Survival models and Cox-regression

Bendix Carstensen

Steno Diabetes Center Copenhagen, Gentofte, Denmark & Department of Biostatistics, University of Copenhagen b@bxc.dk http://BendixCarstensen.com

IDEG 2017 training day, Abu Dhabi,

11 December 2017 http://BendixCarstensen/Epi/Courses/IDEG2017

REGION

Steno Diabetes Center Copenhagen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Multiple time scales and continuous rates

From /home/bendix/teach/Epi/sdc/surv/surv-cox/slides.tex

Rates and Survival

Bendix Carstensen

Senior Statistician, Steno Diabetes Center

Survival models and Cox-regression IDEG 2017 training day, Abu Dhabi, 11 December 2017

http://BendixCarstensen/Epi/Courses/IDEG2017

surv-rate

Survival data

Persons enter the study at some date.

Persons exit at a later date, either dead or alive.

Observation:

Actual time span to death ("event")

or

Some time alive ("at least this long")

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Examples of time-to-event measurements

- Time from diagnosis of cancer to death.
- ▶ Time from randomisation to death in a cancer clinical trial
- Time from HIV infection to AIDS.
- Time from marriage to 1st child birth.
- Time from marriage to divorce.
- ▶ Time to re-offending after being released from jail

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Each line a person

Each blob a death

Study ended at 31 Dec. 2003

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Ordered by date of entry

Most likely the order in your database.

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Timescale changed to "Time since diagnosis".

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Patients ordered by survival time.

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Survival times grouped into bands of survival.

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Patients ordered by survival status within each band.

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Survival after Cervix cancer

	Stage I			Stage II		
Year	N	D	L	N	D	L
1 2 3 4 5 6 7 8 9 10	110 100 86 72 61 54 42 33 28 28 24	5 7 3 0 2 3 0 0 1	5 7 8 7 10 6 5 4 8	234 207 169 129 105 85 73 62 49 34	24 27 31 17 7 6 5 3 2 4	$ \begin{array}{r} 3 \\ 11 \\ 9 \\ 7 \\ 13 \\ 6 \\ 6 \\ 10 \\ 13 \\ 6 \end{array} $

Estimated risk in year 1 for Stage I women is 5/107.5 = 0.0465Estimated 1 year survival is 1 - 0.0465 = 0.9535 Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Multiple time scales and continuous rates

Ralife table estimator.

Survival function

Persons enter at time 0:

Date of birth, date of randomization, date of diagnosis.

How long do they survive? Survival time T — a stochastic variable.

Distribution is characterized by the survival function:

$$S(t) = P \{ \text{survival at least till } t \}$$

= P { T > t } = 1 - P { T ≤ t } = 1 - F(t)

F(t) is the cumulative risk of death before time t.

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Intensity / rate / hazard — same same

- The intensity or hazard function
- Probability of event in interval, reltive to interval length:

$$\lambda(t) = P \left\{ \text{event in } (t, t+h] \mid \text{alive at } t \right\} / h$$

- Characterizes the distribution of survival times as does *f* (density) or
 E (sumulative distribution)
 - F (cumulative distibution).
- Theoretical counterpart of a(n empirical) rate.

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Rate and survival

$$S(t) = \exp\left(-\int_0^t \lambda(s) \,\mathrm{d}s\right) \qquad \lambda(t) = \frac{S'(t)}{S(t)}$$

Survival is a *cumulative* measure, the rate is an *instantaneous* measure.

- Note: A cumulative measure requires an origin!
- ... it is always survival **since** some timepoint.

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Observed survival and rate

Survival studies:

Observation of (right censored) survival time:

$$X = \min(T, Z), \quad \delta = 1\{X = T\}$$

D/Y

— sometimes conditional on $T > t_0$ (left truncation, delayed entry).

Epidemiological studies:
 Observation of (components of) a rate:

$D{:}$ no. events, Y no of person-years, in a prespecified time-frame.

