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Survival data

Persons enter the study at some date.

Persons exit at a later date, either dead or alive.

Observation:
Actual time span to death (“event”)

or
Some time alive (“censoring”)
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Examples of time-to-event measurements

I Time from diagnosis of cancer to death.

I Time from randomisation to death in a cancer clinical trial

I Time from HIV infection to AIDS.

I Time from marriage to 1st child birth.

I Time from marriage to divorce.

I Time to re-offending after being released from jail
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Each line a
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Each blob a
death
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Ordered by date
of entry

Most likely the
order in your
database.
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Timescale
changed to
“Time since
diagnosis”.
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Patients ordered
by survival time.

Time since diagnosis
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Survival times
grouped into
bands of
survival.

Year of follow−up
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Patients ordered
by survival
status within
each band.
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Survival after Cervix cancer

Stage I Stage II

Year N D L N D L

1 110 5 5 234 24 3
2 100 7 7 207 27 11
3 86 7 7 169 31 9
4 72 3 8 129 17 7
5 61 0 7 105 7 13
6 54 2 10 85 6 6
7 42 3 6 73 5 6
8 33 0 5 62 3 10
9 28 0 4 49 2 13

10 24 1 8 34 4 6

Estimated risk in year 1 for Stage I women is 5/107.5 = 0.0465

Estimated 1 year survival is 1− 0.0465 = 0.9535
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Survival function

Persons enter at time 0:
Date of birth, date of randomization, date of diagnosis.

How long do they survive?
Survival time T — a stochastic variable.

Distribution is characterized by the survival function:

S (t) = P {survival at least till t}
= P {T > t} = 1− P {T ≤ t} = 1− F (t)

F (t) is the cumulative risk of death before time t .
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Intensity / rate / hazard — same same

I The intensity or hazard function

I Probability of event in interval, relative to interval length:

λ(t) = P {event in (t , t + h] | alive at t} /h

I Characterizes the distribution of survival times as does
f (density) or
F (cumulative distibution).

I Theoretical counterpart of a(n empirical) rate.

Rates and Survival (surv-rate) 12/ 79

Survival
Multiple
timescales
Competing

risks

Bendix
Carstensen

Rates and
Survival

Lifetable
estimators

Kaplan-
Meier
estimators

The
Cox-model

Who needs
the
Cox-model
anyway?

Multiple
time scales

Competing
risks

Survival and rate

Survival from rate — and vice versa;

S (t) = exp

(
−
∫ t

0

λ(s) ds

)
λ(t) =

S ′(t)

S (t)

Survival is a cumulative measure,
the rate is an instantaneous measure.

Note: A cumulative measure requires an origin!

. . . it is always survival since some timepoint — here 0
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Empirical rates for individuals

I At the individual level we introduce the
empirical rate: (d , y),
— number of events (d ∈ {0, 1}) during y risk time.

I A person contributes several observations of (d , y), with
associated covariate values.

I Empirical rates are responses in survival analysis.
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Empirical rates
by
calendar time.
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Empirical rates
by
time since
diagnosis.

Time since diagnosis
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Statistical inference: Likelihood

Two things needed:

I Data — what did we actually observe
Follow-up for each person:
Entry time, exit time, exit status, covariates

I Model — how was data generated
Rates as a function of time:
Probability machinery that generated data

Likelihood is the probability of observing the data, assuming the
model is correct.

