Rates and Survival

Bendix Carstensen
Senior Statistician, Steno Diabetes Center Copenhagen

Survival
Multiple timescales
Competing risks

IDEG 2019 training day, Seoul,
29 November 2019
http://BendixCarstensen/Epi/Courses/IDEG2019

Survival data

Persons enter the study at some date.
Persons exit at a later date, either dead or alive.
Observation:
Actual time span to death (“event”)
or
Some time alive (“censoring”)

http://BendixCarstensen/Epi/Courses/IDEG2019
Examples of time-to-event measurements

- Time from diagnosis of cancer to death.
- Time from randomisation to death in a cancer clinical trial.
- Time from HIV infection to AIDS.
- Time from marriage to 1st child birth.
- Time from marriage to divorce.
- Time to re-offending after being released from jail.

Ordered by date of entry
Most likely the order in your database.

Calendar time

Each line a person
Each blob a death
Study ended at 31 Dec. 2003
Timescale changed to “Time since diagnosis”.

Patients ordered by survival time.

Survival times grouped into bands of survival.
Survival after Cervix cancer

<table>
<thead>
<tr>
<th>Year</th>
<th>Stage I</th>
<th></th>
<th>Stage II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>D</td>
<td>L</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>110</td>
<td>5</td>
<td>5</td>
<td>234</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>7</td>
<td>7</td>
<td>207</td>
</tr>
<tr>
<td>3</td>
<td>86</td>
<td>7</td>
<td>7</td>
<td>169</td>
</tr>
<tr>
<td>4</td>
<td>72</td>
<td>3</td>
<td>8</td>
<td>129</td>
</tr>
<tr>
<td>5</td>
<td>61</td>
<td>0</td>
<td>7</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>54</td>
<td>2</td>
<td>10</td>
<td>85</td>
</tr>
<tr>
<td>7</td>
<td>42</td>
<td>3</td>
<td>6</td>
<td>73</td>
</tr>
<tr>
<td>8</td>
<td>33</td>
<td>0</td>
<td>5</td>
<td>62</td>
</tr>
<tr>
<td>9</td>
<td>28</td>
<td>0</td>
<td>4</td>
<td>49</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>1</td>
<td>8</td>
<td>34</td>
</tr>
</tbody>
</table>

Estimated risk in year 1 for Stage I women is $5/107.5 = 0.0465$
Estimated 1 year survival is $1 - 0.0465 = 0.9535$

Life-table estimator.

Survival function

Persons enter at time 0:
Date of birth, date of randomization, date of diagnosis.
How long do they survive?
Survival time T — a stochastic variable.
Distribution is characterized by the survival function:

$$S(t) = P\{\text{survival at least till } t\} = P\{T > t\} = 1 - P\{T \leq t\} = 1 - F(t)$$

$F(t)$ is the cumulative risk of death before time t.

Patients ordered by survival status within each band.
Intensity / rate / hazard — same same

- The intensity or hazard function
- Probability of event in interval, relative to interval length:
 \[\lambda(t) = P\{\text{event in } (t, t + h) \mid \text{alive at } t\} / h \]

- Characterizes the distribution of survival times as does\(f\) (density) or\(F\) (cumulative distribution).
- Theoretical counterpart of a(n empirical) rate.

Survival and rate

Survival from rate — and vice versa;

\[S(t) = \exp \left(- \int_0^t \lambda(s) \, ds \right) \quad \lambda(t) = \frac{S'(t)}{S(t)} \]

Survival is a cumulative measure, the rate is an instantaneous measure.

Note: A cumulative measure requires an origin!

... it is always survival since some timepoint — here 0

Empirical rates for individuals

- At the individual level we introduce the empirical rate: \((d, y)\),
 — number of events \((d \in \{0, 1\})\) during \(y\) risk time.
- A person contributes several observations of \((d, y)\), with associated covariate values.
- Empirical rates are responses in survival analysis.
Empirical rates by calendar time.