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Empirical rates for individuals

- At the *individual* level we introduce the empirical rate: (d, y),
 number of events (d ∈ {0,1}) during y risk time.
- ► A person contributes several observations of (*d*, *y*), with associated covariate values.
- Empirical rates are **responses** in survival analysis.
- The timescale t is a covariate varies within each individual:
 - t: age, time since diagnosis, calendar time.
- Don't confuse with y difference between two points on any timescale we may choose.

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Empirical rates by calendar time.

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Empirical rates by time since diagnosis.

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Statistical inference: Likelihood

Two things needed:

- Data what did we actually observe
 Follow-up for each person:
 Entry time, exit time, exit status, covariates
- Model how was data generated Rates as a function of time: Probability machinery that generated data

Likelihood is the probability of observing the data, assuming the model is correct.

Maximum likelihood estimation is choosing parameters of the model that makes the likelihood maximal.

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Likelihood from one person

The likelihood from several empirical rates from one individual is a product of conditional probabilities:

$$P \{ \text{event at } t_4 | t_0 \} = P \{ \text{survive } (t_0, t_1) | \text{ alive at } t_0 \} \times P \{ \text{survive } (t_1, t_2) | \text{ alive at } t_1 \} \times P \{ \text{survive } (t_2, t_3) | \text{ alive at } t_2 \} \times P \{ \text{event at } t_4 | \text{ alive at } t_3 \}$$

Log-likelihood from one individual is a sum of terms. Each term refers to one empirical rate (d, y)— $y = t_i - t_{i-1}$ and mostly d = 0. Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Multiple time scales and continuous rates

Rates and Survival (surv-rate)

 t_i is the timescale (covariate).

Poisson likelihood

The log-likelihood contributions from follow-up of **one** individual:

$$d_t \log(\lambda(t)) - \lambda(t)y_t, \quad t = t_1, \dots, t_n$$

is also the log-likelihood from several independent Poisson observations with mean $\lambda(t)y_t$, i.e. log-mean $\log(\lambda(t)) + \log(y_t)$

Analysis of the rates, (λ) can be based on a Poisson model with log-link applied to empirical rates where:

- ► *d* is the response variable.
- $\log(\lambda)$ is modelled by covariates
- $\log(y)$ is the offset variable.

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Likelihood for follow-up of many persons

Adding empirical rates over the follow-up of persons:

$$D = \sum d \qquad Y = \sum y \quad \Rightarrow \quad D\log(\lambda) - \lambda Y$$

- Persons are assumed independent
- Contribution from the same person are conditionally independent, hence give separate contributions to the log-likelihood.
- Therefore equivalent to likelihood for independent Poisson variates
- No need to correct for dependent observations; the likelihood is a product.

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Likelihood

Probability of the data and the parameter:

Assuming the rate (intensity) is constant, λ , the probability of observing 7 deaths in the course of 500 person-years:

$$P \{ D = 7, Y = 500 | \lambda \} = \lambda^{D} e^{\lambda Y} \times K$$
$$= \lambda^{7} e^{\lambda 500} \times K$$
$$= L(\lambda | data)$$

Best guess of λ is where this function is as large as possible. Confidence interval is where it is not too far from the maximum Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Likelihood function

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Likelihood function

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Example using R

Poisson likelihood, for one rate, based on 17 events in 843.7 PY:

Poisson likelihood, two rates, or one rate and RR :

D <- c(17,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1)
m2 <- glm(D ~ gg, offset=log(Y/1000), family=poisson)
ci.exp(m2)</pre>

exp(Est.) 2.5% 97.5% (Intercept) 20.149342 12.526051 32.412130 gg1 2.197728 1.202971 4.015068 Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Example using R

Poisson likelihood, two rates, or one rate and RR:

```
D <- c(17,28); Y <- c(843.7,632.3); gg <- factor(0:1)
m2 <- glm( D ~ gg, offset=log(Y/1000), family=poisson)
 ci.exp( m2 )
           exp(Est.) 2.5% 97.5%
(Intercept) 20.149342 12.526051 32.412130
        2.197728 1.202971 4.015068
gg1
m3 <- glm( D ~ gg - 1, offset=log(Y/1000), family=poisson)
ci.exp(m3)
   exp(Est.) 2.5% 97.5%
gg0 20.14934 12.52605 32.41213
gg1 44.28278 30.57545 64.13525
```

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Kaplan-Meier estimators

Bendix Carstensen

Senior Statistician, Steno Diabetes Center

Survival models and Cox-regression IDEG 2017 training day, Abu Dhabi, 11 December 2017

http://BendixCarstensen/Epi/Courses/IDEG2017

km-na

The Kaplan-Meier Method

- The most common method of estimating the survival function.
- A non-parametric method.
- Divides time into small intervals where the intervals are defined by the unique times of failure (death).
- Based on conditional probabilities as we are interested in the probability a subject surviving the next time interval given that they have survived so far.

