 2 3 4 0 4 2 3 4 ...

Then we need the no. onservation, no. of deaths and no. person-years for the two
groups defined by bcg:

> with( subset( bissau, bcg==1 ), c(sum(dead),sum(fuptime),length(dead)) )

[1] 125 554929 3301

> with( subset( bissau, bcg==2 ), c(sum(dead),sum(fuptime),length(dead)) )

[1] 97 325258 1973

Alternatively — some would say simpler, some would say more convoluted — we
could use xtabs:

> ( xx <- xtabs( cbind(dead,fuptime,n=1) ~ bcg, data=bissau ) )

bcg dead fuptime n
1 125 554929 3301
2 97 325258 1973

> str( xx )
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xtabs [1:2, 1:3] 125 97 554929 325258 3301 ...
- attr(*, "dimnames")=List of 2
..$ bcg: chr [1:2] "1" "2"
..$ : chr [1:3] "dead" "fuptime" "n"
- attr(*, "class")= chr [1:2] "xtabs" "table"
- attr(*, "call")= language xtabs(formula = cbind(dead, fuptime, n = 1) ~ bcg, data = bissau)

2. We then compute the fraction of dead and the confidence interval:

> d <- xx[,"dead"]
> n <- xx[,"n"]
> pi <- d / n
> sdpi <- sqrt(pi*(1-pi)/n)
> pilow <- pi - 1.96*sdpi
> piup <- pi + 1.96*sdpi
> cbind( pi, pilow, piup )

pi pilow piup
1 0.03786731 0.03135578 0.04437884
2 0.04916371 0.03962328 0.05870414

If we prefer the result in % and rounded, we just do:

> round( cbind( pi, pilow, piup )*100, 2 )

pi pilow piup
1 3.79 3.14 4.44
2 4.92 3.96 5.87

3. We now compute odds with c.i. and backtransform to improved c.i. for the
proportions

> omega <- pi/(1-pi)
> sdlogomega <- sqrt(1/d+1/(n-d))
> errorfact <- exp(1.96*sdlogomega)
> omegalow <- omega / errorfact
> omegaup <- omega * errorfact
> pilow_2 <- omegalow/(1+omegalow)
> piup_2 <- omegaup /(1+omegaup )
> round( cbind( omega, omegalow, omegaup ), 3 )

omega omegalow omegaup
1 0.039 0.033 0.047
2 0.052 0.042 0.063

> round( cbind( pi, pilow, piup, pilow_2, piup_2 )*100, 2 )

pi pilow piup pilow_2 piup_2
1 3.79 3.14 4.44 3.19 4.49
2 4.92 3.96 5.87 4.05 5.96

4. Now we compute rate per day - note that we added fuptime in xtabs above:

> y <- xx[,"fuptime"]
> lambda <- d/y;
> errorfact_rate <- exp(1.96*sqrt(1/d));
> lambda_low <- lambda / errorfact_rate;
> lambda_up <- lambda * errorfact_rate;
> cbind( lambda, lambda_low, lambda_up )
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lambda lambda_low lambda_up
1 0.0002252540 0.0001890329 0.0002684156
2 0.0002982248 0.0002444082 0.0003638914

5. Rates per day are not interesting, so we convert them to rates per year:

> round( cbind( lambda, lambda_low, lambda_up )*365.25, 3 )

lambda lambda_low lambda_up
1 0.082 0.069 0.098
2 0.109 0.089 0.133

6. We now repeat everything using the indicator of whether any DTP was received:

> ( xx <- xtabs( cbind(dead,fuptime,n=1) ~ bcg, data=bissau ) )

bcg dead fuptime n
1 125 554929 3301
2 97 325258 1973

> str( xx )

xtabs [1:2, 1:3] 125 97 554929 325258 3301 ...
- attr(*, "dimnames")=List of 2
..$ bcg: chr [1:2] "1" "2"
..$ : chr [1:3] "dead" "fuptime" "n"
- attr(*, "class")= chr [1:2] "xtabs" "table"
- attr(*, "call")= language xtabs(formula = cbind(dead, fuptime, n = 1) ~ bcg, data = bissau)

7. We then compute the fraction of dead and the confidence interval:

> d <- xx[,"dead"]
> n <- xx[,"n"]
> pi <- d / n
> sdpi <- sqrt(pi*(1-pi)/n)
> pilow <- pi - 1.96*sdpi
> piup <- pi + 1.96*sdpi
> cbind( pi, pilow, piup )

pi pilow piup
1 0.03786731 0.03135578 0.04437884
2 0.04916371 0.03962328 0.05870414

If we prefer the result in % and rounded, we just do:

> round( cbind( pi, pilow, piup )*100, 2 )

pi pilow piup
1 3.79 3.14 4.44
2 4.92 3.96 5.87

8. We now compute odds with c.i. and backtransform to improved c.i. for the
proportions
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> omega <- pi/(1-pi)
> sdlogomega <- sqrt(1/d+1/(n-d))
> errorfact <- exp(1.96*sdlogomega)
> omegalow <- omega / errorfact
> omegaup <- omega * errorfact
> pilow_2 <- omegalow/(1+omegalow)
> piup_2 <- omegaup /(1+omegaup )
> round( cbind( omega, omegalow, omegaup ), 3 )

omega omegalow omegaup
1 0.039 0.033 0.047
2 0.052 0.042 0.063

> round( cbind( pi, pilow, piup, pilow_2, piup_2 )*100, 2 )

pi pilow piup pilow_2 piup_2
1 3.79 3.14 4.44 3.19 4.49
2 4.92 3.96 5.87 4.05 5.96

9. Now we compute rate per day - note that we added fuptime in xtabs above:

> y <- xx[,"fuptime"]
> lambda <- d/y;
> errorfact_rate <- exp(1.96*sqrt(1/d));
> lambda_low <- lambda / errorfact_rate;
> lambda_up <- lambda * errorfact_rate;
> cbind( lambda, lambda_low, lambda_up )

lambda lambda_low lambda_up
1 0.0002252540 0.0001890329 0.0002684156
2 0.0002982248 0.0002444082 0.0003638914

10. Rates per day are not interesting, we convert them to rates per year:

> round( cbind( lambda, lambda_low, lambda_up )*365.25, 3 )

lambda lambda_low lambda_up
1 0.082 0.069 0.098
2 0.109 0.089 0.133

11. Finally we repeat it al but now subdividing persons by wheter they have received any
DTP dose or not:

> ( xx <- xtabs( cbind(dead,fuptime,n=1) ~ (dtp>0), data=bissau ) )

dtp > 0 dead fuptime n
FALSE 128 516175 3101
TRUE 94 364012 2173

> str( xx )

xtabs [1:2, 1:3] 128 94 516175 364012 3101 ...
- attr(*, "dimnames")=List of 2
..$ dtp > 0: chr [1:2] "FALSE" "TRUE"
..$ : chr [1:3] "dead" "fuptime" "n"
- attr(*, "class")= chr [1:2] "xtabs" "table"
- attr(*, "call")= language xtabs(formula = cbind(dead, fuptime, n = 1) ~ (dtp > 0), data = bissau)
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> d <- xx[,"dead"]
> n <- xx[,"n"]
> pi <- d / n
> sdpi <- sqrt(pi*(1-pi)/xx[,"n"])
> pilow <- pi - 1.96*sdpi
> piup <- pi + 1.96*sdpi
> cbind( pi, pilow, piup )

pi pilow piup
FALSE 0.04127701 0.03427527 0.04827875
TRUE 0.04325817 0.03470440 0.05181194

If we prefer the result in % and rounded, we just do:

> round( cbind( pi, pilow, piup )*100, 2 )

pi pilow piup
FALSE 4.13 3.43 4.83
TRUE 4.33 3.47 5.18

Compute odds with c.i. and backtransform to improved c.i. for the proportions

> omega <- pi/(1-pi)
> sdlogomega <- sqrt(1/d+1/(n-d))
> errorfact <- exp(1.96*sdlogomega)
> omegalow <- omega / errorfact
> omegaup <- omega * errorfact
> pilow_2 <- omegalow/(1+omegalow)
> piup_2 <- omegaup /(1+omegaup )
> round( cbind( omega, omegalow, omegaup ), 3 )

omega omegalow omegaup
FALSE 0.043 0.036 0.051
TRUE 0.045 0.037 0.056

> round( cbind( pi, pilow, piup, pilow_2, piup_2 )*100, 2 )

pi pilow piup pilow_2 piup_2
FALSE 4.13 3.43 4.83 3.48 4.89
TRUE 4.33 3.47 5.18 3.55 5.27

Rate per day:

> y <- xx[,"fuptime"]
> lambda <- d/y;
> errorfact_rate <- exp(1.96*sqrt(1/d));
> lambda_low <- lambda / errorfact_rate;
> lambda_up <- lambda * errorfact_rate;
> cbind( lambda, lambda_low, lambda_up )

lambda lambda_low lambda_up
FALSE 0.0002479779 0.0002085333 0.0002948836
TRUE 0.0002582332 0.0002109676 0.0003160884

Rates per year:

> round( cbind( lambda, lambda_low, lambda_up )*365.25, 3 )

lambda lambda_low lambda_up
FALSE 0.091 0.076 0.108
TRUE 0.094 0.077 0.115
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5.1.4 Rate ratio, risk ratio, odds ratio

1. In order to compute odds-ratios and risk ratios, we use the twoby2 from the Epi

package:

> ( tt <- with( bissau, table(BCG=bcg,dead) ) )

dead
BCG 0 1
1 3176 125
2 1876 97

> twoby2( tt )

2 by 2 table analysis:
------------------------------------------------------
Outcome : 0
Comparing : 1 vs. 2

0 1 P(0) 95% conf. interval
1 3176 125 0.9621 0.9551 0.9681
2 1876 97 0.9508 0.9404 0.9595

95% conf. interval
Relative Risk: 1.0119 0.9997 1.0242

Sample Odds Ratio: 1.3137 1.0016 1.7232
Conditional MLE Odds Ratio: 1.3136 0.9908 1.7376

Probability difference: 0.0113 0.0001 0.0233

Exact P-value: 0.0555
Asymptotic P-value: 0.0487

------------------------------------------------------

— but this is the wrong way round, so we swap the outcome categories:

> twoby2( tt[,2:1] )

2 by 2 table analysis:
------------------------------------------------------
Outcome : 1
Comparing : 1 vs. 2

1 0 P(1) 95% conf. interval
1 125 3176 0.0379 0.0319 0.0449
2 97 1876 0.0492 0.0405 0.0596

95% conf. interval
Relative Risk: 0.7702 0.5943 0.9982

Sample Odds Ratio: 0.7612 0.5803 0.9984
Conditional MLE Odds Ratio: 0.7612 0.5755 1.0093

Probability difference: -0.0113 -0.0233 -0.0001

Exact P-value: 0.0555
Asymptotic P-value: 0.0487

------------------------------------------------------

So we see that the mortality is smaller among those BCG vaccinated.

But it is always more convenient to annotate variables correctly, so we turn bcg

dtpany and Dead into factors. Note that we let the first level of the factor be the
exposed:
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> bissau <- transform( bissau, bcg = factor(bcg,levels=1:2,
+ labels=c("BCG","no BCG")),
+ dtpany = factor(dtp>0,levels=c(TRUE,FALSE),
+ labels=c("1+ DTP","no DTP")),
+ Dead = factor(dead,levels=0:1,
+ labels=c("Alive","Dead") )
+ )

2. The same analysis for DTP (any dose):

> ( tt <- with( bissau, table(dtpany,Dead) ) )

Dead
dtpany Alive Dead
1+ DTP 2079 94
no DTP 2973 128

> twoby2( tt )

2 by 2 table analysis:
------------------------------------------------------
Outcome : Alive
Comparing : 1+ DTP vs. no DTP

Alive Dead P(Alive) 95% conf. interval
1+ DTP 2079 94 0.9567 0.9473 0.9645
no DTP 2973 128 0.9587 0.9511 0.9652

95% conf. interval
Relative Risk: 0.9979 0.9865 1.0095

Sample Odds Ratio: 0.9522 0.7254 1.2500
Conditional MLE Odds Ratio: 0.9523 0.7195 1.2640

Probability difference: -0.0020 -0.0134 0.0089

Exact P-value: 0.7281
Asymptotic P-value: 0.7244

------------------------------------------------------

> twoby2( tt[,2:1] )

2 by 2 table analysis:
------------------------------------------------------
Outcome : Dead
Comparing : 1+ DTP vs. no DTP

Dead Alive P(Dead) 95% conf. interval
1+ DTP 94 2079 0.0433 0.0355 0.0527
no DTP 128 2973 0.0413 0.0348 0.0489

95% conf. interval
Relative Risk: 1.0480 0.8076 1.3599

Sample Odds Ratio: 1.0502 0.8000 1.3785
Conditional MLE Odds Ratio: 1.0501 0.7911 1.3899

Probability difference: 0.0020 -0.0089 0.0134

Exact P-value: 0.7281
Asymptotic P-value: 0.7244

------------------------------------------------------

We see that there is no effect of DTP on mortality; the RR is 1.05 and the c.i. is
reasonably narrow: (0.81,1.36).
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3. Now we look at the association of the two exposures:

> with( bissau, table(dtpany,bcg) )

bcg
dtpany BCG no BCG
1+ DTP 2142 31
no DTP 1159 1942

We see that DTP vaccination is largely confined to those who are BCG-vaccinated.
Thus it is only relevant to evaluate the DTP effect among those BCG-vaccinated,
because there is no information on the DTP-effect among the non-BCG-vaccinated:

> ( tt <- with( subset(bissau,bcg=="no BCG"), table(dtpany,Dead) ) )

Dead
dtpany Alive Dead
1+ DTP 29 2
no DTP 1847 95

> twoby2( tt[,2:1] )

2 by 2 table analysis:
------------------------------------------------------
Outcome : Dead
Comparing : 1+ DTP vs. no DTP

Dead Alive P(Dead) 95% conf. interval
1+ DTP 2 29 0.0645 0.0162 0.2242
no DTP 95 1847 0.0489 0.0402 0.0595

95% conf. interval
Relative Risk: 1.3188 0.3403 5.1114

Sample Odds Ratio: 1.3408 0.3153 5.7028
Conditional MLE Odds Ratio: 1.3406 0.1528 5.4347

Probability difference: 0.0156 -0.0322 0.1585

Exact P-value: 0.6628
Asymptotic P-value: 0.6913

------------------------------------------------------

But among those with a BCG-vaccination there is information:

> ( tt <- with( subset(bissau,bcg=="BCG"), table(dtpany,Dead) ) )

Dead
dtpany Alive Dead
1+ DTP 2050 92
no DTP 1126 33

> twoby2( tt[,2:1] )
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2 by 2 table analysis:
------------------------------------------------------
Outcome : Dead
Comparing : 1+ DTP vs. no DTP

Dead Alive P(Dead) 95% conf. interval
1+ DTP 92 2050 0.0430 0.0351 0.0524
no DTP 33 1126 0.0285 0.0203 0.0398

95% conf. interval
Relative Risk: 1.5085 1.0201 2.2307

Sample Odds Ratio: 1.5313 1.0221 2.2942
Conditional MLE Odds Ratio: 1.5311 1.0110 2.3697

Probability difference: 0.0145 0.0008 0.0269

Exact P-value: 0.0444
Asymptotic P-value: 0.0389

------------------------------------------------------

and we see that is a borderline significant RR=1.5 associated with DTP.

> ( ff <- with( bissau, ftable( dtpany, bcg, dead ) ) )

dead 0 1
dtpany bcg
1+ DTP BCG 2050 92

no BCG 29 2
no DTP BCG 1126 33

no BCG 1847 95

> round( cbind( ff, ff[,2]/ff[,1]*100 ), 1 )

[,1] [,2] [,3]
[1,] 2050 92 4.5
[2,] 29 2 6.9
[3,] 1126 33 2.9
[4,] 1847 95 5.1

This table shows that BCG alone is protective, but that either absence of BCG or
addition of DTP increases mortality.