Empirical rates by time since diagnosis.

Statistical inference: Likelihood

Two things needed:

- **Data** — what did we actually observe
 - Follow-up for each person:
 - Entry time, exit time, exit status, covariates
- **Model** — how was data generated
 - Rates as a function of time:
 - Probability machinery that generated data

Likelihood is the probability of observing the **data**, assuming the **model** is correct.

Maximum likelihood estimation is choosing **parameters** of the model that makes the likelihood maximal.
Likelihood from one person

- The likelihood from several empirical rates from one individual is a product of conditional probabilities:

\[P \{ \text{event at } t_4|t_0 \} = P \{ \text{survive } (t_0, t_1) \text{ alive at } t_0 \} \times P \{ \text{survive } (t_1, t_2) \text{ alive at } t_1 \} \times P \{ \text{survive } (t_2, t_3) \text{ alive at } t_2 \} \times P \{ \text{event at } t_4 \text{ alive at } t_3 \} \]

- Log-likelihood from one individual is a sum of terms.
- Each term refers to one empirical rate \((d, y)\)

 \[y = t_i - t_{i-1} \text{ and mostly } d = 0. \]
- \(t_i\) is the timescale (covariate).

Poisson likelihood

The log-likelihood contributions from follow-up of one individual:

\[d_i \log(\lambda(t)) - \lambda(t)y_t, \quad t = t_1, \ldots, t_n \]

is also the log-likelihood from several independent Poisson observations with mean \(\lambda(t)y_t\), i.e. log-mean \(\log(\lambda(t)) + \log(y_t)\)

Analysis of the rates, \((\lambda)\) can be based on a Poisson model with log-link applied to empirical rates where:

- \(\log(\lambda)\) is modelled by covariates
- \(d\) is the response variable and
- \(\log(y)\) is the offset variable, using the poisson family

Poisson likelihood

The log-likelihood contributions from follow-up of one individual:

\[d_i \log(\lambda(t)) - \lambda(t)y_t, \quad t = t_1, \ldots, t_n \]

is also the log-likelihood from several independent Poisson observations with mean \(\lambda(t)y_t\), i.e. log-mean \(\log(\lambda(t)) + \log(y_t)\)

Analysis of the rates, \((\lambda)\) can be based on a Poisson model with log-link applied to empirical rates \((d, y)\)

- \(\log(\lambda)\) is modelled by covariates
- \((d, y)\) is the response variable
- ...using the poisreg family
Poisson likelihood, for one rate, based on 17 events in 843.7 PY:

```r
library( Epi )
D <- 17 ; Y <- 843.7
m1 <- glm( D ~ 1, offset=log(Y/1000), family=poisson)
ci.exp( m1 )
```

```
exp(Est.)  2.5%  97.5%
(Intercept)  20.14934 12.52605 32.41213
```

Poisson likelihood, two rates, or one rate and RR:

```r
D <- c(17,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1)
m2 <- glm( D ~ gg, offset=log(Y/1000), family=poisson)
ci.exp( m2 )
```

```
exp(Est.)  2.5%  97.5%
(Intercept)  20.149342 12.526051 32.412130
gg1  2.197728  1.202971  4.015068
```

Note the `family=poisreg`

Example using R

Poisson likelihood, two rates, or one rate and RR:

```r
D <- c(17,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1)
m2 <- glm( D ~ gg, offset=log(Y/1000), family=poisson)
ci.exp( m2 )
m2r <- glm( cbind(D,Y/1000) ~ gg, family=poisreg)
ci.exp( m2r )
m3 <- glm( cbind(D,Y/1000) ~ gg - 1, family=poisreg)
ci.exp( m3 )
```

```
exp(Est.)  2.5%  97.5%
(Intercept)  20.149342 12.526051 32.412130
gg1  2.197728  1.202971  4.015068
gg0  20.14934  12.52605  32.41213
```