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Kaplan–Meier method illustrated

(• = failure and \times = censored):

- Steps caused by multiplying by (1-1/49) and (1-1/46) respectively
- Late entry can also be dealt with

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Using R: Surv()

library(survival)
data(lung)
head(lung, 3)

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss 3 306 2 74 90 100 1175 NΑ 1 1 2 3 3 455 2 68 1225 15 1 90 90 1 56 15 3 1010 1 0 90 90 NA with(lung, Surv(time, status==2))[1:10] [1] 455 1010+ 210 883 1022+ 310 306 361 218 166 (s.km <- survfit(Surv(time, status==2) ~ 1 , data=lung))</pre> Call: survfit(formula = Surv(time, status == 2) ~ 1, data = lung) events median 0.95LCL 0.95UCL n 228 165 310 285 363

```
plot( s.km )
abline( v=310, h=0.5, col="red" )
```

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

The Cox-model

Bendix Carstensen

Senior Statistician, Steno Diabetes Center

Survival models and Cox-regression IDEG 2017 training day, Abu Dhabi, 11 December 2017

http://BendixCarstensen/Epi/Courses/IDEG2017

The proportional hazards model

$$\lambda(t, x) = \lambda_0(t) \times \exp(x'\beta)$$

The partial log-likelihood for the regression parameters (β s):

$$\ell(\beta) = \sum_{\text{death times}} \log\left(\frac{\mathrm{e}^{x_{\text{death}}\beta}}{\sum_{i \in \mathcal{R}_t} \mathrm{e}^{x_i\beta}}\right)$$

- This is David Cox's invention.
- Extremely efficient from a computational point of view.
- The baseline hazard $\lambda_0(t)$ is bypassed (profiled out).

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Proportional Hazards model

- ► The baseline hazard rate, \u03c0₀(t), is the hazard rate when all the covariates are 0.
- The form of the above equation means that covariates act multiplicatively on the baseline hazard rate.
- Time is a covariate (albeit modeled in a special way).
- The baseline hazard is a function of time and thus varies with time.
- No assumption about the shape of the underlying hazard function.
- but you will never see the shape of the baseline hazard ...

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?
Interpreting Regression Coefficients

- If x_j is binary exp(β_j) is the estimated hazard ratio for subjects corresponding to x_j = 1 compared to those where x_j = 0.
- If x_j is continuous exp(β_j) is the estimated increase/decrease in the hazard rate for a unit change in x_j.
- With more than one covariate interpretation is similar, i.e. exp(β_j) is the hazard ratio for subjects who **only** differ with respect to covariate x_j.

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Fitting a Cox- model in R

```
library( survival )
data(bladder)
bladder <- subset( bladder, enum<2 )
head( bladder)</pre>
```

	id	rx	number	size	stop	event	enum
1	1	1	1	3	1	0	1
5	2	1	2	1	4	0	1
9	3	1	1	1	7	0	1
13	4	1	5	1	10	0	1
17	5	1	4	1	6	1	1
21	6	1	1	1	14	0	1

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Fitting a Cox-model in R

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Plotting the base survival in R

plot(survfit(c0))
lines(survfit(c0), conf.int=F, lwd=3)

The plot.coxph plots the survival curve for a person with an average covariate value

— which is ${\bf not}$ the average survival for the population considered. . .

- and not necessarily meaningful

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Plotting the base survival in R

You can plot the survival curve for specific values of the covariates, using the newdata= argument:

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

The Cox-model (cox)

Who needs the Cox-model anyway?