Maximum likelihood estimation is choosing parameters of the
model that makes the likelihood maximal.
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Likelihood from one person

I The likelihood from several empirical rates from one
individual is a product of conditional probabilities:

P {event at t4|t0} = P {survive (t0, t1)| alive at t0} ×
P {survive (t1, t2)| alive at t1} ×
P {survive (t2, t3)| alive at t2} ×
P {event at t4| alive at t3}

I Log-likelihood from one individual is a sum of terms.
I Each term refers to one empirical rate (d , y)

— y = ti − ti−1 and mostly d = 0.
I ti is the timescale (covariate).
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Poisson likelihood

The log-likelihood contributions from follow-up of one individual:

dt log
(
λ(t)

)
− λ(t)yt , t = t1, . . . , tn

is also the log-likelihood from several independent Poisson
observations with mean λ(t)yt , i.e. log-mean log

(
λ(t)

)
+ log(yt)

Analysis of the rates, (λ) can be based on a Poisson model with
log-link applied to empirical rates where:

I log(λ) is modelled by covariates

I d is the response variable and

I log(y) is the offset variable, using the poisson family

Rates and Survival (surv-rate) 19/ 79
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Poisson likelihood

The log-likelihood contributions from follow-up of one individual:

dt log
(
λ(t)

)
− λ(t)yt , t = t1, . . . , tn

is also the log-likelihood from several independent Poisson
observations with mean λ(t)yt , i.e. log-mean log

(
λ(t)

)
+ log(yt)

Analysis of the rates, (λ) can be based on a Poisson model with
log-link applied to empirical rates (d , y)

I log(λ) is modelled by covariates

I (d , y) is the response variable

I . . . using the poisreg family
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Poisson likelihood, for one rate, based on 17 events in 843.7 PY:

library( Epi )
D <- 17 ; Y <- 843.7
m1 <- glm( D ~ 1, offset=log(Y/1000), family=poisson)
ci.exp( m1 )

exp(Est.) 2.5% 97.5%
(Intercept) 20.14934 12.52605 32.41213

Poisson likelihood, two rates, or one rate and RR:

D <- c(17,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1)
m2 <- glm( D ~ gg, offset=log(Y/1000), family=poisson)
ci.exp( m2 )

exp(Est.) 2.5% 97.5%
(Intercept) 20.149342 12.526051 32.412130
gg1 2.197728 1.202971 4.015068
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Poisson likelihood, two rates, or one rate and RR:

D <- c(17,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1)
m2 <- glm( D ~ gg, offset=log(Y/1000), family=poisson)
ci.exp( m2 )

exp(Est.) 2.5% 97.5%
(Intercept) 20.149342 12.526051 32.412130
gg1 2.197728 1.202971 4.015068

m2r <- glm( cbind(D,Y/1000) ~ gg, family=poisreg)
ci.exp( m2r )

exp(Est.) 2.5% 97.5%
(Intercept) 20.149342 12.526051 32.412130
gg1 2.197728 1.202971 4.015068

Note the family=poisreg
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Example using R

Poisson likelihood, two rates, or one rate and RR:

D <- c(17,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1)
m2 <- glm( cbind(D,Y/1000) ~ gg, family=poisreg )
ci.exp( m2 )

exp(Est.) 2.5% 97.5%
(Intercept) 20.149342 12.526051 32.412130
gg1 2.197728 1.202971 4.015068

m3 <- glm( cbind(D,Y/1000) ~ gg - 1, family=poisreg )
ci.exp( m3 )

exp(Est.) 2.5% 97.5%
gg0 20.14934 12.52605 32.41213
gg1 44.28278 30.57545 64.13525

You do it!
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Survival analysis

I Response variable: Time to event, T

I Censoring time, Z

I We observe (min(T ,Z ), δ = 1{T < Z}).
I This gives time a special status, and mixes the response

variable (risk)time with the covariate time(scale).

I Originates from clinical trials where everyone enters at time
0, and therefore Y = T − 0 = T
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The life table method

The simplest analysis is by the “life-table method”:

interval alive dead cens.
i ni di li pi

1 77 5 2 5/(77− 2/2)= 0.066
2 70 7 4 7/(70− 4/2)= 0.103
3 59 8 1 8/(59− 1/2)= 0.137

pi = P {death in interval i} = di/(ni − li/2)

S (t) = (1− p1)× · · · × (1− pt)
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Life table is based on person-years and
deaths accumulated in a short period.