This analysis can be made (but only for the OR) by the effx function:

> effx( dead, type="binary", exposure=dtpany, strata=bcg, data=bissau )

---------------------------------------------------------------------------
response : dead
type : binary
exposure : dtpany
stratified by : bcg

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is 1+ DTP
bcg is a factor with levels: BCG/no BCG
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of dtpany on dead
stratified by bcg

number of observations 5274
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Effect 2.5% 97.5%
strata BCG level no DTP vs 1+ DTP 0.653 0.436 0.978
strata no BCG level no DTP vs 1+ DTP 0.746 0.175 3.170

Test for effect modification on 1 df: p-value= 0.86

So we see there is no evidence that DTP has differential effect, so we could BCG as a
confounder instead (controlling for it:

> effx( dead, type="binary", exposure=dtpany, control=bcg, data=bissau )

---------------------------------------------------------------------------
response : dead
type : binary
exposure : dtpany
control vars : bcg

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is 1+ DTP
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of dtpany on dead
controlled for bcg

number of observations 5274

Effect 2.5% 97.5%
0.660 0.448 0.971

Test for no effects of exposure on 1 df: p-value= 0.0313

4. The effx function allows calculation of the rate-ratios etc. very easily:

> effx( dead, type="failure", fup=fuptime/365.25, exposure=bcg, data=bissau )

---------------------------------------------------------------------------
response : dead
type : failure
exposure : bcg

bcg is a factor with levels: BCG / no BCG
baseline is BCG
effects are measured as rate ratios
---------------------------------------------------------------------------

effect of bcg on dead
number of observations 5274

Effect 2.5% 97.5%
1.32 1.02 1.73

Test for no effects of exposure on 1 df: p-value= 0.0395

> effx( dead, type="failure", fup=fuptime/365.25, exposure=dtpany, base=2, data=bissau )

---------------------------------------------------------------------------
response : dead
type : failure
exposure : dtpany
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dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as rate ratios
---------------------------------------------------------------------------

effect of dtpany on dead
number of observations 5274

Effect 2.5% 97.5%
1.040 0.798 1.360

Test for no effects of exposure on 1 df: p-value= 0.766

> effx( dead, type="failure", fup=fuptime/365.25, exposure=dtpany,
+ strata=bcg, base=2, data=bissau )

---------------------------------------------------------------------------
response : dead
type : failure
exposure : dtpany
stratified by : bcg

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
bcg is a factor with levels: BCG/no BCG
effects are measured as rate ratios
---------------------------------------------------------------------------

effect of dtpany on dead
stratified by bcg

number of observations 5274

Effect 2.5% 97.5%
strata BCG level 1+ DTP vs no DTP 1.53 1.030 2.27
strata no BCG level 1+ DTP vs no DTP 1.24 0.305 5.02

Test for effect modification on 5272 df: p-value= 0.685

> effx( dead, type="failure", fup=fuptime/365.25, exposure=dtpany,
+ control=bcg, base=2, data=bissau )

---------------------------------------------------------------------------
response : dead
type : failure
exposure : dtpany
control vars : bcg

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as rate ratios
---------------------------------------------------------------------------

effect of dtpany on dead
controlled for bcg

number of observations 5274

Effect 2.5% 97.5%
1.50 1.03 2.19

Test for no effects of exposure on 1 df: p-value= 0.0316
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The results are virtually identical to those for the relative risk, where we ignored the
follow-up time.

5.1.5 Confounder control: stratified analysis of odds ratio and
risk ratio

We will continue using the data from Guinea-Bissau for this third part of the exercise.

1. Revisit the analysis from previously, using just death (dead) as outcome, and
estimate the DTP effect for each level of BCG.

When we use only dead/alive as outcome in the analysis-function effx, we must use
“Dead” as outcome:

> effx( (Dead=="Dead")*1, type="binary", exposure=dtpany, strata=bcg, data=bissau )

---------------------------------------------------------------------------
response : (Dead == "Dead") * 1
type : binary
exposure : dtpany
stratified by : bcg

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is 1+ DTP
bcg is a factor with levels: BCG/no BCG
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of dtpany on (Dead == "Dead") * 1
stratified by bcg

number of observations 5274

Effect 2.5% 97.5%
strata BCG level no DTP vs 1+ DTP 0.653 0.436 0.978
strata no BCG level no DTP vs 1+ DTP 0.746 0.175 3.170

Test for effect modification on 1 df: p-value= 0.86

We see that there is no interaction by the test for effct modification (the
likelihood-ratio counterpart of the Breslow-Day-test). So we conclude that there is the
same effect of DTP for both levels of BCG vaccination. It is clear that because of the
vary sparse data, the effect of DTP in the “no BCG” stratum is largely undetermined.

But we also see that the reference levels used is those exposed to dtp, so we must use
the base argument to get the right comparison:

> effx( (Dead=="Dead")*1,
+ type = "binary",
+ exposure = dtpany,
+ base = "no DTP",
+ strata = bcg,
+ data = bissau )

---------------------------------------------------------------------------
response : (Dead == "Dead") * 1
type : binary
exposure : dtpany
stratified by : bcg
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dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
bcg is a factor with levels: BCG/no BCG
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of dtpany on (Dead == "Dead") * 1
stratified by bcg

number of observations 5274

Effect 2.5% 97.5%
strata BCG level 1+ DTP vs no DTP 1.53 1.020 2.29
strata no BCG level 1+ DTP vs no DTP 1.34 0.315 5.70

Test for effect modification on 1 df: p-value= 0.86

2. Use the BCG as a potentially confounding variable and obtain the MH-estimate for
the OR and RR. What are they?

We can use effx with a slight modification to compute the common effect, by simply
replacing strata= with control=:

> effx( (Dead=="Dead")*1, type="binary", exposure=dtpany, base="no DTP",
+ control=bcg, data=bissau )

---------------------------------------------------------------------------
response : (Dead == "Dead") * 1
type : binary
exposure : dtpany
control vars : bcg

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of dtpany on (Dead == "Dead") * 1
controlled for bcg

number of observations 5274

Effect 2.5% 97.5%
1.52 1.03 2.23

Test for no effects of exposure on 1 df: p-value= 0.0313

It is also possible to estimate the relative risk, using the argument eff="RR" — but
only from version 1.1.40 of the Epi package, where it is also possible to use just a
logical as a binary response. You can check your version of the Epi-package by:

> installed.packages()["Epi",c("Version","Built"),drop=FALSE]

Version Built
Epi "1.1.40" "2.15.1"

> effx( Dead=="Dead", type="binary", exposure=dtpany, base="no DTP",
+ control=bcg, data=bissau, eff="RR" )
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---------------------------------------------------------------------------
response : Dead == "Dead"
type : binary
exposure : dtpany
control vars : bcg

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as relative risk
---------------------------------------------------------------------------

effect of dtpany on Dead == "Dead"
controlled for bcg

number of observations 5274

Effect 2.5% 97.5%
1.49 1.03 2.17

Test for no effects of exposure on 1 df: p-value= 0.0314

3. Do the same, using age in months (agem) as control variable in the analysis. Is there
any DTP effect?

We first get an overview of how the data are distributed by age, agem:

> ( tt <- with( bissau, table(agem,dtp) ) )

dtp
agem 0 1 2 3

0 867 7 0 0
1 808 81 0 0
2 559 326 32 2
3 339 328 122 18
4 256 267 160 76
5 196 209 181 109
6 76 100 96 59

> pctab( tt )

dtp
agem 0 1 2 3 All N

0 99.2 0.8 0.0 0.0 100.0 874.0
1 90.9 9.1 0.0 0.0 100.0 889.0
2 60.8 35.5 3.5 0.2 100.0 919.0
3 42.0 40.6 15.1 2.2 100.0 807.0
4 33.7 35.2 21.1 10.0 100.0 759.0
5 28.2 30.1 26.0 15.7 100.0 695.0
6 23.0 30.2 29.0 17.8 100.0 331.0

> ( tt <- with( bissau, table(agem,bcg) ) )

bcg
agem BCG no BCG

0 237 637
1 468 421
2 598 321
3 589 218
4 581 178
5 554 141
6 274 57
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> pctab( tt )

bcg
agem BCG no BCG All N

0 27.1 72.9 100.0 874.0
1 52.6 47.4 100.0 889.0
2 65.1 34.9 100.0 919.0
3 73.0 27.0 100.0 807.0
4 76.5 23.5 100.0 759.0
5 79.7 20.3 100.0 695.0
6 82.8 17.2 100.0 331.0

We see that the distribution of DTP and BCG vaccinations are highly dependent on
age. So we should perhaps expect hat some of the effect would disappar when we
control for age. Note that we can control for age in two different ways; we can either
include it as a continuous variable (with a linear effect) or as a factor:

> effx( Dead=="Dead", type="binary", exposure=dtpany, base="no DTP", control=agem, data=bissau )

---------------------------------------------------------------------------
response : Dead == "Dead"
type : binary
exposure : dtpany
control vars : agem

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of dtpany on Dead == "Dead"
controlled for agem

number of observations 5274

Effect 2.5% 97.5%
1.010 0.731 1.400

Test for no effects of exposure on 1 df: p-value= 0.947

> effx( Dead=="Dead", type="binary", exposure=dtpany, base="no DTP", control=factor(agem), data=bissau )

---------------------------------------------------------------------------
response : Dead == "Dead"
type : binary
exposure : dtpany
control vars : agem

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of dtpany on Dead == "Dead"
controlled for agem

number of observations 5274

Effect 2.5% 97.5%
1.020 0.729 1.420

Test for no effects of exposure on 1 df: p-value= 0.915
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We see that with this control there is no effect of DTP, irrespective of how we control
for age.

4. Do the same, but now using both agem and bcg (that is, the cross-classification) as
control variables in the analysis. Is there any DTP effect?

If we control for both, it means that we insert both variables as confounders, in the
effx function this means that we should insert the two in a list used as the
control argument:

> effx( Dead=="Dead", type="binary", exposure=dtpany, base="no DTP", control=list(bcg,factor(agem)), data=bissau )

---------------------------------------------------------------------------
response : Dead == "Dead"
type : binary
exposure : dtpany
control vars : bcg factor(agem)

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of dtpany on Dead == "Dead"
controlled for bcg factor(agem)

number of observations 5274

Effect 2.5% 97.5%
1.470 0.954 2.280

Test for no effects of exposure on 1 df: p-value= 0.0754

> effx( Dead=="Dead", type="binary", exposure=dtpany, base="no DTP", control=list(bcg,agem), data=bissau )

---------------------------------------------------------------------------
response : Dead == "Dead"
type : binary
exposure : dtpany
control vars : bcg agem

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of dtpany on Dead == "Dead"
controlled for bcg agem

number of observations 5274

Effect 2.5% 97.5%
1.460 0.954 2.230

Test for no effects of exposure on 1 df: p-value= 0.077

Again we see that the addition of bcg as a confounding variable reveals some effect of
DTP, regardless of whether we use agem as a quantitative variable (assuming that the
effect of age is linear on the log-odds-scale).
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Formally speaking the effect is non-significant as opposed to what it was when we
only controlled for BCG and not age. However, the difference between a p-value of 3
and one of 7% is very small, the actual effect is in both cases an odd-ratio of 1.46,
and depending on how we control we have and lower limit of the confidnece interval
for the OR of 1.03 (signif.) or of 0.95 (non-sign.).

However in both cases we see an indication of elevated risk of about 50%, but we
cannot really tell wheter it is a few percent or a doubling of mortality.

Since the absolute mortality is so small, it does not matter wheter we use OR or RR,
the two measures are virtually identical when the probabilities of putcome are small:

> effx( Dead=="Dead", type="binary", exposure=dtpany, base="no DTP", eff="RR",
+ control=list(bcg,agem), data=bissau )

---------------------------------------------------------------------------
response : Dead == "Dead"
type : binary
exposure : dtpany
control vars : bcg agem

dtpany is a factor with levels: 1+ DTP / no DTP
baseline is no DTP
effects are measured as relative risk
---------------------------------------------------------------------------

effect of dtpany on Dead == "Dead"
controlled for bcg agem

number of observations 5274

Effect 2.5% 97.5%
1.440 0.956 2.160

Test for no effects of exposure on 1 df: p-value= 0.0761

5.1.6 Survival analysis of childhood mortality in Guinea-Bissau

1. We start by reading the data and transforming data as before In order to do survival
analysis we set up data as a Lexis object with two time-scales, time since visit and
current age (time since birth), note we enter the time-scales in months:

> Lb <- Lexis( entry = list( Time = 0,
+ Age = age/(365.25/12) ),
+ exit = list( Time = fuptime/(365.25/12) ),
+ exit.status = Dead,
+ data = bissau )

NOTE: entry.status has been set to "Alive" for all.

> summary( Lb )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 5052 222 5274 222 28917.85 5274

Rates:
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To
From Alive Dead Total
Alive 0 0.01 0.01

We can show the follow-up in a Lexis-diagram, both for all and for a 5% random
sample:

> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plot( Lb, col=gray(0.6) )
> points( Lb, pch=c(NA,16)[Lb$"lex.Xst"], col="red", cex=0.6 )
> wh <- runif(nrow(Lb))<0.05
> plot( Lb[wh,], col=gray(0.6) )
> points( Lb[wh,], pch=c(NA,16)[Lb[wh,"lex.Xst"]], col="red", cex=0.6 )
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Note that both age and fuptime are measured in days, so the time-variables we have
in Lb are measured in months. A simple Cox-model with bcg and age at entry (in
months) at entry is set up using time since first visit (Time) as time-scale:

> library( survival )
> m1 <- coxph( Surv( Time, Time+lex.dur, lex.Xst=="Dead" ) ~
+ bcg + factor(agem),
+ data=Lb )
> ci.exp( m1 )

exp(Est.) 2.5% 97.5%
bcgno BCG 1.4150942 1.0628313 1.884110
factor(agem)1 1.1218691 0.7118992 1.767933
factor(agem)2 0.7734721 0.4659289 1.284014
factor(agem)3 1.2201058 0.7574272 1.965414
factor(agem)4 1.3944726 0.8680841 2.240052
factor(agem)5 1.3918874 0.8534351 2.270062
factor(agem)6 0.9895328 0.4950160 1.978068

We see that persons without BCG-vaccination have a higher mortality.

2. We can evaluate the effect of DTP vaccination by changing the covariate bcg wirth
dtpany
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> m2 <- update( m1, . ~ . - bcg + dtpany )
> ci.exp( m2 )

exp(Est.) 2.5% 97.5%
factor(agem)1 1.0293268 0.6558760 1.615418
factor(agem)2 0.6788407 0.4068749 1.132595
factor(agem)3 1.0393116 0.6327681 1.707053
factor(agem)4 1.1729539 0.7104716 1.936490
factor(agem)5 1.1584998 0.6882826 1.949958
factor(agem)6 0.8117511 0.3957607 1.664996
dtpanyno DTP 0.9979789 0.7197838 1.383696

and we see there is no mrginal effect of DTP om mortality.

3. But if we enter both variables we see an effect of both:

> m3 <- update( m1, . ~ . + dtpany )
> ci.exp( m3 )

exp(Est.) 2.5% 97.5%
bcgno BCG 1.7376437 1.1871318 2.543446
factor(agem)1 1.1420990 0.7243778 1.800704
factor(agem)2 0.7302230 0.4365875 1.221349
factor(agem)3 1.0978956 0.6678785 1.804781
factor(agem)4 1.2286509 0.7444014 2.027915
factor(agem)5 1.2090204 0.7186231 2.034071
factor(agem)6 0.8495861 0.4143648 1.741935
dtpanyno DTP 0.6915217 0.4524274 1.056970

we see a protective effect of BCD, but potential harmful effect of DTP.