You do it!
Lifetable estimators

Bendix Carstensen
Senior Statistician, Steno Diabetes Center Copenhagen

Survival
Multiple timescales
Competing risks
IDEG 2019 training day, Seoul,
29 November 2019

http://BendixCarstensen/Epi/Courses/IDEG2019

Survival analysis

- Response variable: Time to event, T
- Censoring time, Z
- We observe $(\min(T, Z), \delta = 1\{T < Z\})$.
- This gives time a special status, and mixes the response variable (risk) time with the covariate time (scale).
- Originates from clinical trials where everyone enters at time 0, and therefore $Y = T - 0 = T$

The life table method

The simplest analysis is by the “life-table method”:

<table>
<thead>
<tr>
<th>interval</th>
<th>alive</th>
<th>dead</th>
<th>cens.</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>n_i</td>
<td>d_i</td>
<td>l_i</td>
</tr>
<tr>
<td>1</td>
<td>77</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>59</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

$p_i = P\{\text{death in interval } i\} = d_i/(n_i - l_i/2)$

$S(t) = (1 - p_1) \times \cdots \times (1 - p_t)$
Observations for the lifetable

Life table is based on person-years and deaths accumulated in a short period.

Age-specific rates — cross-sectional!

Survival function:

\[S(t) = e^{-\int_0^t \lambda(a) \, da} = e^{-\sum_0^t \lambda(a)} \]

— assumes stability of rates to be interpretable for actual persons.

This is a **Lexis diagram.**

EINLEITUNG

IN DIE

THEORIE

DER

BEVÖLKERUNGSSTATISTIK

VON

W. LEVIS

DR. DER STATISTIKSCHULE UND DER PHILOSOPHIE,
B. PROFESSOR DER STATISTIK IN DUISBURG.
Life table approach

- The population experience:
 - \(D \): Deaths (events).
 - \(Y \): Person-years (risk time).
- The classical lifetable analysis compiles these for prespecified intervals of age, and computes age-specific mortality rates.
- Data are collected crosssectionally, but interpreted longitudinally.
- The rates are the basic building blocks — used for construction of:
 - RRs
 - cumulative measures (survival and risk)

Kaplan-Meier estimators

Bendix Carstensen
Senior Statistician, Steno Diabetes Center Copenhagen

Survival
Multiple timescales
Competing risks
IDEG 2019 training day, Seoul,
29 November 2019

http://BendixCarstensen/Epi/Courses/IDEG2019

The Kaplan-Meier Method

- The most common method of estimating the survival function.
- A non-parametric method.
- Divides time into small intervals where the intervals are defined by the unique times of failure (death).
- Based on conditional probabilities as we are interested in the probability a subject surviving the next time interval given that they have survived so far.
Kaplan–Meier method illustrated

(● = failure and × = censored):

\[N = \begin{array}{ccc}
50 & 49 & 46 \\
\end{array} \]

Cumulative survival probability

- Steps caused by multiplying by
 \((1 - 1/49)\) and \((1 - 1/46)\) respectively
- Late entry can also be dealt with

Using R: `Surv()`

```r
library(survival)
data(lung)
head(lung, 3)

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1 3 306 2 74 1 1 90 100 1175 NA
2 3 455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15

with(lung, Surv(time, status==2))[1:10]
[1] 306 455 1010+ 210 883 1022+ 310 361 218 166

(s.km <- survfit(Surv(time, status==2) ~ 1, data=lung))

Call: survfit(formula = Surv(time, status == 2) ~ 1, data = lung)

n events median 0.95LCL 0.95UCL
228 165 310 285 363

plot(s.km)
abline(v=310, h=0.5, col="red")
```

Kaplan-Meier estimators (km-na)
The Cox-model

Bendix Carstensen
Senior Statistician, Steno Diabetes Center Copenhagen

Survival
Multiple timescales
Competing risks
IDEG 2019 training day, Seoul,
29 November 2019

http://BendixCarstensen/Epi/Courses/IDEG2019

The proportional hazards model

\[\lambda(t, x) = \lambda_0(t) \times \exp(x'\beta) \]

