



Poisson likelihood

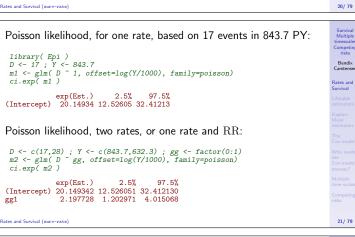
The log-likelihood contributions from follow-up of **one** individual:

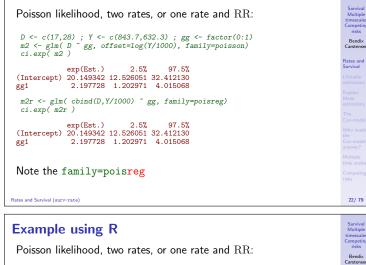
$$d_t \log(\lambda(t)) - \lambda(t)y_t, \quad t = t_1, \dots, t_n$$

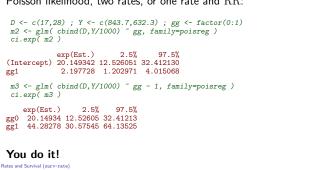
is also the log-likelihood from several independent Poisson observations with mean $\lambda(t)y_t$, i.e. log-mean $\log\bigl(\lambda(t)\bigr) + \log(y_t)$ Analysis of the rates, (λ) can be based on a Poisson model with log-link applied to empirical rates (d,y)

- $log(\lambda)$ is modelled by covariates
- (d, y) is the response variable

... using the poisreg family







Lifetable estimators

Bendix Carstensen

Senior Statistician, Steno Diabetes Center Copenhagen

Survival Multiple timescales Competing risks **IDEG 2019 training day, Seoul**, 29 November 2019

http://BendixCarstensen/Epi/Courses/IDEG2019

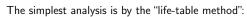
Survival analysis

Survival Multiple timescale Competin risks

Bendix Carstense

- Response variable: Time to event, T
- \blacktriangleright Censoring time, Z
- We observe $(\min(T, Z), \delta = 1\{T < Z\}).$
- This gives time a special status, and mixes the response variable (risk)time with the covariate time(scale).
- \blacktriangleright Originates from clinical trials where everyone enters at time 0, and therefore Y=T-0=T

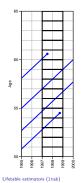
The	life	table	method
Ine	me	Laple	methou



$\operatorname{interval}_i$	anre	$dead_{d_i}$	$\begin{array}{c} cens. \\ l_i \end{array}$	p_i
1	77	5	2	5/(77 - 2/2) = 0.066
2	70	7	4	7/(70 - 4/2) = 0.103
3	59	8	1	8/(59-1/2)=0.137

p_i	=	$P \{ \text{death in interval } i \} = d_i / (n_i - l_i / 2)$
S(t)	=	$(1-p_1) \times \cdots \times (1-p_t)$

Observations for the lifetable



Lifetable estimators (1tab)

Life table is based on person-years and deaths accumulated in a short period. Age-specific rates — cross-sectional! Survival function: 24/ 79

25/79

Surviv: Multip

Bendix

Lifetable

26/79

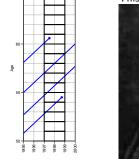
mesca ompet risks

27/79

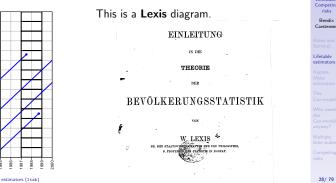
$$S(t) = e^{-\int_0^t \lambda(a) \, \mathrm{d}a} = e^{-\sum_0^t \lambda(a)}$$

- assumes stability of rates to be interpretable for actual persons.