4. We can then try to insert the interaction:

> m4 <- update( m3, . ~ . + dtpany:bcg )
> ci.exp( m4 )

exp(Est.) 2.5% 97.5%
bcgno BCG 1.4305868 0.3522739 5.809624
factor(agem)1 1.1453270 0.7261539 1.806468
factor(agem)2 0.7319001 0.4374948 1.224421
factor(agem)3 1.0989575 0.6684984 1.806598
factor(agem)4 1.2299067 0.7451548 2.030008
factor(agem)5 1.2120327 0.7202963 2.039471
factor(agem)6 0.8509784 0.4150298 1.744849
dtpanyno DTP 0.6796851 0.4369438 1.057280
bcgno BCG:dtpanyno DTP 1.2359351 0.2877469 5.308609

> anova( m3, m4, test="Chisq" )

Analysis of Deviance Table
Cox model: response is Surv(Time, Time + lex.dur, lex.Xst == "Dead")
Model 1: ~ bcg + factor(agem) + dtpany
Model 2: ~ bcg + factor(agem) + dtpany + bcg:dtpany
loglik Chisq Df P(>|Chi|)

1 -1875.2
2 -1875.2 0.086 1 0.7693

which, although not significant, is not very informative; we want the RR for each
combination of the two variables:
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> m5 <- update( m1, . ~ . - bcg + dtpany:bcg )
> ci.exp( m5 )

exp(Est.) 2.5% 97.5%
factor(agem)1 1.1453270 0.7261539 1.8064679
factor(agem)2 0.7319001 0.4374948 1.2244210
factor(agem)3 1.0989575 0.6684984 1.8065977
factor(agem)4 1.2299067 0.7451548 2.0300083
factor(agem)5 1.2120327 0.7202963 2.0394708
factor(agem)6 0.8509784 0.4150298 1.7448486
bcgBCG:dtpany1+ DTP 0.8321130 0.5908951 1.1718020
bcgno BCG:dtpany1+ DTP 1.1904099 0.2893258 4.8978542
bcgBCG:dtpanyno DTP 0.5655749 0.3788463 0.8443395

coxph produces a warning, because the interaction generated contains the intercept
(namely the sum of the 4 columns), and so automatically exclude the last one.

We can also see the estimates graphically

> plotEst( ci.exp(m5,subset="bcg"), xlog=T, vref=1 )

●

●

●

0.2 0.5 1.0 2.0 5.0

bcgBCG:dtpanyno DTP

bcgno BCG:dtpany1+ DTP

bcgBCG:dtpany1+ DTP

The reference is the no BCG, no DTP group, so we see that the protective effect is
smaller in the DTP-vaccinated group than in the non-DTP-vaccinated group. It is of
course also of interest to see the DTP-effect within the BCG-group, and that can be
teased out:

> CM <- rbind( diag(3), c(1,0,-1) )
> rownames( CM ) <- c("BCG+DTP vs. none",
+ "DTP only vs. none",
+ "BCG only vs. none",
+ "DTP+BCG vs. BCG only")
> CM

[,1] [,2] [,3]
BCG+DTP vs. none 1 0 0
DTP only vs. none 0 1 0
BCG only vs. none 0 0 1
DTP+BCG vs. BCG only 1 0 -1

> plotEst( ci.exp(m5,subset="bcg",ctr.mat=CM), xlog=T, vref=1 )
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There are very few persons and

> ftable( xtabs( cbind(dead,N=1) ~ bcg + dtpany, data=Lb ) )

dead N
bcg dtpany
BCG 1+ DTP 92 2142

no DTP 33 1159
no BCG 1+ DTP 2 31

no DTP 95 1942

so essentially we can only estimate a BCG-effect among non-DTP vaccinated and a
DTP-effect among BCG-vaccinated, which are the effects we see in the main effects
model.

5. If we instead use current age as time-scale, we just change the outcome variable using
update, and then re-use the code to generate the graph:

> m5a <- update( m5, Surv(Age,Age+lex.dur,lex.Xst=="Dead") ~ . - factor(agem) )

> plotEst( ci.exp(m5a,subset="bcg",ctr.mat=CM), xlog=T, vref=1 )

We see that the analysis with current age as time scale gives pretty much the same
estimates as the analysis with time since entry and age at entry:
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6. Finally we compare the results from a Poisson model where we assume constant
rates, and a logistic regression model where we altogether ignore censoring:

> ci.exp(m3,subset="no")

exp(Est.) 2.5% 97.5%
bcgno BCG 1.7376437 1.1871318 2.543446
dtpanyno DTP 0.6915217 0.4524274 1.056970

> p3 <- glm( (lex.Xst=="Dead") ~ bcg + dtpany + factor(agem),
+ offset=log(fuptime), family=poisson, data=Lb )
> ci.exp(p3,subset="no")

exp(Est.) 2.5% 97.5%
bcgno BCG 1.7349813 1.1851585 2.539880
dtpanyno DTP 0.6912244 0.4521804 1.056638

> l3 <- glm( (lex.Xst=="Dead") ~ bcg + dtpany + factor(agem),
+ family=binomial, data=Lb )
> ci.exp(l3,subset="no")

exp(Est.) 2.5% 97.5%
bcgno BCG 1.7397389 1.1772134 2.571064
dtpanyno DTP 0.6784886 0.4393344 1.047828

We see that the three approaches produce virtually identical results. For the Poisson
model it is because the mortality varies very little with age and follow-up, and the
Poisson model is a model that assumes constant mortality. For the logistic model it
is because the amount of censring is quite limited

5.2 Case-control study of renal cancer and

trichloroethene

The exercise is based on Vamvakas et al.: Renal cell cancer correlated with occupational
exposure to trichloroethane. J Cancer Res Clin Oncol, 1998, pp 374–382. [1].

The following points were addressed:

1. What is the primary aim of the study?

The primary aim as stated is to assess the effect of thricholorethene (C2HCl3) and
tetrachloroethene (C2Cl4) on the occurrence of kidney cancer. This is based on a
described possible biological mechanism.

2. How were the cases sampled?

Cases in the study were patients who underwent surgery between 1987-12-01 and
1992-05-01, a period of 3.5 years. Of the 78 patients 62 responded (or their next of
kin, since 4 of these 62 were dead)

3. How were the controls sampled?

Controls were sampled from the accident wards of three other hospitals in the same
area, form the period 1993-01-01 to 1993-12-31.
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4. Are they comparable; i.e. what assumptions are needed?

In order to deem cases and controls comparable we must assume:

(a) In principle we must assume that the controls would have been enrolled as cases
if they had had a diagnosis of kidney cancer.

In practice it will suffice that the controls comes from a comparable populations,
that is even though they might have been subjected to surgery at a different
hospital in case of kidney cancer, if this were a similar type of hospital it would
have been sufficient.

(b) Exposure distribution in the population has not changed between the
case-selection period (1987–1992) and the control sampling period (1993).

It is of course difficult to assess this without further knowledge about the
industrial development in Nordrhein-Westphalia in the period 1987–1993.

(c) The attendance of the accident ward is unrelated to the exposure of interest.

At face value it seems so, bar of course accidents related to trichloroethene
exposure itself, but we can safely assume that they are very rare compared to
other. However, the attendance at the accident ward is hardly unrelated to age,
and neither is exposure to to trichloroethene, so the attendance is related to the
exposure, albeit not directly.

(d) Recall of exposure is the same among cases and controls.

It is not stated anywhere whether the purpose of the study was revealed to cases
and controls, but in the likely event that it were, cases may be more prone to
recall exposure to the thricholorethene in order to get an explanation of their
(severe) disease.

As we see there are a few potential biases, some tend to increase the risk estimate;
the problems with age is difficult to assess.

5. What is the (actual) study base?

There is no definite answer to this, but if we define the study base to be the state of
Nordrhein-Westphalia, the validity of the study hinges on assumptions that the
hospitals where cases and controls are sampled are representative of the population
— with respect to the exposure of interest.

Of course, precisely the same argument applies if we define the study base to some
subset of Nordrhein-Westphalia, which includes the uptake-areas of the 4 hospitals,
and incidentally we might define the study base as the uptake area of these 4
hospitals.

6. What study base is the intended (for generalization)?

The intended study base is presumably all industrialized counties comparable to
Germany.

7. Is the sampling scheme incidence density sampling?

The sampling scheme is certainly not incidence density sampling, that would require
that cases were selected among those at risk at the time of the case-occurrence, ad
that is not the case.
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8. Can the age-effect on the occurrence of renal cancer be estimated?

The age-effect cannot be estimated; that would require that the controls were a
representative sample (w.r.t. age) of the study base. Sampling persons from the
accident wards makes this a far-fetched assumption.

9. Is age a confounder?

Most likely so; it is definitely associated with both the exposure and the outcome.

10. Key in the numbers in table 6 (p.380), and verify the analysis using SAS proc freq.

When we enter the data from table 6 there are a few things to be aware of:

• Unlike previously, we are entering grouped or tabulated data from a table, not
individual records. This means that every line in the input dataset represents as
(usually large) number of individuals.

• This in turn means that we shall need one line in the data set per entry in the
table. In addition to the number, the line must then contain variables that tells
us whether it is cases/controls, exposed or not, and what age.

• Note that the entries in table 6 in the paper are not the number of cases and
controls, but the number of cases and total number in the strata. So we need to
do a bit of subtraction to get the numbers right.

• Unlike SAS there is no elegant way to include a small dataset as this in the
program text, so you must key it in in a separate file and read it from that.

The data looks like this:

age tri ck n
30 1 1 2
40 1 1 2
50 1 1 10
60 1 1 1
70 1 1 4
30 0 1 0
40 0 1 1
50 0 1 12
60 0 1 17
70 0 1 9
30 1 0 1
40 1 0 4
50 1 0 2
60 1 0 0
70 1 0 0
30 0 0 21
40 0 0 11
50 0 0 25
60 0 0 14
70 0 0 6

It is stored in the file renal.txt and is read with

> # renal <- read.table(url("http://bendixcarstensen.com/EpiE2012/data/renal.txt"),header=TRUE)
> renal <- read.table("../data/renal.txt",header=TRUE)
> renal

age tri ck n
1 30 1 1 2
2 40 1 1 2
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3 50 1 1 10
4 60 1 1 1
5 70 1 1 4
6 30 0 1 0
7 40 0 1 1
8 50 0 1 12
9 60 0 1 17
10 70 0 1 9
11 30 1 0 1
12 40 1 0 4
13 50 1 0 2
14 60 1 0 0
15 70 1 0 0
16 30 0 0 21
17 40 0 0 11
18 50 0 0 25
19 60 0 0 14
20 70 0 0 6

The R-program can be found in the folder
http://bendixcarstensen.com/EpiE2012/R/, and the entire log file is a part of this
section.

Once we have the data we use the effx function from the Epi package to make an
overall analysis:

> library(Epi)
> effx( response=ck, type="bin", exp=tri, weight=n, data=renal )

---------------------------------------------------------------------------
response : ck
type : binary
exposure : tri

tri is numeric
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of an increase of 1 unit in tri on ck
number of observations 17

Effect 2.5% 97.5%
5.36 2.08 13.80

Test for no effects of exposure on 1 df: p-value= 0.000221

But we want to control for age as a confounder; this is done by adding the argument
control=. Note that we must enter age as factor(age) in order for the variable to
be treated as a class variable (which is called a factor in R):

> effx( response=ck, type="bin", exp=tri, control=factor(age), weight=n, data=renal )

---------------------------------------------------------------------------
response : ck
type : binary
exposure : tri
control vars : age

tri is numeric
effects are measured as odds ratios
---------------------------------------------------------------------------

http://bendixcarstensen.com/EpiE2012/R/
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effect of an increase of 1 unit in tri on ck
controlled for age

number of observations 17

Effect 2.5% 97.5%
16.00 4.05 63.10

Test for no effects of exposure on 1 df: p-value= 2.09e-06

11. Is there any evidence of heterogeneity of the odds-ratio across age-classes? (Hint:
Use the Breslow-Day-test.)

We can test for heterogeneity of tri-exposure by using the argument strata=
instead of control=:

> effx( response=ck, type="bin", exp=tri, strata=factor(age), weight=n, data=renal )

---------------------------------------------------------------------------
response : ck
type : binary
exposure : tri
stratified by : factor(age)

tri is numeric
factor(age) is a factor with levels: 30/40/50/60/70
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of an increase of 1 unit in tri on ck
stratified by factor(age)

number of observations 17

Effect 2.5% 97.5%
strata 30 2.92e+08 0.000 Inf
strata 40 5.50e+00 0.385 78.6
strata 50 1.04e+01 1.970 55.2
strata 60 1.29e+07 0.000 Inf
strata 70 2.32e+07 0.000 Inf

Test for effect modification on 4 df: p-value= 0.434

So we see there is no evidence of age-heterogeneity, but the age-classes are quite
crude (10-years). Thus it seems that the analysis where we just include age as a
controlling factor gives an adequate description of data.

12. In particular, how does the odds-ratio estimate given by Vamvakas et al. compare to
the Mantel-Haenszel estimate based on the same data?

The estimate given in the paper is somewhat smaller than the MH-estimate, but the
substantial message is pretty much the same: definitely an effect, but unclear how
large.

13. What is the main result (in plain words)?

Based on this study alone, there seems to be an excess risk of kidney cancer
associated with trichloroethene exposure, but its cannot really be determined
whether the OR is 2.5 or 25. This is of course due to the rather small sample size.
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5.3 IHD data from Clayton & Hills.

The study is described by Clayton & Hills, Ch. 13. The tabulated data set of counts of
IHD cases and person-years is avaliable from www in the file ihd-tab.txt.

1. Fit the model from Clayton & Hills Tables 22.7-8 (p.222) and perform the tests from
exercises 24.1 and 24.2 (pp.237–238).

First we load the Epi package and read the grouped IHD-data from the file
ihd-tab.txt from the data folder
"http://BendixCarstensen.com/EpiE2012/data":

> options( width=90 )
> library( Epi )
> library( foreign )
> ihdt <- read.table("http://BendixCarstensen.com/EpiE2012/data/ihd-tab.txt", header=T )
> ihdt

exposure age pyrs cases
1 1 0 311.9 2
2 1 1 878.1 12
3 1 2 667.5 14
4 0 0 607.9 4
5 0 1 1272.1 5
6 0 2 888.9 8

Then we fit a Poisson model to data with exposure and age-effects:

> mt <- glm( cases ~ factor(age) + exposure,
+ offset = log(pyrs), family=poisson, data=ihdt )
> round( ci.lin( mt, E=T ), 3 )

Estimate StdErr z P exp(Est.) 2.5% 97.5%
(Intercept) -5.418 0.442 -12.256 0.000 0.004 0.002 0.011
factor(age)1 0.129 0.475 0.271 0.786 1.138 0.448 2.888
factor(age)2 0.692 0.461 1.500 0.134 1.998 0.809 4.935
exposure 0.870 0.308 2.823 0.005 2.386 1.305 4.364

We see that the results are pretty well in agreement with the results from tables 22.8
and 24.1 in Clayton & Hills.

2. Fit the model with interaction and re-find results from Clayton & Hills Table 24.5
(p.242) and the test for no interaction.