- The baseline hazard rate, \(\lambda_0(t) \), is the hazard rate when all the covariates are 0 — since then \(\exp(x'\beta) = 1 \)
- The form of the above equation means that covariates act multiplicatively on the baseline hazard rate

- Time \((t) \) is a covariate (albeit modeled in a special way).
- The baseline hazard is a function of time and thus varies with time.
- No assumption about the shape of the underlying hazard function.
- — but you will never see the shape of the baseline hazard . . .
Interpreting Regression Coefficients

- If x_j is binary, $\exp(\beta_j)$ is the estimated hazard ratio for subjects corresponding to $x_j = 1$ compared to those where $x_j = 0$.
- If x_j is continuous, $\exp(\beta_j)$ is the estimated increase/decrease in the hazard rate for a unit change in x_j.
- With more than one covariate, interpretation is similar, i.e. $\exp(\beta_j)$ is the hazard ratio between persons who only differ with respect to covariate x_j.
- ...assuming that the effect of x_j is the same across all other covariate values.

Fitting a Cox-model in R

```r
library( survival )
data(bladder)
bladder <- subset( bladder, enum<2 )
head( bladder )
```

<table>
<thead>
<tr>
<th>id</th>
<th>rx</th>
<th>number</th>
<th>size</th>
<th>stop</th>
<th>event</th>
<th>enum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>14</td>
<td>0</td>
</tr>
</tbody>
</table>

```r
c0 <- coxph( Surv(stop,event) ~ number + size, data=bladder )
c0
```

Call:
coxph(formula = Surv(stop, event) ~ number + size, data = bladder)

<table>
<thead>
<tr>
<th>coef</th>
<th>se(coef)</th>
<th>z</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>0.20491</td>
<td>1.22742</td>
<td>0.07036</td>
</tr>
<tr>
<td>size</td>
<td>0.06135</td>
<td>1.06327</td>
<td>0.10328</td>
</tr>
</tbody>
</table>

Likelihood ratio test=7.04 on 2 df, p=0.02963
n= 85, number of events= 47

What is the meaning of the two regression parameters?
Plotting the base survival in R

```r
plot( survfit(c0) )
lines( survfit(c0), conf.int=F, lwd=3 )
```

The `plot.coxph` plots the survival curve for a person with an average covariate value
— which is **not** the average survival for the population considered...
— and not necessarily meaningful

```r
c( mean(bladder$number), mean(bladder$size) )
```

```
[1] 2.105882 2.011765
```

You can plot the survival curve for specific values of the covariates, using the `newdata=` argument:

```r
plot( survfit(c0) )
lines( survfit(c0), conf.int=F, lwd=3 )
lines( survfit(c0, newdata=data.frame(number=1,size=1)),
      lwd=2, col="limegreen" )
text( par("usr")[2]*0.98, 1.00, "number=1,size=1",
      col="limegreen", font=2, adj=1 )
```
Who needs the Cox-model anyway?

Bendix Carstensen
Senior Statistician, Steno Diabetes Center Copenhagen

Survival
Multiple timescales
Competing risks
IDEG 2019 training day, Seoul,
29 November 2019

http://BendixCarstensen/Epi/Courses/IDEG2019

A look at the Cox model

\[\lambda(t, x) = \lambda_0(t) \times \exp(x'\beta) \]

A model for the rate as a function of \(t \) and \(x \).