Age-specific rates — cross-sectional!

Survival function:

S (t) = e−
∫ t

0
λ(a) da = e−

∑t
0 λ(a)

— assumes stability of rates to be
interpretable for actual persons.
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This is a Lexis diagram.
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Life table approach

I The population experience:

D : Deaths (events).
Y : Person-years (risk time).

I The classical lifetable analysis compiles these for prespecified
intervals of age, and computes age-specific mortality rates.

I Data are collected crossectionally, but interpreted
longitudinally.

I The rates are the basic building bocks — used for
construction of:

I RRs
I cumulative measures (survival and risk)
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The Kaplan-Meier Method

I The most common method of estimating the survival
function.

I A non-parametric method.

I Divides time into small intervals where the intervals are
defined by the unique times of failure (death).

I Based on conditional probabilities as we are interested in the
probability a subject surviving the next time interval given
that they have survived so far.
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Kaplan–Meier method illustrated

(• = failure and × = censored):

-

Time
× • × ×•

50N = 49 46

61.0Cumulative
survival

probability

I Steps caused by multiplying by
(1− 1/49) and (1− 1/46) respectively

I Late entry can also be dealt with
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Using R: Surv()
library( survival )
data( lung )
head( lung, 3 )

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1 3 306 2 74 1 1 90 100 1175 NA
2 3 455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15

with( lung, Surv( time, status==2 ) )[1:10]

[1] 306 455 1010+ 210 883 1022+ 310 361 218 166

( s.km <- survfit( Surv( time, status==2 ) ~ 1 , data=lung ) )

Call: survfit(formula = Surv(time, status == 2) ~ 1, data = lung)

n events median 0.95LCL 0.95UCL
228 165 310 285 363

plot( s.km )
abline( v=310, h=0.5, col="red" )
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The proportional hazards model

λ(t , x ) = λ0(t)× exp(x ′β)

I The baseline hazard rate, λ0(t), is the hazard rate when all
the covariates are 0
— since then exp(x ′β) = 1

I The form of the above equation means that covariates act
multiplicatively on the baseline hazard rate
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The proportional hazards model

λ(t , x ) = λ0(t)× exp(x ′β)

I Time (t) is a covariate (albeit modeled in a special way).

I The baseline hazard is a function of time and thus varies
with time.

I No assumption about the shape of the underlying hazard
function.

I — but you will never see the shape of the baseline hazard . . .
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Interpreting Regression Coefficients

I If xj is binary, exp(βj ) is the estimated hazard ratio for
subjects corresponding to xj = 1 compared to those where
xj = 0.

I If xj is continuous, exp(βj ) is the estimated
increase/decrease in the hazard rate for a unit change in xj .

I With more than one covariate, interpretation is similar, i.e.
exp(βj ) is the hazard ratio between persons who only differ
with respect to covariate xj

I . . . assuming that the effect of xj is the same across all other
covariate values
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Fitting a Cox- model in R

library( survival )
data(bladder)
bladder <- subset( bladder, enum<2 )
head( bladder)

id rx number size stop event enum
1 1 1 1 3 1 0 1
5 2 1 2 1 4 0 1
9 3 1 1 1 7 0 1
13 4 1 5 1 10 0 1
17 5 1 4 1 6 1 1
21 6 1 1 1 14 0 1
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Fitting a Cox-model in R

c0 <- coxph( Surv(stop,event) ~ number + size, data=bladder )
c0

Call:
coxph(formula = Surv(stop, event) ~ number + size, data = bladder)

coef exp(coef) se(coef) z p
number 0.20491 1.22742 0.07036 2.912 0.00359
size 0.06135 1.06327 0.10328 0.594 0.55254

Likelihood ratio test=7.04 on 2 df, p=0.02963
n= 85, number of events= 47

What is the meaning of the two regression parameters?