> mi <- update( mt, . ~ . + factor(age):exposure )
> round( ci.lin( mi, E=T ), 4 )

Estimate StdErr z P exp(Est.) 2.5% 97.5%
(Intercept) -5.0237 0.5000 -10.0474 0.0000 0.0066 0.0025 0.0175
factor(age)1 -0.5153 0.6708 -0.7681 0.4424 0.5973 0.1604 2.2245
factor(age)2 0.3132 0.6124 0.5114 0.6091 1.3678 0.4119 4.5422
exposure -0.0258 0.8660 -0.0298 0.9762 0.9745 0.1785 5.3205
factor(age)1:exposure 1.2720 1.0165 1.2513 0.2108 3.5678 0.4866 26.1622
factor(age)2:exposure 0.8719 0.9728 0.8962 0.3701 2.3914 0.3553 16.0968

The test for no interaction is obtained by comparing the two models using anova. For
the sake of completeness we also fit the model without age-effect showing the
deviances illustrated in figure 24.1 in C&H:

"http://BendixCarstensen.com/EpiE2012/data"
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> me <- update( mt, . ~ . - factor(age) )
> anova( mi, mt, me, test="Chisq" )

Analysis of Deviance Table

Model 1: cases ~ factor(age) + exposure + factor(age):exposure
Model 2: cases ~ factor(age) + exposure
Model 3: cases ~ exposure
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 0 0.0000
2 2 1.6727 -2 -1.6727 0.4333
3 4 5.6891 -2 -4.0164 0.1342

5.3.1 Using continuous variables

The IHD-data contains energy consumption as a continuous variable, energy, among other
variables, and this exercise we will discuss how to model these if the continuous effect is not
linear:

1. Read the individual diet data records from the file.

2. Create variables for the person-years, by subtracting entry date from date of exit.
Also create a variable with the log-person-years.

3. Use CHD as outcome variable in a Poisson-analysis with the log-person-years as
offset, using energy as a linear explanatory variable. Is there an effect on mortality?

4. Is there any evidence of a non-linear effect of energy, when using linear splines with
knots at say 2, 2.5 and 3? (approx. the quartiles)

5. Same question for weight and BMI (the latter you have to calculate yourself as
weight/height2).

5.3.2 Splitting the follow-up of the IHD-data

1. First we (again) load the Epi package and read the (modified) grouped IHD-data
from the file ihd-xtab.dta from the data folder
"http://BendixCarstensen.com/EpiE2012/data"

> options( width=90 )
> library( Epi )
> library( foreign )
> ihdt <- read.table("http://BendixCarstensen.com/EpiE2012/data/ihd-tab.txt", header=T )
> ihdt

exposure age pyrs cases
1 1 0 311.9 2
2 1 1 878.1 12
3 1 2 667.5 14
4 0 0 607.9 4
5 0 1 1272.1 5
6 0 2 888.9 8

Then we fit a Poisson model to data with exposure and age-effects:

"http://BendixCarstensen.com/EpiE2012/data"
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> mt <- glm( cases ~ factor(age) + exposure,
+ offset = log(pyrs), family=poisson, data=ihdt )
> round( ci.lin( mt, E=T ), 3 )

Estimate StdErr z P exp(Est.) 2.5% 97.5%
(Intercept) -5.418 0.442 -12.256 0.000 0.004 0.002 0.011
factor(age)1 0.129 0.475 0.271 0.786 1.138 0.448 2.888
factor(age)2 0.692 0.461 1.500 0.134 1.998 0.809 4.935
exposure 0.870 0.308 2.823 0.005 2.386 1.305 4.364

We see that the results are pretty well in agreement with the results from table 24.1
in Clayton & Hills.

2. Next, we read the individual records from the file diet.txt; remembering to specify
how missing values is coded, and using as.is=TRUE to prevent character variebles to
be automatically converted to factors:

> ihdi <- read.table( # "../data/diet.txt",
+ "http://BendixCarstensen.com/EpiE2012/data/diet.txt",
+ header=TRUE, na.strings=".", as.is=TRUE )
> head( ihdi )

id doe dox chd dob job month energy height weight fat
1 1 08/16/1964 12/01/1976 0 01/04/1915 0 8 2.87395 175.3870 71.48737 141.71
2 2 12/16/1964 12/01/1976 0 06/03/1914 0 12 1.98234 164.2872 70.08120 85.77
3 3 11/16/1965 12/01/1976 0 02/03/1907 0 11 2.66858 169.3926 71.89560 107.67
4 4 09/16/1965 12/01/1976 0 12/25/1906 0 9 2.83669 167.0050 74.88937 132.17
5 5 09/16/1965 03/31/1976 0 04/01/1906 0 9 2.94150 174.4980 78.38208 126.35
6 6 03/16/1965 08/31/1968 0 03/23/1914 0 3 2.47351 176.5046 72.39456 103.10
fibre

1 17.83
2 9.49
3 15.99
4 17.04
5 14.54
6 12.49

> str( ihdi )

’data.frame’: 337 obs. of 12 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ doe : chr "08/16/1964" "12/16/1964" "11/16/1965" "09/16/1965" ...
$ dox : chr "12/01/1976" "12/01/1976" "12/01/1976" "12/01/1976" ...
$ chd : int 0 0 0 0 0 0 0 0 0 0 ...
$ dob : chr "01/04/1915" "06/03/1914" "02/03/1907" "12/25/1906" ...
$ job : int 0 0 0 0 0 0 0 0 0 0 ...
$ month : int 8 12 11 9 9 3 11 5 2 7 ...
$ energy: num 2.87 1.98 2.67 2.84 2.94 ...
$ height: num 175 164 169 167 174 ...
$ weight: num 71.5 70.1 71.9 74.9 78.4 ...
$ fat : num 141.7 85.8 107.7 132.2 126.3 ...
$ fibre : num 17.83 9.49 15.99 17.04 14.54 ...

> # Turn character variables into dates and then to calendar years:XS
> for( i in c(2,3,5) ) ihdi[,i] <- cal.yr( as.Date(ihdi[,i],format="%m/%d/%Y") )
> str( ihdi )
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’data.frame’: 337 obs. of 12 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ doe :Classes ’cal.yr’, ’numeric’ num [1:337] 1965 1965 1966 1966 1966 ...
$ dox :Classes ’cal.yr’, ’numeric’ num [1:337] 1977 1977 1977 1977 1976 ...
$ chd : int 0 0 0 0 0 0 0 0 0 0 ...
$ dob :Classes ’cal.yr’, ’numeric’ num [1:337] 1915 1914 1907 1907 1906 ...
$ job : int 0 0 0 0 0 0 0 0 0 0 ...
$ month : int 8 12 11 9 9 3 11 5 2 7 ...
$ energy: num 2.87 1.98 2.67 2.84 2.94 ...
$ height: num 175 164 169 167 174 ...
$ weight: num 71.5 70.1 71.9 74.9 78.4 ...
$ fat : num 141.7 85.8 107.7 132.2 126.3 ...
$ fibre : num 17.83 9.49 15.99 17.04 14.54 ...

> head( ihdi )

id doe dox chd dob job month energy height weight fat fibre
1 1 1964.623 1976.916 0 1915.008 0 8 2.87395 175.3870 71.48737 141.71 17.83
2 2 1964.957 1976.916 0 1914.419 0 12 1.98234 164.2872 70.08120 85.77 9.49
3 3 1965.874 1976.916 0 1907.090 0 11 2.66858 169.3926 71.89560 107.67 15.99
4 4 1965.707 1976.916 0 1906.980 0 9 2.83669 167.0050 74.88937 132.17 17.04
5 5 1965.707 1976.245 0 1906.246 0 9 2.94150 174.4980 78.38208 126.35 14.54
6 6 1965.203 1968.664 0 1914.222 0 3 2.47351 176.5046 72.39456 103.10 12.49

3. Now we set up the dataset as a Lexis object1., so that R will know when persons are
at risk etc. entry is a named list, the names giving the names of the timescales we
want to use, in this case per (calendar time, period) and age. exit is also a named
list, with one element with the name of one of the timescales, giving the values of the
exit times on this time scale. exit.status gives the state that persons are in at exit
from the study. Id not entry.status is given, it is assumed that everyone starts in
the first state, and this is noted:

> Lx <- Lexis( entry = list( per=doe,
+ age=doe-dob ),
+ exit = list( per=dox ),
+ exit.status = factor( chd, labels=c("Well","IHD") ),
+ data = ihdi )

NOTE: entry.status has been set to "Well" for all.

> summary( Lx )

Transitions:
To

From Well IHD Records: Events: Risk time: Persons:
Well 291 46 337 46 4603.67 337

Rates:
To

From Well IHD Total
Well 0 0.01 0.01

1Named after the German demographer, statistician and economist, Wilhelm Lexis, 1837–1914. He wrote
the book “Einführung in die Theorie der Bevölkerungsstatistik, (Strassbourg, 1875)”, while he was professor
in Dorpat (now Tartu, Estonia), wherein he devised the so called Lexis diagram.
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There is a method for plotting the follow-up in boxes. Noe despeartely exciting but
capturing the essence:

> boxes( Lx, boxpos=TRUE )

Well
4,603.7

IHD

46

Well
4,603.7

IHD

Well
4,603.7

IHD

4. The time-splitting is now done by the function splitLexis. To use the function we
must specify which timescale to split the data on. In this case we want to split along
the scale “current age”, i.e. time since date of birth, here names age. We then specify
the intervals where we want the follow-up grouped, here ages 40–50, 50–60 and 60–70,
so use the breakpoints 40, 50, 60 and 70:

> Ls <- splitLexis( Lx, breaks=c(40,50,60,70), time.scale="age" )
> summary( Ls )

Transitions:
To

From Well IHD Records: Events: Risk time: Persons:
Well 709 46 755 46 4603.67 337

Rates:
To

From Well IHD Total
Well 0 0.01 0.01

> head( Ls )

lex.id per age lex.dur lex.Cst lex.Xst id doe dox chd dob
1 1 1964.623 49.61533 0.384668 Well Well 1 1964.623 1976.916 0 1915.008
2 1 1965.008 50.00000 10.000000 Well Well 1 1964.623 1976.916 0 1915.008
3 1 1975.008 60.00000 1.908282 Well Well 1 1964.623 1976.916 0 1915.008
4 2 1964.957 50.53799 9.462012 Well Well 2 1964.957 1976.916 0 1914.419
5 2 1974.419 60.00000 2.496920 Well Well 2 1964.957 1976.916 0 1914.419
6 3 1965.874 58.78439 1.215606 Well Well 3 1965.874 1976.916 0 1907.090
job month energy height weight fat fibre

1 0 8 2.87395 175.3870 71.48737 141.71 17.83
2 0 8 2.87395 175.3870 71.48737 141.71 17.83
3 0 8 2.87395 175.3870 71.48737 141.71 17.83
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4 0 12 1.98234 164.2872 70.08120 85.77 9.49
5 0 12 1.98234 164.2872 70.08120 85.77 9.49
6 0 11 2.66858 169.3926 71.89560 107.67 15.99

For the fun of it you can try the default plot and points methods for a Lexis

object. Note that gridlines corresponding to the breaks gets inserted:

> plot( Ls, col=gray(0.3) )
> points( Ls, col="red", pch=c(NA,16)[Ls$lex.Xst], cex=0.7 )
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On the diagram it
appears that all persons are censored at age 70 and at the end of 1976, whereas some
follow-up time is present before age 40.

5. The number of records are in the resulting dataset (Ls) is easily computed

> nrow( Ls )

[1] 755

6. We now list the first 20 records:

> head( Ls, 20 )

lex.id per age lex.dur lex.Cst lex.Xst id doe dox chd dob
1 1 1964.623 49.61533 0.3846680 Well Well 1 1964.623 1976.916 0 1915.008
2 1 1965.008 50.00000 10.0000000 Well Well 1 1964.623 1976.916 0 1915.008
3 1 1975.008 60.00000 1.9082820 Well Well 1 1964.623 1976.916 0 1915.008
4 2 1964.957 50.53799 9.4620123 Well Well 2 1964.957 1976.916 0 1914.419
5 2 1974.419 60.00000 2.4969199 Well Well 2 1964.957 1976.916 0 1914.419
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6 3 1965.874 58.78439 1.2156057 Well Well 3 1965.874 1976.916 0 1907.090
7 3 1967.090 60.00000 9.8261465 Well Well 3 1965.874 1976.916 0 1907.090
8 4 1965.707 58.72690 1.2731006 Well Well 4 1965.707 1976.916 0 1906.980
9 4 1966.980 60.00000 9.9356605 Well Well 4 1965.707 1976.916 0 1906.980
10 5 1965.707 59.46064 0.5393566 Well Well 5 1965.707 1976.245 0 1906.246
11 5 1966.246 60.00000 9.9986311 Well Well 5 1965.707 1976.245 0 1906.246
12 6 1965.203 50.98152 3.4606434 Well Well 6 1965.203 1968.664 0 1914.222
13 7 1958.873 45.13895 4.8610541 Well Well 7 1958.873 1976.916 0 1913.734
14 7 1963.734 50.00000 10.0000000 Well Well 7 1958.873 1976.916 0 1913.734
15 7 1973.734 60.00000 3.1813826 Well Well 7 1958.873 1976.916 0 1913.734
16 8 1965.370 50.42847 9.5715264 Well Well 8 1965.370 1976.916 0 1914.942
17 8 1974.942 60.00000 1.9739904 Well Well 8 1965.370 1976.916 0 1914.942
18 9 1959.125 67.09651 2.8993840 Well Well 9 1959.125 1962.025 0 1892.029
19 10 1964.538 60.16701 9.8316222 Well Well 10 1964.538 1974.370 0 1904.371
20 11 1964.790 60.52293 9.4757016 Well Well 11 1964.790 1974.266 0 1904.267

job month energy height weight fat fibre
1 0 8 2.87395 175.3870 71.48737 141.71 17.83
2 0 8 2.87395 175.3870 71.48737 141.71 17.83
3 0 8 2.87395 175.3870 71.48737 141.71 17.83
4 0 12 1.98234 164.2872 70.08120 85.77 9.49
5 0 12 1.98234 164.2872 70.08120 85.77 9.49
6 0 11 2.66858 169.3926 71.89560 107.67 15.99
7 0 11 2.66858 169.3926 71.89560 107.67 15.99
8 0 9 2.83669 167.0050 74.88937 132.17 17.04
9 0 9 2.83669 167.0050 74.88937 132.17 17.04
10 0 9 2.94150 174.4980 78.38208 126.35 14.54
11 0 9 2.94150 174.4980 78.38208 126.35 14.54
12 0 3 2.47351 176.5046 72.39456 103.10 12.49
13 0 11 2.55554 168.9100 64.18440 111.54 16.35
14 0 11 2.55554 168.9100 64.18440 111.54 16.35
15 0 11 2.55554 168.9100 64.18440 111.54 16.35
16 0 5 2.98756 165.9890 73.80072 159.53 16.09
17 0 5 2.98756 165.9890 73.80072 159.53 16.09
18 0 2 2.31124 165.7096 49.07952 115.68 15.44
19 0 7 3.12495 181.2036 78.29137 114.43 18.89
20 0 10 2.16144 174.1932 63.91224 111.16 11.66

7. In order to reproduce the table of events and person-years in in Clayton & Hills we
first use the function timeBand to produce a factor with one level for each of the age-
intervals into which the follow-up have been split:

> Ls <- transform( Ls, agr = timeBand( Ls, "age", "factor" ),
+ eksp = factor( energy<2.75, labels=c("High","Low") ) )
> str( Ls )

Classes ’Lexis’ and ’data.frame’: 755 obs. of 20 variables:
$ lex.id : int 1 1 1 2 2 3 3 4 4 5 ...
$ per : num 1965 1965 1975 1965 1974 ...
$ age : num 49.6 50 60 50.5 60 ...
$ lex.dur: num 0.385 10 1.908 9.462 2.497 ...
$ lex.Cst: Factor w/ 2 levels "Well","IHD": 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst: Factor w/ 2 levels "Well","IHD": 1 1 1 1 1 1 1 1 1 1 ...
$ id : int 1 1 1 2 2 3 3 4 4 5 ...
$ doe : num 1965 1965 1965 1965 1965 ...
$ dox : num 1977 1977 1977 1977 1977 ...
$ chd : int 0 0 0 0 0 0 0 0 0 0 ...
$ dob : num 1915 1915 1915 1914 1914 ...
$ job : int 0 0 0 0 0 0 0 0 0 0 ...
$ month : int 8 8 8 12 12 11 11 9 9 9 ...
$ energy : num 2.87 2.87 2.87 1.98 1.98 ...
$ height : num 175 175 175 164 164 ...
$ weight : num 71.5 71.5 71.5 70.1 70.1 ...
$ fat : num 141.7 141.7 141.7 85.8 85.8 ...
$ fibre : num 17.83 17.83 17.83 9.49 9.49 ...
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$ agr : Factor w/ 5 levels "(-Inf,40]","(40,50]",..: 2 3 4 3 4 3 4 3 4 3 ...
$ eksp : Factor w/ 2 levels "High","Low": 1 1 1 2 2 2 2 1 1 1 ...
- attr(*, "breaks")=List of 2
..$ per: NULL
..$ age: num 40 50 60 70
- attr(*, "time.scales")= chr "per" "age"

Then we can make a table like the one in C& H:

> round(
+ ftable( xtabs( cbind( D=(lex.Xst=="IHD"), Y=lex.dur ) ~
+ agr + eksp,
+ data = Ls ),
+ row.vars = 1 ), 2 )

eksp High Low
D Y D Y

agr
(-Inf,40] 0.00 62.25 0.00 34.08
(40,50] 4.00 560.13 2.00 346.87
(50,60] 6.00 1127.70 12.00 979.34
(60,70] 8.00 794.15 14.00 699.14
(70,Inf] 0.00 0.00 0.00 0.00

You should see that the data is not quite the same as in the book.