The covariate \(t \) has a special status:

- Computationally, because all individuals contribute to (some of) the range of \(t \).
- . . . the scale along which time is split (the risk sets)
- Conceptually \(t \) is just a covariate that varies within individual.
The Cox-likelihood as profile likelihood

- One parameter per death time to describe the effect of time (i.e., the chosen timescale).

\[
\log (\lambda(t, x_i)) = \log (\lambda_0(t)) + \beta_1 x_{1i} + \cdots + \beta_p x_{pi} = \alpha_t + \eta_i
\]

- Profile likelihood:
 - Derive estimates of \(\alpha_t \) as function of data and \(\beta_s \) — assuming constant rate between death times
 - Insert in likelihood, now only a function of data and \(\beta_s \)
 - Turns out to be Cox’s partial likelihood
 - The full likelihood is that of a Poisson model

Implications

- The Cox-model is a special case of a Poisson model
- ...a model with one parameter per time (censoring or death) — typically hundreds of parameters
- A more sensible model would be one with a smooth effect of time.
- bendixcarstensen.com/WntCma.pdf gives a complete account
- ...but here is a quick tour of how-to

```
library(Epi)
library(popEpi)
library(mgcv)
library(survival)
data(lung)
lung <- transform(lung, sex=factor(sex,labels=c("M","F")),
                 time=time+runif(nrow(lung)))
```

Set up a Lexis object (outcome as a factor), and split time in small intervals (at all times):

```
Lx <- Lexis( exit=list(tfe=time),
             exit.status=factor(status,labels=c("Alive","Dead")),
             data=lung )
```

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfe timescale.
Split the follow-up in small intervals

```r
sl <- splitMulti( Lx, tfe=c(0,sort(unique(Lx$lex.dur))) )
summary( Lx )
```

Transitions:

To
From Alive Dead Records: Events: Risk time: Persons:
Alive 63 165 228 165 69703.91 228

```r
summary( sl )
```

Transitions:

To
From Alive Dead Records: Events: Risk time: Persons:
Alive 25941 165 26106 165 69703.91 228

The Cox model and the identical Poisson model on the Lexis data frames:

```r
c0 <- coxph( Surv(tfe,tfe+lex.dur,lex.Xst=="Dead") ~ sex + age, data=Lx )
cx <- coxph.Lexis( Lx, tfe ~ sex + age )
```

```r
survival::coxph analysis of Lexis object Lx:
Rates for the transition Alive->Dead
Baseline timescale: tfe
```

```r
px <- glm.Lexis( sl, ~ factor(tfe) + sex + age )
```

```r
stats::glm Poisson analysis of Lexis object sl with log link:
Rates for the transition: Alive->Dead
```

```r
length( coef(px) )
[1] 230
```

Fit smooth parametric model for baseline:

```r
ps <- gam.Lexis( sl, formula= ~ s(tfe) + sex + age )
```

```r
mgcv::gam Poisson analysis of Lexis object sl with log link:
Rates for the transition: Alive->Dead
```

Compare estimates:

```r
Ests <-cbind( rbind( ci.exp(cx,subset="sex"), ci.exp(px,subset="sex"), ci.exp(ps,subset="sex") ), rbind( ci.exp(cx,subset="age"), ci.exp(px,subset="age"), ci.exp(ps,subset="age") ) )
rownames(Ests) <- c("Cox","Pois-F","Pois-S")
colnames(Ests)[c(1,4)] <- c("sex","age")
round( Ests, 7 )
```

<table>
<thead>
<tr>
<th></th>
<th>sex</th>
<th>2.5%</th>
<th>97.5%</th>
<th>age</th>
<th>2.5%</th>
<th>97.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox</td>
<td>0.5989669</td>
<td>0.4313805</td>
<td>0.8316587</td>
<td>1.017154</td>
<td>0.9989336</td>
<td>1.035708</td>
</tr>
<tr>
<td>Pois-F</td>
<td>0.5989669</td>
<td>0.4313805</td>
<td>0.8316587</td>
<td>1.017154</td>
<td>0.9989336</td>
<td>1.035708</td>
</tr>
<tr>
<td>Pois-S</td>
<td>0.6017620</td>
<td>0.4335052</td>
<td>0.8353245</td>
<td>1.016415</td>
<td>0.9982477</td>
<td>1.034912</td>
</tr>
</tbody>
</table>
Prediction data frame for rates and survival — at what times do you want the rates and the survival shown for a 65 year old man, using the Poisson model with smooth effects:

```r
ps <- gam.Lexis( sL, formula = ~ s(tfe) + sex + age )
```