Observations for the lifetable



Observations for the lifetable



ltab

ę

Rates and

Life table approach

- The population experience:
 - D: Deaths (events).
 - Y: Person-years (risk time).
- The classical lifetable analysis compiles these for prespecified intervals of age, and computes age-specific mortality rates.
- Data are collected crossectionally, but interpreted longitudinally.
- The rates are the basic building bocks used for construction of:
 - RRs
 - cumulative measures (survival and risk)

Lifetable estimators (1tab)

Kaplan-Meier estimators

Bendix Carstensen

Senior Statistician, Steno Diabetes Center Copenhagen

Survival Multiple timescales Competing risks **IDEG 2019 training day, Seoul**, 29 November 2019

http://BendixCarstensen/Epi/Courses/IDEG2019

km-na

Bendix

30/ 79

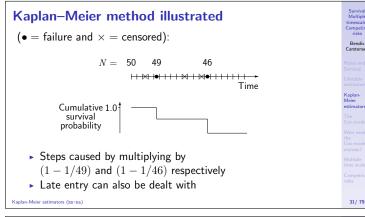
Bendix

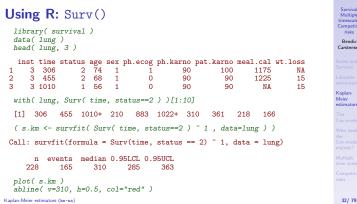
29/79

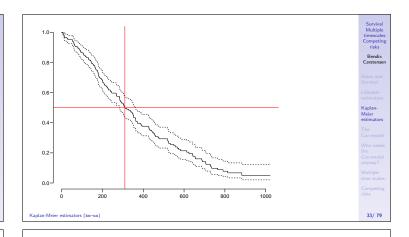
The Kaplan-Meier Method

- The most common method of estimating the survival function.
- A non-parametric method.
- Divides time into small intervals where the intervals are defined by the unique times of failure (death).
- Based on conditional probabilities as we are interested in the probability a subject surviving the next time interval given that they have survived so far.

Kaplan-Meier estimators (km-na)







The Cox-model

Bendix Carstensen

Senior Statistician, Steno Diabetes Center Copenhagen

Survival Multiple timescales Competing risks **IDEG 2019 training day, Seoul**, 29 November 2019

http://BendixCarstensen/Epi/Courses/IDEG2019

The proportional hazards model

$$\lambda(t, x) = \lambda_0(t) \times \exp(x'\beta)$$

- ▶ The baseline hazard rate, $\lambda_0(t)$, is the hazard rate when all the covariates are 0 — since then $\exp(x'\beta) = 1$
- The form of the above equation means that covariates act multiplicatively on the baseline hazard rate

The Cox-model (cox)

The proportional hazards model

$$\lambda(t, x) = \lambda_0(t) \times \exp(x'\beta)$$

- ▶ Time (t) is a covariate (albeit modeled in a special way).
- The baseline hazard is a function of time and thus varies with time.
- ► No assumption about the shape of the underlying hazard function.
- ▶ but you will never see the shape of the baseline hazard ...

The Cox-model (cox)