Now we do the grouped analysis on the slightly modified data that you can get from
the data folder (which should be identical to the table you just made):

> ihdx <- read.table("http://BendixCarstensen.com/EpiE2012/data/ihd-xtab.txt", header=T )
> ihdx

exposure age pyrs cases
1 1 0 346.87 2
2 1 1 979.34 12
3 1 2 699.14 14
4 0 0 560.13 4
5 0 1 1127.70 6
6 0 2 794.15 8

> mt <- glm( cases ~ factor(age) + exposure,
+ offset = log(pyrs), family=poisson, data=ihdx )
> round( ci.lin( mt, E=T ), 3 )

Estimate StdErr z P exp(Est.) 2.5% 97.5%
(Intercept) -5.303 0.439 -12.074 0.000 0.005 0.002 0.012
factor(age)1 0.204 0.472 0.432 0.666 1.226 0.486 3.092
factor(age)2 0.747 0.461 1.618 0.106 2.110 0.854 5.211
exposure 0.622 0.303 2.054 0.040 1.862 1.029 3.370

8. We can now also estimate the effect of age and exposure from the split dataset. We
exclude follow-uptime before age 40 — as we saw from the table above, there is some
risk time (but no events) before age 40.

> levels( Ls$agr )

[1] "(-Inf,40]" "(40,50]" "(50,60]" "(60,70]" "(70,Inf]"
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> Ls <- subset( Ls, agr %in% levels(agr)[2:4] )
> Ls$agr <- factor( Ls$agr )
> table( Ls$agr )

(40,50] (50,60] (60,70]
196 293 240

> head( Ls )

lex.id per age lex.dur lex.Cst lex.Xst id doe dox chd dob
1 1 1964.623 49.61533 0.384668 Well Well 1 1964.623 1976.916 0 1915.008
2 1 1965.008 50.00000 10.000000 Well Well 1 1964.623 1976.916 0 1915.008
3 1 1975.008 60.00000 1.908282 Well Well 1 1964.623 1976.916 0 1915.008
4 2 1964.957 50.53799 9.462012 Well Well 2 1964.957 1976.916 0 1914.419
5 2 1974.419 60.00000 2.496920 Well Well 2 1964.957 1976.916 0 1914.419
6 3 1965.874 58.78439 1.215606 Well Well 3 1965.874 1976.916 0 1907.090
job month energy height weight fat fibre agr eksp

1 0 8 2.87395 175.3870 71.48737 141.71 17.83 (40,50] High
2 0 8 2.87395 175.3870 71.48737 141.71 17.83 (50,60] High
3 0 8 2.87395 175.3870 71.48737 141.71 17.83 (60,70] High
4 0 12 1.98234 164.2872 70.08120 85.77 9.49 (50,60] Low
5 0 12 1.98234 164.2872 70.08120 85.77 9.49 (60,70] Low
6 0 11 2.66858 169.3926 71.89560 107.67 15.99 (50,60] Low

With this restriction we can now fit the model to the individual-record time-split
data, and verify that we get the same:

> mi <- glm( (lex.Xst=="IHD") ~ factor(agr) + eksp,
+ offset = log(lex.dur), family=poisson, data=Ls )
> round( ci.lin( mi, E=T ), 3 )

Estimate StdErr z P exp(Est.) 2.5% 97.5%
(Intercept) -5.303 0.439 -12.074 0.000 0.005 0.002 0.012
factor(agr)(50,60] 0.204 0.472 0.432 0.666 1.226 0.486 3.092
factor(agr)(60,70] 0.747 0.461 1.619 0.106 2.110 0.854 5.210
ekspLow 0.622 0.303 2.054 0.040 1.862 1.029 3.370

> round( ci.lin( mt, E=T ), 3 )

Estimate StdErr z P exp(Est.) 2.5% 97.5%
(Intercept) -5.303 0.439 -12.074 0.000 0.005 0.002 0.012
factor(age)1 0.204 0.472 0.432 0.666 1.226 0.486 3.092
factor(age)2 0.747 0.461 1.618 0.106 2.110 0.854 5.211
exposure 0.622 0.303 2.054 0.040 1.862 1.029 3.370

> ci.lin( mi, E=T ) / ci.lin( mt, E=T )

Estimate StdErr z P exp(Est.) 2.5% 97.5%
(Intercept) 1.000002 0.9999537 1.000048 NaN 0.9999897 1.000030 0.9999499
factor(agr)(50,60] 1.000037 0.9999574 1.000080 0.9999625 1.0000076 1.000047 0.9999682
factor(agr)(60,70] 1.000011 0.9999515 1.000059 0.9998040 1.0000081 1.000052 0.9999643
ekspLow 1.000005 0.9999720 1.000033 0.9998334 1.0000034 1.000020 0.9999868

The point of using the individual data is that it the is possible to include
individual-level variables in a model too.
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9. We now an interaction between age and exposure and see that we get the same test
for interaction as with the grouped data:

> mix <- update( mi, . ~ . + factor(agr):eksp )
> mtx <- update( mt, . ~ . + factor(age):exposure )
> anova( mi, mix, test="Chisq" )

Analysis of Deviance Table

Model 1: (lex.Xst == "IHD") ~ factor(agr) + eksp
Model 2: (lex.Xst == "IHD") ~ factor(agr) + eksp + factor(agr):eksp
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 725 313.18
2 723 311.98 2 1.2015 0.5484

> anova( mt, mtx, test="Chisq" )

Analysis of Deviance Table

Model 1: cases ~ factor(age) + exposure
Model 2: cases ~ factor(age) + exposure + factor(age):exposure
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2 1.2015
2 0 0.0000 2 1.2015 0.5484

10. The likelihood ratio statistic (Chi-square) is the same as the residual deviance in
model without interaction for the grouped data, because the deviance is 0 for the
interaction model for the grouped data, which is seen from the above output from the
anova function.

5.4 Case-control study of BCG vaccination and

leprosy.

The study is decribed by Clayton & Hills, p.156. In short, 260 cases of leprosy among
individuals aged less than 35 years were ascertained in a study area in Malawi. Subjects
were grouped into 7 age intervals and according to absence or presence of a scar after BCG
vaccination. Three sets of controls were studied:

1. a population survey of 80,622 persons

2. a random sample of 1000 persons

3. a 4 to 1 age-matched sample

1. Fit the model from Clayton & Hills Table 23.5 (p.232).

First we read the data:

> library( Epi )
> bcg <- read.table( "http://www.biostat.ku.dk/~pka/epidata/bcgalldata.txt",
+ header=TRUE )
> summary( bcg )



42 Solutions with R Epidemiology

age scar status n
Min. :1 Min. :0.0 case :14 Min. : 1.00
1st Qu.:2 1st Qu.:0.0 con1000 :14 1st Qu.: 24.75
Median :4 Median :0.5 conall :14 Median : 65.00
Mean :4 Mean :0.5 conmatch:14 Mean : 1480.75
3rd Qu.:6 3rd Qu.:1.0 3rd Qu.: 439.00
Max. :7 Max. :1.0 Max. :11719.00

Then we can fit the logistic regression model with age and scar:

> m1 <- glm( status=="case" ~ factor(age) + factor(scar),
+ weight=n, family=binomial,
+ data=subset( bcg, status %in% c("case","conall") ) )
> round( ci.exp( m1 ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 0.001
factor(age)2 13.784 3.264 58.205
factor(age)3 35.985 8.754 147.921
factor(age)4 45.793 11.086 189.155
factor(age)5 49.410 11.925 204.725
factor(age)6 63.792 15.455 263.314
factor(age)7 63.920 15.521 263.243
factor(scar)1 0.579 0.439 0.763

The refernce group is the youngest (for the age-effect) and those without BCG-scar.

2. Estimate odds ratios and confidence intervals with non-exposed and youngest,
respectively, as reference groups. If we wanted, say the last age-group as reference for
the age-effects, we can change the reference level of the age-factor using relevel.

We use the update-facility that takes a already fitted model (in this cas m1) as input,
and allows us to change singe components of it. The “.”s mean “the same response”
and “the same covariates” as in the original model.

> m1a <- update( m1, . ~ . - factor(age) + relevel(factor(age),7) )
> round( ci.exp( m1a ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.009 0.007 0.012
factor(scar)1 0.579 0.439 0.763
relevel(factor(age), 7)1 0.016 0.004 0.064
relevel(factor(age), 7)2 0.216 0.133 0.350
relevel(factor(age), 7)3 0.563 0.378 0.838
relevel(factor(age), 7)4 0.716 0.466 1.101
relevel(factor(age), 7)5 0.773 0.501 1.192
relevel(factor(age), 7)6 0.998 0.673 1.481

3. Estimate instead odds ratios and confidence intervals with the age group 20-24 as
reference. This is just the 5th age-class:

> m1a <- update( m1, . ~ . - factor(age) + relevel(factor(age),5) )
> round( ci.exp( m1a ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.007 0.005 0.010
factor(scar)1 0.579 0.439 0.763
relevel(factor(age), 5)1 0.020 0.005 0.084
relevel(factor(age), 5)2 0.279 0.169 0.462
relevel(factor(age), 5)3 0.728 0.478 1.110



Solutions with R 5.4 Case-control study of BCG vaccination and leprosy. 43

relevel(factor(age), 5)4 0.927 0.601 1.429
relevel(factor(age), 5)6 1.291 0.832 2.004
relevel(factor(age), 5)7 1.294 0.839 1.995

We see that the estiamte of the scar effect is the same.

4. Test the hypothesis of no interaction between age and scar.

Again this is just using the update to add an interaction:

> mi <- update( m1, . ~ . + factor(age):factor(scar) )
> anova( m1, mi, test="Chisq" )

Analysis of Deviance Table

Model 1: status == "case" ~ factor(age) + factor(scar)
Model 2: status == "case" ~ factor(age) + factor(scar) + factor(age):factor(scar)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 20 3288.0
2 14 3284.4 6 3.6002 0.7306

We see there is no sign of interaction.

5. Analyse the data set with only 1000 controls (i.e., use the controls con1000: Table
23.6, p.233) and compare the precision of the estimate for scar with that based on
the entire sample.

Once mode we can use update to change the dataset used to fit the model; the rest is
unchanged:

> m1000 <- update( m1, data=subset( bcg, status %in% c("case","con1000") ) )
> round( rbind( ci.lin( m1 , subset="scar", E=T ),
+ ci.lin( m1000, subset="scar", E=T ) ), 3 )

Estimate StdErr z P exp(Est.) 2.5% 97.5%
factor(scar)1 -0.547 0.141 -3.882 0.000 0.579 0.439 0.763
factor(scar)1 -0.548 0.160 -3.414 0.001 0.578 0.422 0.792

We see that ths.e. of the log-odds-ratio increases from 0.14 to 0.16, some 15%.

6. Analyse the matched data set (i.e., use the controls conmatch: Table 23.6, p.233) and
compare with the results from Table 23.7.

The machinery is the sam as before:

> mmatch <- update( m1, data=subset( bcg, status %in% c("case","conmatch") ) )
> round( rbind( ci.lin( m1 , subset="scar", E=T ),
+ ci.lin( m1000 , subset="scar", E=T ),
+ ci.lin( mmatch, subset="scar", E=T ) ), 3 )

Estimate StdErr z P exp(Est.) 2.5% 97.5%
factor(scar)1 -0.547 0.141 -3.882 0.000 0.579 0.439 0.763
factor(scar)1 -0.548 0.160 -3.414 0.001 0.578 0.422 0.792
factor(scar)1 -0.572 0.155 -3.699 0.000 0.564 0.417 0.764

— and we see a small improvement in the s.e. of the log-OR even if the number of
cases is (approximately) the same:

> xtabs( n ~ status, data=bcg )
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status
case con1000 conall conmatch
260 1000 80622 1040

7. Try (erroneously) to drop age from the analysis of the matched data and study the
consequences for the estimate of scar.

Again this is very simply obtained by update and repeating the code from before:

> msimp <- update( mmatch, . ~ . - factor(age) )
> round( rbind( ci.lin( mmatch, subset="scar", E=T ),
+ ci.lin( msimp , subset="scar", E=T ) ), 3 )

Estimate StdErr z P exp(Est.) 2.5% 97.5%
factor(scar)1 -0.572 0.155 -3.699 0.000 0.564 0.417 0.764
factor(scar)1 -0.477 0.142 -3.369 0.001 0.621 0.470 0.819

We see that the s.e. of the log-OR decreases, but also that the OR is now biased, the
log-OR shrinks numerically by some 15%; the bias is about 2/3 of the estimated s.e.
— quite substantial!

5.5 Case-control study of malignant melanoma.

Anne Østerlind conducted in the middle of the 80’s a case-control study of risk factors for
malignant melanoma in Denmark.

The review paper “Malignant melanoma in Denmark” from Acta Oncologica, 1990[3] is
from Anne Østerlind’s thesis and gives an overview of the results from the study which
included 1400 interviewed persons, 474 cases and 926 controls, cf. table 5 in the article.

In the article incidence changes between 1943 and 1982 are also discussed; that part of
the paper will not be touched upon in this exercise.

5.5.1 Discussion of the article.

1. Explain the design, the data base and data collection, particularly how the matching
was conducted.

The study is a group-matched (stratified) case-control study. Based on knowledge of
the age- and sex-distribution of melanoma cases in Denmark a sample of the
population with the same age- and sex-distribution was requested from the CPR.

The data base (study base) is persons living in the eastern part of Denmark.

Data were collected by personal interview.

2. How were interviews planned to minimize bias?

Interviewers were blinded to the case/control status of the persons they interviewed
for the study.

3. Explain the drop-out, particularly the analyses in Tables 5-7. What are the
consequences of these results for the subsequent analyses?

The drop-outs are differential between age-classes, older seem to be less likely to
respond. It would have been more informative to have had the response probabilities
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for each subcategory, instead of the relative distribution separately for responders
and non-responders.

4. How are the analyses carried out? Are all variables included in one step or are the
analyses conducted in smaller steps? How are the matching variables accounted for?
Comments?

Analyses are conducted first with one variable at a time, giving marginal results, and
then jointly to give mutually controlled results.

Sex, but not age, is included in the controlled analyses, so strictly speaking there is a
potential bias. Particularly if confounding is expected, that is if the distribution of
the risk factors are different across age-classes. This is however not particularly likely.

5. Explain the analyses presented in Table 9. How many logistic regression models are
fitted here?

Table 9 contains 6 analyses of one variable and 1 analysis with all variables, that is a
total of 7 analyses.

6. What is the conclusion from the analyses in the table?

Table 9 seems to indicate that freckles and to some extent skin and hair colour are
the major (non-modifiable) risk factors for melanoma of the skin.