Rates for the transition: Alive->Dead

```r
nd <- data.frame( tfe=seq(0,900,20)+10, sex="M", age=65 )
rate <- ci.pred( ps, nd )*365.25 # per year, not per day
surv <- ci.surv( ps, nd, int=20 ) # int is interval between times in nd
```

Plot the rates and the survival function for 65 year old man

```r
par( mrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
matshade( nd$tfe, rate, lwd=2, log="y", plot=TRUE )
matshade( nd$tfe-10, surv, lwd=2, yaxs="i", ylim=c(0,1), plot=TRUE )
lines( survfit( cx, newdata=nd[1,] ), col='red' )
```

Who needs the Cox-model anyway? (WntCma)
Timescales

Mortality rates as a function of

- current age, \(a \)
- duration of diabetes, \(d \)
- age at diagnosis, \(e = a - d \) (not a timescale!)
- \(\Rightarrow a - d - e = 0 \)
 — this relation must be kept in any dataset

Model for mortality depending on current age and age at entry:

\[
\log(\mu(a, d)) = f(a) + h(e)
\]

Two variables: age and age at diagnosis

\[
\log(\mu(a, d)) = f(a) + h(e)
\]

NOTE: only superficially that this does not include duration since \(d = a - e \), we may write:

\[
\begin{align*}
\log(\mu(a, d)) &= f(a) + h(e) + \beta d - \beta d \\
&= f(a) + h(e) + \beta(a - e) - \beta d \\
&= (f(a) + \beta a) + (h(e) - \beta e) - \beta d
\end{align*}
\]

We can claim any duration effect we like!

All three variables

Remember: \(a - d - e = 0 \)

\[
\begin{align*}
\log(\mu(a, d)) &= f(a) + g(d) + h(e) \\
&= f(a) + g(d) + h(e) + \gamma(a - d - e) \\
&= (f(a) + \gamma a) + (g(d) - \gamma d) + (h(e) - \gamma e) \\
&= \tilde{f}(a) + \tilde{g}(d) + \tilde{h}(e)
\end{align*}
\]

I makes no sense to show (any) one of the effects:

We can choose any slope for one of the effects, as long as we adjust the slopes of the two others.
Predicted mortality

age: current age; **tfd**: duration; **ain**: age at DX:

```r
made <- gam.Lexis( transform(Sdm, ain=age-tfd), ~ s(age) + s(tfd) + s(ain) )
mad <- gam.Lexis( transform(Sdm, ain=age-tfd), ~ s(age) + s(tfd) )
```

```
anova( made, mad, test="Chisq" )
```

Analysis of Deviance Table

<table>
<thead>
<tr>
<th>Model 1: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ s(age) + s(tfd) + s(ain)</th>
<th>Model 2: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ s(age) + s(tfd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>280378</td>
</tr>
</tbody>
</table>

...no non-linear effect of age at diagnosis—use model mad.

Multiple time scales (multi-scales)

```r
nd <- data.frame( expand.grid( tfd=c(NA,seq(0,14,.1)), ain=c(3:7*10) ) )[-1,]
nd$age = nd$ain + nd$tfd
head( nd )
```

<table>
<thead>
<tr>
<th>tfd</th>
<th>ain</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.0</td>
<td>30 30.0</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>30 30.1</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>30 30.2</td>
</tr>
<tr>
<td>5</td>
<td>0.3</td>
<td>30 30.3</td>
</tr>
<tr>
<td>6</td>
<td>0.4</td>
<td>30 30.4</td>
</tr>
<tr>
<td>7</td>
<td>0.5</td>
<td>30 30.5</td>
</tr>
</tbody>
</table>