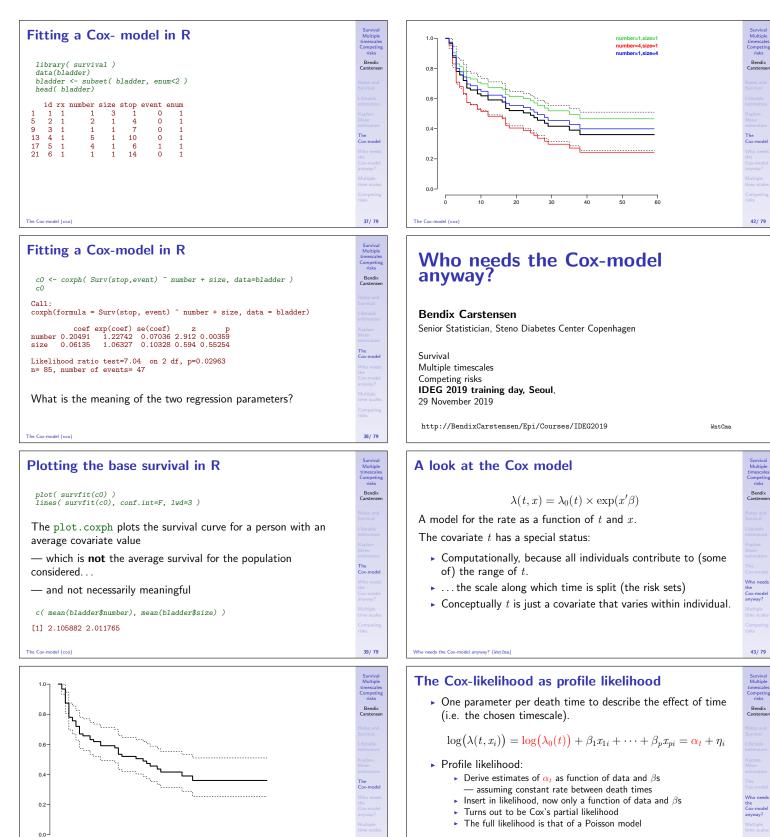
Interpreting Regression Coefficients

- If x_j is binary, $\exp(\beta_j)$ is the estimated hazard ratio for subjects corresponding to $x_j = 1$ compared to those where $x_j = 0$.
- If x_j is continuous, exp(β_j) is the estimated increase/decrease in the hazard rate for a unit change in x_j.
- ▶ With more than one covariate, interpretation is similar, i.e. $\exp(\beta_j)$ is the hazard ratio between persons who **only** differ with respect to covariate x_j
- \blacktriangleright ... assuming that the effect of x_j is the same across all other covariate values

The Cox-model (cox

cox

34/ 79



Competing

40/79

Survival Multiple timescale Competin risks

Bendix

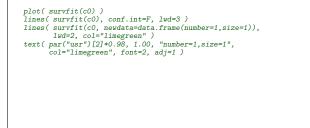
41/ 79

The Cox-model (cox)

Plotting the base survival in R

20

You can plot the survival curve for specific values of the covariates, using the newdata= argument:



bendixcarstensen.com/WntCma.pdf gives a complete
account

► The Cox-model is a special case of a Poisson model

• ... a model with one parameter per time (censoring or death)

A more sensible model would be one with a smooth effect of

... but here is a quick tour of how-to

- typically hundreds of parameters

Who needs the Cox-model anyway? (WntCma

Implications

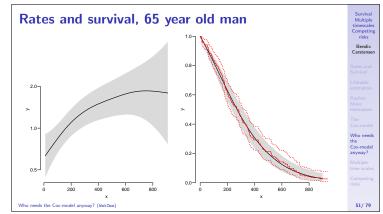
time.

x-mod

44/79

Bendi>





Multiple time scales

Senior Statistician, Steno Diabetes Center Copenhagen

IDEG 2019 training day, Seoul,

http://BendixCarstensen/Epi/Courses/IDEG2019

multi-scales

Bendix

Multiple time scale

52/79

Survival Multiple timescales Competing risks

Bendix Carstense

Multiple time scale

53/79

Bendi>

Mortality rates as a function of

- ▶ duration of diabetes, d
- age at diagnosis, e = a d (not a timescale!)
- - this relation must be kept in any dataset

Model for mortality depending on current age and age at entry:

$$\log(\mu(a,d)) = f(a) + h(e)$$

Two variables: age and age at diagnosis

$$\log(\mu(a,d)) = f(a) + h(e)$$

NOTE: only superficially that this does not include duration since d = a - e, we may write:

> $\log(\mu(a,d)) = f(a) + h(e) + \beta d - \beta d$ $= f(a) + h(e) + \beta(a - e) - \beta d$ $= (f(a) + \beta a) + (h(e) - \beta e) - \beta d$

We can claim any duration effect we like!