Bendix Carstensen

Senior Statistician, Steno Diabetes Center

Survival models and Cox-regression IDEG 2017 training day, Abu Dhabi, 11 December 2017

http://BendixCarstensen/Epi/Courses/IDEG2017

A look at the Cox model

$$\lambda(t, x) = \lambda_0(t) \times \exp(x'\beta)$$

A model for the rate as a function of t and x.

The covariate t has a special status:

- Computationally, because all individuals contribute to (some of) the range of t.
- ... the scale along which time is split (the risk sets)
- ► Conceptually *t* is just a covariate that varies within individual.
- Cox's approach profiles $\lambda_0(t)$ out from the model

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

The Cox-likelihood as profile likelihood

 One parameter per death time to describe the effect of time (i.e. the chosen timescale).

$$\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \beta_1 x_{1i} + \dots + \beta_p x_{pi} = \alpha_t + \eta_i$$

- Profile likelihood:
 - Derive estimates of α_t as function of data and β s
 - assuming constant rate between death times
 - Insert in likelihood, now only a function of data and βs
 - Turns out to be Cox's partial likelihood

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

The Cox-likelihood: mechanics of computing

The likelihood is computed by summing over risk-sets at each event time t:

$$\ell(\eta) = \sum_{t} \log\left(\frac{\mathrm{e}^{\eta_{\mathsf{death}}}}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}}\right)$$

- this is essentially splitting follow-up time at event- (and censoring) times
- ... repeatedly in every cycle of the iteration
- ... simplified by not keeping track of risk time
- ... but only works along one time scale

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

 $\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \beta_1 x_{1i} + \dots + \beta_p x_{pi} = \alpha_t + \eta_i$

- Suppose the time scale has been divided into small intervals with at most one death in each:
- Empirical rates: (d_{it}, y_{it}) each t has at most one $d_{it} = 0$.
- Assume w.l.o.g. the ys in the empirical rates all are 1.
- Log-likelihood contributions that contain information on a specific time-scale parameter α_t will be from:
 - the (only) empirical rate (1,1) with the death at time t.
 - all other empirical rates (0, 1) from those at risk at time t.

Splitting the dataset a priori

- The Poisson approach needs a dataset of empirical rates (d, y) with suitably small values of y.
- each individual contributes many empirical rates
- (one per risk-set contribution in Cox-modelling)
- From each empirical rate we get:
 - \blacktriangleright Poisson-response d
 - Risk time $y \to \log(y)$ as offset
 - Covariate value for the timescale (time since entry, current age, current date, ...)
 - other covariates

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Example: Mayo Clinic lung cancer

- Survival after lung cancer
- Covariates:
 - Age at diagnosis
 - Sex
 - Time since diagnosis
- Cox model
- Split data:
 - Poisson model, time as factor
 - Poisson model, time as spline

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Mayo Clinic lung cancer 60 year old woman

Example: Mayo Clinic lung cancer I

NOTE: entry.status has been set to "Alive" for all. NOTE: entry is assumed to be 0 on the tfe timescale. Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Example: Mayo Clinic lung cancer III

Transitions:

To From Alive Dead Records: Events: Risk time: Persons: Alive 15916 165 16081 165 69593 228

```
> subset( Lung.s, lex.id==96 )[,1:11]
```

	lex.id	tfe	lex.dur	lex.Cst	lex.Xst	inst	time	status	age	sex	ph.ecog
9235	96	0	5	Alive	Alive	12	30	2	72	1	2
9236	96	5	6	Alive	Alive	12	30	2	72	1	2
9237	96	11	1	Alive	Alive	12	30	2	72	1	2
9238	96	12	1	Alive	Alive	12	30	2	72	1	2
9239	96	13	2	Alive	Alive	12	30	2	72	1	2
9240	96	15	11	Alive	Alive	12	30	2	72	1	2
9241	96	26	4	Alive	Dead	12	30	2	72	1	2

> nlevels(factor(Lung.s\$tfe))