The Cox-model (cox) 38/ 79



Survival
Multiple
timescales
Competing

risks

Bendix
Carstensen

Rates and
Survival

Lifetable
estimators

Kaplan-
Meier
estimators

The
Cox-model

Who needs
the
Cox-model
anyway?

Multiple
time scales

Competing
risks

Plotting the base survival in R

plot( survfit(c0) )
lines( survfit(c0), conf.int=F, lwd=3 )

The plot.coxph plots the survival curve for a person with an
average covariate value

— which is not the average survival for the population
considered. . .

— and not necessarily meaningful

c( mean(bladder$number), mean(bladder$size) )

[1] 2.105882 2.011765
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Plotting the base survival in R

You can plot the survival curve for specific values of the
covariates, using the newdata= argument:

plot( survfit(c0) )
lines( survfit(c0), conf.int=F, lwd=3 )
lines( survfit(c0, newdata=data.frame(number=1,size=1)),

lwd=2, col="limegreen" )
text( par("usr")[2]*0.98, 1.00, "number=1,size=1",

col="limegreen", font=2, adj=1 )
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A look at the Cox model

λ(t , x ) = λ0(t)× exp(x ′β)

A model for the rate as a function of t and x .

The covariate t has a special status:

I Computationally, because all individuals contribute to (some
of) the range of t .

I . . . the scale along which time is split (the risk sets)

I Conceptually t is just a covariate that varies within individual.
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The Cox-likelihood as profile likelihood

I One parameter per death time to describe the effect of time
(i.e. the chosen timescale).

log
(
λ(t , xi)

)
= log

(
λ0(t)

)
+ β1x1i + · · ·+ βpxpi = αt + ηi

I Profile likelihood:
I Derive estimates of αt as function of data and βs

— assuming constant rate between death times
I Insert in likelihood, now only a function of data and βs
I Turns out to be Cox’s partial likelihood
I The full likelihood is that of a Poisson model
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Implications

I The Cox-model is a special case of a Poisson model

I . . . a model with one parameter per time (censoring or death)
— typically hundreds of parameters

I A more sensible model would be one with a smooth effect of
time.

I bendixcarstensen.com/WntCma.pdf gives a complete
account

I . . . but here is a quick tour of how-to
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library(Epi)
library(popEpi)
library(mgcv)
library(survival)
data(lung)
lung <- transform( lung, sex=factor(sex,labels=c("M","F")),

time=time+runif(nrow(lung)) )

Set up a Lexis object (outcome as a factor), and split time in
small intervals (at all times):

Lx <- Lexis( exit=list(tfe=time),
exit.status=factor(status,labels=c("Alive","Dead")),
data=lung )

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfe timescale.
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Split the follow-up in small intervals

sL <- splitMulti( Lx, tfe=c(0,sort(unique(Lx$lex.dur))) )
summary( Lx )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 63 165 228 165 69703.91 228

summary( sL )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 25941 165 26106 165 69703.91 228

The Cox model and the identical Poisson model on the Lexis

data frames:
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c0 <- coxph( Surv(tfe,tfe+lex.dur,lex.Xst=="Dead") ~ sex + age, data=Lx )
cx <- coxph.Lexis( Lx, tfe ~ sex + age )

survival::coxph analysis of Lexis object Lx:
Rates for the transition Alive->Dead
Baseline timescale: tfe

px <- glm.Lexis( sL, ~ factor(tfe) + sex + age )

stats::glm Poisson analysis of Lexis object sL with log link:
Rates for the transition: Alive->Dead

length( coef(px) )

[1] 230

Fit smooth parametric model for baseline:
ps <- gam.Lexis( sL, formula= ~ s(tfe) + sex + age )

mgcv::gam Poisson analysis of Lexis object sL with log link:
Rates for the transition: Alive->Dead
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Compare estimates:

