Splitting the follow-up

Bendix Carstensen

Steno Diabetes Center & Department of Biostatistics, University of Copenhagen

bxc@steno.dk

http://BendixCarstensen.com

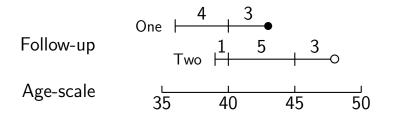
PhD-course in Epidemiology, Department of Biostatistics, Wednesday 15 May 2013

Stratification by age

If follow-up is rather short, age at entry is OK for age-stratification.

If follow-up is long, use stratification by categories of **current age**, both for:

No. of events, D, and Risk time, Y.



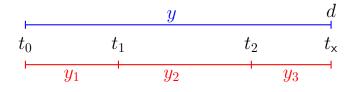
Representation of follow-up data

In a cohort study we have records of: **Events** and **Risk time**.

Follow-up data for each individual must have (at least) three variables:

- Date of entry entry date variable.
- ► Date of exit exit date variable
- Status at exit fail indicator-variable (0/1)

Specific for each *type* of outcome.



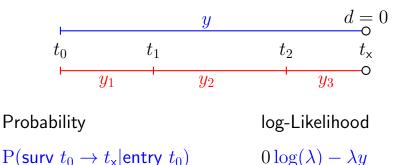
Probability

 $P(d \text{ at } t_x | \text{entry } t_0)$

 $= P(\mathsf{surv} \ t_0 \to t_1 | \mathsf{entry} \ t_0) \\ \times P(\mathsf{surv} \ t_1 \to t_2 | \mathsf{entry} \ t_1) \\ \times P(d \ \mathsf{at} \ t_x | \mathsf{entry} \ t_2)$

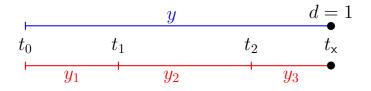
log-Likelihood $d log(\lambda) - \lambda y$ $= 0 log(\lambda) - \lambda y_1$ $+ 0 log(\lambda) - \lambda y_2$

 $+d\log(\lambda) - \lambda y_3$



 $= P(\mathsf{surv} \ t_0 \to t_1 | \mathsf{entry} \ t_0) \\ \times P(\mathsf{surv} \ t_1 \to t_2 | \mathsf{entry} \ t_1) \\ \times P(\mathsf{surv} \ t_2 \to t_x | \mathsf{entry} \ t_2)$

 $= 0 \log(\lambda) - \lambda y_1$ + 0 log(\lambda) - \lambda y_2 + 0 log(\lambda) - \lambda y_3



Probability

 $P(event at t_x | entry t_0)$

 $= P(\text{surv } t_0 \to t_1 | \text{entry } t_0) \\ \times P(\text{surv } t_1 \to t_2 | \text{entry } t_1) \\ \times P(\text{event at } t_x | \text{entry } t_2)$

log-Likelihood

 $1\log(\lambda) - \lambda y$

- $= 0 \log(\lambda) \lambda y_1$ $+ 0 \log(\lambda) - \lambda y_2$
- $+ 0 \log(\lambda) \lambda y_2$ $+ 1 \log(\lambda) - \lambda y_3$

Aim of dividing time into bands:

- Compute rates in different bands of:
 - age

▶ ...

- calendar time
- disease duration
- Allow rates to vary along the timescale:

$$\begin{array}{lll} 0\log(\lambda) - \lambda y_1 & & 0\log(\lambda_1) - \lambda_1 y_1 \\ + 0\log(\lambda) - \lambda y_2 & \rightarrow & + 0\log(\lambda_2) - \lambda_2 y_2 \\ + d\log(\lambda) - \lambda y_3 & & + d\log(\lambda_3) - \lambda_3 y_3 \end{array}$$

Prerequisites of splitting time

Origin: The date where the time scale is 0:

- Age 0 at date of birth
- ▶ Disease duration 0 at date of diagnosis
- Occupation exposure 0 at date of hire

Intervals: How should it be subdivided:

- ▶ 1-year classes? 5-year classes?
- Equal length not necessarily.

Cohort with 3 persons:

Id Bdate Entry Exit St 1 14/07/52 04/08/65 27/06/97 1 2 01/04/54 08/09/72 23/05/95 0 3 10/06/87 23/12/91 24/07/98 1

- ▶ Define strata: 10-years intervals of current age.
- ► Split *Y* for every subject accordingly
- Treat each segment as a separate unit of observation.
- Keep track of exit status in each interval.

Splitting the follow up

	subj. 1	subj. 2	subj. 3
Age at Entry:	13.06	18.44	4.54
Age at eXit:	44.95	41.14	11.12
Status at exit:	Dead	Alive	Dead
Y	31.89	22.70	6.58
D	1	0	1

Where did the pieces go?

	subj. 1		subj.	subj. 2		subj. 3		\sum	
Age	Y	D	Y	D	Y	D	Y	D	
0-	0.00	0	0.00	0	5.46	0	5.46	0	
10–	6.94	0	1.56	0	1.12	1	8.62	1	
20-	10.00	0	10.00	0	0.00	0	20.00	0	
30-	10.00	0	10.00	0	0.00	0	20.00	0	
40-	4.95	1	1.14	0	0.00	0	6.09	1	
\sum	31.89	1	22.70	0	6.58	1	60.17	2	