[1] 186

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Example: Mayo Clinic lung cancer IV

```
> system.time(
+ mLs.pois.fc <- glm( lex.Xst=="Dead" ~ - 1 + factor( tfe ) +
                                 age + factor( sex ).
+
                                 offset = log(lex.dur),
+
                       family=poisson, data=Lung.s, eps=10^-8, maxit=25 )
+
+
         system elapsed
  user
 11.489 18.016 8.202
> length( coef(mLs.pois.fc) )
[1] 188
> svstem.time(
+ mLS.pois.fc <- glm( lex.Xst=="Dead" ~ - 1 + factor( tfe ) +
                                 age + factor( sex ),
+
                                 offset = log(lex.dur),
+
+
                       family=poisson, data=Lung.S, eps=10<sup>-8</sup>, maxit=25)
+
```

Survival

models and

regression

Bendix

Carstensen

Who needs the Cox-model

anyway?

```
system elapsed
  user
          6.018 2.717
 4.096
> length( coef(mLS.pois.fc) )
[1] 142
> t.kn < - c(0.25.100.500.1000)
> dim( Ns(Lung.s$tfe,knots=t.kn) )
[1] 20022
              4
> system.time(
+ mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +
                                 age + factor( sex ).
+
                       offset = log(lex.dur).
+
+
                       family=poisson, data=Lung.s, eps=10<sup>-8</sup>, maxit=25 )
+
```

Example: Mayo Clinic lung cancer V

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Example: Mayo Clinic lung cancer VI	Survival models and Cox-
user system elapsed 0.331 0.469 0.246	Bendix Carstensen
<pre>> ests <- + rbind(ci.exp(mL.cox), +</pre>	Rates and Survival Kaplan- Meier estimators
<pre>> cmp <- cbind(ests[c(1,3,5,7) ,], +</pre>	The Cox-model the Cox-model anyway?
> round(cmp, 7)	Multiple time scales and continuous rates

Example: Mayo Clinic lung cancer VII

		age	2.5%	97.5%	sex	2.5%	97.5%	regre
Cox		1.017158	0.9989388	1.035710	0.5989574	0.4313720	0.8316487	Be
Poisson-factor		1.017158	0.9989388	1.035710	0.5989574	0.4313720	0.8316487	Cars
Poisson-factor	(D)	1.017332	0.9991211	1.035874	0.5984794	0.4310150	0.8310094	
Poisson-spline		1.016189	0.9980329	1.034676	0.5998287	0.4319932	0.8328707	

Survival models and Coxession

> ndix ensen

Who needs the Cox-model anyway?

Who needs the Cox-model anyway? (KMCox)

Who needs the Cox-model anyway? (KMCox)

Deriving the survival function

```
> CM <- cbind( 1, Ns( seq(10,1000,10)-5, knots=t.kn ), 60, 1 )
> lambda <- ci.exp( mLs.pois.sp, ctr.mat=CM )
> Lambda <- ci.cum( mLs.pois.sp, ctr.mat=CM, intl=10 )[,-4]
> survP <- exp(-rbind(0,Lambda))</pre>
```

Code and output for the entire example avaiable in http://bendixcarstensen.com/AdvCoh/WNtCMa/

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

What the Cox-model really is

Taking the life-table approach *ad absurdum* by:

- dividing time very finely and
- modeling one covariate, the time-scale, with one parameter per distinct value.
- the model for the time scale is really with exchangeable time-intervals.
- \Rightarrow difficult to access the baseline hazard (which looks terrible)
- $\blacktriangleright \Rightarrow$ uninitiated tempted to show survival curves where irrelevant

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Models of this world

- Replace the α_ts by a parametric function f(t) with a limited number of parameters, for example:
 - Piecewise constant
 - Splines (linear, quadratic or cubic)
 - Fractional polynomials
- the two latter brings model into "this world":
 - smoothly varying rates
 - parametric closed form representation of baseline hazard
 - finite no. of parameters
- Makes it really easy to use rates directly in calculations of
 - expected residual life time
 - state occupancy probabilities in multistate models

▶

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Multiple time scales and continuous rates