Ests <-cbind( rbind( ci.exp(cx,subset="sex"),
ci.exp(px,subset="sex"),
ci.exp(ps,subset="sex") ),

rbind( ci.exp(cx,subset="age"),
ci.exp(px,subset="age"),
ci.exp(ps,subset="age") ) )

rownames(Ests) <- c("Cox","Pois-F","Pois-S")
colnames(Ests)[c(1,4)] <- c("sex","age")
round( Ests, 7 )

sex 2.5% 97.5% age 2.5% 97.5%
Cox 0.5989669 0.4313805 0.8316587 1.017154 0.9989336 1.035708
Pois-F 0.5989669 0.4313805 0.8316587 1.017154 0.9989336 1.035708
Pois-S 0.6017620 0.4335052 0.8353245 1.016415 0.9982477 1.034912
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Prediction data frame for rates and survival — at what times do
you want the rates and the survival shown for a 65 year old man,
using the Poisson model with smooth effects:

ps <- gam.Lexis( sL, formula= ~ s(tfe) + sex + age )

mgcv::gam Poisson analysis of Lexis object sL with log link:
Rates for the transition: Alive->Dead

nd <- data.frame( tfe=seq(0,900,20)+10, sex="M", age=65 )
rate <- ci.pred( ps, nd )*365.25 # per year, not per day
surv <- ci.surv( ps, nd, int=20 ) # int is interval between times in nd

Plot the rates and the survival function for 65 year old man

par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
matshade( nd$tfe, rate, lwd=2, log="y", plot=TRUE )
matshade( nd$tfe-10, surv, lwd=2, yaxs="i", ylim=c(0,1), plot=TRUE )
lines( survfit( cx, newdata=nd[1,] ), col='red' )
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Rates and survival, 65 year old man
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Timescales

Mortality rates as a function of

I current age, a

I duration of diabetes, d

I age at diagnosis, e = a − d (not a timescale!)

I ⇒ a − d − e = 0
— this relation must be kept in any dataset

Model for mortality depending on current age and age at entry:

log
(
µ(a, d)

)
= f (a) + h(e)
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Two variables: age and age at diagnosis

log
(
µ(a, d)

)
= f (a) + h(e)

NOTE: only superficially that this does not include duration
since d = a − e, we may write:

log
(
µ(a, d)

)
= f (a) + h(e) + βd − βd
= f (a) + h(e) + β(a − e)− βd
=
(
f (a) + βa

)
+
(
h(e)− βe

)
− βd

We can claim any duration effect we like!

Multiple time scales (multi-scales) 53/ 79

Survival
Multiple
timescales
Competing

risks

Bendix
Carstensen

Rates and
Survival

Lifetable
estimators

Kaplan-
Meier
estimators

The
Cox-model

Who needs
the
Cox-model
anyway?

Multiple
time scales

Competing
risks

All three variables

Remember: a − d − e = 0

log
(
µ(a, d)

)
= f (a) + g(d) + h(e)

= f (a) + g(d) + h(e) + γ(a − d − e)

=
(
f (a) + γa

)
+
(
g(d)− γd

)
+
(
h(e)− γe

)

= f̃ (a) + g̃(d) + h̃(e)

I makes no sense to show (any) one of the effects:

We can choose any slope for one of the effects, as long as we
adjust the slopes of the two others.
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Predicted mortality

age: current age; tfd: duration; ain: age at DX:

made <- gam.Lexis( transform(Sdm,ain=age-tfd), ~ s(age) + s(tfd) + s(ain) )
mad <- gam.Lexis( transform(Sdm,ain=age-tfd), ~ s(age) + s(tfd) )

anova( made, mad, test="Chisq" )

Analysis of Deviance Table

Model 1: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ s(age) +
s(tfd) + s(ain)

Model 2: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ s(age) +
s(tfd)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 280378 24000
2 280378 24000 0.28932 0.42647 0.1664