7. What is the purpose of Table 11?

Table 11 shows the joint effect of freckles and naevi on the risk of melanoma. Clearly
the risk increases by both, but there is no assessment of whether an interaction is
present or not. Incidentally, as you will see, there is none.

8. Which modifiable factors seem to affect the melanoma risk?

Number of sunburns before age 15. So one would in general expect that sunlight
exposure increases the occurrence of melanoma. However detailed assessment of
exposure history for each piece of skin for each study participant is of course
impossible. So this seems to be pretty much as good as it gets.

5.5.2 Melanoma data

5.5.3 Simple tabulation analysis

First we read the data. Remember to specify how the missing values are coded.

> mel <- read.table( "http://www.biostat.ku.dk/~pka/epidata/melanom.txt",
+ header=TRUE, na.strings="." )
> str( mel )

’data.frame’: 1400 obs. of 14 variables:
$ casecon : int 1 1 1 0 1 0 0 0 0 1 ...
$ sex : int 2 1 2 2 2 2 2 1 2 2 ...
$ ageint : int 71 68 42 66 36 68 68 39 75 49 ...
$ agroup : int 70 60 40 60 30 60 60 30 70 40 ...
$ skin : int 2 2 1 0 1 2 0 2 2 2 ...
$ hair : int 0 0 1 2 0 2 0 0 0 1 ...
$ eyes : int 2 2 2 1 2 2 1 2 2 2 ...
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$ freckles: int 2 1 3 2 3 2 2 2 1 2 ...
$ acuterea: int 3 3 4 4 4 3 4 4 2 1 ...
$ chronrea: int NA 2 2 1 2 2 2 2 4 2 ...
$ nvsmall : int 2 3 22 0 1 0 0 3 5 6 ...
$ nvlarge : int 0 0 1 0 0 0 0 0 0 0 ...
$ nvtot : int 2 3 23 0 1 0 0 3 5 6 ...
$ burn15 : int 1 NA NA NA NA NA 0 0 1 4 ...

> library( Epi )

1. Make the two by two table showing the association between case-control status and
whether or not the person experienced any sunburns before the age of 15.

> bb <- with ( mel, table(casecon,sunburn=burn15>0) )
> bb

sunburn
casecon FALSE TRUE

0 277 236
1 93 164

Estimate the odds ratio with associated 95% confidence limits and test for no
association between the risk factor and case-control status.

> twoby2( bb[2:1,2:1] )

2 by 2 table analysis:
------------------------------------------------------
Outcome : TRUE
Comparing : 1 vs. 0

TRUE FALSE P(TRUE) 95% conf. interval
1 164 93 0.6381 0.5776 0.6946
0 236 277 0.4600 0.4173 0.5034

95% conf. interval
Relative Risk: 1.3871 1.2163 1.5819

Sample Odds Ratio: 2.0698 1.5211 2.8164
Conditional MLE Odds Ratio: 2.0678 1.5043 2.8532

Probability difference: 0.1781 0.1038 0.2488

Exact P-value: 0
Asymptotic P-value: 0

------------------------------------------------------

We see that the p-value for the hypothesis of no association is effectively 0, the OR is
2.1 (1.5;2.8).

A little more intuitive machinery is the effx-function:

> effx( casecon, "binary", exposure=(burn15>0), data=mel )

---------------------------------------------------------------------------
response : casecon
type : binary
exposure : (burn15 > 0)

(burn15 > 0) is numeric
effects are measured as odds ratios
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---------------------------------------------------------------------------

effect of an increase of 1 unit in (burn15 > 0) on casecon
number of observations 770

Effect 2.5% 97.5%
2.07 1.52 2.82

Test for no effects of exposure on 1 df: p-value= 2.75e-06

2. Conduct similar analyses for the factors sex, hair, eyes, freckles, acuterea,

chronrea. Compare with Table 9 in the article.

The simple approach to all analyses would then be:

> effx( casecon, "binary", exposure=factor(sex), data=mel )
> effx( casecon, "binary", exposure=factor(hair), data=mel )
> effx( casecon, "binary", exposure=factor(freckles), data=mel )
> effx( casecon, "binary", exposure=factor(acuterea), data=mel )
> effx( casecon, "binary", exposure=factor(chronrea), data=mel )

— but it is a bit more readable if we actually code the factors first (we do it here for
all variables of interest):

> mel <- transform( mel, sex = factor(sex,labels=c("M","F")),
+ skin = factor(skin,labels=c("dark","medium","light")),
+ hair = factor(hair,labels=c("dark","light","blond","red")),
+ eyes = factor(eyes,labels=c("brown","green/gray","blue")),
+ freckles = factor(freckles,labels=c("many","some","none")),
+ acuterea = factor(acuterea,labels=c("blisters","painful","mild","none")),
+ chronrea = factor(chronrea,labels=c("deep","moderate","mild","none")) )

and then just give the reference level we want in text (must be one of the defined
levels):

> effx( casecon, "binary", data=mel, exposure=sex, base="F" )

---------------------------------------------------------------------------
response : casecon
type : binary
exposure : sex

sex is a factor with levels: M / F
baseline is F
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of sex on casecon
number of observations 1400

Effect 2.5% 97.5%
0.952 0.761 1.190

Test for no effects of exposure on 1 df: p-value= 0.669

> effx( casecon, "binary", data=mel, exposure=hair, base="dark" )
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---------------------------------------------------------------------------
response : casecon
type : binary
exposure : hair

hair is a factor with levels: dark / light / blond / red
baseline is dark
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of hair on casecon
number of observations 1400

Effect 2.5% 97.5%
light vs dark 1.49 1.170 1.89
blond vs dark 1.70 0.995 2.91
red vs dark 1.74 1.140 2.68

Test for no effects of exposure on 3 df: p-value= 0.0017

> effx( casecon, "binary", data=mel, exposure=eyes, base="brown" )

---------------------------------------------------------------------------
response : casecon
type : binary
exposure : eyes

eyes is a factor with levels: brown / green/gray / blue
baseline is brown
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of eyes on casecon
number of observations 1394

Effect 2.5% 97.5%
green/gray vs brown 0.85 0.592 1.22
blue vs brown 1.06 0.756 1.48

Test for no effects of exposure on 2 df: p-value= 0.22

> effx( casecon, "binary", data=mel, exposure=freckles, base="none" )

---------------------------------------------------------------------------
response : casecon
type : binary
exposure : freckles

freckles is a factor with levels: many / some / none
baseline is none
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of freckles on casecon
number of observations 1396

Effect 2.5% 97.5%
many vs none 3.01 2.21 4.11
some vs none 1.49 1.16 1.92

Test for no effects of exposure on 2 df: p-value= 2.15e-11
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> effx( casecon, "binary", data=mel, exposure=acuterea, base="none" )

---------------------------------------------------------------------------
response : casecon
type : binary
exposure : acuterea

acuterea is a factor with levels: blisters / painful / mild / none
baseline is none
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of acuterea on casecon
number of observations 1388

Effect 2.5% 97.5%
blisters vs none 2.16 0.929 5.02
painful vs none 1.64 1.050 2.56
mild vs none 1.27 0.987 1.63

Test for no effects of exposure on 3 df: p-value= 0.0497

> effx( casecon, "binary", data=mel, exposure=chronrea, base="deep" )

---------------------------------------------------------------------------
response : casecon
type : binary
exposure : chronrea

chronrea is a factor with levels: deep / moderate / mild / none
baseline is deep
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of chronrea on casecon
number of observations 1394

Effect 2.5% 97.5%
moderate vs deep 1.39 1.07 1.80
mild vs deep 1.84 1.33 2.56
none vs deep 1.96 1.03 3.73

Test for no effects of exposure on 3 df: p-value= 0.00142

3. The case control study was matched for sex and age and, therefore, analyses of any
risk factor should be adjusted for these two variables. Study how much the
association between the risk factor “any sunburns before the age of 15” and
case-control status is affected by adjustment for sex.

This can also be done by using the effx machine:

> effx( casecon, "binary", exposure=(burn15>0), data=mel )

---------------------------------------------------------------------------
response : casecon
type : binary
exposure : (burn15 > 0)

(burn15 > 0) is numeric
effects are measured as odds ratios
---------------------------------------------------------------------------
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effect of an increase of 1 unit in (burn15 > 0) on casecon
number of observations 770

Effect 2.5% 97.5%
2.07 1.52 2.82

Test for no effects of exposure on 1 df: p-value= 2.75e-06

> effx( casecon, "binary", exposure=(burn15>0), data=mel, control=sex )

---------------------------------------------------------------------------
response : casecon
type : binary
exposure : (burn15 > 0)
control vars : sex

(burn15 > 0) is numeric
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of an increase of 1 unit in (burn15 > 0) on casecon
controlled for sex

number of observations 770

Effect 2.5% 97.5%
2.06 1.52 2.81

Test for no effects of exposure on 1 df: p-value= 3.24e-06

4. Same question for age.

> effx( casecon, "binary", exposure=(burn15>0), data=mel, control=agroup )

---------------------------------------------------------------------------
response : casecon
type : binary
exposure : (burn15 > 0)
control vars : agroup

(burn15 > 0) is numeric
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of an increase of 1 unit in (burn15 > 0) on casecon
controlled for agroup

number of observations 770

Effect 2.5% 97.5%
2.06 1.51 2.83

Test for no effects of exposure on 1 df: p-value= 5.06e-06

> effx( casecon, "binary", exposure=(burn15>0), data=mel, control=factor(agroup) )



Solutions with R 5.5 Case-control study of malignant melanoma. 51

---------------------------------------------------------------------------
response : casecon
type : binary
exposure : (burn15 > 0)
control vars : agroup

(burn15 > 0) is numeric
effects are measured as odds ratios
---------------------------------------------------------------------------

effect of an increase of 1 unit in (burn15 > 0) on casecon
controlled for agroup

number of observations 770

Effect 2.5% 97.5%
2.04 1.49 2.80

Test for no effects of exposure on 1 df: p-value= 7.94e-06

5.5.4 Introductory analyses.

1. Estimate (log-)odds ratios for the variable skin (see top left in AØ’s Table 9).

The log-odds-ratio is what we get from a logistic regression model:

> mskin <- glm( casecon ~ skin, family=binomial, data=mel )
> summary( mskin )

Call:
glm(formula = casecon ~ skin, family = binomial, data = mel)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9790 -0.9145 -0.7941 1.3897 1.6172

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.9924 0.1262 -7.861 3.82e-15
skinmedium 0.3369 0.1530 2.201 0.02772
skinlight 0.5060 0.1575 3.213 0.00132

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1779.9 on 1389 degrees of freedom
Residual deviance: 1769.3 on 1387 degrees of freedom
(10 observations deleted due to missingness)

AIC: 1775.3

Number of Fisher Scoring iterations: 4

2. Estimate also odds ratios.

We can get both log-OR and OR using ci.lin:

> round( ci.lin( mskin, E=T ), 3 )

Estimate StdErr z P exp(Est.) 2.5% 97.5%
(Intercept) -0.992 0.126 -7.861 0.000 0.371 0.289 0.475
skinmedium 0.337 0.153 2.201 0.028 1.401 1.038 1.891
skinlight 0.506 0.158 3.213 0.001 1.659 1.218 2.259
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3. Conduct the other analyses in AØ’s Table 9 (left part) where the factors hair,

eyes, freckles, acuterea, chronrea are studied one at a time.

This is just a series of logistic regression models as above, but we must remember to
relevel the factors where the desired reference is not the first. We use Relevel (with
capital “R”), which allows a reordering of levels

> mhair <- glm( casecon ~ hair, family=binomial, data=mel )
> meyes <- glm( casecon ~ eyes, family=binomial, data=mel )
> mfrek <- glm( casecon ~ Relevel(freckles,3:1), family=binomial, data=mel )
> macut <- glm( casecon ~ Relevel(acuterea,4:1), family=binomial, data=mel )
> mchro <- glm( casecon ~ chronrea, family=binomial, data=mel )
> round( rbind( ci.lin(mhair,Exp=TRUE)[-1,],
+ ci.lin(meyes,Exp=TRUE)[-1,],
+ ci.lin(mfrek,Exp=TRUE)[-1,],
+ ci.lin(macut,Exp=TRUE)[-1,],
+ ci.lin(mchro,Exp=TRUE)[-1,] ), 3 )

Estimate StdErr z P exp(Est.) 2.5%
hairlight 0.397 0.122 3.262 0.001 1.487 1.172
hairblond 0.531 0.274 1.943 0.052 1.701 0.995
hairred 0.556 0.219 2.544 0.011 1.744 1.136
eyesgreen/gray -0.162 0.185 -0.878 0.380 0.850 0.592
eyesblue 0.058 0.172 0.336 0.737 1.059 0.756
Relevel(freckles, 3:1)some 0.398 0.129 3.097 0.002 1.489 1.157
Relevel(freckles, 3:1)many 1.102 0.158 6.966 0.000 3.011 2.208
Relevel(acuterea, 4:1)mild 0.237 0.128 1.856 0.063 1.268 0.987
Relevel(acuterea, 4:1)painful 0.493 0.229 2.155 0.031 1.638 1.046
Relevel(acuterea, 4:1)blisters 0.770 0.430 1.789 0.074 2.160 0.929
chronreamoderate 0.326 0.133 2.448 0.014 1.386 1.067
chronreamild 0.611 0.167 3.653 0.000 1.842 1.327
chronreanone 0.671 0.329 2.039 0.041 1.956 1.026

97.5%
hairlight 1.888
hairblond 2.908
hairred 2.677
eyesgreen/gray 1.221
eyesblue 1.484
Relevel(freckles, 3:1)some 1.915
Relevel(freckles, 3:1)many 4.105
Relevel(acuterea, 4:1)mild 1.628
Relevel(acuterea, 4:1)painful 2.565
Relevel(acuterea, 4:1)blisters 5.022
chronreamoderate 1.800
chronreamild 2.556
chronreanone 3.728

4. Conduct the analysis corresponding to Table 9 (right part) where several variables are
included simultaneously (see the table footnote).

This just mean that we include all variables plus sex in the model:

> m.all <- glm( casecon ~ skin +
+ hair +
+ eyes +
+ Relevel(freckles,3:1) +
+ Relevel(acuterea,4:1) +
+ chronrea, family=binomial, data=mel )
> round( ci.exp( m.all )[-1,], 2 )

exp(Est.) 2.5% 97.5%
skinmedium 1.32 0.96 1.80
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skinlight 1.32 0.93 1.87
hairlight 1.47 1.14 1.90
hairblond 1.59 0.90 2.81
hairred 1.25 0.79 1.99
eyesgreen/gray 0.74 0.50 1.09
eyesblue 0.89 0.62 1.28
Relevel(freckles, 3:1)some 1.49 1.15 1.93
Relevel(freckles, 3:1)many 2.92 2.11 4.04
Relevel(acuterea, 4:1)mild 1.10 0.85 1.44
Relevel(acuterea, 4:1)painful 1.37 0.85 2.19
Relevel(acuterea, 4:1)blisters 1.68 0.70 4.04
chronreamoderate 1.21 0.91 1.60
chronreamild 1.40 0.96 2.02
chronreanone 1.15 0.54 2.42

5. Reconstruct the results from AØ’s Table 10 concerning number of raised naevi.

We first define new variables, even if we could define them on the fly, it would be too
cumbersome. There is a cut function in R, which groups numerical variables; it needs
a bit of care. Note that it is useful that R known the number Inf: ∞.