Time-splitting with SAS: %Lexis

id	Bdate	Entry	Exit	St	risk	left
1	14/07/1952	03/08/1965	14/07/1972	0	6.9432	10
1	14/07/1952	14/07/1972	14/07/1982	0	10.0000	20
1	14/07/1952	14/07/1982	14/07/1992	0	10.0000	30
1	14/07/1952	14/07/1992	27/06/1997	1	4.9528	40
2	01/04/1954	08/09/1972	01/04/1974	0	1.5606	10
2	01/04/1954	01/04/1974	31/03/1984	0	10.0000	20
2	01/04/1954	31/03/1984	01/04/1994	0	10.0000	30
2	01/04/1954	01/04/1994	23/05/1995	0	1.1417	40
3	10/06/1987	23/12/1991	09/06/1997	0	5.4634	0
3	10/06/1987	09/06/1997	24/07/1998	1	1.1211	10

Time-splitting with Stata stset, stsplit

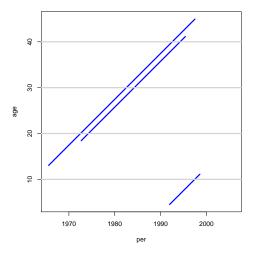
Time-splitting with R Lexis, splitLexis

Ls <- splitLexis(Lx, breaks=seq(0,100,10), time.scale="age")</pre>

lex.id	per	age	lex.dur	lex.Cst	lex.Xst	Id	Bdate	En
1	1965.589	13.056	6.943	Alive	Alive	1	1952.533	1965.
1	1972.533	20.000	10.000	Alive	Alive	1	1952.533	1965.
1	1982.533	30.000	10.000	Alive	Alive	1	1952.533	1965.
1	1992.533	40.000	4.952	Alive	Dead	1	1952.533	1965.
2	1972.686	18.439	1.560	Alive	Alive	2	1954.246	1972.
2	1974.246	20.000	10.000	Alive	Alive	2	1954.246	1972.
2	1984.246	30.000	10.000	Alive	Alive	2	1954.246	1972.
2	1994.246	40.000	1.141	Alive	Alive	2	1954.246	1972.
3	1991.974	4.536	5.463	Alive	Alive	3	1987.437	1991.
3	1997.437	10.000	1.121	Alive	Dead	3	1987.437	1991.

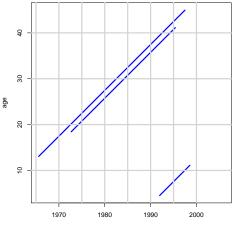
Time-splitting with R Lexis, splitLexis

plot(Ls, col="blue", lwd=3)



Time-splitting with R Lexis, splitLexis

Ls <- splitLexis(Ls, breaks=seq(1900,2000,5), time.scale="per"
plot(Ls, col="blue", lwd=3)</pre>



Splitting the follow-up (C&H 6)

What happens when splitting time?

- **From:** one record per person
- **To:** many records per person,
- each representing a short piece of follow-up time.
- Same total no. events
- Same total follow-up time (PYs)
- Possibility of different rates in different intervals.

What about the Cox-model?

Data for Cox-regression has only one record per person.

- It allows rates to vary over time (the baseline)
- internally in the program, the data is split
- Time-dependent covariates require multiple records per person
- Additional time-scales require multiple records per person

What happens when splitting time?

We are actually mimicking a **continuous** surveillance of the study population.

For each little piece of follow up we attach the relevant covariates:

- ▶ Fixed covariates. (sex, genotype, ...)
- Deterministically time-varying covariates: age, time since entry, calendar time — all derived from the current date.
- Non-deterministically varying covariates. (current smoking habits, occupational exposure, ...)

Models for time-split data

For follow-up data we make linear models for:

$$\eta = \log(\lambda Y) = \log(\lambda) + \log(Y)$$

by telling the software that D is Poisson. If the model for the rate λ is multiplicative:

$$\log(\lambda) = x_1\beta_1 + x_2\beta_2 + \dots + \log(Y)$$

Among the covariates are some that model the time-effect (in the IHD-example, age).

Independent observations?

When we split data, each individual contributes several observations, which are not independent.

Yet, we treat them as such.

The likelihood contribution from one person is a **product** of **conditional** probabilities.

Because the likelihood is a product, we can use the program (proc genmod, glm, ...) as if they were independent; we are only interested in getting the maximum likelihood estimates.

The offset

Need to take account of the "covariate" $\log(Y)$, which has a regression coefficient fixed to be one:

$$\log(\lambda Y) = x_1\beta_1 + x_2\beta_2 + \dots + \log(Y)$$

log(Y) is called an **offset**-variable.

Analysis of results from %Lexis

- ▶ *D* events in the variable fail.
- ► Y risk time = difference: exit entry. Enters in the model via log(Y) as offset.
- Covariates are:
 - timescales (age, calendar time, time since entry)
 - other variables for this person (constant or assumed constant in each interval).
- Model rates using the covariates in proc genmod
- Note: there is no difference in how time-scales and other covariates are treated in the model.

Poisson model for split data

- Each interval contribute λY to the log-likelihood.
- All intervals with the same set of covariate values (age,exposure,...) have the same λ.
- The log-likelihood contribution from these is $\lambda \sum Y$ the same as from aggregated data.
- The event intervals contribute each $D log \lambda$.
- The log-likelihood contribution from those with the same lambda is $\sum D \log \lambda$ the same as from aggregated data.
- The log-likelihood is the same for split data and aggregated data — no need to tabulate first.