. . . no non-linear effect of age at diagnosis—use model mad.
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Predicted mortality
nd <- data.frame( expand.grid( tfd=c(NA,seq(0,14,.1)),

ain=c(3:7*10) ) )[-1,]
nd$age = nd$ain + nd$tfd
head( nd )

tfd ain age
2 0.0 30 30.0
3 0.1 30 30.1
4 0.2 30 30.2
5 0.3 30 30.3
6 0.4 30 30.4
7 0.5 30 30.5

Predictions of mortality for these values of:
age: current age; tdf: duration and ain: age at DX.
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Mortality rates, not effects

Predict mortality rates for Danish diabetes patients by age and
duration of diabetes for persons diagnosed at ages 30, 40 etc.

matshade( nd$age, ci.pred( mad, nd )*1000, plot=TRUE,
lwd=3, lty=1, log="y", las=1,
xlim=c(30,85), ylim=c(1/2,200),
xlab="Age at FU (years)",
ylab="Mortality rate per 1000 PY" )

abline( v=3:7*10 )
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Analysis by sex
mm <- gam.Lexis( subset( Sdm, sex=="M" ), ~ s(age) + s(tfd) )

mgcv::gam Poisson analysis of Lexis object subset(Sdm, sex == "M") with log link:
Rates for the transition: Alive->Dead

mw <- gam.Lexis( subset( Sdm, sex=="F" ), ~ s(age) + s(tfd) )

mgcv::gam Poisson analysis of Lexis object subset(Sdm, sex == "F") with log link:
Rates for the transition: Alive->Dead

matshade( nd$age, cbind( ci.pred( mm, nd )*1000,
ci.pred( mw, nd )*1000,

ci.ratio( ci.pred( mm, nd ),
ci.pred( mw, nd ) ) ), plot=TRUE,

lwd=3, lty=1, log="y", las=1, col=c("blue","red","black"),
xlim=c(30,85), ylim=c(1/2,200),
xlab="Age at FU (years)",
ylab="Mortality rate per 1000 PY" )

abline( h=1 )
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. . . for you

I What is is your conclusion for the effect of duration and age
at diagnosis on the mortality rates?

I What is the effect of age at diagnosis?

I Your turn — do the analysis on your own computer.
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Survival analysis

Alive
54,273.3

9,996          7,497

Dead
0          2,499

2,499
(4.6)

Alive
54,273.3

9,996          7,497

Dead
0          2,499

Alive
54,273.3

9,996          7,497

Dead
0          2,499
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One probability — P {alive at t}

Some patients begin
pharmaceutical treatment, they
have follow-up
before Drug treatment and
after beginning Drug treatment
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Three states, three transitions
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Cut follow-up at beginning of drug therapy
summary( Sdm )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 277890 2499 280389 2499 54273.27 9996

Sdm$dodr <- pmin(Sdm$dooad,Sdm$doins,na.rm=TRUE)
S3 <- cutLexis( data = Sdm,

cut = Sdm$dodr,
timescale = "per",
new.state = "Drug",

precursor.states = "Alive" )
summary( S3 )

Transitions:
To

From Alive Drug Dead Records: Events: Risk time: Persons:
Alive 140147 3646 1056 144849 4702 22920.27 7532
Drug 0 137743 1443 139186 1443 31353.00 6110
Sum 140147 141389 2499 284035 6145 54273.27 9996
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Three states, three transitions

Alive
22,920.3

7,532          2,830

Drug
31,353.0

2,464          4,667

Dead
0          2,499

3,646
(15.9)

1,056
(4.6)

1,443
(4.6)

Alive
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31,353.0
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Who needs
the
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Three states, two (competing) transitions

Alive
22,920.3

7,532          2,830

Drug
0          3,646

Dead
0          1,056

3,646
(15.9)

1,056
(4.6)

Alive
22,920.3

7,532          2,830

Drug
0          3,646

Dead
0          1,056

Alive
22,920.3

7,532          2,830

Drug
0          3,646

Dead
0          1,056
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Competing risk analysis

lex.Xst is factor with three levels:

levels(S3$lex.Xst)