> mel <- transform( mel, gnvsmall = cut(nvsmall,breaks=c(0,1,2,5,Inf),right=FALSE),
+ gnvlarge = cut(nvlarge,breaks=c(0,1,2, Inf),right=FALSE),
+ gnvtot = cut(nvtot ,breaks=c(0,1,2,5,Inf),right=FALSE) )

We then fit the models behind the numbers in table 10, first the crude model, then
the adjusted:

> c.small <- glm( casecon ~ gnvsmall, family=binomial, data=mel )
> c.large <- glm( casecon ~ gnvlarge, family=binomial, data=mel )
> c.tot <- glm( casecon ~ gnvtot , family=binomial, data=mel )
> a.small <- update( c.small, . ~ . + sex + freckles + hair + skin )
> a.large <- update( c.large, . ~ . + sex + freckles + hair + skin )
> a.tot <- update( c.tot , . ~ . + sex + freckles + hair + skin )

It is then reasonably straightforward to assemble the estimated odds-ratio in the
same format as in table 10:

> round( cbind( rbind( ci.exp( c.tot , subset="gnv" ),
+ ci.exp( c.small, subset="gnv" ),
+ ci.exp( c.large, subset="gnv" ) ),
+ rbind( ci.exp( a.tot , subset="gnv" ),
+ ci.exp( a.small, subset="gnv" ),
+ ci.exp( a.large, subset="gnv" ) ) ), 2 )

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
gnvtot[1,2) 1.51 1.10 2.07 1.49 1.08 2.06
gnvtot[2,5) 2.26 1.64 3.11 2.22 1.59 3.09
gnvtot[5,Inf) 5.36 3.54 8.11 4.91 3.20 7.54
gnvsmall[1,2) 1.58 1.14 2.19 1.59 1.13 2.22
gnvsmall[2,5) 2.45 1.77 3.41 2.41 1.72 3.40
gnvsmall[5,Inf) 5.00 3.25 7.69 4.73 3.03 7.38
gnvlarge[1,2) 1.82 1.20 2.77 1.65 1.07 2.54
gnvlarge[2,Inf) 3.57 1.78 7.16 2.66 1.30 5.46

We see that the number of naevi seems to be a predictor of melanoma risk.
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5.5.5 Trend tests and interactions.

6. In the analyses so far all variables have been considered as categorical (factors) while
all tests in Tables 9 and 10 in the paper are trend tests.

We now do the analysis behind the trend test for freckles in the joint model by
replacing the factor version of freckles with a continuous, scored variable. The
numbers of the factor levels is achieved in R by as.integer, so the model is obtained
by:

> lfrec <- update( m.all, . ~ . - Relevel(freckles,3:1) + as.integer(freckles) )

The trend test is simply the test for whether the linear of freckles is 0:

> round( ci.lin( lfrec, E=T ), 3 )

Estimate StdErr z P exp(Est.) 2.5%
(Intercept) -0.013 0.284 -0.046 0.963 0.987 0.566
skinmedium 0.274 0.161 1.701 0.089 1.315 0.959
skinlight 0.284 0.177 1.611 0.107 1.329 0.940
hairlight 0.387 0.130 2.967 0.003 1.472 1.140
hairblond 0.443 0.288 1.541 0.123 1.558 0.886
hairred 0.238 0.235 1.014 0.311 1.269 0.801
eyesgreen/gray -0.308 0.196 -1.570 0.116 0.735 0.500
eyesblue -0.124 0.185 -0.672 0.501 0.883 0.615
Relevel(acuterea, 4:1)mild 0.103 0.135 0.767 0.443 1.109 0.851
Relevel(acuterea, 4:1)painful 0.307 0.241 1.274 0.203 1.360 0.847
Relevel(acuterea, 4:1)blisters 0.490 0.446 1.098 0.272 1.632 0.681
chronreamoderate 0.188 0.144 1.306 0.191 1.206 0.910
chronreamild 0.340 0.189 1.799 0.072 1.404 0.970
chronreanone 0.158 0.379 0.417 0.676 1.171 0.558
as.integer(freckles) -0.514 0.081 -6.378 0.000 0.598 0.510

97.5%
(Intercept) 1.721
skinmedium 1.803
skinlight 1.878
hairlight 1.900
hairblond 2.739
hairred 2.013
eyesgreen/gray 1.079
eyesblue 1.269
Relevel(acuterea, 4:1)mild 1.445
Relevel(acuterea, 4:1)painful 2.183
Relevel(acuterea, 4:1)blisters 3.914
chronreamoderate 1.598
chronreamild 2.034
chronreanone 2.460
as.integer(freckles) 0.700

We see that there is a strong linear effect of freckles.

For skin we obtain:

> lskin <- update( m.all, . ~ . - skin + as.integer(skin) )
> round( ci.lin( lskin, E=T ), 3 )

Estimate StdErr z P exp(Est.) 2.5%
(Intercept) -1.564 0.256 -6.102 0.000 0.209 0.127
hairlight 0.392 0.130 3.012 0.003 1.480 1.147
hairblond 0.461 0.289 1.599 0.110 1.586 0.901
hairred 0.227 0.236 0.960 0.337 1.255 0.790
eyesgreen/gray -0.308 0.196 -1.572 0.116 0.735 0.500
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eyesblue -0.127 0.185 -0.687 0.492 0.881 0.613
Relevel(freckles, 3:1)some 0.400 0.132 3.025 0.002 1.492 1.151
Relevel(freckles, 3:1)many 1.068 0.166 6.452 0.000 2.911 2.104
Relevel(acuterea, 4:1)mild 0.098 0.135 0.728 0.467 1.103 0.847
Relevel(acuterea, 4:1)painful 0.307 0.242 1.271 0.204 1.359 0.847
Relevel(acuterea, 4:1)blisters 0.514 0.448 1.145 0.252 1.671 0.694
chronreamoderate 0.198 0.143 1.379 0.168 1.219 0.920
chronreamild 0.328 0.189 1.734 0.083 1.388 0.958
chronreanone 0.123 0.381 0.323 0.747 1.131 0.536
as.integer(skin) 0.124 0.087 1.434 0.152 1.132 0.955

97.5%
(Intercept) 0.346
hairlight 1.910
hairblond 2.793
hairred 1.994
eyesgreen/gray 1.079
eyesblue 1.266
Relevel(freckles, 3:1)some 1.934
Relevel(freckles, 3:1)many 4.026
Relevel(acuterea, 4:1)mild 1.437
Relevel(acuterea, 4:1)painful 2.182
Relevel(acuterea, 4:1)blisters 4.024
chronreamoderate 1.614
chronreamild 2.012
chronreanone 2.386
as.integer(skin) 1.341

so there is no significant trend across skin-categories.

7. May freckles be scored linearly (1, 2, 3), when this variable is studied separately?

The test of linearity is simply comparison of the model freckles as factor and the
model with linear effect of freckles:

> anova( lfrec, m.all, test="Chisq" )

Analysis of Deviance Table

Model 1: casecon ~ skin + hair + eyes + Relevel(acuterea, 4:1) + chronrea +
as.integer(freckles)

Model 2: casecon ~ skin + hair + eyes + Relevel(freckles, 3:1) + Relevel(acuterea,
4:1) + chronrea

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 1353 1674.7
2 1352 1673.5 1 1.2179 0.2698

The test is non-significant, that means that we can accept the null hypothesis of a
linear trend across the categories of freckles. We can also make a similar test
comparing models where only freckles enter:

> anova( mfrek,
+ update( mfrek, . ~ . - Relevel(freckles,3:1) + as.integer(freckles) ),
+ test = "Chisq" )

Analysis of Deviance Table

Model 1: casecon ~ Relevel(freckles, 3:1)
Model 2: casecon ~ as.integer(freckles)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1393 1738.5
2 1394 1740.1 -1 -1.6087 0.2047
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Also in this case there is no evidence for departure from linearity.

8. In AØ’s Table 11 freckles and the total number of naevi (suitably grouped) are
studied.

This is analysis of a model with interaction between freckles and gnvtot:

> ma <- update( mfrek, . ~ . + gnvtot )
> mi <- update( mfrek, . ~ Relevel(gnvtot,4:1):freckles )
> round( ci.exp( mi ), 2 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.27 0.21 0.34
Relevel(gnvtot, 4:1)[5,Inf):frecklesmany 13.92 6.17 31.41
Relevel(gnvtot, 4:1)[2,5):frecklesmany 6.10 3.02 12.33
Relevel(gnvtot, 4:1)[1,2):frecklesmany 4.77 2.29 9.96
Relevel(gnvtot, 4:1)[0,1):frecklesmany 2.51 1.64 3.82
Relevel(gnvtot, 4:1)[5,Inf):frecklessome 9.14 4.60 18.13
Relevel(gnvtot, 4:1)[2,5):frecklessome 2.66 1.61 4.41
Relevel(gnvtot, 4:1)[1,2):frecklessome 1.76 1.07 2.91
Relevel(gnvtot, 4:1)[0,1):frecklessome 1.48 1.06 2.08
Relevel(gnvtot, 4:1)[5,Inf):frecklesnone 2.89 1.38 6.03
Relevel(gnvtot, 4:1)[2,5):frecklesnone 2.53 1.52 4.19
Relevel(gnvtot, 4:1)[1,2):frecklesnone 1.71 1.05 2.80
Relevel(gnvtot, 4:1)[0,1):frecklesnone 1.00 1.00 1.00

These are the ORs in table 10

We can test for interaction between the two variables by comparing the interaction
model with the model with main effects:

> anova( ma, mi, test="Chisq" )

Analysis of Deviance Table

Model 1: casecon ~ Relevel(freckles, 3:1) + gnvtot
Model 2: casecon ~ Relevel(gnvtot, 4:1):freckles
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1386 1666.3
2 1380 1661.0 6 5.2911 0.5071

We see that there is no compelling indication of an interaction. However, the χ2-test
is 5.3, so there might possibly be a significant 1 df. interaction in there. So we try to
add a linear interaction. But we first must make sue how the two factors are coded:

> levels( mel$gnvtot )

[1] "[0,1)" "[1,2)" "[2,5)" "[5,Inf)"

> levels( mel$freckles )

[1] "many" "some" "none"

Thus we can not just take the product of the numerical levels, because we want the
product of two numerical values that both increase with increasing risk, in order to
see if the risk increases more or less than predicted by the marginal effects:
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> mel$frnv <- as.integer( mel$gnvtot ) * ( 4-as.integer(mel$freckles) )
> with( mel, tapply( frnv, list(freckles,gnvtot), median ) )

[0,1) [1,2) [2,5) [5,Inf)
many 3 6 9 12
some 2 4 6 8
none 1 2 3 4

So we include the interaction and just look at the Wald-test for it

> round( ci.lin( update( ma, . ~ . + frnv ), E=T ), 3 )

Estimate StdErr z P exp(Est.) 2.5% 97.5%
(Intercept) -1.321 0.109 -12.113 0.000 0.267 0.216 0.330
Relevel(freckles, 3:1)some 0.243 0.187 1.301 0.193 1.275 0.884 1.840
Relevel(freckles, 3:1)many 0.801 0.319 2.511 0.012 2.229 1.192 4.166
gnvtot[1,2) 0.319 0.213 1.492 0.136 1.375 0.905 2.090
gnvtot[2,5) 0.602 0.324 1.861 0.063 1.826 0.969 3.443
gnvtot[5,Inf) 1.253 0.492 2.548 0.011 3.502 1.335 9.185
frnv 0.050 0.078 0.645 0.519 1.052 0.902 1.225

Clearly, the conclusion is that there is no interaction, and that the joint effect of
freckles and total number of naevi is well described by the marginal effects:

> round( ci.exp( ma ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.273 0.223 0.335
Relevel(freckles, 3:1)some 1.389 1.072 1.799
Relevel(freckles, 3:1)many 2.660 1.929 3.668
gnvtot[1,2) 1.502 1.090 2.070
gnvtot[2,5) 2.184 1.579 3.022
gnvtot[5,Inf) 4.662 3.057 7.110

9. Study, in a similar vein, interactions between acuterea and skin and between the
grouped version of nvtot and agroup.

The variables skin, gnvtot and agroup are coded so that that increasing levels
correspond to increasing risk, but acuterea is coded the other way round, so again
we need to be careful when defining numerical interactions

> levels( mel$skin )

[1] "dark" "medium" "light"

> levels( mel$acuterea )

[1] "blisters" "painful" "mild" "none"

> levels( mel$gnvtot )

[1] "[0,1)" "[1,2)" "[2,5)" "[5,Inf)"

> mel$skac <- as.integer(mel$skin) * (5-as.integer(mel$acuterea))
> mel$agnv <- mel$agroup * as.integer(mel$gnvtot)
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We the fit the model with two variables separately, the model with the continuous
interaction and the mode with the grouped interaction to see if there is a any
interaction, and if it is easily interpretable.

First for skin and acuterea:

> msa <- glm( casecon ~ skin + acuterea, family=binomial, data=mel )
> msal <- update( msa, . ~ . + skac )
> msai <- update( msa, . ~ . + skin:acuterea )
> anova( msa, msal, msai, test="Chisq" )

Analysis of Deviance Table

Model 1: casecon ~ skin + acuterea
Model 2: casecon ~ skin + acuterea + skac
Model 3: casecon ~ skin + acuterea + skin:acuterea
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1372 1750.9
2 1371 1747.9 1 3.0334 0.08157
3 1366 1734.4 5 13.4818 0.01926

We see there is a significant interaction between skin and acuterea, which is not
captured by the linear term. Thus it is of course of relevance to see how it looks. To
that end we re-fit the model with the interaction term alone, reparametrized, so that
the dark skin and no acute reaction is the reference:

> msai <- update( msa, . ~ Relevel(skin,3:1):acuterea )
> round( ci.exp( msai ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.422 0.289 0.617
Relevel(skin, 3:1)light:acutereablisters 2.368 0.718 7.812
Relevel(skin, 3:1)medium:acutereablisters 1.421 0.323 6.247
Relevel(skin, 3:1)dark:acutereablisters 4.737 0.417 53.817
Relevel(skin, 3:1)light:acutereapainful 1.731 0.857 3.495
Relevel(skin, 3:1)medium:acutereapainful 1.442 0.671 3.098
Relevel(skin, 3:1)dark:acutereapainful 1.895 0.694 5.171
Relevel(skin, 3:1)light:acutereamild 1.766 1.135 2.749
Relevel(skin, 3:1)medium:acutereamild 1.235 0.797 1.913
Relevel(skin, 3:1)dark:acutereamild 0.687 0.407 1.160
Relevel(skin, 3:1)light:acutereanone 0.716 0.401 1.279
Relevel(skin, 3:1)medium:acutereanone 1.222 0.753 1.984
Relevel(skin, 3:1)dark:acutereanone 1.000 1.000 1.000

We can make a forest plot of this:

> plotEst( ci.exp(msai)[-1,] )

— which is rather uninformative, so we need to put limits on it

> plotEst( ci.exp(msai)[-1,], xlim=c(0.5,8), xlog=TRUE )

But the labeling is awful, and the arrangement of estimates can be improved:

> ee <- ci.exp(msai)[-1,]
> rownames( ee ) <- gsub( "Relevel\\(skin, 3:1\\)","",rownames(ee) )
> rownames( ee ) <- gsub( ":acuterea"," ",rownames(ee) )
> plotEst( ee, xlog=TRUE, vref=1,
+ xtic=c(0.3,0.5,1,2,5,10),grid=c(3:9/10,2:10),
+ y=rep(1:3,4)+rep(c(0,4,8,12),each=3), xlab="OR of malignant melanoma" )
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The interaction is significant, but there does not seem to any consistent pattern,
except that is only among those with acute reaction mild that the skin color has an
effect.

However, we can also take a look at the same estimates sorted differently:

> plotEst( ee, xlog=TRUE, vref=1,
+ xtic=c(0.3,0.5,1,2,5,10),grid=c(3:9/10,2:10),
+ y=rep(1:3*5,4)+rep(1:4,each=3), xlab="OR of malignant melanoma" )



60 Solutions with R Epidemiology

●

●

●

●

●

●

●

●

●

●

●

●

0.3 0.5 1.0 2.0 5.0 10.0

OR of malignant melanoma

light   blisters

light   painful

light   mild

light   none

medium   blisters

medium   painful

medium   mild

medium   none

dark   blisters

dark   painful

dark   mild

dark   none

Looking at the interaction this way reveals that acute reaction has an effect only
among light-skinned, and the difference is mainly between those with no acute
reaction and those with (any).