Predictions of mortality for these values of:

age: current age; **tfd**: duration and **ain**: age at DX.
Mortality rates, not effects

Predict mortality rates for Danish diabetes patients by age and duration of diabetes for persons diagnosed at ages 30, 40 etc.

```plaintext
matashade( nd$age, ci.pred( mad, nd )*1000, plot=TRUE, lwd=3, lty=1, log="y", las=1, xlim=c(30,85), ylim=c(1/2,200), xlab="Age at FU (years)", ylab="Mortality rate per 1000 PY"
)
abline( v=3:7*10 )
```

Multiple time scales (multi-scales)
Analysis by sex

mm <- `gam.Lexis(subset(Sdm, sex="M"), ~ s(age) + s(tfd))`

mcgv::gam Poisson analysis of Lexis object subset(Sdm, sex == "M") with log link: Rates for the transition: Alive->Dead

mw <- `gam.Lexis(subset(Sdm, sex="F"), ~ s(age) + s(tfd))`

mgcv::gam Poisson analysis of Lexis object subset(Sdm, sex == "F") with log link: Rates for the transition: Alive->Dead

```
matshade( nd$age, cbind( ci.predict( mm, nd )*1000, 
                   ci.predict( mw, nd )*1000, 
                   ci.predict( mm, nd ), 
                   ci.predict( mw, nd ) ), plot=TRUE, 
             lwd=3, lty=1, log="y", las=1, col=c("blue","red","black"), 
             xlim=c(30,85), ylim=c(1/2,200), 
             xlab="Age at FU (years)", 
             ylab="Mortality rate per 1000 PY" )
```

abline(h=1)

... for you

- What is is your conclusion for the effect of duration and age at diagnosis on the mortality rates?
- What is the effect of age at diagnosis?
- Your turn — do the analysis on your own computer.
Competing risks

Bendix Carstensen
Senior Statistician, Steno Diabetes Center Copenhagen

Survival
Multiple timescales
Competing risks
IDEG 2019 training day, Seoul,
29 November 2019

http://BendixCarstensen/Epi/Courses/IDEG2019 comp-risk

Survival analysis

One rate (the arrow)
One probability — P \{alive at t\}

Some patients begin pharmaceutical treatment, they have follow-up
before Drug treatment and after beginning Drug treatment

Three states, three transitions

Three states, three transitions
Cut follow-up at beginning of drug therapy

```r
summary(Sdm)

Transitions:
To
From Alive Dead Records: Events: Risk time: Persons:
Alive 277890 2499 280389 2499 54273.27 9996

Sdm$dodr <- pmin(Sdm$dooad,Sdm$doins,na.rm=TRUE)
S3 <- cutLexis(data = Sdm, cut = Sdm$dodr, timescale = "per", new.state = "Drug", precursor.states = "Alive")

summary(S3)

Transitions:
To
From Alive Drug Dead Records: Events: Risk time: Persons:
Alive 140147 3646 1056 144849 4702 22920.27 7532
Drug 0 137743 1443 139186 1443 31353.00 6110
Sum 140147 141389 2499 284035 6145 54273.27 9996
```

Competing risks (comp-risk)
Competing risk analysis

lex.Xst is a factor with three levels:

```r
levels(S3$lex.Xst)
```

[1] "Alive" "Drug" "Dead"

...use it as response (event) variable in **Surv**:

```r
m3 <- survfit( Surv( tfd, tfd+lex.dur, lex.Xst ) ~ 1,
                  data = subset(S3, lex.Cst=="Alive"), id=lex.id )
```

Computes the Aalen-Johansen estimator of state-probabilities — probability of being in each of the states assumed by **lex.Xst**