Bendix Carstensen

Senior Statistician, Steno Diabetes Center

Survival models and Cox-regression IDEG 2017 training day, Abu Dhabi, 11 December 2017

http://BendixCarstensen/Epi/Courses/IDEG2017

Testis cancer

Testis cancer in Denmark:

```
> options( show.signif.stars=FALSE )
> library( Epi )
> data( testisDK )
> str( testisDK )
'data_frame': 4860 obs. of
                              4 variables:
$
  A: num
            0
             1
                2
                  3
                     4
                       5
                         6
                           7
                             8
                                9
 $
   P: num
            1943 1943 1943 1943 ...
$
  D: num
            1 1
                0
                  1
                    0
                       0 0 0
                             0
                                0
 $
   Y:
            39650 36943 34588 33267 32614 ...
      ກາາຫ
> head( testisDK )
       Ρ
         D
                    Y
  Α
 0
    1943
            39649.50
          1
 1
    1943
            36942.83
          1
    1943
         0
            34588.33
З
  2
    1943
            33267.00
  3
         1
5
    1943
         0
           32614.00
  Δ
   time states and continuous rates (crv-mod)
```

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Cases, PY and rates

> stat	.table(list	(A=floor((A/10)*10,				
+		P=floor((P/10)*10)	,			
+	list	(D=sum(D)),				
+		Y=sum(Y	/1000),				
+	r	ate=ratio	(D,Y,10^5	5)),			
+	marg	;ins=TRUE,	data=tes	tisDK)			
				D			
Δ	1940	1950	1960	1970	1980	1990	Total
0	10.00	7.00	16.00	18.00	9.00	10.00	70.00
	2604.66	4037.31	3884.97	3820.88	3070.87	2165.54	19584.22
	0.38	0.17	0.41	0.47	0.29	0.46	0.36
10	13.00	27.00	37.00	72.00	97.00	75.00	321.00
	2135.73	3505.19	4004.13	3906.08	3847.40	2260.97	19659.48
	0.61	0.77	0.92	1.84	2.52	3.32	1.63
20	124.00	221.00	280.00	535.00	724.00	557.00	2441.00
ultiple time :	scales and 2275 mu555 r	at 2923 m 22	3401.65	4028.57	3941.18	2824.58	19344.74
	F F7	7 50	0 00	10.00	10 07	10 70	10 00

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Multiple time scales and continuous rates

59/82

Linear effects in glm

Two ways of fitting a Poisson model, D and Y must be there, note poisson, resp. poisreg.

```
> m0 <- glm( D ~ A, offset=log(Y), family=poisson, data=testisDK )
> ml <- glm(cbind(D,Y) \sim A
                                          , family=poisreg, data=testisDK )
> round( ci.exp( m0 ), 4 )
            exp(Est.) 2.5% 97.5%
(Intercept) 0.0001 0.0001 0.0001
Α
              1.0055 1.0046 1.0064
> round( ci.exp( ml ), 4 )
                                                                               Multiple
            exp(Est.) 2.5% 97.5%
                                                                               time scales
(Intercept) 0.0001 0.0001 0.0001
                                                                               and
                                                                              continuous
            1.0055 1.0046 1.0064
Α
                                                                               rates
```

Linear increase of log-rates by age

Multiple time scales and continuous rates (crv-mod)

Survival

models and Coxregression

Bendix

Carstensen

Linear effects in glm

```
> nd <- data.frame( A=15:60 )
> pr <- ci.pred( ml, newdata=nd )
> head( pr )
```

```
Estimate 2.5% 97.5%

1 6.170105e-05 5.991630e-05 6.353897e-05

2 6.204034e-05 6.028525e-05 6.384652e-05

3 6.238149e-05 6.065547e-05 6.415663e-05

4 6.272452e-05 6.102689e-05 6.446937e-05

5 6.306943e-05 6.139944e-05 6.478485e-05

6 6.341624e-05 6.177301e-05 6.510319e-05

> matplot( nd$A, pr,

+ type="l", lty=1, lwd=c(3,1,1), col="black", log="y")
```

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Linear effects in glm

Survival models and Coxregression

> Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Multiple time scales and continuous rates

> matshade(nd\$A, pr, log="y", plot=TRUE)

Quadratic effects in glm

How do rates depend on age?

```
> mq <- glm( cbind(D,Y) ~ A + I(A^2), family=poisreg, data=testisDK )
> round( ci.lin( mq ), 4 )
```