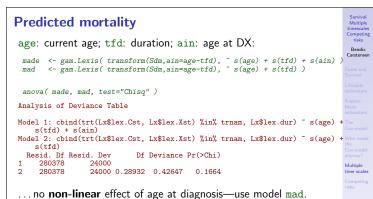
Remember: a - d - e = 0

$$log(\mu(a, d)) = f(a) + g(d) + h(e) = f(a) + g(d) + h(e) + \gamma(a - d - e) = (f(a) + \gamma a) + (g(d) - \gamma d) + (h(e) - \gamma e) = \tilde{f}(a) + \tilde{g}(d) + \tilde{h}(e)$$

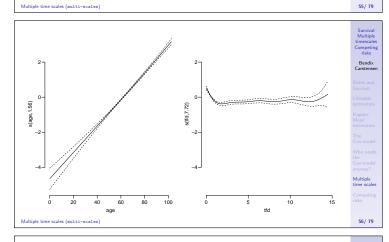
I makes no sense to show (any) one of the effects:

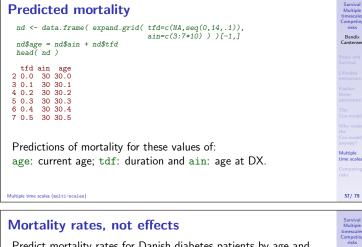
We can choose any slope for one of the effects, as long as we adjust the slopes of the two others.

Multiple time scal



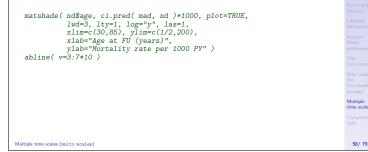
Multiple

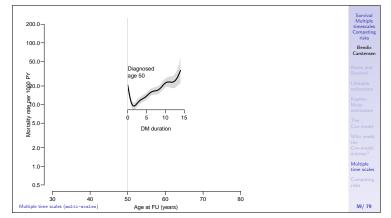


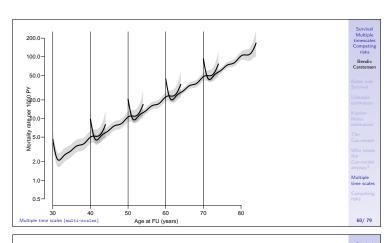


Mortality rates, not effects

Predict mortality rates for Danish diabetes patients by age and duration of diabetes for persons diagnosed at ages 30, 40 etc.





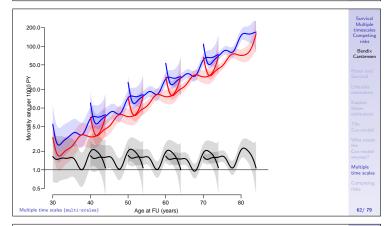


Analysis by sex

mm <- gam.Lexis(subset(Sdm, sex=="M"), ~ s(age) + s(tfd))</pre> mgcv::gam Poisson analysis of Lexis object subset(Sdm, sex == "M") with log Rates for the transition: Alive->Dead mw <- gam.Lexis(subset(Sdm, sex=="F"), ~ s(age) + s(tfd))</pre>

mgcv::gam Poisson analysis of Lexis object subset(Sdm, sex == "F") with log link: Rates for the transition: Alive->Dead

Multiple time scales (multi-



... for you

Bendix Carstense

- What is is your conclusion for the effect of duration and age at diagnosis on the mortality rates?
- What is the effect of age at diagnosis?
- ▶ Your turn do the analysis on your own computer.

Multiple time scales (multi-scales

Competing risks

Bendix Carstensen

Senior Statistician, Steno Diabetes Center Copenhagen

Survival Multiple timescales Competing risks IDEG 2019 training day, Seoul, 29 November 2019

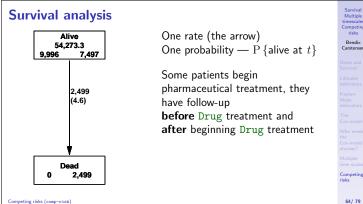
http://BendixCarstensen/Epi/Courses/IDEG2019

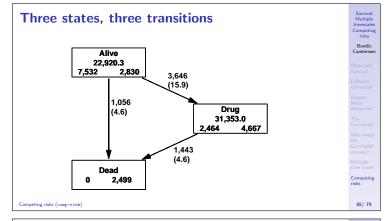
comp-risk

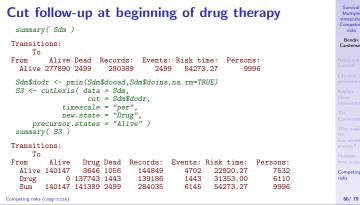
61/79

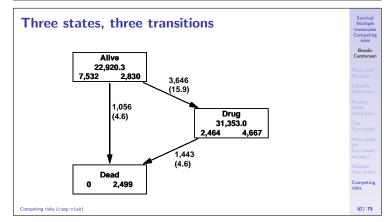
Survival Multiple timescale Competin risks