Competing risk analysis

```r
m3 <- survfit( Surv( tfd, tfd+lex.dur, lex.Xst ) ~ 1,
                  data = subset(S3, lex.Cst=="Alive"), id=lex.id )
head( cbind(time=m3$time, m3$pstate), 7 )
```

<table>
<thead>
<tr>
<th>time</th>
<th>m3$pstate</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>0.002737851 0.9956187 0.003319172 0.001062135</td>
</tr>
<tr>
<td>[2,]</td>
<td>0.005475702 0.9901745 0.008232201 0.001593273</td>
</tr>
<tr>
<td>[3,]</td>
<td>0.008213552 0.9875188 0.010356754 0.002124411</td>
</tr>
<tr>
<td>[4,]</td>
<td>0.010951403 0.9847304 0.012614091 0.002655550</td>
</tr>
<tr>
<td>[5,]</td>
<td>0.013689254 0.9784895 0.01589397 0.002921119</td>
</tr>
<tr>
<td>[6,]</td>
<td>0.016427105 0.9727797 0.024035644 0.003186688</td>
</tr>
<tr>
<td>[7,]</td>
<td>0.019164955 0.9652100 0.031470515 0.003319491</td>
</tr>
</tbody>
</table>

```r
matplot( m3$time, m3$pstate, type="s", lty=1, lwd=4,
          col=c("forestgreen","red","black") )

text( 12, 9:7/10, levels(S3$lex.Xst), adj=1, font=2, cex=1.5,
       col=c("forestgreen","red","black") )
```
Getting it wrong

- It is commonly seen that a traditional survival analyses are conducted where transition to Drug is taken as event and deaths just counted as censorings.
- This is wrong; it will overestimate the probability of going on drugs.
- But nothing wrong with the estimate of the rate of initiating drugs.
- Only the calculation of the cumulative probability is wrong — the probability of having initiated a drug depends on both the rate of drug initiation and the mortality rate.
What are the wrong probabilities?

Probability of Drug under the assumptions:

- Dead does not occur
- Drug occurs at the same rate as when Dead was a possibility
- hypothetical scenario about which there is no information in data
- ... and about which no data can be collected

Getting the maths right

rate of drug initiation (Alive→Drug): \(\lambda(t) \)

mortality before drug initiation (Alive→Dead): \(\mu(t) \)

\(\Rightarrow \) probability of being alive without drug treatment at time \(t \) is:

\[
S(t) = \exp\left(-\int_0^t \lambda(s) + \mu(s) \, ds \right)
\]

cumulative risk of Drug before time \(t \) is:

\[
R_{\text{Drug}}(t) = \int_0^t \lambda(u) S(u) \, du = \int_0^t \lambda(u) \exp\left(-\int_0^u \lambda(s) + \mu(s) \, ds \right) \, du
\]

... and similarly for cumulative risk of Dead

Where is the error

- Error only in the calculations of the cumulative risk — the probability of transition to Drug.

- The “wrong” red line in the figure comes from omitting the green term \(\mu(s) \) (the mortality rate) from the formula

- The temptations:
 - the mathematics becomes nicer if you compute the wrong thing
 - it is what comes out of standard programs when regarding Drug as the only type of event...
 - the hazard ratios are correct.
 - ... the program does not know there is a competing event if you don’t tell
 - so the cumulative risks are wrong
Competing risks — practicalities

- Cause-specific rates can be modeled separately: cause-specific rates and HRs are perfectly valid
- Regression models for cause-specific rates translates to predicted probabilities for given covariates
- Fine-Gray models
 - the subdistribution hazard for cause c: $\frac{\partial}{\partial t} \log(1 - F_c(t))$
 - not a hazard, it’s a mathematical transformation of the cumulative risk.
 - will not give probabilities that sum to 1 across causes

... not recommended

Competing risks summary

- No such thing as a competing risks analysis of event rates
- the competing risks aspect comes about only when you want to address cumulative risk of a particular event —in which case you probably want to look at cumulative risks of all types of events.