[1] "Alive" "Drug" "Dead"

. . . use it as response (event) variable in Surv:

m3 <- survfit( Surv( tfd, tfd+lex.dur, lex.Xst ) ~ 1,
data = subset(S3,lex.Cst=="Alive"), id=lex.id )

Computes the Aalen-Johansen estimator of state-probabilities —
probability of being in each of the states assumed by lex.Xst
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Competing risk analysis

m3 <- survfit( Surv( tfd, tfd+lex.dur, lex.Xst ) ~ 1,
data = subset(S3,lex.Cst=="Alive"), id=lex.id )

head( cbind(time=m3$time,m3$pstate), 7 )

time
[1,] 0.002737851 0.9956187 0.003319172 0.001062135
[2,] 0.005475702 0.9901745 0.008232201 0.001593273
[3,] 0.008213552 0.9875188 0.010356754 0.002124411
[4,] 0.010951403 0.9847304 0.012614091 0.002655550
[5,] 0.013689254 0.9784895 0.018589397 0.002921119
[6,] 0.016427105 0.9727797 0.024033564 0.003186688
[7,] 0.019164955 0.9652100 0.031470515 0.003319491

matplot( m3$time, m3$pstate,
type="s", lty=1, lwd=4,
col=c("forestgreen","red","black") )

text( 12, 9:7/10, levels(S3$lex.Xst), adj=1, font=2, cex=1.5,
col=c("forestgreen","red","black") )
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Getting it wrong

I It is commonly seen that a traditional survival analyses are
conducted where transition to Drug is taken as event and
deaths just counted as censorings.

I This is wrong; it will overestimate the probability of going on
drugs.

I But nothing wrong with the estimate of the rate of initiating
drugs.

I Only the calculation of the cumulative probability is wrong
— the probability of having initiated a drug depends on both

the rate of drug initiation and the mortality rate.
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What are the wrong probabilities?

Probability of Drug under the assumptions:

I Dead does not occur

I Drug occurs at the same rate as when Dead was a possibility

I hypothetical scenario about which there is no information in
data

I . . . and about which no data can be collected
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Getting the maths right

I
rate of drug initiation (Alive→Drug): λ(t)

mortality before drug initiation (Alive→Dead): µ(t)
I ⇒ probability of being alive without drug treatment at time
t is:

S (t) = exp
(
−
∫ t

0

λ(s) + µ(s) ds
)

I cumulative risk of Drug before time t is:

RDrug(t) =

∫ t

0

λ(u)S (u) du =

∫ t

0

λ(u)exp
(
−
∫ u

0

λ(s)+µ(s) ds
)
du

—and similarly for cumulative risk of Dead
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Where is the error

I Error only in the calculations of the cumulative risk — the
probability of transition to Drug.

I The “wrong” red line in the figure comes from omitting the
green term µ(s) (the mortality rate) from the formula

I The temptations:

I the mathematics becomes nicer if you compute the wrong thing
I it is what comes out of standard programs when regarding Drug as

the only type of event. . .
I the hazard ratios are correct.
I . . . the program does not know there is a competing event if you

don’t tell
I so the cumulative risks are wrong
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Competing risks — practicalities

I Cause-specific rates can be modeled separately:
cause-specific rates and HRs are perfectly valid

I Regression models for cause-specific rates translates to
predicted probabilities for given covariates

I Fine-Gray models

I the subdistribution hazard for cause c: ∂
∂t
log(1− Fc(t))

I not a hazard, it’s a mathematical transformation of the cumulative
risk.

I will not give probabilities that sum to 1 across causes

. . . not recommended
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Competing risks summary

I No such thing as a competing risks analysis of event rates

I the competing risks aspect comes about only when you want
to address cumulative risk of a particular event
—in which case you probably want to look at cumulative
risks of all types of events.
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