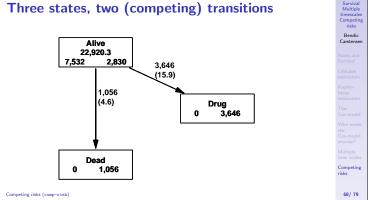
ultiple ne scal

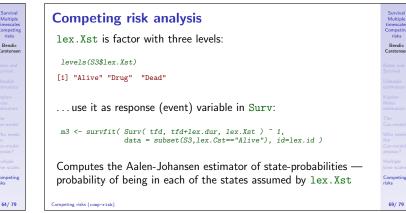






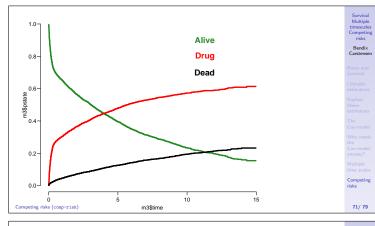


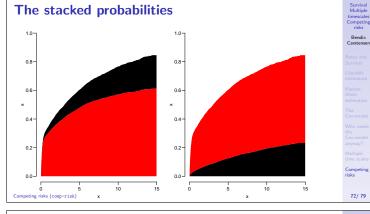




Competing risk analysis

<pre>time time [1,] 0.002737851 0.9956187 0.003319172 0.001062135 [2,] 0.006475702 0.9901745 0.0082322201 0.001593273 [3,] 0.008213552 0.9875188 0.010365745 0.002124411 [4,] 0.010951403 0.9847304 0.012614091 0.002655550 [5,] 0.013689254 0.9784985 0.01858937 0.002921119 [6,] 0.019427105 0.9727797 0.024033564 0.003186688 [7,] 0.019164955 0.9652100 0.031470515 0.003319491 matplot(m3\$time, m3\$pstate, type="s", lty=1, ltd=4, col=c("forestgreem","red","black")) text(12, 9:7/10, levels(S3\$lex.Xst), adj=1, font=2, cex=1.5, col=c("forestgreem","red","black"))</pre>	m3 <- survfit(Surv(tfd, tfd+lex.dur, lex.Xst) ~ 1, data = subset(S3,lex.Cst=="Alive"), id=lex.id) head(cbind(time=m3\$time,m3\$pstate), 7)
<pre>[1,] 0.002737851 0.9956187 0.003319172 0.001062135 [2,] 0.005475702 0.9901745 0.008232201 0.001593273 [3,] 0.008213552 0.9875188 0.010365754 0.002124411 [4,] 0.010951403 0.9847304 0.012614091 0.002655550 [5,] 0.013689254 0.9784895 0.018589397 0.002921119 [6,] 0.015427105 0.9727797 0.024033564 0.003166688 [7,] 0.0191649755 0.9652100 0.031470515 0.003319491 matplot(m3\$time, m3\$pstate,</pre>	
<pre>[2,] 0.005475702 0.9901745 0.008232201 0.001593273 [3,] 0.008213552 0.9875188 0.010356754 0.002124411 [4,] 0.010951403 0.9847304 0.012614091 0.002655550 [5,] 0.013689254 0.9784895 0.018589397 0.002921119 [6,] 0.013649255 0.9727797 0.024033564 0.003186688 [7,] 0.019164955 0.9652100 0.031470515 0.003319491 matplot(m3\$time, m3\$pstate,</pre>	
<pre>[3,] 0.008213552 0.9875188 0.010356754 0.002124411 [4,] 0.010951403 0.9847304 0.012614091 0.002655550 [5,] 0.013689254 0.9784895 0.018569397 0.002921119 [6,] 0.016427105 0.9727797 0.024033564 0.003166688 [7,] 0.019164955 0.9652100 0.031470515 0.003319491 matplot(m3\$time, m3\$pstate,</pre>	
<pre>[5,] 0.013689254 0.9784895 0.018589397 0.002921119 [6,] 0.016427105 0.9727797 0.024033564 0.003186688 [7,] 0.019164955 0.9652100 0.031470515 0.003319491 matplot(m3\$time, m3\$pstate,</pre>	
<pre>[6,] 0.016427105 0.9727797 0.024033564 0.003186688 [7,] 0.019164955 0.9652100 0.031470515 0.003319491 matplot(m3\$time, m3\$pstate,</pre>	[4,] 0.010951403 0.9847304 0.012614091 0.002655550
<pre>[7,] 0.019164955 0.9652100 0.031470515 0.003319491 matplot(m3\$time, m3\$pstate, type="s", lty=1, lwd=4, col=c("forestgreen","red","black")) text(12, 9:7/10, levels(S3\$lex.Xst), adj=1, font=2, cex=1.5,</pre>	5, 0.013689254 0.9784895 0.018589397 0.002921119
<pre>matplot(m3\$time, m3\$pstate,</pre>	[6,] 0.016427105 0.9727797 0.024033564 0.003186688
<pre>type="s", lty=1, lwd=4, col=c("foresgreen","red","black")) text(12, 9:7/10, levels(S3\$lex.Xst), adj=1, font=2, cex=1.5,</pre>	[7,] 0.019164955 0.9652100 0.031470515 0.003319491
	<pre>type="s", lty=1, lwd=4, col=c("foresgreen","red","black")) text(12, 9:7/10, levels(S3\$lex.Xst), adj=1, font=2, cex=1.5,</pre>