EstimateStdErrzP2.5%97.5%(Intercept)-12.36560.0596-207.35790-12.4825-12.2487A0.18060.003354.828200.17410.1871I(A^2)-0.00230.0000-53.69970-0.0024-0.0022

```
> round( ci.exp( mq ), 4 )
```

	exp(Est.)	2.5%	97.5%
(Intercept)	0.0000	0.0000	0.0000
A	1.1979	1.1902	1.2057
I(A^2)	0.9977	0.9976	0.9978

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Quadratic effect in glm

> matshade(nd\$A, ci.pred(mq, nd)*10^5, plot=TRUE, log="y", + xlab="Age", ylab="Testis cancer incidence rates per 100,000 PY")

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Quadratic effect in glm

Survival

models and
Spline effects in glm

```
> library( splines )
                                                                                    Carstensen
> ms <- glm( cbind(D,Y) ~ Ns(A,knots=seq(15,65,10)), family=poisreg, data=testisDK )
                                                                                    Rates and
> round( ci.exp( ms ), 3 )
```

exp(Est.) 2.5% 97.5%
0.000 0.000 0.000
8.548 7.650 9.551
5.706 4.998 6.514
1.002 0.890 1.128
14.402 11.896 17.436
0.466 0.429 0.505
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

and

rates

Survival

models and Coxregression Bendix

Adding a linear period effect

> msp <- glm(cbind(D,Y) ~ Ns(A,knots=seq(15,65,10)) + P, family=poisreg, data > round(ci.lin(msp), 3)

						Estimate	${\tt StdErr}$	Z	Р	2.5%	97.5%	
(Inter	ccept)					-58.105	1.444	-40.229	0.000	-60.935	-55.274	Kaplan- Meier
Ns(A,	knots	=	seq(15,	65,	10))1	2.120	0.057	37.444	0.000	2.009	2.231	
Ns(A,	knots	=	seq(15,	65,	10))2	1.700	0.068	25.157	0.000	1.567	1.832	The
Ns(A,	knots	=	seq(15,	65,	10))3	0.007	0.060	0.110	0.913	-0.112	0.125	Cox-model
Ns(A,	knots	=	seq(15,	65,	10))4	2.596	0.097	26.631	0.000	2.405	2.787	Who needs
Ns(A,	knots	=	seq(15,	65,	10))5	-0.780	0.042	-18.748	0.000	-0.861	-0.698	the
Р						0.024	0.001	32.761	0.000	0.023	0.025	Cox-model anyway?
<pre>> matshade(nd\$A, ci.pred(msp, cbind(nd,P=1970))*10^5, plot=TRUE, + log="y", ylim=c(2,20), + xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY")</pre>									Multiple time scales and continuous rates			
> matshade(nd\$A, ci.pred(ms, nd)*10 ⁵ , col="blue")												

Survival

models and Coxregression Bendix

Adding a linear period effect

log="y", ylim=c(2,20), xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY")

+

+

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

The period effect

It is **relative** to some reference, say P=1970.

It is the same for any age, so we just choose one, A=40

The rate ratio is the ratio of predictions from two data frames:

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

A quadratic period effect

```
> mspq <- glm( cbind(D,Y) ~ Ns(A,knots=seq(15,65,10)) + P + I(P^2),
+ family=poisreg, data=testisDK )
> round( ci.exp( mspq ), 3 )
```

						exp(Est.)	2.5%	97.5%
(Inter	cept)					0.000	0.000	0.000
Ns(A,	knots	=	seq(15,	65,	10))1	8.356	7.478	9.337
Ns(A,	knots	=	seq(15,	65,	10))2	5.513	4.829	6.295
Ns(A,	knots	=	seq(15,	65,	10))3	1.006	0.894	1.133
Ns(A,	knots	=	seq(15,	65,	10))4	13.439	11.101	16.269
Ns(A,	knots	=	seq(15,	65,	10))5	0.458	0.422	0.497
Р						2.189	1.457	3.291
I(P^2)						1.000	1.000	1.000

```
> matshade( np$P, ci.exp( mspq, list(np,nr) ), plot=TRUE,
+ log="y", ylim=c(0.5,2),
+ xlab="Date", ylab="Testis cancer incidence RR" )
> matshade( np$P, ci.exp( msp, list(np,nr) ), col="blue" )
> abline( h=1, v=1970, lty=3 )
```