Now we take a look at the interaction between agroup and gnvtot:

> mag <- glm( casecon ~ factor(agroup) + gnvtot, family=binomial, data=mel )
> magl <- update( mag, . ~ . + agnv )
> magi <- update( mag, . ~ . + factor(agroup):gnvtot )
> anova( mag, magl, magi, test="Chisq" )

Analysis of Deviance Table

Model 1: casecon ~ factor(agroup) + gnvtot
Model 2: casecon ~ factor(agroup) + gnvtot + agnv
Model 3: casecon ~ factor(agroup) + gnvtot + factor(agroup):gnvtot
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1383 1701.1
2 1382 1698.8 1 2.3545 0.1249
3 1365 1685.0 17 13.7575 0.6842

And we see that there is no indication of any type of interaction (Phew!).

10. All of AØ’s analyses are conducted without accounting for the match variable age
(agroup) (in spite of warnings given by Clayton & Hills!). Repeat some of the
previous analyses adjusting for agroup.

We take a look at the effect of the variables skin color and freckles with and without
adjustment for age-group:
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> m0 <- glm( casecon ~ 1, family=binomial, data=mel )
> mfrek <- update( m0, .~. + Relevel(freckles,3:1) )
> mfrag <- update( mfrek, .~. + factor(agroup) )
> mskin <- update( m0, .~. + skin )
> mskag <- update( mskin, .~. + factor(agroup) )
> round( cbind( rbind( ci.exp( mfrek, subset="frec" ),
+ ci.exp( mskin, subset="skin" ) ),
+ rbind( ci.exp( mfrag, subset="frec" ),
+ ci.exp( mskag, subset="skin" ) ) ), 2 )

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
Relevel(freckles, 3:1)some 1.49 1.16 1.92 1.50 1.16 1.93
Relevel(freckles, 3:1)many 3.01 2.21 4.11 3.04 2.22 4.17
skinmedium 1.40 1.04 1.89 1.39 1.03 1.88
skinlight 1.66 1.22 2.26 1.66 1.21 2.26

The first 3 columns are the unadjusted estimates, and the last three are the adjusted
estimates; we see there is virtually no differences between them. This is because there
is very little association between the risk factors and age.

5.6 Testicular cancer risk and maternal parity.

This exercise deals with the article “Testicular cancer risk and maternal parity: a
population-based cohort study”, by T. Westergaard, P.K. Andersen, J.B. Pedersen, M.
Frisch, J.H. Olsen, M. Melbye. Br. J. Cancer, 77,pp. 1180-1185 (1998). [4].

5.6.1 Discussion of the article.

1. What is the authors’ argument for the existence of an effect of maternal parity on the
risk of testicular cancer in the son?

Mainly the existing literature on occurrence of testis cancer.

2. Describe the design of the study:

• a. which “sons” are included in the study?

Sons of mothers born after 1935; that is essentially only boys born after 1950.
But not all such boys.

• b. when are they followed?

They are followed from the start of CPR, 1.1.1968 till the end of 1992.

• c. how are cases defined and ascertained?

Cases are defined as cases reported to the Danish Cancer registry with certain
diagnoses.

3. Concentrating on all testicular cancers, what do you consider to be the main result
reported in Table 1?

The effect of parity 2+, and the remarkable small effect of any other variable.

4. Explain in words the interpretation of the value RR=0.80 for parity 2+.

This means that the incidence rate of TC among boys born as the 2nd or later sibling
of a woman is 0.8 of the rate among first-born.
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5. Compare this value with the corresponding crude RR (and 95 % CI) obtained
without any adjustment. Explain the differences between the two results.

The crude RR was 0.57, but adjustment for the age at follow-up (called SON_AGE in
the dataset), makes this effect go to to 0.8. This is because of confounding —
incidence increases by age, and first born are likely to be older in a dataset collected
as follow-up of cohorts.

6. Draw a Lexis diagram to illustrate the combinations of age and calendar period
which contribute person-years to the study. This is shown in the figure.
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Figure 5.1: Lexis diagrams showing the number of cases and person-years by age and date of
follow-up. The black outline indicates the sampling frame for the study.

In the section with solutions in R is a small section illustration how to draw the Lexis
diagrams with lines indicating age-classes and birth cohorts.

7. Explain the meaning of the estimates for “Interval from ...” in the lower part of Table
1.

This interval basically gives the age-difference to the closest older sibling. This is
meant as a proxy fro some sort of infection pressure in infancy.

8. What type of analysis is reported in Table 2?

Table 2 reports interactions, investigating whether the effect of being 1st born is
constant across other factor available in this study.

9. Discuss how, alternatively, a case-control design could have been conducted to
address the same question as the cohort study reported in the article.

A case-control study would include as cases the same cases as this cohort study,
namely those ascertained from the Cancer Registry. As there is a substantial
variation by age and birth-cohort in testis cancer incidence, which is well known, it
would be natural to match each case to a number of controls born on the same day
and who survived till the date of diagnosis of the case (for example all).
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The maternal parameters would then be ascertained from the various registers for
both cases and controls.

Even though an individual matching is done this way, the analysis needed not be
done as matched (conditional) logistic regression, the matching variables, date of
birth and age are perfectly quantifiable and could just be included as covariates in an
ordinary logistic regression analysis.

The case-control study would not be able to assess the incidence rates, but in so far
the aim of the analysis was to assess the effect of maternal parameters, this would not
be of interest. The level and age-dependence of TC incidence rates are well known
from descriptive studies based on the cancer registry data anyway.

5.6.2 The Lexis diagram

The Lexis diagram shown above is generated by the following R-code. This is somewhat
outside the course but included for the completeness of documentation.

The part first just generates the empty Lexis-diagram:

> library( Epi )
> par( mgp=c(3,1,0)/1.5, mar=c(3,3,1,1) )
> Lexis.diagram(date=c(1950,2000),age=c(0,50))
> box()

The next pieces of code draws the lines showing the tabulation intervals in the dataset.
Note that we need to do this repeatedly, so we stick the code into a function draw.grid,
that we can call later:

> par( mgp=c(3,1,0)/1.5, mar=c(3,3,1,1) )
> Lexis.diagram(date=c(1950,2000),age=c(0,50))
> draw.grid <-
+ function()
+ {
+ alim <- c(0,15,20,25,30)
+ blim <- 1900 + c(50,58,63,68,73)
+ plim <- c( 1968.25, 1993 )
+ abline( h=alim, v=plim, col="blue", lwd=2 )
+ for (i in 1:5) abline( -blim[i], 1, col="blue", lwd=2 )
+ segments( pmax( rep( plim[1], 5), 1950+alim ), alim,
+ rep( plim[2], 5), alim, lwd=4 )
+ segments( rep( plim[1], 5 ), plim[1] - blim,
+ rep( plim[2], 5 ), plim[2] - blim, lwd=4 )
+ segments( plim, 0, plim, plim - blim[1], lwd=4 )
+ box()
+ }
> draw.grid()

The two next ones also puts in the number of cases and PYs in each of the areas. First we
read the data, compute the no cases and PY and the midpoints in terms of son’s cohort and
son’s age, which allows us to derive the (date,age) coordinates to be used in the diagram.

> # tc <- read.table( "../data/tc-testis.txt", header=T )
> tw <- read.table( "http://www.biostat.ku.dk/~pka/epidata/testis.txt",
+ header=TRUE, na.strings="." )
> names( tw ) <- tolower( names(tw) )
> names( tw ) <- gsub( "_", ".", names(tw) )
> attach( tw )
> D <- tapply( cases, list( son.age, son.koh ), sum )
> Y <- tapply( pyrs, list( son.age, son.koh ), sum )



64 Solutions with R Epidemiology

> x <- outer( unique( son.age )+c(17.5,rep(2.5,4)),
+ unique( son.koh )+2.5,
+ "+" )
> x[1,] <- x[1,]-c(0,3,3,3,2)
> y <- outer( c(13,17,22,27,32), rep(1,5), "*" )

Then we can repeat the code that generated the diagram with the lines and add to taht the
no. of cases:

> Lexis.diagram( date=c(1950,2000),age=c(0,50) )
> draw.grid()
> text( x[!is.na(D)], y[!is.na(D)], paste( D[!is.na(D)] ),
+ col="black", adj=1, font=2 )
> rect( 1950, 45, 1960, 50, col="white", border=gray(0.7) )
> text( 1952.5, 47.5, "Cases", adj=0 )
> box()

— and the same adding the person-years:

> Lexis.diagram(date=c(1950,2000),age=c(0,50))
> draw.grid()
> text( x[!is.na(Y)], y[!is.na(Y)], paste( round( Y/10^4 )[!is.na(Y)] ),
+ col="black", adj=1, font=2 )
> rect( 1950, 45, 1965, 50, col="white", border=gray(0.7) )
> text( 1952.5, 47.5, "PY (10,000)", adj=0 )

5.6.3 Practical exercises

First we read in the data from the website

> library( Epi )
> tc <- read.table( "http://www.biostat.ku.dk/~pka/epidata/testis.txt",
+ header=TRUE, na.strings="." )
> names( tc ) <- tolower( names(tc) )
> str( tc )

’data.frame’: 237 obs. of 8 variables:
$ son_age : int 0 0 0 0 0 0 0 0 0 0 ...
$ son_koh : int 1950 1950 1950 1950 1950 1950 1950 1958 1958 1958 ...
$ moth_age: int 12 12 12 20 20 20 20 12 12 12 ...
$ parity : int 1 2 3 1 2 3 4 1 2 3 ...
$ pyrs : num 25096.8 1859 64.2 21779.2 4972.1 ...
$ nonsemi : int 0 0 0 0 0 0 0 0 0 0 ...
$ semi : int 0 0 0 0 0 0 0 0 0 0 ...
$ cases : int 0 0 0 0 0 0 0 0 0 0 ...

We then make variables into factors:

> tc <- transform( tc, son.koh = Relevel(factor(son_koh),list(1,2,3,c(4:5))),
+ son.age = factor( son_age ),
+ moth.age = factor( moth_age ),
+ parity = factor( parity ),
+ p2 = Relevel(factor(parity),list(1,2:4)) )

10. Compute the crude rate ratio for testis cancer for parity 2+ versus parity 1.

We fit a Poisson model with cases as outcome, log-person-years as offset and parity
2+ as only predictor:

> m1 <- glm( cases ~ p2, offset=log(pyrs), family=poisson, data=tc )
> round( ci.exp(m1), 2 )
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exp(Est.) 2.5% 97.5%
(Intercept) 0.00 0.00 0.00
p22+3+4 0.57 0.48 0.67

The crude estimate is smaller than the adjusted because there is a subsantial
age-confounding.

11. Reconstruct the estimates for “parity of mother at birth of son” from the top of Table
1 in the article both for all testis cancers and for non-seminomas.

We fit a model of the same structre, just with adjustement for age, birth cohort and
maternal age:

> m2 <- glm( cases ~ parity + son.age + son.koh + moth.age,
+ offset=log(pyrs), family=poisson, data=tc )
> m2g <- update( m2, .~.-parity+p2 )

Note we can fit the same models with a different outcome by just using the update

function:

> s2 <- update( m2, nonsemi ~ . )
> s2g <- update( m2g, nonsemi ~ . )

And finally we can show the estiamtes in the same layout as in the article:

> round( rbind( cbind( ci.exp(m2,subset="par"),
+ ci.exp(s2,subset="par") ),
+ cbind( ci.exp(m2g,subset="p2"),
+ ci.exp(s2g,subset="p2") ) ), 2 )

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
parity2 0.78 0.65 0.95 0.78 0.63 0.98
parity3 0.87 0.64 1.19 0.83 0.58 1.20
parity4 0.68 0.37 1.27 0.73 0.37 1.46
p22+3+4 0.80 0.67 0.95 0.79 0.64 0.98

Thus we have recreated the same estimates as in the article.

12. Reconstruct the estimates from Table 2 in the article concerning mother’s age (for all
testis cancers). Is there an interaction between parity and mother’s age?

First we fit the model, and note that the parameters of interest are those whre there
is a “:” in the name:

> m3 <- update( m1, . ~ moth.age + moth.age:p2 + son.age + son.koh )
> round( ci.exp(m3,subset=":"), 3 )

exp(Est.) 2.5% 97.5%
moth.age12:p22+3+4 0.770 0.415 1.430
moth.age20:p22+3+4 0.793 0.634 0.992
moth.age25:p22+3+4 0.841 0.585 1.207
moth.age30:p22+3+4 0.617 0.246 1.545

We can test the interaction by comparing with the model without interaction:

> anova( m3, update( m3, .~.- moth.age:p2 + p2 ), test="Chisq" )
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Analysis of Deviance Table

Model 1: cases ~ moth.age + son.age + son.koh + moth.age:p2
Model 2: cases ~ moth.age + son.age + son.koh + p2
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 222 190.15
2 225 190.53 -3 -0.38146 0.944

we see there is no sign whatsoever of interaction, as also suggetsed by the very simile
RRs between the age-classes of the mother.

13. Same question for birth cohort of the son.

We can literally use the same code with small changes:

> m4 <- update( m1, . ~ moth.age + son.age + son.koh + son.koh:p2 )
> round( ci.exp(m4,subset=":"), 3 )

exp(Est.) 2.5% 97.5%
son.koh1950:p22+3+4 0.321 0.078 1.322
son.koh1958:p22+3+4 0.797 0.588 1.081
son.koh1963:p22+3+4 0.939 0.722 1.221
son.koh1968+1973:p22+3+4 0.628 0.435 0.906

> anova( m4, update( m4, .~.- son.koh:p2 + p2 ), test="Chisq" )

Analysis of Deviance Table

Model 1: cases ~ moth.age + son.age + son.koh + son.koh:p2
Model 2: cases ~ moth.age + son.age + son.koh + p2
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 222 185.07
2 225 190.53 -3 -5.4623 0.1409

But we note that we do not get the same numbers as in the table, because this
analysis is done using a version of son.koh, where the first two levels are collapsed —
but only in the interaction, which causes R to lose track of the linear dependencies, so
get the the wrong RRs for parity:

> tc$son.coh <- Relevel(tc$son.koh,list(1:2,3,4))
> m4 <- update( m1, . ~ moth.age + son.age + son.koh + son.coh:p2 )
> round( ci.exp(m4,subset=":"), 2 )

exp(Est.) 2.5% 97.5%
son.coh1950+1958:p21 1.33 0.99 1.78
son.coh1963:p21 1.07 0.82 1.38
son.coh1968+1973:p21 1.59 1.10 2.30
son.coh1950+1958:p22+3+4 1.00 1.00 1.00
son.coh1963:p22+3+4 1.00 1.00 1.00
son.coh1968+1973:p22+3+4 1.00 1.00 1.00

> round( 1/ci.exp(m4,subset=":"), 2 )

exp(Est.) 2.5% 97.5%
son.coh1950+1958:p21 0.75 1.01 0.56
son.coh1963:p21 0.94 1.22 0.72
son.coh1968+1973:p21 0.63 0.91 0.43
son.coh1950+1958:p22+3+4 1.00 1.00 1.00
son.coh1963:p22+3+4 1.00 1.00 1.00
son.coh1968+1973:p22+3+4 1.00 1.00 1.00
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> anova( m4, update( m4, .~.-son.coh:p2 + p2 ), test="Chisq" )

Analysis of Deviance Table

Model 1: cases ~ moth.age + son.age + son.koh + son.coh:p2
Model 2: cases ~ moth.age + son.age + son.koh + p2
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 223 187.04
2 225 190.53 -2 -3.4899 0.1747

We see we get the same estimates, and also that there is no interaction here either.
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