Getting it wrong

- It is commonly seen that a traditional survival analyses are conducted where transition to $\ensuremath{\mathtt{Drug}}$ is taken as event and deaths just counted as censorings.
- This is wrong; it will overestimate the probability of going on drugs.
- But nothing wrong with the estimate of the rate of initiating drugs.
- Only the calculation of the cumulative probability is wrong — the probability of having initiated a drug depends on both the rate of drug initiation and the mortality rate.

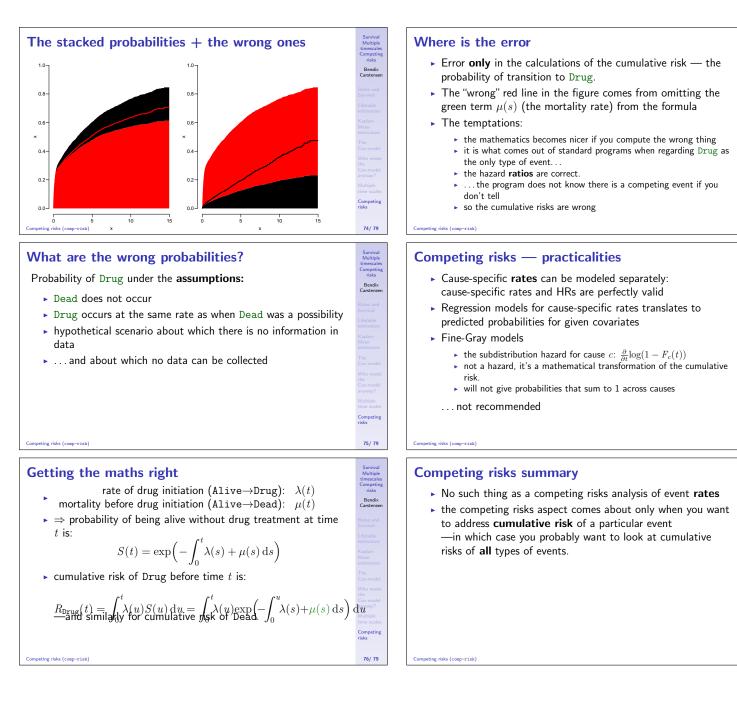
Survis

Bendi>

Surviv Multip

mesca ompe riske

Competin



77/ 79

78/ 79