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

A quadratic period effect

Multiple time scales and continuous rates (crv-mod)

Bendix Carstensen

Rates and Survival

> Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

A spline period effect

Because we have the age-effect with the rate dimension, the period effect is a RR, the ratio of two predictions (np and nr):

				exp(Est.)	2.5%	97.5%
(Inter	ccept)			0.000	0.000	0.000
Ns(A,	knots	=	seq(15, 65, 10))1	8.327	7.452	9.305
Ns(A,	knots	=	seq(15, 65, 10))2	5.528	4.842	6.312
Ns(A,	knots	=	seq(15, 65, 10))3	1.007	0.894	1.133
Ns(A,	knots	=	seq(15, 65, 10))4	13.447	11.107	16.279
Ns(A,	knots	=	seq(15, 65, 10))5	0.458	0.422	0.497
Ns(P,	knots	=	seq(1950, 1990, 10))1	1.711	1.526	1.918
Ns(P,	knots	=	seq(1950, 1990, 10))2	2.190	2.028	2.364
Ns(P,	knots	=	seq(1950, 1990, 10))3	3.222	2.835	3.661
Ns(P,	knots	=	seq(1950, 1990, 10))4	2.299	2.149	2.459

Mutiple airs had and contist provide a state (certist and contist of maps, list(np,nr)), plot=TRUE,

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

A spline period effect

```
> matshade( np$P, ci.exp( msps, list(np,nr) ), plot=TRUE,
+ log="y", ylim=c(0.5,2),
+ xlab="Date", ylab="Testis cancer incidence RR" )
> matshade( np$P, ci.exp( mspq, list(np,nr) ), col="blue" )
> abline( h=1, v=1970 )
```

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Multiple time scales and continuous rates (crv-mod)

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

> Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

```
> par( mfrow=c(1,2) )
> matshade( nd$A, ci.pred( msps, cbind(nd,P=nr$P) )*10^5, plot=TRUE, log="y",
+ ylab="Testis cancer incidence rate per 100,000 PY in 1970" )
> matshade( np$P, ci.exp( msps, list(np,nr) ), plot=TRUE,
+ log="y", xlab="Date", ylab="Testis cancer incidence RR" )
> abline( h=1, v=1970 )
```

```
Survival
models and
Cox-
regression
```

Bendix Carstensen

xlab=" Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Age and period effect

Survival models and Coxregression

> Bendix Carstensen

Rates and Survival

> Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Multiple time scales and continuous rates (crv-mod)

```
> par(mfrow=c(1,2))
> par(mfrow=c(1,2))
> matshade( nd$A, ci.pred( msps, cbind(nd,P=nr$P) )*10^5, plot=TRUE, log="y", xlab="
+
           vlim=c(2,20), xlim=c(15,65),
            ylab="Testis cancer incidence rate per 100,000 PY in 1970" )
+
 matshade( np$P, ci.exp( msps, list(np,nr) ), plot=TRUE,
            vlim=c(2.20)/sqrt(2*20), xlim=c(15,65)+1930,
+
            log="y", xlab="Date", ylab="Testis cancer incidence RR" )
+
> abline( h=1, v=1970 )
```

Survival models and Covregression

Bendix Carstensen

Age and period effect

Survival models and Coxregression

> Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?

Multiple time scales and continuous rates

Multiple time scales and continuous rates (crv-mod)

Age and period effect with ci.exp

- In rate models there is always one term with the rate dimension usually age
- But it must refer to a specific reference value for all other variables (P).
- All parameters must be used in computing rates, at some reference value(s).
- For the "other" variables, report the RR relative to the reference point.
- Contrast matrix (2nd argument to ci.exp) is a difference between the prediction points and the reference point.

Survival models and Coxregression

Bendix Carstensen

Rates and Survival

Kaplan-Meier estimators

The Cox-model

Who needs the Cox-model anyway?